1 use alloc::sync::{Arc, Weak}; 2 use core::cell::UnsafeCell; 3 use core::sync::atomic::Ordering::{self, Relaxed, SeqCst}; 4 use core::sync::atomic::{AtomicBool, AtomicPtr}; 5 6 use super::abort::abort; 7 use super::ReadyToRunQueue; 8 use crate::task::ArcWake; 9 10 pub(super) struct Task<Fut> { 11 // The future 12 pub(super) future: UnsafeCell<Option<Fut>>, 13 14 // Next pointer for linked list tracking all active tasks (use 15 // `spin_next_all` to read when access is shared across threads) 16 pub(super) next_all: AtomicPtr<Task<Fut>>, 17 18 // Previous task in linked list tracking all active tasks 19 pub(super) prev_all: UnsafeCell<*const Task<Fut>>, 20 21 // Length of the linked list tracking all active tasks when this node was 22 // inserted (use `spin_next_all` to synchronize before reading when access 23 // is shared across threads) 24 pub(super) len_all: UnsafeCell<usize>, 25 26 // Next pointer in ready to run queue 27 pub(super) next_ready_to_run: AtomicPtr<Task<Fut>>, 28 29 // Queue that we'll be enqueued to when woken 30 pub(super) ready_to_run_queue: Weak<ReadyToRunQueue<Fut>>, 31 32 // Whether or not this task is currently in the ready to run queue 33 pub(super) queued: AtomicBool, 34 35 // Whether the future was awoken during polling 36 // It is possible for this flag to be set to true after the polling, 37 // but it will be ignored. 38 pub(super) woken: AtomicBool, 39 } 40 41 // `Task` can be sent across threads safely because it ensures that 42 // the underlying `Fut` type isn't touched from any of its methods. 43 // 44 // The parent (`super`) module is trusted not to access `future` 45 // across different threads. 46 unsafe impl<Fut> Send for Task<Fut> {} 47 unsafe impl<Fut> Sync for Task<Fut> {} 48 49 impl<Fut> ArcWake for Task<Fut> { wake_by_ref(arc_self: &Arc<Self>)50 fn wake_by_ref(arc_self: &Arc<Self>) { 51 let inner = match arc_self.ready_to_run_queue.upgrade() { 52 Some(inner) => inner, 53 None => return, 54 }; 55 56 arc_self.woken.store(true, Relaxed); 57 58 // It's our job to enqueue this task it into the ready to run queue. To 59 // do this we set the `queued` flag, and if successful we then do the 60 // actual queueing operation, ensuring that we're only queued once. 61 // 62 // Once the task is inserted call `wake` to notify the parent task, 63 // as it'll want to come along and run our task later. 64 // 65 // Note that we don't change the reference count of the task here, 66 // we merely enqueue the raw pointer. The `FuturesUnordered` 67 // implementation guarantees that if we set the `queued` flag that 68 // there's a reference count held by the main `FuturesUnordered` queue 69 // still. 70 let prev = arc_self.queued.swap(true, SeqCst); 71 if !prev { 72 inner.enqueue(Arc::as_ptr(arc_self)); 73 inner.waker.wake(); 74 } 75 } 76 } 77 78 impl<Fut> Task<Fut> { 79 /// Returns a waker reference for this task without cloning the Arc. waker_ref(this: &Arc<Self>) -> waker_ref::WakerRef<'_>80 pub(super) unsafe fn waker_ref(this: &Arc<Self>) -> waker_ref::WakerRef<'_> { 81 unsafe { waker_ref::waker_ref(this) } 82 } 83 84 /// Spins until `next_all` is no longer set to `pending_next_all`. 85 /// 86 /// The temporary `pending_next_all` value is typically overwritten fairly 87 /// quickly after a node is inserted into the list of all futures, so this 88 /// should rarely spin much. 89 /// 90 /// When it returns, the correct `next_all` value is returned. 91 /// 92 /// `Relaxed` or `Acquire` ordering can be used. `Acquire` ordering must be 93 /// used before `len_all` can be safely read. 94 #[inline] spin_next_all( &self, pending_next_all: *mut Self, ordering: Ordering, ) -> *const Self95 pub(super) fn spin_next_all( 96 &self, 97 pending_next_all: *mut Self, 98 ordering: Ordering, 99 ) -> *const Self { 100 loop { 101 let next = self.next_all.load(ordering); 102 if next != pending_next_all { 103 return next; 104 } 105 } 106 } 107 } 108 109 impl<Fut> Drop for Task<Fut> { drop(&mut self)110 fn drop(&mut self) { 111 // Since `Task<Fut>` is sent across all threads for any lifetime, 112 // regardless of `Fut`, we, to guarantee memory safety, can't actually 113 // touch `Fut` at any time except when we have a reference to the 114 // `FuturesUnordered` itself . 115 // 116 // Consequently it *should* be the case that we always drop futures from 117 // the `FuturesUnordered` instance. This is a bomb, just in case there's 118 // a bug in that logic. 119 unsafe { 120 if (*self.future.get()).is_some() { 121 abort("future still here when dropping"); 122 } 123 } 124 } 125 } 126 127 mod waker_ref { 128 use alloc::sync::Arc; 129 use core::marker::PhantomData; 130 use core::mem; 131 use core::mem::ManuallyDrop; 132 use core::ops::Deref; 133 use core::task::{RawWaker, RawWakerVTable, Waker}; 134 use futures_task::ArcWake; 135 136 pub(crate) struct WakerRef<'a> { 137 waker: ManuallyDrop<Waker>, 138 _marker: PhantomData<&'a ()>, 139 } 140 141 impl WakerRef<'_> { 142 #[inline] new_unowned(waker: ManuallyDrop<Waker>) -> Self143 fn new_unowned(waker: ManuallyDrop<Waker>) -> Self { 144 Self { waker, _marker: PhantomData } 145 } 146 } 147 148 impl Deref for WakerRef<'_> { 149 type Target = Waker; 150 151 #[inline] deref(&self) -> &Waker152 fn deref(&self) -> &Waker { 153 &self.waker 154 } 155 } 156 157 /// Copy of `future_task::waker_ref` without `W: 'static` bound. 158 /// 159 /// # Safety 160 /// 161 /// The caller must guarantee that use-after-free will not occur. 162 #[inline] waker_ref<W>(wake: &Arc<W>) -> WakerRef<'_> where W: ArcWake,163 pub(crate) unsafe fn waker_ref<W>(wake: &Arc<W>) -> WakerRef<'_> 164 where 165 W: ArcWake, 166 { 167 // simply copy the pointer instead of using Arc::into_raw, 168 // as we don't actually keep a refcount by using ManuallyDrop.< 169 let ptr = Arc::as_ptr(wake).cast::<()>(); 170 171 let waker = 172 ManuallyDrop::new(unsafe { Waker::from_raw(RawWaker::new(ptr, waker_vtable::<W>())) }); 173 WakerRef::new_unowned(waker) 174 } 175 waker_vtable<W: ArcWake>() -> &'static RawWakerVTable176 fn waker_vtable<W: ArcWake>() -> &'static RawWakerVTable { 177 &RawWakerVTable::new( 178 clone_arc_raw::<W>, 179 wake_arc_raw::<W>, 180 wake_by_ref_arc_raw::<W>, 181 drop_arc_raw::<W>, 182 ) 183 } 184 185 // FIXME: panics on Arc::clone / refcount changes could wreak havoc on the 186 // code here. We should guard against this by aborting. 187 increase_refcount<T: ArcWake>(data: *const ())188 unsafe fn increase_refcount<T: ArcWake>(data: *const ()) { 189 // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop 190 let arc = mem::ManuallyDrop::new(unsafe { Arc::<T>::from_raw(data.cast::<T>()) }); 191 // Now increase refcount, but don't drop new refcount either 192 let _arc_clone: mem::ManuallyDrop<_> = arc.clone(); 193 } 194 clone_arc_raw<T: ArcWake>(data: *const ()) -> RawWaker195 unsafe fn clone_arc_raw<T: ArcWake>(data: *const ()) -> RawWaker { 196 unsafe { increase_refcount::<T>(data) } 197 RawWaker::new(data, waker_vtable::<T>()) 198 } 199 wake_arc_raw<T: ArcWake>(data: *const ())200 unsafe fn wake_arc_raw<T: ArcWake>(data: *const ()) { 201 let arc: Arc<T> = unsafe { Arc::from_raw(data.cast::<T>()) }; 202 ArcWake::wake(arc); 203 } 204 wake_by_ref_arc_raw<T: ArcWake>(data: *const ())205 unsafe fn wake_by_ref_arc_raw<T: ArcWake>(data: *const ()) { 206 // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop 207 let arc = mem::ManuallyDrop::new(unsafe { Arc::<T>::from_raw(data.cast::<T>()) }); 208 ArcWake::wake_by_ref(&arc); 209 } 210 drop_arc_raw<T: ArcWake>(data: *const ())211 unsafe fn drop_arc_raw<T: ArcWake>(data: *const ()) { 212 drop(unsafe { Arc::<T>::from_raw(data.cast::<T>()) }) 213 } 214 } 215