xref: /aosp_15_r20/external/tensorflow/tensorflow/compiler/tf2xla/sharding_util_test.cc (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/compiler/tf2xla/sharding_util.h"
16 
17 #include <functional>
18 
19 #include "tensorflow/core/lib/core/status_test_util.h"
20 #include "tensorflow/core/platform/test.h"
21 
22 namespace tensorflow {
23 
TEST(CoreUtilTest,ParseShardingFromDevice)24 TEST(CoreUtilTest, ParseShardingFromDevice) {
25   Graph graph(OpRegistry::Global());
26 
27   auto core_from_sharding =
28       [](std::optional<xla::OpSharding> sharding) -> int64 {
29     if (sharding.has_value() &&
30         sharding.value().type() == xla::OpSharding::MAXIMAL) {
31       return sharding.value().tile_assignment_devices(0);
32     } else {
33       return -1;
34     }
35   };
36 
37   auto parse_status = ParseShardingFromDevice("", 1);
38   TF_EXPECT_OK(parse_status.status());
39   EXPECT_EQ(-1, core_from_sharding(parse_status.ValueOrDie()));
40   parse_status = ParseShardingFromDevice("", 100);
41   TF_EXPECT_OK(parse_status.status());
42   EXPECT_EQ(-1, core_from_sharding(parse_status.ValueOrDie()));
43 
44   parse_status = ParseShardingFromDevice("/device:A_REPLICATED_CORE:-1", 100);
45   EXPECT_FALSE(parse_status.ok());
46 
47   parse_status = ParseShardingFromDevice("/device:A_REPLICATED_CORE:55", 100);
48   TF_EXPECT_OK(parse_status.status());
49   EXPECT_EQ(55, core_from_sharding(parse_status.ValueOrDie()));
50 
51   parse_status = ParseShardingFromDevice("/device:A_REPLICATED_CORE:100", 100);
52   EXPECT_FALSE(parse_status.ok());
53 
54   parse_status = ParseShardingFromDevice("/cpu:0", 100);
55   TF_EXPECT_OK(parse_status.status());
56   EXPECT_EQ(-1, core_from_sharding(parse_status.ValueOrDie()));
57 }
58 
59 class ShardingWithMetadataTest
60     : public ::testing::TestWithParam<xla::OpSharding> {};
61 
TEST_P(ShardingWithMetadataTest,GetShardingFromNode)62 TEST_P(ShardingWithMetadataTest, GetShardingFromNode) {
63   NodeDef node_def;
64   {
65     node_def.set_op("_Arg");
66     node_def.set_name("arg");
67     AttrValue xla_sharding;
68     xla_sharding.set_s("");
69     AttrValue index;
70     index.set_i(0);
71     AttrValue type;
72     type.set_type(DataType::DT_FLOAT);
73     node_def.mutable_attr()->insert(
74         {{"_XlaSharding", xla_sharding}, {"index", index}, {"T", type}});
75   }
76 
77   auto check_metadata = [](const xla::OpSharding& sharding) {
78     ASSERT_EQ(sharding.metadata_size(), 1);
79     const auto& metadata = sharding.metadata(0);
80     EXPECT_EQ(metadata.op_type(), "_Arg");
81     EXPECT_EQ(metadata.op_name(), "arg");
82   };
83 
84   auto test_sharding_metadata =
85       [&check_metadata](
86           const std::function<StatusOr<std::optional<xla::OpSharding>>()>& fn) {
87         auto status_or_sharding = fn();
88         TF_ASSERT_OK(status_or_sharding.status());
89         ASSERT_TRUE(status_or_sharding.ValueOrDie().has_value());
90         auto& sharding = status_or_sharding.ValueOrDie();
91         ASSERT_TRUE(sharding.has_value());
92         if (sharding->type() == xla::OpSharding::TUPLE) {
93           EXPECT_TRUE(sharding->metadata().empty());
94           for (const auto& sharding_element : sharding->tuple_shardings()) {
95             check_metadata(sharding_element);
96           }
97         } else {
98           check_metadata(sharding.value());
99         }
100       };
101 
102   {
103     test_sharding_metadata([&node_def]() {
104       return GetShardingFromNodeDef(node_def, /*add_metadata=*/true);
105     });
106   }
107 
108   {
109     test_sharding_metadata([&node_def]() {
110       return ParseShardingFromDevice(node_def, /*num_cores_per_replica=*/1,
111                                      /*add_metadata=*/true);
112     });
113   }
114 
115   {
116     Graph graph(OpRegistry::Global());
117     Status status;
118     Node* node = graph.AddNode(node_def, &status);
119     TF_ASSERT_OK(status);
120 
121     test_sharding_metadata([node]() {
122       return ParseShardingFromDevice(*node, /*num_cores_per_replica=*/1,
123                                      /*add_metadata=*/true);
124     });
125   }
126 }
127 
CreateTupleSharding()128 xla::OpSharding CreateTupleSharding() {
129   xla::OpSharding sharding;
130   sharding.set_type(xla::OpSharding::TUPLE);
131   sharding.add_tuple_shardings()->set_type(xla::OpSharding::REPLICATED);
132   sharding.add_tuple_shardings()->set_type(xla::OpSharding::REPLICATED);
133   return sharding;
134 }
135 
136 INSTANTIATE_TEST_SUITE_P(GetShardingFromNode, ShardingWithMetadataTest,
137                          ::testing::Values(xla::sharding_builder::Replicate(),
138                                            CreateTupleSharding()));
139 
140 }  // namespace tensorflow
141