1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3
4 #include "pvr_ccb.h"
5 #include "pvr_device.h"
6 #include "pvr_device_info.h"
7 #include "pvr_fw.h"
8 #include "pvr_fw_info.h"
9 #include "pvr_fw_startstop.h"
10 #include "pvr_fw_trace.h"
11 #include "pvr_gem.h"
12 #include "pvr_power.h"
13 #include "pvr_rogue_fwif_dev_info.h"
14 #include "pvr_rogue_heap_config.h"
15 #include "pvr_vm.h"
16
17 #include <drm/drm_drv.h>
18 #include <drm/drm_managed.h>
19 #include <drm/drm_mm.h>
20 #include <linux/clk.h>
21 #include <linux/firmware.h>
22 #include <linux/math.h>
23 #include <linux/minmax.h>
24 #include <linux/sizes.h>
25
26 #define FW_MAX_SUPPORTED_MAJOR_VERSION 1
27
28 #define FW_BOOT_TIMEOUT_USEC 5000000
29
30 /* Config heap occupies top 192k of the firmware heap. */
31 #define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K
32 #define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
33
34 /* Main firmware allocations should come from the remainder of the heap. */
35 #define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE
36
37 /* Offsets from start of configuration area of FW heap. */
38 #define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0
39 #define PVR_ROGUE_FWIF_OSINIT_OFFSET \
40 (PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
41 #define PVR_ROGUE_FWIF_SYSINIT_OFFSET \
42 (PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
43
44 #define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K
45
46 #define PVR_SYNC_OBJ_SIZE sizeof(u32)
47
48 const struct pvr_fw_layout_entry *
pvr_fw_find_layout_entry(struct pvr_device * pvr_dev,enum pvr_fw_section_id id)49 pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id)
50 {
51 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
52 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
53 u32 entry;
54
55 for (entry = 0; entry < num_layout_entries; entry++) {
56 if (layout_entries[entry].id == id)
57 return &layout_entries[entry];
58 }
59
60 return NULL;
61 }
62
63 static const struct pvr_fw_layout_entry *
pvr_fw_find_private_data(struct pvr_device * pvr_dev)64 pvr_fw_find_private_data(struct pvr_device *pvr_dev)
65 {
66 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
67 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
68 u32 entry;
69
70 for (entry = 0; entry < num_layout_entries; entry++) {
71 if (layout_entries[entry].id == META_PRIVATE_DATA ||
72 layout_entries[entry].id == MIPS_PRIVATE_DATA ||
73 layout_entries[entry].id == RISCV_PRIVATE_DATA)
74 return &layout_entries[entry];
75 }
76
77 return NULL;
78 }
79
80 #define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64)
81
82 /**
83 * pvr_fw_validate() - Parse firmware header and check compatibility
84 * @pvr_dev: Device pointer.
85 *
86 * Returns:
87 * * 0 on success, or
88 * * -EINVAL if firmware is incompatible.
89 */
90 static int
pvr_fw_validate(struct pvr_device * pvr_dev)91 pvr_fw_validate(struct pvr_device *pvr_dev)
92 {
93 struct drm_device *drm_dev = from_pvr_device(pvr_dev);
94 const struct firmware *firmware = pvr_dev->fw_dev.firmware;
95 const struct pvr_fw_layout_entry *layout_entries;
96 const struct pvr_fw_info_header *header;
97 const u8 *fw = firmware->data;
98 u32 fw_offset = firmware->size - SZ_4K;
99 u32 layout_table_size;
100 u32 entry;
101
102 if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE))
103 return -EINVAL;
104
105 header = (const struct pvr_fw_info_header *)&fw[fw_offset];
106
107 if (header->info_version != PVR_FW_INFO_VERSION) {
108 drm_err(drm_dev, "Unsupported fw info version %u\n",
109 header->info_version);
110 return -EINVAL;
111 }
112
113 if (header->header_len != sizeof(struct pvr_fw_info_header) ||
114 header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) ||
115 header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) {
116 drm_err(drm_dev, "FW info format mismatch\n");
117 return -EINVAL;
118 }
119
120 if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ||
121 header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION ||
122 header->fw_version_major == 0) {
123 drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n",
124 header->fw_version_major, header->fw_version_minor,
125 header->fw_version_build,
126 (header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : "");
127 return -EINVAL;
128 }
129
130 if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) {
131 struct pvr_gpu_id fw_gpu_id;
132
133 packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id);
134 drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n",
135 fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c,
136 pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c);
137 return -EINVAL;
138 }
139
140 fw_offset += header->header_len;
141 layout_table_size =
142 header->layout_entry_size * header->layout_entry_num;
143 if ((fw_offset + layout_table_size) > firmware->size)
144 return -EINVAL;
145
146 layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset];
147 for (entry = 0; entry < header->layout_entry_num; entry++) {
148 u32 start_addr = layout_entries[entry].base_addr;
149 u32 end_addr = start_addr + layout_entries[entry].alloc_size;
150
151 if (start_addr >= end_addr)
152 return -EINVAL;
153 }
154
155 fw_offset = (firmware->size - SZ_4K) - header->device_info_size;
156
157 drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major,
158 header->fw_version_minor, header->fw_version_build);
159
160 pvr_dev->fw_version.major = header->fw_version_major;
161 pvr_dev->fw_version.minor = header->fw_version_minor;
162
163 pvr_dev->fw_dev.header = header;
164 pvr_dev->fw_dev.layout_entries = layout_entries;
165
166 return 0;
167 }
168
169 static int
pvr_fw_get_device_info(struct pvr_device * pvr_dev)170 pvr_fw_get_device_info(struct pvr_device *pvr_dev)
171 {
172 const struct firmware *firmware = pvr_dev->fw_dev.firmware;
173 struct pvr_fw_device_info_header *header;
174 const u8 *fw = firmware->data;
175 const u64 *dev_info;
176 u32 fw_offset;
177
178 fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size;
179
180 header = (struct pvr_fw_device_info_header *)&fw[fw_offset];
181 dev_info = (u64 *)(header + 1);
182
183 pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size);
184 dev_info += header->brn_mask_size;
185
186 pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size);
187 dev_info += header->ern_mask_size;
188
189 return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size,
190 header->feature_param_size);
191 }
192
193 static void
layout_get_sizes(struct pvr_device * pvr_dev)194 layout_get_sizes(struct pvr_device *pvr_dev)
195 {
196 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
197 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
198 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
199
200 fw_mem->code_alloc_size = 0;
201 fw_mem->data_alloc_size = 0;
202 fw_mem->core_code_alloc_size = 0;
203 fw_mem->core_data_alloc_size = 0;
204
205 /* Extract section sizes from FW layout table. */
206 for (u32 entry = 0; entry < num_layout_entries; entry++) {
207 switch (layout_entries[entry].type) {
208 case FW_CODE:
209 fw_mem->code_alloc_size += layout_entries[entry].alloc_size;
210 break;
211 case FW_DATA:
212 fw_mem->data_alloc_size += layout_entries[entry].alloc_size;
213 break;
214 case FW_COREMEM_CODE:
215 fw_mem->core_code_alloc_size +=
216 layout_entries[entry].alloc_size;
217 break;
218 case FW_COREMEM_DATA:
219 fw_mem->core_data_alloc_size +=
220 layout_entries[entry].alloc_size;
221 break;
222 case NONE:
223 break;
224 }
225 }
226 }
227
228 int
pvr_fw_find_mmu_segment(struct pvr_device * pvr_dev,u32 addr,u32 size,void * fw_code_ptr,void * fw_data_ptr,void * fw_core_code_ptr,void * fw_core_data_ptr,void ** host_addr_out)229 pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr,
230 void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr,
231 void **host_addr_out)
232 {
233 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
234 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
235 u32 end_addr = addr + size;
236 int entry = 0;
237
238 /* Ensure requested range is not zero, and size is not causing addr to overflow. */
239 if (end_addr <= addr)
240 return -EINVAL;
241
242 for (entry = 0; entry < num_layout_entries; entry++) {
243 u32 entry_start_addr = layout_entries[entry].base_addr;
244 u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size;
245
246 if (addr >= entry_start_addr && addr < entry_end_addr &&
247 end_addr > entry_start_addr && end_addr <= entry_end_addr) {
248 switch (layout_entries[entry].type) {
249 case FW_CODE:
250 *host_addr_out = fw_code_ptr;
251 break;
252
253 case FW_DATA:
254 *host_addr_out = fw_data_ptr;
255 break;
256
257 case FW_COREMEM_CODE:
258 *host_addr_out = fw_core_code_ptr;
259 break;
260
261 case FW_COREMEM_DATA:
262 *host_addr_out = fw_core_data_ptr;
263 break;
264
265 default:
266 return -EINVAL;
267 }
268 /* Direct Mem write to mapped memory */
269 addr -= layout_entries[entry].base_addr;
270 addr += layout_entries[entry].alloc_offset;
271
272 /*
273 * Add offset to pointer to FW allocation only if that
274 * allocation is available
275 */
276 *(u8 **)host_addr_out += addr;
277 return 0;
278 }
279 }
280
281 return -EINVAL;
282 }
283
284 static int
pvr_fw_create_fwif_connection_ctl(struct pvr_device * pvr_dev)285 pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev)
286 {
287 struct drm_device *drm_dev = from_pvr_device(pvr_dev);
288 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
289
290 fw_dev->fwif_connection_ctl =
291 pvr_fw_object_create_and_map_offset(pvr_dev,
292 fw_dev->fw_heap_info.config_offset +
293 PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET,
294 sizeof(*fw_dev->fwif_connection_ctl),
295 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
296 NULL, NULL,
297 &fw_dev->mem.fwif_connection_ctl_obj);
298 if (IS_ERR(fw_dev->fwif_connection_ctl)) {
299 drm_err(drm_dev,
300 "Unable to allocate FWIF connection control memory\n");
301 return PTR_ERR(fw_dev->fwif_connection_ctl);
302 }
303
304 return 0;
305 }
306
307 static void
pvr_fw_fini_fwif_connection_ctl(struct pvr_device * pvr_dev)308 pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev)
309 {
310 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
311
312 pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj);
313 }
314
315 static void
fw_osinit_init(void * cpu_ptr,void * priv)316 fw_osinit_init(void *cpu_ptr, void *priv)
317 {
318 struct rogue_fwif_osinit *fwif_osinit = cpu_ptr;
319 struct pvr_device *pvr_dev = priv;
320 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
321 struct pvr_fw_mem *fw_mem = &fw_dev->mem;
322
323 fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr;
324 fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr;
325 pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj,
326 &fwif_osinit->kernel_ccb_rtn_slots_fw_addr);
327
328 fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr;
329 fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr;
330
331 fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0;
332 fwif_osinit->work_est_firmware_ccb_fw_addr = 0;
333
334 pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj,
335 &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr);
336 pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr);
337
338 fwif_osinit->hwr_debug_dump_limit = 0;
339
340 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc);
341 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc);
342 }
343
344 static void
fw_osdata_init(void * cpu_ptr,void * priv)345 fw_osdata_init(void *cpu_ptr, void *priv)
346 {
347 struct rogue_fwif_osdata *fwif_osdata = cpu_ptr;
348 struct pvr_device *pvr_dev = priv;
349 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
350
351 pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr);
352 }
353
354 static void
fw_fault_page_init(void * cpu_ptr,void * priv)355 fw_fault_page_init(void *cpu_ptr, void *priv)
356 {
357 u32 *fault_page = cpu_ptr;
358
359 for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++)
360 fault_page[i] = 0xdeadbee0;
361 }
362
363 static void
fw_sysinit_init(void * cpu_ptr,void * priv)364 fw_sysinit_init(void *cpu_ptr, void *priv)
365 {
366 struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr;
367 struct pvr_device *pvr_dev = priv;
368 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
369 struct pvr_fw_mem *fw_mem = &fw_dev->mem;
370 dma_addr_t fault_dma_addr = 0;
371 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
372
373 WARN_ON(!clock_speed_hz);
374
375 WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr));
376 fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr;
377
378 fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE;
379 fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE;
380
381 pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr);
382 pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj,
383 &fwif_sysinit->trace_buf_ctl_fw_addr);
384 pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr);
385 pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj,
386 &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr);
387 if (fw_mem->core_data_obj) {
388 pvr_fw_object_get_fw_addr(fw_mem->core_data_obj,
389 &fwif_sysinit->coremem_data_store.fw_addr);
390 }
391
392 /* Currently unsupported. */
393 fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0;
394 fwif_sysinit->counter_dump_ctl.size_in_dwords = 0;
395
396 /* Skip alignment checks. */
397 fwif_sysinit->align_checks = 0;
398
399 fwif_sysinit->filter_flags = 0;
400 fwif_sysinit->hw_perf_filter = 0;
401 fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE;
402 fwif_sysinit->initial_core_clock_speed = clock_speed_hz;
403 fwif_sysinit->active_pm_latency_ms = 0;
404 fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF;
405 fwif_sysinit->firmware_started = false;
406 fwif_sysinit->marker_val = 1;
407
408 memset(&fwif_sysinit->bvnc_km_feature_flags, 0,
409 sizeof(fwif_sysinit->bvnc_km_feature_flags));
410 }
411
412 #define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4
413
414 static void
fw_sysdata_init(void * cpu_ptr,void * priv)415 fw_sysdata_init(void *cpu_ptr, void *priv)
416 {
417 struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr;
418 struct pvr_device *pvr_dev = priv;
419 u32 slc_size_in_kilobytes = 0;
420 u32 config_flags = 0;
421
422 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes));
423
424 if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB)
425 config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP;
426
427 fwif_sysdata->config_flags = config_flags;
428 }
429
430 static void
fw_runtime_cfg_init(void * cpu_ptr,void * priv)431 fw_runtime_cfg_init(void *cpu_ptr, void *priv)
432 {
433 struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr;
434 struct pvr_device *pvr_dev = priv;
435 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
436
437 WARN_ON(!clock_speed_hz);
438
439 runtime_cfg->core_clock_speed = clock_speed_hz;
440 runtime_cfg->active_pm_latency_ms = 0;
441 runtime_cfg->active_pm_latency_persistant = true;
442 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters,
443 &runtime_cfg->default_dusts_num_init) != 0);
444 }
445
446 static void
fw_gpu_util_fwcb_init(void * cpu_ptr,void * priv)447 fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv)
448 {
449 struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr;
450
451 gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE;
452 }
453
454 static int
pvr_fw_create_structures(struct pvr_device * pvr_dev)455 pvr_fw_create_structures(struct pvr_device *pvr_dev)
456 {
457 struct drm_device *drm_dev = from_pvr_device(pvr_dev);
458 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
459 struct pvr_fw_mem *fw_mem = &fw_dev->mem;
460 int err;
461
462 fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync),
463 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
464 NULL, NULL, &fw_mem->power_sync_obj);
465 if (IS_ERR(fw_dev->power_sync)) {
466 drm_err(drm_dev, "Unable to allocate FW power_sync structure\n");
467 return PTR_ERR(fw_dev->power_sync);
468 }
469
470 fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf),
471 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
472 NULL, NULL, &fw_mem->hwrinfobuf_obj);
473 if (IS_ERR(fw_dev->hwrinfobuf)) {
474 drm_err(drm_dev,
475 "Unable to allocate FW hwrinfobuf structure\n");
476 err = PTR_ERR(fw_dev->hwrinfobuf);
477 goto err_release_power_sync;
478 }
479
480 err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE,
481 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
482 NULL, NULL, &fw_mem->mmucache_sync_obj);
483 if (err) {
484 drm_err(drm_dev,
485 "Unable to allocate MMU cache sync object\n");
486 goto err_release_hwrinfobuf;
487 }
488
489 fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev,
490 sizeof(*fw_dev->fwif_sysdata),
491 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
492 fw_sysdata_init, pvr_dev,
493 &fw_mem->sysdata_obj);
494 if (IS_ERR(fw_dev->fwif_sysdata)) {
495 drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n");
496 err = PTR_ERR(fw_dev->fwif_sysdata);
497 goto err_release_mmucache_sync_obj;
498 }
499
500 err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE,
501 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
502 fw_fault_page_init, NULL, &fw_mem->fault_page_obj);
503 if (err) {
504 drm_err(drm_dev, "Unable to allocate FW fault page\n");
505 goto err_release_sysdata;
506 }
507
508 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb),
509 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
510 fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj);
511 if (err) {
512 drm_err(drm_dev, "Unable to allocate GPU util FWCB\n");
513 goto err_release_fault_page;
514 }
515
516 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg),
517 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
518 fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj);
519 if (err) {
520 drm_err(drm_dev, "Unable to allocate FW runtime config\n");
521 goto err_release_gpu_util_fwcb;
522 }
523
524 err = pvr_fw_trace_init(pvr_dev);
525 if (err)
526 goto err_release_runtime_cfg;
527
528 fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev,
529 sizeof(*fw_dev->fwif_osdata),
530 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
531 fw_osdata_init, pvr_dev,
532 &fw_mem->osdata_obj);
533 if (IS_ERR(fw_dev->fwif_osdata)) {
534 drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n");
535 err = PTR_ERR(fw_dev->fwif_osdata);
536 goto err_fw_trace_fini;
537 }
538
539 fw_dev->fwif_osinit =
540 pvr_fw_object_create_and_map_offset(pvr_dev,
541 fw_dev->fw_heap_info.config_offset +
542 PVR_ROGUE_FWIF_OSINIT_OFFSET,
543 sizeof(*fw_dev->fwif_osinit),
544 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
545 fw_osinit_init, pvr_dev, &fw_mem->osinit_obj);
546 if (IS_ERR(fw_dev->fwif_osinit)) {
547 drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n");
548 err = PTR_ERR(fw_dev->fwif_osinit);
549 goto err_release_osdata;
550 }
551
552 fw_dev->fwif_sysinit =
553 pvr_fw_object_create_and_map_offset(pvr_dev,
554 fw_dev->fw_heap_info.config_offset +
555 PVR_ROGUE_FWIF_SYSINIT_OFFSET,
556 sizeof(*fw_dev->fwif_sysinit),
557 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
558 fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj);
559 if (IS_ERR(fw_dev->fwif_sysinit)) {
560 drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n");
561 err = PTR_ERR(fw_dev->fwif_sysinit);
562 goto err_release_osinit;
563 }
564
565 return 0;
566
567 err_release_osinit:
568 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
569
570 err_release_osdata:
571 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
572
573 err_fw_trace_fini:
574 pvr_fw_trace_fini(pvr_dev);
575
576 err_release_runtime_cfg:
577 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
578
579 err_release_gpu_util_fwcb:
580 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
581
582 err_release_fault_page:
583 pvr_fw_object_destroy(fw_mem->fault_page_obj);
584
585 err_release_sysdata:
586 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
587
588 err_release_mmucache_sync_obj:
589 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
590
591 err_release_hwrinfobuf:
592 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
593
594 err_release_power_sync:
595 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
596
597 return err;
598 }
599
600 static void
pvr_fw_destroy_structures(struct pvr_device * pvr_dev)601 pvr_fw_destroy_structures(struct pvr_device *pvr_dev)
602 {
603 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
604 struct pvr_fw_mem *fw_mem = &fw_dev->mem;
605
606 pvr_fw_trace_fini(pvr_dev);
607 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
608 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
609 pvr_fw_object_destroy(fw_mem->fault_page_obj);
610 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
611 pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj);
612
613 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
614 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
615 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
616 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
617 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
618 }
619
620 /**
621 * pvr_fw_process() - Process firmware image, allocate FW memory and create boot
622 * arguments
623 * @pvr_dev: Device pointer.
624 *
625 * Returns:
626 * * 0 on success, or
627 * * Any error returned by pvr_fw_object_create_and_map_offset(), or
628 * * Any error returned by pvr_fw_object_create_and_map().
629 */
630 static int
pvr_fw_process(struct pvr_device * pvr_dev)631 pvr_fw_process(struct pvr_device *pvr_dev)
632 {
633 struct drm_device *drm_dev = from_pvr_device(pvr_dev);
634 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
635 const u8 *fw = pvr_dev->fw_dev.firmware->data;
636 const struct pvr_fw_layout_entry *private_data;
637 u8 *fw_code_ptr;
638 u8 *fw_data_ptr;
639 u8 *fw_core_code_ptr;
640 u8 *fw_core_data_ptr;
641 int err;
642
643 layout_get_sizes(pvr_dev);
644
645 private_data = pvr_fw_find_private_data(pvr_dev);
646 if (!private_data)
647 return -EINVAL;
648
649 /* Allocate and map memory for firmware sections. */
650
651 /*
652 * Code allocation must be at the start of the firmware heap, otherwise
653 * firmware processor will be unable to boot.
654 *
655 * This has the useful side-effect that for every other object in the
656 * driver, a firmware address of 0 is invalid.
657 */
658 fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size,
659 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
660 NULL, NULL, &fw_mem->code_obj);
661 if (IS_ERR(fw_code_ptr)) {
662 drm_err(drm_dev, "Unable to allocate FW code memory\n");
663 return PTR_ERR(fw_code_ptr);
664 }
665
666 if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) {
667 u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask;
668
669 fw_data_ptr =
670 pvr_fw_object_create_and_map_offset(pvr_dev, base_addr,
671 fw_mem->data_alloc_size,
672 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
673 NULL, NULL, &fw_mem->data_obj);
674 } else {
675 fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size,
676 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
677 NULL, NULL, &fw_mem->data_obj);
678 }
679 if (IS_ERR(fw_data_ptr)) {
680 drm_err(drm_dev, "Unable to allocate FW data memory\n");
681 err = PTR_ERR(fw_data_ptr);
682 goto err_free_fw_code_obj;
683 }
684
685 /* Core code and data sections are optional. */
686 if (fw_mem->core_code_alloc_size) {
687 fw_core_code_ptr =
688 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size,
689 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
690 NULL, NULL, &fw_mem->core_code_obj);
691 if (IS_ERR(fw_core_code_ptr)) {
692 drm_err(drm_dev,
693 "Unable to allocate FW core code memory\n");
694 err = PTR_ERR(fw_core_code_ptr);
695 goto err_free_fw_data_obj;
696 }
697 } else {
698 fw_core_code_ptr = NULL;
699 }
700
701 if (fw_mem->core_data_alloc_size) {
702 fw_core_data_ptr =
703 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size,
704 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
705 NULL, NULL, &fw_mem->core_data_obj);
706 if (IS_ERR(fw_core_data_ptr)) {
707 drm_err(drm_dev,
708 "Unable to allocate FW core data memory\n");
709 err = PTR_ERR(fw_core_data_ptr);
710 goto err_free_fw_core_code_obj;
711 }
712 } else {
713 fw_core_data_ptr = NULL;
714 }
715
716 fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL);
717 fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL);
718 if (fw_mem->core_code_alloc_size)
719 fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL);
720 if (fw_mem->core_data_alloc_size)
721 fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL);
722
723 if (!fw_mem->code || !fw_mem->data ||
724 (!fw_mem->core_code && fw_mem->core_code_alloc_size) ||
725 (!fw_mem->core_data && fw_mem->core_data_alloc_size)) {
726 err = -ENOMEM;
727 goto err_free_kdata;
728 }
729
730 err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw,
731 fw_mem->code, fw_mem->data, fw_mem->core_code,
732 fw_mem->core_data, fw_mem->core_code_alloc_size);
733
734 if (err)
735 goto err_free_kdata;
736
737 memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size);
738 memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size);
739 if (fw_mem->core_code)
740 memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size);
741 if (fw_mem->core_data)
742 memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size);
743
744 /* We're finished with the firmware section memory on the CPU, unmap. */
745 if (fw_core_data_ptr) {
746 pvr_fw_object_vunmap(fw_mem->core_data_obj);
747 fw_core_data_ptr = NULL;
748 }
749 if (fw_core_code_ptr) {
750 pvr_fw_object_vunmap(fw_mem->core_code_obj);
751 fw_core_code_ptr = NULL;
752 }
753 pvr_fw_object_vunmap(fw_mem->data_obj);
754 fw_data_ptr = NULL;
755 pvr_fw_object_vunmap(fw_mem->code_obj);
756 fw_code_ptr = NULL;
757
758 err = pvr_fw_create_fwif_connection_ctl(pvr_dev);
759 if (err)
760 goto err_free_kdata;
761
762 return 0;
763
764 err_free_kdata:
765 kfree(fw_mem->core_data);
766 kfree(fw_mem->core_code);
767 kfree(fw_mem->data);
768 kfree(fw_mem->code);
769
770 if (fw_core_data_ptr)
771 pvr_fw_object_vunmap(fw_mem->core_data_obj);
772 if (fw_mem->core_data_obj)
773 pvr_fw_object_destroy(fw_mem->core_data_obj);
774
775 err_free_fw_core_code_obj:
776 if (fw_core_code_ptr)
777 pvr_fw_object_vunmap(fw_mem->core_code_obj);
778 if (fw_mem->core_code_obj)
779 pvr_fw_object_destroy(fw_mem->core_code_obj);
780
781 err_free_fw_data_obj:
782 if (fw_data_ptr)
783 pvr_fw_object_vunmap(fw_mem->data_obj);
784 pvr_fw_object_destroy(fw_mem->data_obj);
785
786 err_free_fw_code_obj:
787 if (fw_code_ptr)
788 pvr_fw_object_vunmap(fw_mem->code_obj);
789 pvr_fw_object_destroy(fw_mem->code_obj);
790
791 return err;
792 }
793
794 static int
pvr_copy_to_fw(struct pvr_fw_object * dest_obj,u8 * src_ptr,u32 size)795 pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size)
796 {
797 u8 *dest_ptr = pvr_fw_object_vmap(dest_obj);
798
799 if (IS_ERR(dest_ptr))
800 return PTR_ERR(dest_ptr);
801
802 memcpy(dest_ptr, src_ptr, size);
803
804 pvr_fw_object_vunmap(dest_obj);
805
806 return 0;
807 }
808
809 static int
pvr_fw_reinit_code_data(struct pvr_device * pvr_dev)810 pvr_fw_reinit_code_data(struct pvr_device *pvr_dev)
811 {
812 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
813 int err;
814
815 err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size);
816 if (err)
817 return err;
818
819 err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size);
820 if (err)
821 return err;
822
823 if (fw_mem->core_code) {
824 err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code,
825 fw_mem->core_code_alloc_size);
826 if (err)
827 return err;
828 }
829
830 if (fw_mem->core_data) {
831 err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data,
832 fw_mem->core_data_alloc_size);
833 if (err)
834 return err;
835 }
836
837 return 0;
838 }
839
840 static void
pvr_fw_cleanup(struct pvr_device * pvr_dev)841 pvr_fw_cleanup(struct pvr_device *pvr_dev)
842 {
843 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
844
845 pvr_fw_fini_fwif_connection_ctl(pvr_dev);
846
847 kfree(fw_mem->core_data);
848 kfree(fw_mem->core_code);
849 kfree(fw_mem->data);
850 kfree(fw_mem->code);
851
852 if (fw_mem->core_code_obj)
853 pvr_fw_object_destroy(fw_mem->core_code_obj);
854 if (fw_mem->core_data_obj)
855 pvr_fw_object_destroy(fw_mem->core_data_obj);
856 pvr_fw_object_destroy(fw_mem->code_obj);
857 pvr_fw_object_destroy(fw_mem->data_obj);
858 }
859
860 /**
861 * pvr_wait_for_fw_boot() - Wait for firmware to finish booting
862 * @pvr_dev: Target PowerVR device.
863 *
864 * Returns:
865 * * 0 on success, or
866 * * -%ETIMEDOUT if firmware fails to boot within timeout.
867 */
868 int
pvr_wait_for_fw_boot(struct pvr_device * pvr_dev)869 pvr_wait_for_fw_boot(struct pvr_device *pvr_dev)
870 {
871 ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC);
872 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
873
874 while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) {
875 if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started))
876 return 0;
877 }
878
879 return -ETIMEDOUT;
880 }
881
882 /*
883 * pvr_fw_heap_info_init() - Calculate size and masks for FW heap
884 * @pvr_dev: Target PowerVR device.
885 * @log2_size: Log2 of raw heap size.
886 * @reserved_size: Size of reserved area of heap, in bytes. May be zero.
887 */
888 void
pvr_fw_heap_info_init(struct pvr_device * pvr_dev,u32 log2_size,u32 reserved_size)889 pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size)
890 {
891 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
892
893 fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE;
894 fw_dev->fw_heap_info.log2_size = log2_size;
895 fw_dev->fw_heap_info.reserved_size = reserved_size;
896 fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size;
897 fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1;
898 fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size -
899 PVR_ROGUE_FW_CONFIG_HEAP_SIZE;
900 fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size -
901 (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size);
902 }
903
904 /**
905 * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information
906 * @pvr_dev: Target PowerVR device.
907 *
908 * This function must be called before querying device information.
909 *
910 * Returns:
911 * * 0 on success, or
912 * * -%EINVAL if firmware validation fails.
913 */
914 int
pvr_fw_validate_init_device_info(struct pvr_device * pvr_dev)915 pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev)
916 {
917 int err;
918
919 err = pvr_fw_validate(pvr_dev);
920 if (err)
921 return err;
922
923 return pvr_fw_get_device_info(pvr_dev);
924 }
925
926 /**
927 * pvr_fw_init() - Initialise and boot firmware
928 * @pvr_dev: Target PowerVR device
929 *
930 * On successful completion of the function the PowerVR device will be
931 * initialised and ready to use.
932 *
933 * Returns:
934 * * 0 on success,
935 * * -%EINVAL on invalid firmware image,
936 * * -%ENOMEM on out of memory, or
937 * * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout.
938 */
939 int
pvr_fw_init(struct pvr_device * pvr_dev)940 pvr_fw_init(struct pvr_device *pvr_dev)
941 {
942 u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
943 u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn);
944 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
945 int err;
946
947 if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META)
948 fw_dev->defs = &pvr_fw_defs_meta;
949 else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS)
950 fw_dev->defs = &pvr_fw_defs_mips;
951 else
952 return -EINVAL;
953
954 err = fw_dev->defs->init(pvr_dev);
955 if (err)
956 return err;
957
958 drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size);
959 fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE;
960 spin_lock_init(&fw_dev->fw_mm_lock);
961
962 INIT_LIST_HEAD(&fw_dev->fw_objs.list);
963 err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock);
964 if (err)
965 goto err_mm_takedown;
966
967 err = pvr_fw_process(pvr_dev);
968 if (err)
969 goto err_mm_takedown;
970
971 /* Initialise KCCB and FWCCB. */
972 err = pvr_kccb_init(pvr_dev);
973 if (err)
974 goto err_fw_cleanup;
975
976 err = pvr_fwccb_init(pvr_dev);
977 if (err)
978 goto err_kccb_fini;
979
980 /* Allocate memory for KCCB return slots. */
981 pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size,
982 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
983 NULL, NULL, &pvr_dev->kccb.rtn_obj);
984 if (IS_ERR(pvr_dev->kccb.rtn)) {
985 err = PTR_ERR(pvr_dev->kccb.rtn);
986 goto err_fwccb_fini;
987 }
988
989 err = pvr_fw_create_structures(pvr_dev);
990 if (err)
991 goto err_kccb_rtn_release;
992
993 err = pvr_fw_start(pvr_dev);
994 if (err)
995 goto err_destroy_structures;
996
997 err = pvr_wait_for_fw_boot(pvr_dev);
998 if (err) {
999 drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n");
1000 goto err_fw_stop;
1001 }
1002
1003 fw_dev->booted = true;
1004
1005 return 0;
1006
1007 err_fw_stop:
1008 pvr_fw_stop(pvr_dev);
1009
1010 err_destroy_structures:
1011 pvr_fw_destroy_structures(pvr_dev);
1012
1013 err_kccb_rtn_release:
1014 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1015
1016 err_fwccb_fini:
1017 pvr_ccb_fini(&pvr_dev->fwccb);
1018
1019 err_kccb_fini:
1020 pvr_kccb_fini(pvr_dev);
1021
1022 err_fw_cleanup:
1023 pvr_fw_cleanup(pvr_dev);
1024
1025 err_mm_takedown:
1026 drm_mm_takedown(&fw_dev->fw_mm);
1027
1028 if (fw_dev->defs->fini)
1029 fw_dev->defs->fini(pvr_dev);
1030
1031 return err;
1032 }
1033
1034 /**
1035 * pvr_fw_fini() - Shutdown firmware processor and free associated memory
1036 * @pvr_dev: Target PowerVR device
1037 */
1038 void
pvr_fw_fini(struct pvr_device * pvr_dev)1039 pvr_fw_fini(struct pvr_device *pvr_dev)
1040 {
1041 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1042
1043 fw_dev->booted = false;
1044
1045 pvr_fw_destroy_structures(pvr_dev);
1046 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1047
1048 /*
1049 * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has
1050 * been unregistered at this point so no new work should be being submitted.
1051 */
1052 pvr_ccb_fini(&pvr_dev->fwccb);
1053 pvr_kccb_fini(pvr_dev);
1054 pvr_fw_cleanup(pvr_dev);
1055
1056 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1057 WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list));
1058 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1059
1060 drm_mm_takedown(&fw_dev->fw_mm);
1061
1062 if (fw_dev->defs->fini)
1063 fw_dev->defs->fini(pvr_dev);
1064 }
1065
1066 /**
1067 * pvr_fw_mts_schedule() - Schedule work via an MTS kick
1068 * @pvr_dev: Target PowerVR device
1069 * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_*
1070 */
1071 void
pvr_fw_mts_schedule(struct pvr_device * pvr_dev,u32 val)1072 pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val)
1073 {
1074 /* Ensure memory is flushed before kicking MTS. */
1075 wmb();
1076
1077 pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val);
1078
1079 /* Ensure the MTS kick goes through before continuing. */
1080 mb();
1081 }
1082
1083 /**
1084 * pvr_fw_structure_cleanup() - Send FW cleanup request for an object
1085 * @pvr_dev: Target PowerVR device.
1086 * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type.
1087 * @fw_obj: Pointer to FW object containing object to cleanup.
1088 * @offset: Offset within FW object of object to cleanup.
1089 *
1090 * Returns:
1091 * * 0 on success,
1092 * * -EBUSY if object is busy,
1093 * * -ETIMEDOUT on timeout, or
1094 * * -EIO if device is lost.
1095 */
1096 int
pvr_fw_structure_cleanup(struct pvr_device * pvr_dev,u32 type,struct pvr_fw_object * fw_obj,u32 offset)1097 pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj,
1098 u32 offset)
1099 {
1100 struct rogue_fwif_kccb_cmd cmd;
1101 int slot_nr;
1102 int idx;
1103 int err;
1104 u32 rtn;
1105
1106 struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data;
1107
1108 down_read(&pvr_dev->reset_sem);
1109
1110 if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) {
1111 err = -EIO;
1112 goto err_up_read;
1113 }
1114
1115 cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP;
1116 cmd.kccb_flags = 0;
1117 cleanup_req->cleanup_type = type;
1118
1119 switch (type) {
1120 case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT:
1121 pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1122 &cleanup_req->cleanup_data.context_fw_addr);
1123 break;
1124 case ROGUE_FWIF_CLEANUP_HWRTDATA:
1125 pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1126 &cleanup_req->cleanup_data.hwrt_data_fw_addr);
1127 break;
1128 case ROGUE_FWIF_CLEANUP_FREELIST:
1129 pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1130 &cleanup_req->cleanup_data.freelist_fw_addr);
1131 break;
1132 default:
1133 err = -EINVAL;
1134 goto err_drm_dev_exit;
1135 }
1136
1137 err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr);
1138 if (err)
1139 goto err_drm_dev_exit;
1140
1141 err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn);
1142 if (err)
1143 goto err_drm_dev_exit;
1144
1145 if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY)
1146 err = -EBUSY;
1147
1148 err_drm_dev_exit:
1149 drm_dev_exit(idx);
1150
1151 err_up_read:
1152 up_read(&pvr_dev->reset_sem);
1153
1154 return err;
1155 }
1156
1157 /**
1158 * pvr_fw_object_fw_map() - Map a FW object in firmware address space
1159 * @pvr_dev: Device pointer.
1160 * @fw_obj: FW object to map.
1161 * @dev_addr: Desired address in device space, if a specific address is
1162 * required. 0 otherwise.
1163 *
1164 * Returns:
1165 * * 0 on success, or
1166 * * -%EINVAL if @fw_obj is already mapped but has no references, or
1167 * * Any error returned by DRM.
1168 */
1169 static int
pvr_fw_object_fw_map(struct pvr_device * pvr_dev,struct pvr_fw_object * fw_obj,u64 dev_addr)1170 pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr)
1171 {
1172 struct pvr_gem_object *pvr_obj = fw_obj->gem;
1173 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1174 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1175
1176 int err;
1177
1178 spin_lock(&fw_dev->fw_mm_lock);
1179
1180 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1181 err = -EINVAL;
1182 goto err_unlock;
1183 }
1184
1185 if (!dev_addr) {
1186 /*
1187 * Allocate from the main heap only (firmware heap minus
1188 * config space).
1189 */
1190 err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node,
1191 gem_obj->size, 0, 0,
1192 fw_dev->fw_heap_info.gpu_addr,
1193 fw_dev->fw_heap_info.gpu_addr +
1194 fw_dev->fw_heap_info.size, 0);
1195 if (err)
1196 goto err_unlock;
1197 } else {
1198 fw_obj->fw_mm_node.start = dev_addr;
1199 fw_obj->fw_mm_node.size = gem_obj->size;
1200 err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node);
1201 if (err)
1202 goto err_unlock;
1203 }
1204
1205 spin_unlock(&fw_dev->fw_mm_lock);
1206
1207 /* Map object on GPU. */
1208 err = fw_dev->defs->vm_map(pvr_dev, fw_obj);
1209 if (err)
1210 goto err_remove_node;
1211
1212 fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base);
1213
1214 return 0;
1215
1216 err_remove_node:
1217 spin_lock(&fw_dev->fw_mm_lock);
1218 drm_mm_remove_node(&fw_obj->fw_mm_node);
1219
1220 err_unlock:
1221 spin_unlock(&fw_dev->fw_mm_lock);
1222
1223 return err;
1224 }
1225
1226 /**
1227 * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object
1228 * @fw_obj: FW object to unmap.
1229 *
1230 * Returns:
1231 * * 0 on success, or
1232 * * -%EINVAL if object is not currently mapped.
1233 */
1234 static int
pvr_fw_object_fw_unmap(struct pvr_fw_object * fw_obj)1235 pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj)
1236 {
1237 struct pvr_gem_object *pvr_obj = fw_obj->gem;
1238 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1239 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1240 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1241
1242 fw_dev->defs->vm_unmap(pvr_dev, fw_obj);
1243
1244 spin_lock(&fw_dev->fw_mm_lock);
1245
1246 if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1247 spin_unlock(&fw_dev->fw_mm_lock);
1248 return -EINVAL;
1249 }
1250
1251 drm_mm_remove_node(&fw_obj->fw_mm_node);
1252
1253 spin_unlock(&fw_dev->fw_mm_lock);
1254
1255 return 0;
1256 }
1257
1258 static void *
pvr_fw_object_create_and_map_common(struct pvr_device * pvr_dev,size_t size,u64 flags,u64 dev_addr,void (* init)(void * cpu_ptr,void * priv),void * init_priv,struct pvr_fw_object ** fw_obj_out)1259 pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size,
1260 u64 flags, u64 dev_addr,
1261 void (*init)(void *cpu_ptr, void *priv),
1262 void *init_priv, struct pvr_fw_object **fw_obj_out)
1263 {
1264 struct pvr_fw_object *fw_obj;
1265 void *cpu_ptr;
1266 int err;
1267
1268 /* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */
1269 flags |= DRM_PVR_BO_PM_FW_PROTECT;
1270
1271 fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL);
1272 if (!fw_obj)
1273 return ERR_PTR(-ENOMEM);
1274
1275 INIT_LIST_HEAD(&fw_obj->node);
1276 fw_obj->init = init;
1277 fw_obj->init_priv = init_priv;
1278
1279 fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags);
1280 if (IS_ERR(fw_obj->gem)) {
1281 err = PTR_ERR(fw_obj->gem);
1282 fw_obj->gem = NULL;
1283 goto err_put_object;
1284 }
1285
1286 err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr);
1287 if (err)
1288 goto err_put_object;
1289
1290 cpu_ptr = pvr_fw_object_vmap(fw_obj);
1291 if (IS_ERR(cpu_ptr)) {
1292 err = PTR_ERR(cpu_ptr);
1293 goto err_put_object;
1294 }
1295
1296 *fw_obj_out = fw_obj;
1297
1298 if (fw_obj->init)
1299 fw_obj->init(cpu_ptr, fw_obj->init_priv);
1300
1301 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1302 list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list);
1303 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1304
1305 return cpu_ptr;
1306
1307 err_put_object:
1308 pvr_fw_object_destroy(fw_obj);
1309
1310 return ERR_PTR(err);
1311 }
1312
1313 /**
1314 * pvr_fw_object_create() - Create a FW object and map to firmware
1315 * @pvr_dev: PowerVR device pointer.
1316 * @size: Size of object, in bytes.
1317 * @flags: Options which affect both this operation and future mapping
1318 * operations performed on the returned object. Must be a combination of
1319 * DRM_PVR_BO_* and/or PVR_BO_* flags.
1320 * @init: Initialisation callback.
1321 * @init_priv: Private pointer to pass to initialisation callback.
1322 * @fw_obj_out: Pointer to location to store created object pointer.
1323 *
1324 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1325 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1326 * set.
1327 *
1328 * Returns:
1329 * * 0 on success, or
1330 * * Any error returned by pvr_fw_object_create_common().
1331 */
1332 int
pvr_fw_object_create(struct pvr_device * pvr_dev,size_t size,u64 flags,void (* init)(void * cpu_ptr,void * priv),void * init_priv,struct pvr_fw_object ** fw_obj_out)1333 pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags,
1334 void (*init)(void *cpu_ptr, void *priv), void *init_priv,
1335 struct pvr_fw_object **fw_obj_out)
1336 {
1337 void *cpu_ptr;
1338
1339 cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1340 fw_obj_out);
1341 if (IS_ERR(cpu_ptr))
1342 return PTR_ERR(cpu_ptr);
1343
1344 pvr_fw_object_vunmap(*fw_obj_out);
1345
1346 return 0;
1347 }
1348
1349 /**
1350 * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU
1351 * @pvr_dev: PowerVR device pointer.
1352 * @size: Size of object, in bytes.
1353 * @flags: Options which affect both this operation and future mapping
1354 * operations performed on the returned object. Must be a combination of
1355 * DRM_PVR_BO_* and/or PVR_BO_* flags.
1356 * @init: Initialisation callback.
1357 * @init_priv: Private pointer to pass to initialisation callback.
1358 * @fw_obj_out: Pointer to location to store created object pointer.
1359 *
1360 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1361 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1362 * set.
1363 *
1364 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1365 * mapping.
1366 *
1367 * Returns:
1368 * * Pointer to CPU mapping of newly created object, or
1369 * * Any error returned by pvr_fw_object_create(), or
1370 * * Any error returned by pvr_fw_object_vmap().
1371 */
1372 void *
pvr_fw_object_create_and_map(struct pvr_device * pvr_dev,size_t size,u64 flags,void (* init)(void * cpu_ptr,void * priv),void * init_priv,struct pvr_fw_object ** fw_obj_out)1373 pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags,
1374 void (*init)(void *cpu_ptr, void *priv),
1375 void *init_priv, struct pvr_fw_object **fw_obj_out)
1376 {
1377 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1378 fw_obj_out);
1379 }
1380
1381 /**
1382 * pvr_fw_object_create_and_map_offset() - Create a FW object and map to
1383 * firmware at the provided offset and to the CPU.
1384 * @pvr_dev: PowerVR device pointer.
1385 * @dev_offset: Base address of desired FW mapping, offset from start of FW heap.
1386 * @size: Size of object, in bytes.
1387 * @flags: Options which affect both this operation and future mapping
1388 * operations performed on the returned object. Must be a combination of
1389 * DRM_PVR_BO_* and/or PVR_BO_* flags.
1390 * @init: Initialisation callback.
1391 * @init_priv: Private pointer to pass to initialisation callback.
1392 * @fw_obj_out: Pointer to location to store created object pointer.
1393 *
1394 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1395 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1396 * set.
1397 *
1398 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1399 * mapping.
1400 *
1401 * Returns:
1402 * * Pointer to CPU mapping of newly created object, or
1403 * * Any error returned by pvr_fw_object_create(), or
1404 * * Any error returned by pvr_fw_object_vmap().
1405 */
1406 void *
pvr_fw_object_create_and_map_offset(struct pvr_device * pvr_dev,u32 dev_offset,size_t size,u64 flags,void (* init)(void * cpu_ptr,void * priv),void * init_priv,struct pvr_fw_object ** fw_obj_out)1407 pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev,
1408 u32 dev_offset, size_t size, u64 flags,
1409 void (*init)(void *cpu_ptr, void *priv),
1410 void *init_priv, struct pvr_fw_object **fw_obj_out)
1411 {
1412 u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset;
1413
1414 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv,
1415 fw_obj_out);
1416 }
1417
1418 /**
1419 * pvr_fw_object_destroy() - Destroy a pvr_fw_object
1420 * @fw_obj: Pointer to object to destroy.
1421 */
pvr_fw_object_destroy(struct pvr_fw_object * fw_obj)1422 void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj)
1423 {
1424 struct pvr_gem_object *pvr_obj = fw_obj->gem;
1425 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1426 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1427
1428 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1429 list_del(&fw_obj->node);
1430 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1431
1432 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1433 /* If we can't unmap, leak the memory. */
1434 if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj)))
1435 return;
1436 }
1437
1438 if (fw_obj->gem)
1439 pvr_gem_object_put(fw_obj->gem);
1440
1441 kfree(fw_obj);
1442 }
1443
1444 /**
1445 * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with
1446 * given offset.
1447 * @fw_obj: Pointer to object.
1448 * @offset: Desired offset from start of object.
1449 * @fw_addr_out: Location to store address to.
1450 */
pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object * fw_obj,u32 offset,u32 * fw_addr_out)1451 void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out)
1452 {
1453 struct pvr_gem_object *pvr_obj = fw_obj->gem;
1454 struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev);
1455
1456 *fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset);
1457 }
1458
1459 /*
1460 * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW
1461 * structures
1462 * @pvr_dev: Device pointer
1463 *
1464 * If this function returns an error then the caller must regard the device as lost.
1465 *
1466 * Returns:
1467 * * 0 on success, or
1468 * * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all().
1469 */
1470 int
pvr_fw_hard_reset(struct pvr_device * pvr_dev)1471 pvr_fw_hard_reset(struct pvr_device *pvr_dev)
1472 {
1473 struct list_head *pos;
1474 int err;
1475
1476 /* Reset all FW objects */
1477 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1478
1479 list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) {
1480 struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node);
1481 void *cpu_ptr = pvr_fw_object_vmap(fw_obj);
1482
1483 WARN_ON(IS_ERR(cpu_ptr));
1484
1485 if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) {
1486 memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem));
1487
1488 if (fw_obj->init)
1489 fw_obj->init(cpu_ptr, fw_obj->init_priv);
1490 }
1491
1492 pvr_fw_object_vunmap(fw_obj);
1493 }
1494
1495 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1496
1497 err = pvr_fw_reinit_code_data(pvr_dev);
1498 if (err)
1499 return err;
1500
1501 return 0;
1502 }
1503