1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
17 #include <linux/vmstat.h>
18 #include "internal.h"
19 #include <asm/dma.h>
20 
21 /*
22  * Permanent SPARSEMEM data:
23  *
24  * 1) mem_section	- memory sections, mem_map's for valid memory
25  */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 	____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33 
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45 
page_to_nid(const struct page * page)46 int page_to_nid(const struct page *page)
47 {
48 	return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51 
set_section_nid(unsigned long section_nr,int nid)52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54 	section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61 
62 #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65 	struct mem_section *section = NULL;
66 	unsigned long array_size = SECTIONS_PER_ROOT *
67 				   sizeof(struct mem_section);
68 
69 	if (slab_is_available()) {
70 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 	} else {
72 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73 					      nid);
74 		if (!section)
75 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 			      __func__, array_size, nid);
77 	}
78 
79 	return section;
80 }
81 
sparse_index_init(unsigned long section_nr,int nid)82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85 	struct mem_section *section;
86 
87 	/*
88 	 * An existing section is possible in the sub-section hotplug
89 	 * case. First hot-add instantiates, follow-on hot-add reuses
90 	 * the existing section.
91 	 *
92 	 * The mem_hotplug_lock resolves the apparent race below.
93 	 */
94 	if (mem_section[root])
95 		return 0;
96 
97 	section = sparse_index_alloc(nid);
98 	if (!section)
99 		return -ENOMEM;
100 
101 	mem_section[root] = section;
102 
103 	return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 	return 0;
109 }
110 #endif
111 
112 /*
113  * During early boot, before section_mem_map is used for an actual
114  * mem_map, we use section_mem_map to store the section's NUMA
115  * node.  This keeps us from having to use another data structure.  The
116  * node information is cleared just before we store the real mem_map.
117  */
sparse_encode_early_nid(int nid)118 static inline unsigned long sparse_encode_early_nid(int nid)
119 {
120 	return ((unsigned long)nid << SECTION_NID_SHIFT);
121 }
122 
sparse_early_nid(struct mem_section * section)123 static inline int sparse_early_nid(struct mem_section *section)
124 {
125 	return (section->section_mem_map >> SECTION_NID_SHIFT);
126 }
127 
128 /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)129 static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130 						unsigned long *end_pfn)
131 {
132 	unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT;
133 
134 	/*
135 	 * Sanity checks - do not allow an architecture to pass
136 	 * in larger pfns than the maximum scope of sparsemem:
137 	 */
138 	if (*start_pfn > max_sparsemem_pfn) {
139 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141 			*start_pfn, *end_pfn, max_sparsemem_pfn);
142 		WARN_ON_ONCE(1);
143 		*start_pfn = max_sparsemem_pfn;
144 		*end_pfn = max_sparsemem_pfn;
145 	} else if (*end_pfn > max_sparsemem_pfn) {
146 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148 			*start_pfn, *end_pfn, max_sparsemem_pfn);
149 		WARN_ON_ONCE(1);
150 		*end_pfn = max_sparsemem_pfn;
151 	}
152 }
153 
154 /*
155  * There are a number of times that we loop over NR_MEM_SECTIONS,
156  * looking for section_present() on each.  But, when we have very
157  * large physical address spaces, NR_MEM_SECTIONS can also be
158  * very large which makes the loops quite long.
159  *
160  * Keeping track of this gives us an easy way to break out of
161  * those loops early.
162  */
163 unsigned long __highest_present_section_nr;
__section_mark_present(struct mem_section * ms,unsigned long section_nr)164 static void __section_mark_present(struct mem_section *ms,
165 		unsigned long section_nr)
166 {
167 	if (section_nr > __highest_present_section_nr)
168 		__highest_present_section_nr = section_nr;
169 
170 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171 }
172 
173 #define for_each_present_section_nr(start, section_nr)		\
174 	for (section_nr = next_present_section_nr(start-1);	\
175 	     section_nr != -1;								\
176 	     section_nr = next_present_section_nr(section_nr))
177 
first_present_section_nr(void)178 static inline unsigned long first_present_section_nr(void)
179 {
180 	return next_present_section_nr(-1);
181 }
182 
183 #ifdef CONFIG_SPARSEMEM_VMEMMAP
subsection_mask_set(unsigned long * map,unsigned long pfn,unsigned long nr_pages)184 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185 		unsigned long nr_pages)
186 {
187 	int idx = subsection_map_index(pfn);
188 	int end = subsection_map_index(pfn + nr_pages - 1);
189 
190 	bitmap_set(map, idx, end - idx + 1);
191 }
192 
subsection_map_init(unsigned long pfn,unsigned long nr_pages)193 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194 {
195 	int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
196 	unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
197 
198 	for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
199 		struct mem_section *ms;
200 		unsigned long pfns;
201 
202 		pfns = min(nr_pages, PAGES_PER_SECTION
203 				- (pfn & ~PAGE_SECTION_MASK));
204 		ms = __nr_to_section(nr);
205 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
206 
207 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
208 				pfns, subsection_map_index(pfn),
209 				subsection_map_index(pfn + pfns - 1));
210 
211 		pfn += pfns;
212 		nr_pages -= pfns;
213 	}
214 }
215 #else
subsection_map_init(unsigned long pfn,unsigned long nr_pages)216 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
217 {
218 }
219 #endif
220 
221 /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)222 static void __init memory_present(int nid, unsigned long start, unsigned long end)
223 {
224 	unsigned long pfn;
225 
226 	start &= PAGE_SECTION_MASK;
227 	mminit_validate_memmodel_limits(&start, &end);
228 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
229 		unsigned long section_nr = pfn_to_section_nr(pfn);
230 		struct mem_section *ms;
231 
232 		sparse_index_init(section_nr, nid);
233 		set_section_nid(section_nr, nid);
234 
235 		ms = __nr_to_section(section_nr);
236 		if (!ms->section_mem_map) {
237 			ms->section_mem_map = sparse_encode_early_nid(nid) |
238 							SECTION_IS_ONLINE;
239 			__section_mark_present(ms, section_nr);
240 		}
241 	}
242 }
243 
244 /*
245  * Mark all memblocks as present using memory_present().
246  * This is a convenience function that is useful to mark all of the systems
247  * memory as present during initialization.
248  */
memblocks_present(void)249 static void __init memblocks_present(void)
250 {
251 	unsigned long start, end;
252 	int i, nid;
253 
254 #ifdef CONFIG_SPARSEMEM_EXTREME
255 	if (unlikely(!mem_section)) {
256 		unsigned long size, align;
257 
258 		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
259 		align = 1 << (INTERNODE_CACHE_SHIFT);
260 		mem_section = memblock_alloc_or_panic(size, align);
261 	}
262 #endif
263 
264 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
265 		memory_present(nid, start, end);
266 }
267 
268 /*
269  * Subtle, we encode the real pfn into the mem_map such that
270  * the identity pfn - section_mem_map will return the actual
271  * physical page frame number.
272  */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)273 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
274 {
275 	unsigned long coded_mem_map =
276 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
277 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
278 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
279 	return coded_mem_map;
280 }
281 
282 #ifdef CONFIG_MEMORY_HOTPLUG
283 /*
284  * Decode mem_map from the coded memmap
285  */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)286 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
287 {
288 	/* mask off the extra low bits of information */
289 	coded_mem_map &= SECTION_MAP_MASK;
290 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
291 }
292 #endif /* CONFIG_MEMORY_HOTPLUG */
293 
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,struct mem_section_usage * usage,unsigned long flags)294 static void __meminit sparse_init_one_section(struct mem_section *ms,
295 		unsigned long pnum, struct page *mem_map,
296 		struct mem_section_usage *usage, unsigned long flags)
297 {
298 	ms->section_mem_map &= ~SECTION_MAP_MASK;
299 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
300 		| SECTION_HAS_MEM_MAP | flags;
301 	ms->usage = usage;
302 }
303 
usemap_size(void)304 static unsigned long usemap_size(void)
305 {
306 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
307 }
308 
mem_section_usage_size(void)309 size_t mem_section_usage_size(void)
310 {
311 	return sizeof(struct mem_section_usage) + usemap_size();
312 }
313 
314 #ifdef CONFIG_MEMORY_HOTREMOVE
pgdat_to_phys(struct pglist_data * pgdat)315 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
316 {
317 #ifndef CONFIG_NUMA
318 	VM_BUG_ON(pgdat != &contig_page_data);
319 	return __pa_symbol(&contig_page_data);
320 #else
321 	return __pa(pgdat);
322 #endif
323 }
324 
325 static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)326 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
327 					 unsigned long size)
328 {
329 	struct mem_section_usage *usage;
330 	unsigned long goal, limit;
331 	int nid;
332 	/*
333 	 * A page may contain usemaps for other sections preventing the
334 	 * page being freed and making a section unremovable while
335 	 * other sections referencing the usemap remain active. Similarly,
336 	 * a pgdat can prevent a section being removed. If section A
337 	 * contains a pgdat and section B contains the usemap, both
338 	 * sections become inter-dependent. This allocates usemaps
339 	 * from the same section as the pgdat where possible to avoid
340 	 * this problem.
341 	 */
342 	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
343 	limit = goal + (1UL << PA_SECTION_SHIFT);
344 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
345 again:
346 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
347 	if (!usage && limit) {
348 		limit = MEMBLOCK_ALLOC_ACCESSIBLE;
349 		goto again;
350 	}
351 	return usage;
352 }
353 
check_usemap_section_nr(int nid,struct mem_section_usage * usage)354 static void __init check_usemap_section_nr(int nid,
355 		struct mem_section_usage *usage)
356 {
357 	unsigned long usemap_snr, pgdat_snr;
358 	static unsigned long old_usemap_snr;
359 	static unsigned long old_pgdat_snr;
360 	struct pglist_data *pgdat = NODE_DATA(nid);
361 	int usemap_nid;
362 
363 	/* First call */
364 	if (!old_usemap_snr) {
365 		old_usemap_snr = NR_MEM_SECTIONS;
366 		old_pgdat_snr = NR_MEM_SECTIONS;
367 	}
368 
369 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
370 	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
371 	if (usemap_snr == pgdat_snr)
372 		return;
373 
374 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
375 		/* skip redundant message */
376 		return;
377 
378 	old_usemap_snr = usemap_snr;
379 	old_pgdat_snr = pgdat_snr;
380 
381 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
382 	if (usemap_nid != nid) {
383 		pr_info("node %d must be removed before remove section %ld\n",
384 			nid, usemap_snr);
385 		return;
386 	}
387 	/*
388 	 * There is a circular dependency.
389 	 * Some platforms allow un-removable section because they will just
390 	 * gather other removable sections for dynamic partitioning.
391 	 * Just notify un-removable section's number here.
392 	 */
393 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
394 		usemap_snr, pgdat_snr, nid);
395 }
396 #else
397 static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)398 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
399 					 unsigned long size)
400 {
401 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
402 }
403 
check_usemap_section_nr(int nid,struct mem_section_usage * usage)404 static void __init check_usemap_section_nr(int nid,
405 		struct mem_section_usage *usage)
406 {
407 }
408 #endif /* CONFIG_MEMORY_HOTREMOVE */
409 
410 #ifdef CONFIG_SPARSEMEM_VMEMMAP
section_map_size(void)411 static unsigned long __init section_map_size(void)
412 {
413 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
414 }
415 
416 #else
section_map_size(void)417 static unsigned long __init section_map_size(void)
418 {
419 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
420 }
421 
__populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)422 struct page __init *__populate_section_memmap(unsigned long pfn,
423 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
424 		struct dev_pagemap *pgmap)
425 {
426 	unsigned long size = section_map_size();
427 	struct page *map = sparse_buffer_alloc(size);
428 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
429 
430 	if (map)
431 		return map;
432 
433 	map = memmap_alloc(size, size, addr, nid, false);
434 	if (!map)
435 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
436 		      __func__, size, PAGE_SIZE, nid, &addr);
437 
438 	return map;
439 }
440 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
441 
442 static void *sparsemap_buf __meminitdata;
443 static void *sparsemap_buf_end __meminitdata;
444 
sparse_buffer_free(unsigned long size)445 static inline void __meminit sparse_buffer_free(unsigned long size)
446 {
447 	WARN_ON(!sparsemap_buf || size == 0);
448 	memblock_free(sparsemap_buf, size);
449 }
450 
sparse_buffer_init(unsigned long size,int nid)451 static void __init sparse_buffer_init(unsigned long size, int nid)
452 {
453 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
454 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
455 	/*
456 	 * Pre-allocated buffer is mainly used by __populate_section_memmap
457 	 * and we want it to be properly aligned to the section size - this is
458 	 * especially the case for VMEMMAP which maps memmap to PMDs
459 	 */
460 	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
461 	sparsemap_buf_end = sparsemap_buf + size;
462 #ifndef CONFIG_SPARSEMEM_VMEMMAP
463 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
464 #endif
465 }
466 
sparse_buffer_fini(void)467 static void __init sparse_buffer_fini(void)
468 {
469 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
470 
471 	if (sparsemap_buf && size > 0)
472 		sparse_buffer_free(size);
473 	sparsemap_buf = NULL;
474 }
475 
sparse_buffer_alloc(unsigned long size)476 void * __meminit sparse_buffer_alloc(unsigned long size)
477 {
478 	void *ptr = NULL;
479 
480 	if (sparsemap_buf) {
481 		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
482 		if (ptr + size > sparsemap_buf_end)
483 			ptr = NULL;
484 		else {
485 			/* Free redundant aligned space */
486 			if ((unsigned long)(ptr - sparsemap_buf) > 0)
487 				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
488 			sparsemap_buf = ptr + size;
489 		}
490 	}
491 	return ptr;
492 }
493 
vmemmap_populate_print_last(void)494 void __weak __meminit vmemmap_populate_print_last(void)
495 {
496 }
497 
498 /*
499  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
500  * And number of present sections in this node is map_count.
501  */
sparse_init_nid(int nid,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count)502 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
503 				   unsigned long pnum_end,
504 				   unsigned long map_count)
505 {
506 	struct mem_section_usage *usage;
507 	unsigned long pnum;
508 	struct page *map;
509 
510 	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
511 			mem_section_usage_size() * map_count);
512 	if (!usage) {
513 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
514 		goto failed;
515 	}
516 	sparse_buffer_init(map_count * section_map_size(), nid);
517 	for_each_present_section_nr(pnum_begin, pnum) {
518 		unsigned long pfn = section_nr_to_pfn(pnum);
519 
520 		if (pnum >= pnum_end)
521 			break;
522 
523 		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
524 				nid, NULL, NULL);
525 		if (!map) {
526 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
527 			       __func__, nid);
528 			pnum_begin = pnum;
529 			sparse_buffer_fini();
530 			goto failed;
531 		}
532 		check_usemap_section_nr(nid, usage);
533 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
534 				SECTION_IS_EARLY);
535 		usage = (void *) usage + mem_section_usage_size();
536 	}
537 	sparse_buffer_fini();
538 	return;
539 failed:
540 	/* We failed to allocate, mark all the following pnums as not present */
541 	for_each_present_section_nr(pnum_begin, pnum) {
542 		struct mem_section *ms;
543 
544 		if (pnum >= pnum_end)
545 			break;
546 		ms = __nr_to_section(pnum);
547 		ms->section_mem_map = 0;
548 	}
549 }
550 
551 /*
552  * Allocate the accumulated non-linear sections, allocate a mem_map
553  * for each and record the physical to section mapping.
554  */
sparse_init(void)555 void __init sparse_init(void)
556 {
557 	unsigned long pnum_end, pnum_begin, map_count = 1;
558 	int nid_begin;
559 
560 	/* see include/linux/mmzone.h 'struct mem_section' definition */
561 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
562 	memblocks_present();
563 
564 	pnum_begin = first_present_section_nr();
565 	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
566 
567 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
568 	set_pageblock_order();
569 
570 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
571 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
572 
573 		if (nid == nid_begin) {
574 			map_count++;
575 			continue;
576 		}
577 		/* Init node with sections in range [pnum_begin, pnum_end) */
578 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
579 		nid_begin = nid;
580 		pnum_begin = pnum_end;
581 		map_count = 1;
582 	}
583 	/* cover the last node */
584 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
585 	vmemmap_populate_print_last();
586 }
587 
588 #ifdef CONFIG_MEMORY_HOTPLUG
589 
590 /* Mark all memory sections within the pfn range as online */
online_mem_sections(unsigned long start_pfn,unsigned long end_pfn)591 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
592 {
593 	unsigned long pfn;
594 
595 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
596 		unsigned long section_nr = pfn_to_section_nr(pfn);
597 		struct mem_section *ms;
598 
599 		/* onlining code should never touch invalid ranges */
600 		if (WARN_ON(!valid_section_nr(section_nr)))
601 			continue;
602 
603 		ms = __nr_to_section(section_nr);
604 		ms->section_mem_map |= SECTION_IS_ONLINE;
605 	}
606 }
607 
608 /* Mark all memory sections within the pfn range as offline */
offline_mem_sections(unsigned long start_pfn,unsigned long end_pfn)609 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610 {
611 	unsigned long pfn;
612 
613 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614 		unsigned long section_nr = pfn_to_section_nr(pfn);
615 		struct mem_section *ms;
616 
617 		/*
618 		 * TODO this needs some double checking. Offlining code makes
619 		 * sure to check pfn_valid but those checks might be just bogus
620 		 */
621 		if (WARN_ON(!valid_section_nr(section_nr)))
622 			continue;
623 
624 		ms = __nr_to_section(section_nr);
625 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
626 	}
627 }
628 
629 #ifdef CONFIG_SPARSEMEM_VMEMMAP
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)630 static struct page * __meminit populate_section_memmap(unsigned long pfn,
631 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
632 		struct dev_pagemap *pgmap)
633 {
634 	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
635 }
636 
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)637 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
638 		struct vmem_altmap *altmap)
639 {
640 	unsigned long start = (unsigned long) pfn_to_page(pfn);
641 	unsigned long end = start + nr_pages * sizeof(struct page);
642 
643 	memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
644 	vmemmap_free(start, end, altmap);
645 }
free_map_bootmem(struct page * memmap)646 static void free_map_bootmem(struct page *memmap)
647 {
648 	unsigned long start = (unsigned long)memmap;
649 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
650 
651 	vmemmap_free(start, end, NULL);
652 }
653 
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)654 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
655 {
656 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
657 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
658 	struct mem_section *ms = __pfn_to_section(pfn);
659 	unsigned long *subsection_map = ms->usage
660 		? &ms->usage->subsection_map[0] : NULL;
661 
662 	subsection_mask_set(map, pfn, nr_pages);
663 	if (subsection_map)
664 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
665 
666 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
667 				"section already deactivated (%#lx + %ld)\n",
668 				pfn, nr_pages))
669 		return -EINVAL;
670 
671 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
672 	return 0;
673 }
674 
is_subsection_map_empty(struct mem_section * ms)675 static bool is_subsection_map_empty(struct mem_section *ms)
676 {
677 	return bitmap_empty(&ms->usage->subsection_map[0],
678 			    SUBSECTIONS_PER_SECTION);
679 }
680 
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)681 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
682 {
683 	struct mem_section *ms = __pfn_to_section(pfn);
684 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
685 	unsigned long *subsection_map;
686 	int rc = 0;
687 
688 	subsection_mask_set(map, pfn, nr_pages);
689 
690 	subsection_map = &ms->usage->subsection_map[0];
691 
692 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
693 		rc = -EINVAL;
694 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
695 		rc = -EEXIST;
696 	else
697 		bitmap_or(subsection_map, map, subsection_map,
698 				SUBSECTIONS_PER_SECTION);
699 
700 	return rc;
701 }
702 #else
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)703 static struct page * __meminit populate_section_memmap(unsigned long pfn,
704 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
705 		struct dev_pagemap *pgmap)
706 {
707 	return kvmalloc_node(array_size(sizeof(struct page),
708 					PAGES_PER_SECTION), GFP_KERNEL, nid);
709 }
710 
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)711 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
712 		struct vmem_altmap *altmap)
713 {
714 	kvfree(pfn_to_page(pfn));
715 }
716 
free_map_bootmem(struct page * memmap)717 static void free_map_bootmem(struct page *memmap)
718 {
719 	unsigned long maps_section_nr, removing_section_nr, i;
720 	unsigned long type, nr_pages;
721 	struct page *page = virt_to_page(memmap);
722 
723 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
724 		>> PAGE_SHIFT;
725 
726 	for (i = 0; i < nr_pages; i++, page++) {
727 		type = bootmem_type(page);
728 
729 		BUG_ON(type == NODE_INFO);
730 
731 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
732 		removing_section_nr = bootmem_info(page);
733 
734 		/*
735 		 * When this function is called, the removing section is
736 		 * logical offlined state. This means all pages are isolated
737 		 * from page allocator. If removing section's memmap is placed
738 		 * on the same section, it must not be freed.
739 		 * If it is freed, page allocator may allocate it which will
740 		 * be removed physically soon.
741 		 */
742 		if (maps_section_nr != removing_section_nr)
743 			put_page_bootmem(page);
744 	}
745 }
746 
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)747 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
748 {
749 	return 0;
750 }
751 
is_subsection_map_empty(struct mem_section * ms)752 static bool is_subsection_map_empty(struct mem_section *ms)
753 {
754 	return true;
755 }
756 
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)757 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
758 {
759 	return 0;
760 }
761 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
762 
763 /*
764  * To deactivate a memory region, there are 3 cases to handle across
765  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
766  *
767  * 1. deactivation of a partial hot-added section (only possible in
768  *    the SPARSEMEM_VMEMMAP=y case).
769  *      a) section was present at memory init.
770  *      b) section was hot-added post memory init.
771  * 2. deactivation of a complete hot-added section.
772  * 3. deactivation of a complete section from memory init.
773  *
774  * For 1, when subsection_map does not empty we will not be freeing the
775  * usage map, but still need to free the vmemmap range.
776  *
777  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
778  */
section_deactivate(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)779 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
780 		struct vmem_altmap *altmap)
781 {
782 	struct mem_section *ms = __pfn_to_section(pfn);
783 	bool section_is_early = early_section(ms);
784 	struct page *memmap = NULL;
785 	bool empty;
786 
787 	if (clear_subsection_map(pfn, nr_pages))
788 		return;
789 
790 	empty = is_subsection_map_empty(ms);
791 	if (empty) {
792 		unsigned long section_nr = pfn_to_section_nr(pfn);
793 
794 		/*
795 		 * Mark the section invalid so that valid_section()
796 		 * return false. This prevents code from dereferencing
797 		 * ms->usage array.
798 		 */
799 		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
800 
801 		/*
802 		 * When removing an early section, the usage map is kept (as the
803 		 * usage maps of other sections fall into the same page). It
804 		 * will be re-used when re-adding the section - which is then no
805 		 * longer an early section. If the usage map is PageReserved, it
806 		 * was allocated during boot.
807 		 */
808 		if (!PageReserved(virt_to_page(ms->usage))) {
809 			kfree_rcu(ms->usage, rcu);
810 			WRITE_ONCE(ms->usage, NULL);
811 		}
812 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
813 	}
814 
815 	/*
816 	 * The memmap of early sections is always fully populated. See
817 	 * section_activate() and pfn_valid() .
818 	 */
819 	if (!section_is_early)
820 		depopulate_section_memmap(pfn, nr_pages, altmap);
821 	else if (memmap)
822 		free_map_bootmem(memmap);
823 
824 	if (empty)
825 		ms->section_mem_map = (unsigned long)NULL;
826 }
827 
section_activate(int nid,unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)828 static struct page * __meminit section_activate(int nid, unsigned long pfn,
829 		unsigned long nr_pages, struct vmem_altmap *altmap,
830 		struct dev_pagemap *pgmap)
831 {
832 	struct mem_section *ms = __pfn_to_section(pfn);
833 	struct mem_section_usage *usage = NULL;
834 	struct page *memmap;
835 	int rc;
836 
837 	if (!ms->usage) {
838 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
839 		if (!usage)
840 			return ERR_PTR(-ENOMEM);
841 		ms->usage = usage;
842 	}
843 
844 	rc = fill_subsection_map(pfn, nr_pages);
845 	if (rc) {
846 		if (usage)
847 			ms->usage = NULL;
848 		kfree(usage);
849 		return ERR_PTR(rc);
850 	}
851 
852 	/*
853 	 * The early init code does not consider partially populated
854 	 * initial sections, it simply assumes that memory will never be
855 	 * referenced.  If we hot-add memory into such a section then we
856 	 * do not need to populate the memmap and can simply reuse what
857 	 * is already there.
858 	 */
859 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
860 		return pfn_to_page(pfn);
861 
862 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
863 	if (!memmap) {
864 		section_deactivate(pfn, nr_pages, altmap);
865 		return ERR_PTR(-ENOMEM);
866 	}
867 
868 	return memmap;
869 }
870 
871 /**
872  * sparse_add_section - add a memory section, or populate an existing one
873  * @nid: The node to add section on
874  * @start_pfn: start pfn of the memory range
875  * @nr_pages: number of pfns to add in the section
876  * @altmap: alternate pfns to allocate the memmap backing store
877  * @pgmap: alternate compound page geometry for devmap mappings
878  *
879  * This is only intended for hotplug.
880  *
881  * Note that only VMEMMAP supports sub-section aligned hotplug,
882  * the proper alignment and size are gated by check_pfn_span().
883  *
884  *
885  * Return:
886  * * 0		- On success.
887  * * -EEXIST	- Section has been present.
888  * * -ENOMEM	- Out of memory.
889  */
sparse_add_section(int nid,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)890 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
891 		unsigned long nr_pages, struct vmem_altmap *altmap,
892 		struct dev_pagemap *pgmap)
893 {
894 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
895 	struct mem_section *ms;
896 	struct page *memmap;
897 	int ret;
898 
899 	ret = sparse_index_init(section_nr, nid);
900 	if (ret < 0)
901 		return ret;
902 
903 	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
904 	if (IS_ERR(memmap))
905 		return PTR_ERR(memmap);
906 
907 	/*
908 	 * Poison uninitialized struct pages in order to catch invalid flags
909 	 * combinations.
910 	 */
911 	if (!altmap || !altmap->inaccessible)
912 		page_init_poison(memmap, sizeof(struct page) * nr_pages);
913 
914 	ms = __nr_to_section(section_nr);
915 	set_section_nid(section_nr, nid);
916 	__section_mark_present(ms, section_nr);
917 
918 	/* Align memmap to section boundary in the subsection case */
919 	if (section_nr_to_pfn(section_nr) != start_pfn)
920 		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
921 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
922 
923 	return 0;
924 }
925 
sparse_remove_section(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)926 void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
927 			   struct vmem_altmap *altmap)
928 {
929 	struct mem_section *ms = __pfn_to_section(pfn);
930 
931 	if (WARN_ON_ONCE(!valid_section(ms)))
932 		return;
933 
934 	section_deactivate(pfn, nr_pages, altmap);
935 }
936 #endif /* CONFIG_MEMORY_HOTPLUG */
937