xref: /aosp_15_r20/external/swiftshader/third_party/llvm-16.0/llvm/lib/Object/ELFObjectFile.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 //===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the ELFObjectFile class implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Object/ELFObjectFile.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/MC/MCInstrAnalysis.h"
17 #include "llvm/MC/SubtargetFeature.h"
18 #include "llvm/MC/TargetRegistry.h"
19 #include "llvm/Object/ELF.h"
20 #include "llvm/Object/ELFTypes.h"
21 #include "llvm/Object/Error.h"
22 #include "llvm/Support/ARMAttributeParser.h"
23 #include "llvm/Support/ARMBuildAttributes.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/RISCVAttributeParser.h"
27 #include "llvm/Support/RISCVAttributes.h"
28 #include "llvm/Support/RISCVISAInfo.h"
29 #include <algorithm>
30 #include <cstddef>
31 #include <cstdint>
32 #include <memory>
33 #include <optional>
34 #include <string>
35 #include <utility>
36 
37 using namespace llvm;
38 using namespace object;
39 
40 const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
41     {"None", "NOTYPE", ELF::STT_NOTYPE},
42     {"Object", "OBJECT", ELF::STT_OBJECT},
43     {"Function", "FUNC", ELF::STT_FUNC},
44     {"Section", "SECTION", ELF::STT_SECTION},
45     {"File", "FILE", ELF::STT_FILE},
46     {"Common", "COMMON", ELF::STT_COMMON},
47     {"TLS", "TLS", ELF::STT_TLS},
48     {"Unknown", "<unknown>: 7", 7},
49     {"Unknown", "<unknown>: 8", 8},
50     {"Unknown", "<unknown>: 9", 9},
51     {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
52     {"OS Specific", "<OS specific>: 11", 11},
53     {"OS Specific", "<OS specific>: 12", 12},
54     {"Proc Specific", "<processor specific>: 13", 13},
55     {"Proc Specific", "<processor specific>: 14", 14},
56     {"Proc Specific", "<processor specific>: 15", 15}
57 };
58 
ELFObjectFileBase(unsigned int Type,MemoryBufferRef Source)59 ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
60     : ObjectFile(Type, Source) {}
61 
62 template <class ELFT>
63 static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
createPtr(MemoryBufferRef Object,bool InitContent)64 createPtr(MemoryBufferRef Object, bool InitContent) {
65   auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
66   if (Error E = Ret.takeError())
67     return std::move(E);
68   return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
69 }
70 
71 Expected<std::unique_ptr<ObjectFile>>
createELFObjectFile(MemoryBufferRef Obj,bool InitContent)72 ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
73   std::pair<unsigned char, unsigned char> Ident =
74       getElfArchType(Obj.getBuffer());
75   std::size_t MaxAlignment =
76       1ULL << countTrailingZeros(
77           reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
78 
79   if (MaxAlignment < 2)
80     return createError("Insufficient alignment");
81 
82   if (Ident.first == ELF::ELFCLASS32) {
83     if (Ident.second == ELF::ELFDATA2LSB)
84       return createPtr<ELF32LE>(Obj, InitContent);
85     else if (Ident.second == ELF::ELFDATA2MSB)
86       return createPtr<ELF32BE>(Obj, InitContent);
87     else
88       return createError("Invalid ELF data");
89   } else if (Ident.first == ELF::ELFCLASS64) {
90     if (Ident.second == ELF::ELFDATA2LSB)
91       return createPtr<ELF64LE>(Obj, InitContent);
92     else if (Ident.second == ELF::ELFDATA2MSB)
93       return createPtr<ELF64BE>(Obj, InitContent);
94     else
95       return createError("Invalid ELF data");
96   }
97   return createError("Invalid ELF class");
98 }
99 
getMIPSFeatures() const100 SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
101   SubtargetFeatures Features;
102   unsigned PlatformFlags = getPlatformFlags();
103 
104   switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
105   case ELF::EF_MIPS_ARCH_1:
106     break;
107   case ELF::EF_MIPS_ARCH_2:
108     Features.AddFeature("mips2");
109     break;
110   case ELF::EF_MIPS_ARCH_3:
111     Features.AddFeature("mips3");
112     break;
113   case ELF::EF_MIPS_ARCH_4:
114     Features.AddFeature("mips4");
115     break;
116   case ELF::EF_MIPS_ARCH_5:
117     Features.AddFeature("mips5");
118     break;
119   case ELF::EF_MIPS_ARCH_32:
120     Features.AddFeature("mips32");
121     break;
122   case ELF::EF_MIPS_ARCH_64:
123     Features.AddFeature("mips64");
124     break;
125   case ELF::EF_MIPS_ARCH_32R2:
126     Features.AddFeature("mips32r2");
127     break;
128   case ELF::EF_MIPS_ARCH_64R2:
129     Features.AddFeature("mips64r2");
130     break;
131   case ELF::EF_MIPS_ARCH_32R6:
132     Features.AddFeature("mips32r6");
133     break;
134   case ELF::EF_MIPS_ARCH_64R6:
135     Features.AddFeature("mips64r6");
136     break;
137   default:
138     llvm_unreachable("Unknown EF_MIPS_ARCH value");
139   }
140 
141   switch (PlatformFlags & ELF::EF_MIPS_MACH) {
142   case ELF::EF_MIPS_MACH_NONE:
143     // No feature associated with this value.
144     break;
145   case ELF::EF_MIPS_MACH_OCTEON:
146     Features.AddFeature("cnmips");
147     break;
148   default:
149     llvm_unreachable("Unknown EF_MIPS_ARCH value");
150   }
151 
152   if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
153     Features.AddFeature("mips16");
154   if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
155     Features.AddFeature("micromips");
156 
157   return Features;
158 }
159 
getARMFeatures() const160 SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
161   SubtargetFeatures Features;
162   ARMAttributeParser Attributes;
163   if (Error E = getBuildAttributes(Attributes)) {
164     consumeError(std::move(E));
165     return SubtargetFeatures();
166   }
167 
168   // both ARMv7-M and R have to support thumb hardware div
169   bool isV7 = false;
170   std::optional<unsigned> Attr =
171       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
172   if (Attr)
173     isV7 = *Attr == ARMBuildAttrs::v7;
174 
175   Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
176   if (Attr) {
177     switch (*Attr) {
178     case ARMBuildAttrs::ApplicationProfile:
179       Features.AddFeature("aclass");
180       break;
181     case ARMBuildAttrs::RealTimeProfile:
182       Features.AddFeature("rclass");
183       if (isV7)
184         Features.AddFeature("hwdiv");
185       break;
186     case ARMBuildAttrs::MicroControllerProfile:
187       Features.AddFeature("mclass");
188       if (isV7)
189         Features.AddFeature("hwdiv");
190       break;
191     }
192   }
193 
194   Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
195   if (Attr) {
196     switch (*Attr) {
197     default:
198       break;
199     case ARMBuildAttrs::Not_Allowed:
200       Features.AddFeature("thumb", false);
201       Features.AddFeature("thumb2", false);
202       break;
203     case ARMBuildAttrs::AllowThumb32:
204       Features.AddFeature("thumb2");
205       break;
206     }
207   }
208 
209   Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
210   if (Attr) {
211     switch (*Attr) {
212     default:
213       break;
214     case ARMBuildAttrs::Not_Allowed:
215       Features.AddFeature("vfp2sp", false);
216       Features.AddFeature("vfp3d16sp", false);
217       Features.AddFeature("vfp4d16sp", false);
218       break;
219     case ARMBuildAttrs::AllowFPv2:
220       Features.AddFeature("vfp2");
221       break;
222     case ARMBuildAttrs::AllowFPv3A:
223     case ARMBuildAttrs::AllowFPv3B:
224       Features.AddFeature("vfp3");
225       break;
226     case ARMBuildAttrs::AllowFPv4A:
227     case ARMBuildAttrs::AllowFPv4B:
228       Features.AddFeature("vfp4");
229       break;
230     }
231   }
232 
233   Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
234   if (Attr) {
235     switch (*Attr) {
236     default:
237       break;
238     case ARMBuildAttrs::Not_Allowed:
239       Features.AddFeature("neon", false);
240       Features.AddFeature("fp16", false);
241       break;
242     case ARMBuildAttrs::AllowNeon:
243       Features.AddFeature("neon");
244       break;
245     case ARMBuildAttrs::AllowNeon2:
246       Features.AddFeature("neon");
247       Features.AddFeature("fp16");
248       break;
249     }
250   }
251 
252   Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
253   if (Attr) {
254     switch (*Attr) {
255     default:
256       break;
257     case ARMBuildAttrs::Not_Allowed:
258       Features.AddFeature("mve", false);
259       Features.AddFeature("mve.fp", false);
260       break;
261     case ARMBuildAttrs::AllowMVEInteger:
262       Features.AddFeature("mve.fp", false);
263       Features.AddFeature("mve");
264       break;
265     case ARMBuildAttrs::AllowMVEIntegerAndFloat:
266       Features.AddFeature("mve.fp");
267       break;
268     }
269   }
270 
271   Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
272   if (Attr) {
273     switch (*Attr) {
274     default:
275       break;
276     case ARMBuildAttrs::DisallowDIV:
277       Features.AddFeature("hwdiv", false);
278       Features.AddFeature("hwdiv-arm", false);
279       break;
280     case ARMBuildAttrs::AllowDIVExt:
281       Features.AddFeature("hwdiv");
282       Features.AddFeature("hwdiv-arm");
283       break;
284     }
285   }
286 
287   return Features;
288 }
289 
getRISCVFeatures() const290 Expected<SubtargetFeatures> ELFObjectFileBase::getRISCVFeatures() const {
291   SubtargetFeatures Features;
292   unsigned PlatformFlags = getPlatformFlags();
293 
294   if (PlatformFlags & ELF::EF_RISCV_RVC) {
295     Features.AddFeature("c");
296   }
297 
298   RISCVAttributeParser Attributes;
299   if (Error E = getBuildAttributes(Attributes)) {
300     return std::move(E);
301   }
302 
303   std::optional<StringRef> Attr =
304       Attributes.getAttributeString(RISCVAttrs::ARCH);
305   if (Attr) {
306     // Suppress version checking for experimental extensions to prevent erroring
307     // when getting any unknown version of experimental extension.
308     auto ParseResult = RISCVISAInfo::parseArchString(
309         *Attr, /*EnableExperimentalExtension=*/true,
310         /*ExperimentalExtensionVersionCheck=*/false,
311         /*IgnoreUnknown=*/true);
312     if (!ParseResult)
313       return ParseResult.takeError();
314     auto &ISAInfo = *ParseResult;
315 
316     if (ISAInfo->getXLen() == 32)
317       Features.AddFeature("64bit", false);
318     else if (ISAInfo->getXLen() == 64)
319       Features.AddFeature("64bit");
320     else
321       llvm_unreachable("XLEN should be 32 or 64.");
322 
323     Features.addFeaturesVector(ISAInfo->toFeatureVector());
324   }
325 
326   return Features;
327 }
328 
getLoongArchFeatures() const329 SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
330   SubtargetFeatures Features;
331 
332   switch (getPlatformFlags() & ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
333   case ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
334     break;
335   case ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
336     Features.AddFeature("d");
337     // D implies F according to LoongArch ISA spec.
338     [[fallthrough]];
339   case ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
340     Features.AddFeature("f");
341     break;
342   }
343 
344   return Features;
345 }
346 
getFeatures() const347 Expected<SubtargetFeatures> ELFObjectFileBase::getFeatures() const {
348   switch (getEMachine()) {
349   case ELF::EM_MIPS:
350     return getMIPSFeatures();
351   case ELF::EM_ARM:
352     return getARMFeatures();
353   case ELF::EM_RISCV:
354     return getRISCVFeatures();
355   case ELF::EM_LOONGARCH:
356     return getLoongArchFeatures();
357   default:
358     return SubtargetFeatures();
359   }
360 }
361 
tryGetCPUName() const362 std::optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
363   switch (getEMachine()) {
364   case ELF::EM_AMDGPU:
365     return getAMDGPUCPUName();
366   case ELF::EM_PPC64:
367     return StringRef("future");
368   default:
369     return std::nullopt;
370   }
371 }
372 
getAMDGPUCPUName() const373 StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
374   assert(getEMachine() == ELF::EM_AMDGPU);
375   unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
376 
377   switch (CPU) {
378   // Radeon HD 2000/3000 Series (R600).
379   case ELF::EF_AMDGPU_MACH_R600_R600:
380     return "r600";
381   case ELF::EF_AMDGPU_MACH_R600_R630:
382     return "r630";
383   case ELF::EF_AMDGPU_MACH_R600_RS880:
384     return "rs880";
385   case ELF::EF_AMDGPU_MACH_R600_RV670:
386     return "rv670";
387 
388   // Radeon HD 4000 Series (R700).
389   case ELF::EF_AMDGPU_MACH_R600_RV710:
390     return "rv710";
391   case ELF::EF_AMDGPU_MACH_R600_RV730:
392     return "rv730";
393   case ELF::EF_AMDGPU_MACH_R600_RV770:
394     return "rv770";
395 
396   // Radeon HD 5000 Series (Evergreen).
397   case ELF::EF_AMDGPU_MACH_R600_CEDAR:
398     return "cedar";
399   case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
400     return "cypress";
401   case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
402     return "juniper";
403   case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
404     return "redwood";
405   case ELF::EF_AMDGPU_MACH_R600_SUMO:
406     return "sumo";
407 
408   // Radeon HD 6000 Series (Northern Islands).
409   case ELF::EF_AMDGPU_MACH_R600_BARTS:
410     return "barts";
411   case ELF::EF_AMDGPU_MACH_R600_CAICOS:
412     return "caicos";
413   case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
414     return "cayman";
415   case ELF::EF_AMDGPU_MACH_R600_TURKS:
416     return "turks";
417 
418   // AMDGCN GFX6.
419   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
420     return "gfx600";
421   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
422     return "gfx601";
423   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
424     return "gfx602";
425 
426   // AMDGCN GFX7.
427   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
428     return "gfx700";
429   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
430     return "gfx701";
431   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
432     return "gfx702";
433   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
434     return "gfx703";
435   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
436     return "gfx704";
437   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
438     return "gfx705";
439 
440   // AMDGCN GFX8.
441   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
442     return "gfx801";
443   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
444     return "gfx802";
445   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
446     return "gfx803";
447   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
448     return "gfx805";
449   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
450     return "gfx810";
451 
452   // AMDGCN GFX9.
453   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
454     return "gfx900";
455   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
456     return "gfx902";
457   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
458     return "gfx904";
459   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
460     return "gfx906";
461   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
462     return "gfx908";
463   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
464     return "gfx909";
465   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A:
466     return "gfx90a";
467   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
468     return "gfx90c";
469   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940:
470     return "gfx940";
471 
472   // AMDGCN GFX10.
473   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
474     return "gfx1010";
475   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
476     return "gfx1011";
477   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
478     return "gfx1012";
479   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013:
480     return "gfx1013";
481   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
482     return "gfx1030";
483   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
484     return "gfx1031";
485   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
486     return "gfx1032";
487   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
488     return "gfx1033";
489   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034:
490     return "gfx1034";
491   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035:
492     return "gfx1035";
493   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036:
494     return "gfx1036";
495 
496   // AMDGCN GFX11.
497   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100:
498     return "gfx1100";
499   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101:
500     return "gfx1101";
501   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102:
502     return "gfx1102";
503   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103:
504     return "gfx1103";
505   default:
506     llvm_unreachable("Unknown EF_AMDGPU_MACH value");
507   }
508 }
509 
510 // FIXME Encode from a tablegen description or target parser.
setARMSubArch(Triple & TheTriple) const511 void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
512   if (TheTriple.getSubArch() != Triple::NoSubArch)
513     return;
514 
515   ARMAttributeParser Attributes;
516   if (Error E = getBuildAttributes(Attributes)) {
517     // TODO Propagate Error.
518     consumeError(std::move(E));
519     return;
520   }
521 
522   std::string Triple;
523   // Default to ARM, but use the triple if it's been set.
524   if (TheTriple.isThumb())
525     Triple = "thumb";
526   else
527     Triple = "arm";
528 
529   std::optional<unsigned> Attr =
530       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
531   if (Attr) {
532     switch (*Attr) {
533     case ARMBuildAttrs::v4:
534       Triple += "v4";
535       break;
536     case ARMBuildAttrs::v4T:
537       Triple += "v4t";
538       break;
539     case ARMBuildAttrs::v5T:
540       Triple += "v5t";
541       break;
542     case ARMBuildAttrs::v5TE:
543       Triple += "v5te";
544       break;
545     case ARMBuildAttrs::v5TEJ:
546       Triple += "v5tej";
547       break;
548     case ARMBuildAttrs::v6:
549       Triple += "v6";
550       break;
551     case ARMBuildAttrs::v6KZ:
552       Triple += "v6kz";
553       break;
554     case ARMBuildAttrs::v6T2:
555       Triple += "v6t2";
556       break;
557     case ARMBuildAttrs::v6K:
558       Triple += "v6k";
559       break;
560     case ARMBuildAttrs::v7: {
561       std::optional<unsigned> ArchProfileAttr =
562           Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
563       if (ArchProfileAttr &&
564           *ArchProfileAttr == ARMBuildAttrs::MicroControllerProfile)
565         Triple += "v7m";
566       else
567         Triple += "v7";
568       break;
569     }
570     case ARMBuildAttrs::v6_M:
571       Triple += "v6m";
572       break;
573     case ARMBuildAttrs::v6S_M:
574       Triple += "v6sm";
575       break;
576     case ARMBuildAttrs::v7E_M:
577       Triple += "v7em";
578       break;
579     case ARMBuildAttrs::v8_A:
580       Triple += "v8a";
581       break;
582     case ARMBuildAttrs::v8_R:
583       Triple += "v8r";
584       break;
585     case ARMBuildAttrs::v8_M_Base:
586       Triple += "v8m.base";
587       break;
588     case ARMBuildAttrs::v8_M_Main:
589       Triple += "v8m.main";
590       break;
591     case ARMBuildAttrs::v8_1_M_Main:
592       Triple += "v8.1m.main";
593       break;
594     case ARMBuildAttrs::v9_A:
595       Triple += "v9a";
596       break;
597     }
598   }
599   if (!isLittleEndian())
600     Triple += "eb";
601 
602   TheTriple.setArchName(Triple);
603 }
604 
605 std::vector<std::pair<std::optional<DataRefImpl>, uint64_t>>
getPltAddresses() const606 ELFObjectFileBase::getPltAddresses() const {
607   std::string Err;
608   const auto Triple = makeTriple();
609   const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
610   if (!T)
611     return {};
612   uint64_t JumpSlotReloc = 0;
613   switch (Triple.getArch()) {
614     case Triple::x86:
615       JumpSlotReloc = ELF::R_386_JUMP_SLOT;
616       break;
617     case Triple::x86_64:
618       JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
619       break;
620     case Triple::aarch64:
621     case Triple::aarch64_be:
622       JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
623       break;
624     default:
625       return {};
626   }
627   std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
628   std::unique_ptr<const MCInstrAnalysis> MIA(
629       T->createMCInstrAnalysis(MII.get()));
630   if (!MIA)
631     return {};
632   std::optional<SectionRef> Plt, RelaPlt, GotPlt;
633   for (const SectionRef &Section : sections()) {
634     Expected<StringRef> NameOrErr = Section.getName();
635     if (!NameOrErr) {
636       consumeError(NameOrErr.takeError());
637       continue;
638     }
639     StringRef Name = *NameOrErr;
640 
641     if (Name == ".plt")
642       Plt = Section;
643     else if (Name == ".rela.plt" || Name == ".rel.plt")
644       RelaPlt = Section;
645     else if (Name == ".got.plt")
646       GotPlt = Section;
647   }
648   if (!Plt || !RelaPlt || !GotPlt)
649     return {};
650   Expected<StringRef> PltContents = Plt->getContents();
651   if (!PltContents) {
652     consumeError(PltContents.takeError());
653     return {};
654   }
655   auto PltEntries = MIA->findPltEntries(Plt->getAddress(),
656                                         arrayRefFromStringRef(*PltContents),
657                                         GotPlt->getAddress(), Triple);
658   // Build a map from GOT entry virtual address to PLT entry virtual address.
659   DenseMap<uint64_t, uint64_t> GotToPlt;
660   for (const auto &Entry : PltEntries)
661     GotToPlt.insert(std::make_pair(Entry.second, Entry.first));
662   // Find the relocations in the dynamic relocation table that point to
663   // locations in the GOT for which we know the corresponding PLT entry.
664   std::vector<std::pair<std::optional<DataRefImpl>, uint64_t>> Result;
665   for (const auto &Relocation : RelaPlt->relocations()) {
666     if (Relocation.getType() != JumpSlotReloc)
667       continue;
668     auto PltEntryIter = GotToPlt.find(Relocation.getOffset());
669     if (PltEntryIter != GotToPlt.end()) {
670       symbol_iterator Sym = Relocation.getSymbol();
671       if (Sym == symbol_end())
672         Result.emplace_back(std::nullopt, PltEntryIter->second);
673       else
674         Result.emplace_back(Sym->getRawDataRefImpl(), PltEntryIter->second);
675     }
676   }
677   return Result;
678 }
679 
680 template <class ELFT>
readBBAddrMapImpl(const ELFFile<ELFT> & EF,std::optional<unsigned> TextSectionIndex)681 Expected<std::vector<BBAddrMap>> static readBBAddrMapImpl(
682     const ELFFile<ELFT> &EF, std::optional<unsigned> TextSectionIndex) {
683   using Elf_Shdr = typename ELFT::Shdr;
684   std::vector<BBAddrMap> BBAddrMaps;
685   const auto &Sections = cantFail(EF.sections());
686   for (const Elf_Shdr &Sec : Sections) {
687     if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP &&
688         Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP_V0)
689       continue;
690     if (TextSectionIndex) {
691       Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
692       if (!TextSecOrErr)
693         return createError("unable to get the linked-to section for " +
694                            describe(EF, Sec) + ": " +
695                            toString(TextSecOrErr.takeError()));
696       if (*TextSectionIndex != std::distance(Sections.begin(), *TextSecOrErr))
697         continue;
698     }
699     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr = EF.decodeBBAddrMap(Sec);
700     if (!BBAddrMapOrErr)
701       return createError("unable to read " + describe(EF, Sec) + ": " +
702                          toString(BBAddrMapOrErr.takeError()));
703     std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
704               std::back_inserter(BBAddrMaps));
705   }
706   return BBAddrMaps;
707 }
708 
709 template <class ELFT>
710 static Expected<std::vector<VersionEntry>>
readDynsymVersionsImpl(const ELFFile<ELFT> & EF,ELFObjectFileBase::elf_symbol_iterator_range Symbols)711 readDynsymVersionsImpl(const ELFFile<ELFT> &EF,
712                        ELFObjectFileBase::elf_symbol_iterator_range Symbols) {
713   using Elf_Shdr = typename ELFT::Shdr;
714   const Elf_Shdr *VerSec = nullptr;
715   const Elf_Shdr *VerNeedSec = nullptr;
716   const Elf_Shdr *VerDefSec = nullptr;
717   // The user should ensure sections() can't fail here.
718   for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
719     if (Sec.sh_type == ELF::SHT_GNU_versym)
720       VerSec = &Sec;
721     else if (Sec.sh_type == ELF::SHT_GNU_verdef)
722       VerDefSec = &Sec;
723     else if (Sec.sh_type == ELF::SHT_GNU_verneed)
724       VerNeedSec = &Sec;
725   }
726   if (!VerSec)
727     return std::vector<VersionEntry>();
728 
729   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
730       EF.loadVersionMap(VerNeedSec, VerDefSec);
731   if (!MapOrErr)
732     return MapOrErr.takeError();
733 
734   std::vector<VersionEntry> Ret;
735   size_t I = 0;
736   for (const ELFSymbolRef &Sym : Symbols) {
737     ++I;
738     Expected<const typename ELFT::Versym *> VerEntryOrErr =
739         EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
740     if (!VerEntryOrErr)
741       return createError("unable to read an entry with index " + Twine(I) +
742                          " from " + describe(EF, *VerSec) + ": " +
743                          toString(VerEntryOrErr.takeError()));
744 
745     Expected<uint32_t> FlagsOrErr = Sym.getFlags();
746     if (!FlagsOrErr)
747       return createError("unable to read flags for symbol with index " +
748                          Twine(I) + ": " + toString(FlagsOrErr.takeError()));
749 
750     bool IsDefault;
751     Expected<StringRef> VerOrErr = EF.getSymbolVersionByIndex(
752         (*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
753         (*FlagsOrErr) & SymbolRef::SF_Undefined);
754     if (!VerOrErr)
755       return createError("unable to get a version for entry " + Twine(I) +
756                          " of " + describe(EF, *VerSec) + ": " +
757                          toString(VerOrErr.takeError()));
758 
759     Ret.push_back({(*VerOrErr).str(), IsDefault});
760   }
761 
762   return Ret;
763 }
764 
765 Expected<std::vector<VersionEntry>>
readDynsymVersions() const766 ELFObjectFileBase::readDynsymVersions() const {
767   elf_symbol_iterator_range Symbols = getDynamicSymbolIterators();
768   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
769     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
770   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
771     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
772   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
773     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
774   return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
775                                 Symbols);
776 }
777 
readBBAddrMap(std::optional<unsigned> TextSectionIndex) const778 Expected<std::vector<BBAddrMap>> ELFObjectFileBase::readBBAddrMap(
779     std::optional<unsigned> TextSectionIndex) const {
780   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
781     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex);
782   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
783     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex);
784   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
785     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex);
786   if (const auto *Obj = cast<ELF64BEObjectFile>(this))
787     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex);
788   else
789     llvm_unreachable("Unsupported binary format");
790 }
791