1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28 
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56 
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59 
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <event-parse.h>
62 #endif
63 
64 /*
65  * magic2 = "PERFILE2"
66  * must be a numerical value to let the endianness
67  * determine the memory layout. That way we are able
68  * to detect endianness when reading the perf.data file
69  * back.
70  *
71  * we check for legacy (PERFFILE) format.
72  */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76 
77 #define PERF_MAGIC	__perf_magic2
78 
79 const char perf_version_string[] = PERF_VERSION;
80 
81 struct perf_file_attr {
82 	struct perf_event_attr	attr;
83 	struct perf_file_section	ids;
84 };
85 
perf_header__set_feat(struct perf_header * header,int feat)86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88 	__set_bit(feat, header->adds_features);
89 }
90 
perf_header__clear_feat(struct perf_header * header,int feat)91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93 	__clear_bit(feat, header->adds_features);
94 }
95 
perf_header__has_feat(const struct perf_header * header,int feat)96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98 	return test_bit(feat, header->adds_features);
99 }
100 
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103 	ssize_t ret = writen(ff->fd, buf, size);
104 
105 	if (ret != (ssize_t)size)
106 		return ret < 0 ? (int)ret : -1;
107 	return 0;
108 }
109 
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)110 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111 {
112 	/* struct perf_event_header::size is u16 */
113 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114 	size_t new_size = ff->size;
115 	void *addr;
116 
117 	if (size + ff->offset > max_size)
118 		return -E2BIG;
119 
120 	while (size > (new_size - ff->offset))
121 		new_size <<= 1;
122 	new_size = min(max_size, new_size);
123 
124 	if (ff->size < new_size) {
125 		addr = realloc(ff->buf, new_size);
126 		if (!addr)
127 			return -ENOMEM;
128 		ff->buf = addr;
129 		ff->size = new_size;
130 	}
131 
132 	memcpy(ff->buf + ff->offset, buf, size);
133 	ff->offset += size;
134 
135 	return 0;
136 }
137 
138 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141 	if (!ff->buf)
142 		return __do_write_fd(ff, buf, size);
143 	return __do_write_buf(ff, buf, size);
144 }
145 
146 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149 	u64 *p = (u64 *) set;
150 	int i, ret;
151 
152 	ret = do_write(ff, &size, sizeof(size));
153 	if (ret < 0)
154 		return ret;
155 
156 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157 		ret = do_write(ff, p + i, sizeof(*p));
158 		if (ret < 0)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
165 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)166 int write_padded(struct feat_fd *ff, const void *bf,
167 		 size_t count, size_t count_aligned)
168 {
169 	static const char zero_buf[NAME_ALIGN];
170 	int err = do_write(ff, bf, count);
171 
172 	if (!err)
173 		err = do_write(ff, zero_buf, count_aligned - count);
174 
175 	return err;
176 }
177 
178 #define string_size(str)						\
179 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180 
181 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184 	u32 len, olen;
185 	int ret;
186 
187 	olen = strlen(str) + 1;
188 	len = PERF_ALIGN(olen, NAME_ALIGN);
189 
190 	/* write len, incl. \0 */
191 	ret = do_write(ff, &len, sizeof(len));
192 	if (ret < 0)
193 		return ret;
194 
195 	return write_padded(ff, str, olen, len);
196 }
197 
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200 	ssize_t ret = readn(ff->fd, addr, size);
201 
202 	if (ret != size)
203 		return ret < 0 ? (int)ret : -1;
204 	return 0;
205 }
206 
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209 	if (size > (ssize_t)ff->size - ff->offset)
210 		return -1;
211 
212 	memcpy(addr, ff->buf + ff->offset, size);
213 	ff->offset += size;
214 
215 	return 0;
216 
217 }
218 
__do_read(struct feat_fd * ff,void * addr,ssize_t size)219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221 	if (!ff->buf)
222 		return __do_read_fd(ff, addr, size);
223 	return __do_read_buf(ff, addr, size);
224 }
225 
do_read_u32(struct feat_fd * ff,u32 * addr)226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228 	int ret;
229 
230 	ret = __do_read(ff, addr, sizeof(*addr));
231 	if (ret)
232 		return ret;
233 
234 	if (ff->ph->needs_swap)
235 		*addr = bswap_32(*addr);
236 	return 0;
237 }
238 
do_read_u64(struct feat_fd * ff,u64 * addr)239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241 	int ret;
242 
243 	ret = __do_read(ff, addr, sizeof(*addr));
244 	if (ret)
245 		return ret;
246 
247 	if (ff->ph->needs_swap)
248 		*addr = bswap_64(*addr);
249 	return 0;
250 }
251 
do_read_string(struct feat_fd * ff)252 static char *do_read_string(struct feat_fd *ff)
253 {
254 	u32 len;
255 	char *buf;
256 
257 	if (do_read_u32(ff, &len))
258 		return NULL;
259 
260 	buf = malloc(len);
261 	if (!buf)
262 		return NULL;
263 
264 	if (!__do_read(ff, buf, len)) {
265 		/*
266 		 * strings are padded by zeroes
267 		 * thus the actual strlen of buf
268 		 * may be less than len
269 		 */
270 		return buf;
271 	}
272 
273 	free(buf);
274 	return NULL;
275 }
276 
277 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280 	unsigned long *set;
281 	u64 size, *p;
282 	int i, ret;
283 
284 	ret = do_read_u64(ff, &size);
285 	if (ret)
286 		return ret;
287 
288 	set = bitmap_zalloc(size);
289 	if (!set)
290 		return -ENOMEM;
291 
292 	p = (u64 *) set;
293 
294 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295 		ret = do_read_u64(ff, p + i);
296 		if (ret < 0) {
297 			free(set);
298 			return ret;
299 		}
300 	}
301 
302 	*pset  = set;
303 	*psize = size;
304 	return 0;
305 }
306 
307 #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)308 static int write_tracing_data(struct feat_fd *ff,
309 			      struct evlist *evlist)
310 {
311 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312 		return -1;
313 
314 	return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317 
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)318 static int write_build_id(struct feat_fd *ff,
319 			  struct evlist *evlist __maybe_unused)
320 {
321 	struct perf_session *session;
322 	int err;
323 
324 	session = container_of(ff->ph, struct perf_session, header);
325 
326 	if (!perf_session__read_build_ids(session, true))
327 		return -1;
328 
329 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330 		return -1;
331 
332 	err = perf_session__write_buildid_table(session, ff);
333 	if (err < 0) {
334 		pr_debug("failed to write buildid table\n");
335 		return err;
336 	}
337 	perf_session__cache_build_ids(session);
338 
339 	return 0;
340 }
341 
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342 static int write_hostname(struct feat_fd *ff,
343 			  struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.nodename);
353 }
354 
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355 static int write_osrelease(struct feat_fd *ff,
356 			   struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.release);
366 }
367 
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368 static int write_arch(struct feat_fd *ff,
369 		      struct evlist *evlist __maybe_unused)
370 {
371 	struct utsname uts;
372 	int ret;
373 
374 	ret = uname(&uts);
375 	if (ret < 0)
376 		return -1;
377 
378 	return do_write_string(ff, uts.machine);
379 }
380 
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)381 static int write_version(struct feat_fd *ff,
382 			 struct evlist *evlist __maybe_unused)
383 {
384 	return do_write_string(ff, perf_version_string);
385 }
386 
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389 	FILE *file;
390 	char *buf = NULL;
391 	char *s, *p;
392 	const char *search = cpuinfo_proc;
393 	size_t len = 0;
394 	int ret = -1;
395 
396 	if (!search)
397 		return -1;
398 
399 	file = fopen("/proc/cpuinfo", "r");
400 	if (!file)
401 		return -1;
402 
403 	while (getline(&buf, &len, file) > 0) {
404 		ret = strncmp(buf, search, strlen(search));
405 		if (!ret)
406 			break;
407 	}
408 
409 	if (ret) {
410 		ret = -1;
411 		goto done;
412 	}
413 
414 	s = buf;
415 
416 	p = strchr(buf, ':');
417 	if (p && *(p+1) == ' ' && *(p+2))
418 		s = p + 2;
419 	p = strchr(s, '\n');
420 	if (p)
421 		*p = '\0';
422 
423 	/* squash extra space characters (branding string) */
424 	p = s;
425 	while (*p) {
426 		if (isspace(*p)) {
427 			char *r = p + 1;
428 			char *q = skip_spaces(r);
429 			*p = ' ';
430 			if (q != (p+1))
431 				while ((*r++ = *q++));
432 		}
433 		p++;
434 	}
435 	ret = do_write_string(ff, s);
436 done:
437 	free(buf);
438 	fclose(file);
439 	return ret;
440 }
441 
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)442 static int write_cpudesc(struct feat_fd *ff,
443 		       struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC	{ "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC	{ "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC	{ "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC	{ "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC	{ "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC	{ "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC	{ "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC	{ "Model Name", }
461 #else
462 #define CPUINFO_PROC	{ "model name", }
463 #endif
464 	const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466 	unsigned int i;
467 
468 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469 		int ret;
470 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471 		if (ret >= 0)
472 			return ret;
473 	}
474 	return -1;
475 }
476 
477 
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)478 static int write_nrcpus(struct feat_fd *ff,
479 			struct evlist *evlist __maybe_unused)
480 {
481 	long nr;
482 	u32 nrc, nra;
483 	int ret;
484 
485 	nrc = cpu__max_present_cpu().cpu;
486 
487 	nr = sysconf(_SC_NPROCESSORS_ONLN);
488 	if (nr < 0)
489 		return -1;
490 
491 	nra = (u32)(nr & UINT_MAX);
492 
493 	ret = do_write(ff, &nrc, sizeof(nrc));
494 	if (ret < 0)
495 		return ret;
496 
497 	return do_write(ff, &nra, sizeof(nra));
498 }
499 
write_event_desc(struct feat_fd * ff,struct evlist * evlist)500 static int write_event_desc(struct feat_fd *ff,
501 			    struct evlist *evlist)
502 {
503 	struct evsel *evsel;
504 	u32 nre, nri, sz;
505 	int ret;
506 
507 	nre = evlist->core.nr_entries;
508 
509 	/*
510 	 * write number of events
511 	 */
512 	ret = do_write(ff, &nre, sizeof(nre));
513 	if (ret < 0)
514 		return ret;
515 
516 	/*
517 	 * size of perf_event_attr struct
518 	 */
519 	sz = (u32)sizeof(evsel->core.attr);
520 	ret = do_write(ff, &sz, sizeof(sz));
521 	if (ret < 0)
522 		return ret;
523 
524 	evlist__for_each_entry(evlist, evsel) {
525 		ret = do_write(ff, &evsel->core.attr, sz);
526 		if (ret < 0)
527 			return ret;
528 		/*
529 		 * write number of unique id per event
530 		 * there is one id per instance of an event
531 		 *
532 		 * copy into an nri to be independent of the
533 		 * type of ids,
534 		 */
535 		nri = evsel->core.ids;
536 		ret = do_write(ff, &nri, sizeof(nri));
537 		if (ret < 0)
538 			return ret;
539 
540 		/*
541 		 * write event string as passed on cmdline
542 		 */
543 		ret = do_write_string(ff, evsel__name(evsel));
544 		if (ret < 0)
545 			return ret;
546 		/*
547 		 * write unique ids for this event
548 		 */
549 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550 		if (ret < 0)
551 			return ret;
552 	}
553 	return 0;
554 }
555 
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)556 static int write_cmdline(struct feat_fd *ff,
557 			 struct evlist *evlist __maybe_unused)
558 {
559 	char pbuf[MAXPATHLEN], *buf;
560 	int i, ret, n;
561 
562 	/* actual path to perf binary */
563 	buf = perf_exe(pbuf, MAXPATHLEN);
564 
565 	/* account for binary path */
566 	n = perf_env.nr_cmdline + 1;
567 
568 	ret = do_write(ff, &n, sizeof(n));
569 	if (ret < 0)
570 		return ret;
571 
572 	ret = do_write_string(ff, buf);
573 	if (ret < 0)
574 		return ret;
575 
576 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578 		if (ret < 0)
579 			return ret;
580 	}
581 	return 0;
582 }
583 
584 
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)585 static int write_cpu_topology(struct feat_fd *ff,
586 			      struct evlist *evlist __maybe_unused)
587 {
588 	struct cpu_topology *tp;
589 	u32 i;
590 	int ret, j;
591 
592 	tp = cpu_topology__new();
593 	if (!tp)
594 		return -1;
595 
596 	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597 	if (ret < 0)
598 		goto done;
599 
600 	for (i = 0; i < tp->package_cpus_lists; i++) {
601 		ret = do_write_string(ff, tp->package_cpus_list[i]);
602 		if (ret < 0)
603 			goto done;
604 	}
605 	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606 	if (ret < 0)
607 		goto done;
608 
609 	for (i = 0; i < tp->core_cpus_lists; i++) {
610 		ret = do_write_string(ff, tp->core_cpus_list[i]);
611 		if (ret < 0)
612 			break;
613 	}
614 
615 	ret = perf_env__read_cpu_topology_map(&perf_env);
616 	if (ret < 0)
617 		goto done;
618 
619 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620 		ret = do_write(ff, &perf_env.cpu[j].core_id,
621 			       sizeof(perf_env.cpu[j].core_id));
622 		if (ret < 0)
623 			return ret;
624 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
625 			       sizeof(perf_env.cpu[j].socket_id));
626 		if (ret < 0)
627 			return ret;
628 	}
629 
630 	if (!tp->die_cpus_lists)
631 		goto done;
632 
633 	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634 	if (ret < 0)
635 		goto done;
636 
637 	for (i = 0; i < tp->die_cpus_lists; i++) {
638 		ret = do_write_string(ff, tp->die_cpus_list[i]);
639 		if (ret < 0)
640 			goto done;
641 	}
642 
643 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644 		ret = do_write(ff, &perf_env.cpu[j].die_id,
645 			       sizeof(perf_env.cpu[j].die_id));
646 		if (ret < 0)
647 			return ret;
648 	}
649 
650 done:
651 	cpu_topology__delete(tp);
652 	return ret;
653 }
654 
655 
656 
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)657 static int write_total_mem(struct feat_fd *ff,
658 			   struct evlist *evlist __maybe_unused)
659 {
660 	char *buf = NULL;
661 	FILE *fp;
662 	size_t len = 0;
663 	int ret = -1, n;
664 	uint64_t mem;
665 
666 	fp = fopen("/proc/meminfo", "r");
667 	if (!fp)
668 		return -1;
669 
670 	while (getline(&buf, &len, fp) > 0) {
671 		ret = strncmp(buf, "MemTotal:", 9);
672 		if (!ret)
673 			break;
674 	}
675 	if (!ret) {
676 		n = sscanf(buf, "%*s %"PRIu64, &mem);
677 		if (n == 1)
678 			ret = do_write(ff, &mem, sizeof(mem));
679 	} else
680 		ret = -1;
681 	free(buf);
682 	fclose(fp);
683 	return ret;
684 }
685 
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)686 static int write_numa_topology(struct feat_fd *ff,
687 			       struct evlist *evlist __maybe_unused)
688 {
689 	struct numa_topology *tp;
690 	int ret = -1;
691 	u32 i;
692 
693 	tp = numa_topology__new();
694 	if (!tp)
695 		return -ENOMEM;
696 
697 	ret = do_write(ff, &tp->nr, sizeof(u32));
698 	if (ret < 0)
699 		goto err;
700 
701 	for (i = 0; i < tp->nr; i++) {
702 		struct numa_topology_node *n = &tp->nodes[i];
703 
704 		ret = do_write(ff, &n->node, sizeof(u32));
705 		if (ret < 0)
706 			goto err;
707 
708 		ret = do_write(ff, &n->mem_total, sizeof(u64));
709 		if (ret)
710 			goto err;
711 
712 		ret = do_write(ff, &n->mem_free, sizeof(u64));
713 		if (ret)
714 			goto err;
715 
716 		ret = do_write_string(ff, n->cpus);
717 		if (ret < 0)
718 			goto err;
719 	}
720 
721 	ret = 0;
722 
723 err:
724 	numa_topology__delete(tp);
725 	return ret;
726 }
727 
728 /*
729  * File format:
730  *
731  * struct pmu_mappings {
732  *	u32	pmu_num;
733  *	struct pmu_map {
734  *		u32	type;
735  *		char	name[];
736  *	}[pmu_num];
737  * };
738  */
739 
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)740 static int write_pmu_mappings(struct feat_fd *ff,
741 			      struct evlist *evlist __maybe_unused)
742 {
743 	struct perf_pmu *pmu = NULL;
744 	u32 pmu_num = 0;
745 	int ret;
746 
747 	/*
748 	 * Do a first pass to count number of pmu to avoid lseek so this
749 	 * works in pipe mode as well.
750 	 */
751 	while ((pmu = perf_pmus__scan(pmu)))
752 		pmu_num++;
753 
754 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 	if (ret < 0)
756 		return ret;
757 
758 	while ((pmu = perf_pmus__scan(pmu))) {
759 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760 		if (ret < 0)
761 			return ret;
762 
763 		ret = do_write_string(ff, pmu->name);
764 		if (ret < 0)
765 			return ret;
766 	}
767 
768 	return 0;
769 }
770 
771 /*
772  * File format:
773  *
774  * struct group_descs {
775  *	u32	nr_groups;
776  *	struct group_desc {
777  *		char	name[];
778  *		u32	leader_idx;
779  *		u32	nr_members;
780  *	}[nr_groups];
781  * };
782  */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)783 static int write_group_desc(struct feat_fd *ff,
784 			    struct evlist *evlist)
785 {
786 	u32 nr_groups = evlist__nr_groups(evlist);
787 	struct evsel *evsel;
788 	int ret;
789 
790 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791 	if (ret < 0)
792 		return ret;
793 
794 	evlist__for_each_entry(evlist, evsel) {
795 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796 			const char *name = evsel->group_name ?: "{anon_group}";
797 			u32 leader_idx = evsel->core.idx;
798 			u32 nr_members = evsel->core.nr_members;
799 
800 			ret = do_write_string(ff, name);
801 			if (ret < 0)
802 				return ret;
803 
804 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805 			if (ret < 0)
806 				return ret;
807 
808 			ret = do_write(ff, &nr_members, sizeof(nr_members));
809 			if (ret < 0)
810 				return ret;
811 		}
812 	}
813 	return 0;
814 }
815 
816 /*
817  * Return the CPU id as a raw string.
818  *
819  * Each architecture should provide a more precise id string that
820  * can be use to match the architecture's "mapfile".
821  */
get_cpuid_str(struct perf_cpu cpu __maybe_unused)822 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused)
823 {
824 	return NULL;
825 }
826 
get_cpuid_allow_env_override(struct perf_cpu cpu)827 char *get_cpuid_allow_env_override(struct perf_cpu cpu)
828 {
829 	char *cpuid;
830 	static bool printed;
831 
832 	cpuid = getenv("PERF_CPUID");
833 	if (cpuid)
834 		cpuid = strdup(cpuid);
835 	if (!cpuid)
836 		cpuid = get_cpuid_str(cpu);
837 	if (!cpuid)
838 		return NULL;
839 
840 	if (!printed) {
841 		pr_debug("Using CPUID %s\n", cpuid);
842 		printed = true;
843 	}
844 	return cpuid;
845 }
846 
847 /* Return zero when the cpuid from the mapfile.csv matches the
848  * cpuid string generated on this platform.
849  * Otherwise return non-zero.
850  */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)851 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
852 {
853 	regex_t re;
854 	regmatch_t pmatch[1];
855 	int match;
856 
857 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
858 		/* Warn unable to generate match particular string. */
859 		pr_info("Invalid regular expression %s\n", mapcpuid);
860 		return 1;
861 	}
862 
863 	match = !regexec(&re, cpuid, 1, pmatch, 0);
864 	regfree(&re);
865 	if (match) {
866 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
867 
868 		/* Verify the entire string matched. */
869 		if (match_len == strlen(cpuid))
870 			return 0;
871 	}
872 	return 1;
873 }
874 
875 /*
876  * default get_cpuid(): nothing gets recorded
877  * actual implementation must be in arch/$(SRCARCH)/util/header.c
878  */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused,struct perf_cpu cpu __maybe_unused)879 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused,
880 		     struct perf_cpu cpu __maybe_unused)
881 {
882 	return ENOSYS; /* Not implemented */
883 }
884 
write_cpuid(struct feat_fd * ff,struct evlist * evlist)885 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist)
886 {
887 	struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus);
888 	char buffer[64];
889 	int ret;
890 
891 	ret = get_cpuid(buffer, sizeof(buffer), cpu);
892 	if (ret)
893 		return -1;
894 
895 	return do_write_string(ff, buffer);
896 }
897 
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)898 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
899 			      struct evlist *evlist __maybe_unused)
900 {
901 	return 0;
902 }
903 
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)904 static int write_auxtrace(struct feat_fd *ff,
905 			  struct evlist *evlist __maybe_unused)
906 {
907 	struct perf_session *session;
908 	int err;
909 
910 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
911 		return -1;
912 
913 	session = container_of(ff->ph, struct perf_session, header);
914 
915 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
916 	if (err < 0)
917 		pr_err("Failed to write auxtrace index\n");
918 	return err;
919 }
920 
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)921 static int write_clockid(struct feat_fd *ff,
922 			 struct evlist *evlist __maybe_unused)
923 {
924 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
925 			sizeof(ff->ph->env.clock.clockid_res_ns));
926 }
927 
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)928 static int write_clock_data(struct feat_fd *ff,
929 			    struct evlist *evlist __maybe_unused)
930 {
931 	u64 *data64;
932 	u32 data32;
933 	int ret;
934 
935 	/* version */
936 	data32 = 1;
937 
938 	ret = do_write(ff, &data32, sizeof(data32));
939 	if (ret < 0)
940 		return ret;
941 
942 	/* clockid */
943 	data32 = ff->ph->env.clock.clockid;
944 
945 	ret = do_write(ff, &data32, sizeof(data32));
946 	if (ret < 0)
947 		return ret;
948 
949 	/* TOD ref time */
950 	data64 = &ff->ph->env.clock.tod_ns;
951 
952 	ret = do_write(ff, data64, sizeof(*data64));
953 	if (ret < 0)
954 		return ret;
955 
956 	/* clockid ref time */
957 	data64 = &ff->ph->env.clock.clockid_ns;
958 
959 	return do_write(ff, data64, sizeof(*data64));
960 }
961 
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)962 static int write_hybrid_topology(struct feat_fd *ff,
963 				 struct evlist *evlist __maybe_unused)
964 {
965 	struct hybrid_topology *tp;
966 	int ret;
967 	u32 i;
968 
969 	tp = hybrid_topology__new();
970 	if (!tp)
971 		return -ENOENT;
972 
973 	ret = do_write(ff, &tp->nr, sizeof(u32));
974 	if (ret < 0)
975 		goto err;
976 
977 	for (i = 0; i < tp->nr; i++) {
978 		struct hybrid_topology_node *n = &tp->nodes[i];
979 
980 		ret = do_write_string(ff, n->pmu_name);
981 		if (ret < 0)
982 			goto err;
983 
984 		ret = do_write_string(ff, n->cpus);
985 		if (ret < 0)
986 			goto err;
987 	}
988 
989 	ret = 0;
990 
991 err:
992 	hybrid_topology__delete(tp);
993 	return ret;
994 }
995 
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)996 static int write_dir_format(struct feat_fd *ff,
997 			    struct evlist *evlist __maybe_unused)
998 {
999 	struct perf_session *session;
1000 	struct perf_data *data;
1001 
1002 	session = container_of(ff->ph, struct perf_session, header);
1003 	data = session->data;
1004 
1005 	if (WARN_ON(!perf_data__is_dir(data)))
1006 		return -1;
1007 
1008 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
1009 }
1010 
1011 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1012 static int write_bpf_prog_info(struct feat_fd *ff,
1013 			       struct evlist *evlist __maybe_unused)
1014 {
1015 	struct perf_env *env = &ff->ph->env;
1016 	struct rb_root *root;
1017 	struct rb_node *next;
1018 	int ret;
1019 
1020 	down_read(&env->bpf_progs.lock);
1021 
1022 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1023 		       sizeof(env->bpf_progs.infos_cnt));
1024 	if (ret < 0)
1025 		goto out;
1026 
1027 	root = &env->bpf_progs.infos;
1028 	next = rb_first(root);
1029 	while (next) {
1030 		struct bpf_prog_info_node *node;
1031 		size_t len;
1032 
1033 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1034 		next = rb_next(&node->rb_node);
1035 		len = sizeof(struct perf_bpil) +
1036 			node->info_linear->data_len;
1037 
1038 		/* before writing to file, translate address to offset */
1039 		bpil_addr_to_offs(node->info_linear);
1040 		ret = do_write(ff, node->info_linear, len);
1041 		/*
1042 		 * translate back to address even when do_write() fails,
1043 		 * so that this function never changes the data.
1044 		 */
1045 		bpil_offs_to_addr(node->info_linear);
1046 		if (ret < 0)
1047 			goto out;
1048 	}
1049 out:
1050 	up_read(&env->bpf_progs.lock);
1051 	return ret;
1052 }
1053 
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1054 static int write_bpf_btf(struct feat_fd *ff,
1055 			 struct evlist *evlist __maybe_unused)
1056 {
1057 	struct perf_env *env = &ff->ph->env;
1058 	struct rb_root *root;
1059 	struct rb_node *next;
1060 	int ret;
1061 
1062 	down_read(&env->bpf_progs.lock);
1063 
1064 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1065 		       sizeof(env->bpf_progs.btfs_cnt));
1066 
1067 	if (ret < 0)
1068 		goto out;
1069 
1070 	root = &env->bpf_progs.btfs;
1071 	next = rb_first(root);
1072 	while (next) {
1073 		struct btf_node *node;
1074 
1075 		node = rb_entry(next, struct btf_node, rb_node);
1076 		next = rb_next(&node->rb_node);
1077 		ret = do_write(ff, &node->id,
1078 			       sizeof(u32) * 2 + node->data_size);
1079 		if (ret < 0)
1080 			goto out;
1081 	}
1082 out:
1083 	up_read(&env->bpf_progs.lock);
1084 	return ret;
1085 }
1086 #endif // HAVE_LIBBPF_SUPPORT
1087 
cpu_cache_level__sort(const void * a,const void * b)1088 static int cpu_cache_level__sort(const void *a, const void *b)
1089 {
1090 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1091 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1092 
1093 	return cache_a->level - cache_b->level;
1094 }
1095 
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1096 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1097 {
1098 	if (a->level != b->level)
1099 		return false;
1100 
1101 	if (a->line_size != b->line_size)
1102 		return false;
1103 
1104 	if (a->sets != b->sets)
1105 		return false;
1106 
1107 	if (a->ways != b->ways)
1108 		return false;
1109 
1110 	if (strcmp(a->type, b->type))
1111 		return false;
1112 
1113 	if (strcmp(a->size, b->size))
1114 		return false;
1115 
1116 	if (strcmp(a->map, b->map))
1117 		return false;
1118 
1119 	return true;
1120 }
1121 
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1122 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1123 {
1124 	char path[PATH_MAX], file[PATH_MAX];
1125 	struct stat st;
1126 	size_t len;
1127 
1128 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1129 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1130 
1131 	if (stat(file, &st))
1132 		return 1;
1133 
1134 	scnprintf(file, PATH_MAX, "%s/level", path);
1135 	if (sysfs__read_int(file, (int *) &cache->level))
1136 		return -1;
1137 
1138 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1139 	if (sysfs__read_int(file, (int *) &cache->line_size))
1140 		return -1;
1141 
1142 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1143 	if (sysfs__read_int(file, (int *) &cache->sets))
1144 		return -1;
1145 
1146 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1147 	if (sysfs__read_int(file, (int *) &cache->ways))
1148 		return -1;
1149 
1150 	scnprintf(file, PATH_MAX, "%s/type", path);
1151 	if (sysfs__read_str(file, &cache->type, &len))
1152 		return -1;
1153 
1154 	cache->type[len] = 0;
1155 	cache->type = strim(cache->type);
1156 
1157 	scnprintf(file, PATH_MAX, "%s/size", path);
1158 	if (sysfs__read_str(file, &cache->size, &len)) {
1159 		zfree(&cache->type);
1160 		return -1;
1161 	}
1162 
1163 	cache->size[len] = 0;
1164 	cache->size = strim(cache->size);
1165 
1166 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1167 	if (sysfs__read_str(file, &cache->map, &len)) {
1168 		zfree(&cache->size);
1169 		zfree(&cache->type);
1170 		return -1;
1171 	}
1172 
1173 	cache->map[len] = 0;
1174 	cache->map = strim(cache->map);
1175 	return 0;
1176 }
1177 
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1178 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1179 {
1180 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1181 }
1182 
1183 /*
1184  * Build caches levels for a particular CPU from the data in
1185  * /sys/devices/system/cpu/cpu<cpu>/cache/
1186  * The cache level data is stored in caches[] from index at
1187  * *cntp.
1188  */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1189 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1190 {
1191 	u16 level;
1192 
1193 	for (level = 0; level < MAX_CACHE_LVL; level++) {
1194 		struct cpu_cache_level c;
1195 		int err;
1196 		u32 i;
1197 
1198 		err = cpu_cache_level__read(&c, cpu, level);
1199 		if (err < 0)
1200 			return err;
1201 
1202 		if (err == 1)
1203 			break;
1204 
1205 		for (i = 0; i < *cntp; i++) {
1206 			if (cpu_cache_level__cmp(&c, &caches[i]))
1207 				break;
1208 		}
1209 
1210 		if (i == *cntp) {
1211 			caches[*cntp] = c;
1212 			*cntp = *cntp + 1;
1213 		} else
1214 			cpu_cache_level__free(&c);
1215 	}
1216 
1217 	return 0;
1218 }
1219 
build_caches(struct cpu_cache_level caches[],u32 * cntp)1220 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1221 {
1222 	u32 nr, cpu, cnt = 0;
1223 
1224 	nr = cpu__max_cpu().cpu;
1225 
1226 	for (cpu = 0; cpu < nr; cpu++) {
1227 		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1228 
1229 		if (ret)
1230 			return ret;
1231 	}
1232 	*cntp = cnt;
1233 	return 0;
1234 }
1235 
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1236 static int write_cache(struct feat_fd *ff,
1237 		       struct evlist *evlist __maybe_unused)
1238 {
1239 	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1240 	struct cpu_cache_level caches[max_caches];
1241 	u32 cnt = 0, i, version = 1;
1242 	int ret;
1243 
1244 	ret = build_caches(caches, &cnt);
1245 	if (ret)
1246 		goto out;
1247 
1248 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1249 
1250 	ret = do_write(ff, &version, sizeof(u32));
1251 	if (ret < 0)
1252 		goto out;
1253 
1254 	ret = do_write(ff, &cnt, sizeof(u32));
1255 	if (ret < 0)
1256 		goto out;
1257 
1258 	for (i = 0; i < cnt; i++) {
1259 		struct cpu_cache_level *c = &caches[i];
1260 
1261 		#define _W(v)					\
1262 			ret = do_write(ff, &c->v, sizeof(u32));	\
1263 			if (ret < 0)				\
1264 				goto out;
1265 
1266 		_W(level)
1267 		_W(line_size)
1268 		_W(sets)
1269 		_W(ways)
1270 		#undef _W
1271 
1272 		#define _W(v)						\
1273 			ret = do_write_string(ff, (const char *) c->v);	\
1274 			if (ret < 0)					\
1275 				goto out;
1276 
1277 		_W(type)
1278 		_W(size)
1279 		_W(map)
1280 		#undef _W
1281 	}
1282 
1283 out:
1284 	for (i = 0; i < cnt; i++)
1285 		cpu_cache_level__free(&caches[i]);
1286 	return ret;
1287 }
1288 
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1289 static int write_stat(struct feat_fd *ff __maybe_unused,
1290 		      struct evlist *evlist __maybe_unused)
1291 {
1292 	return 0;
1293 }
1294 
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1295 static int write_sample_time(struct feat_fd *ff,
1296 			     struct evlist *evlist)
1297 {
1298 	int ret;
1299 
1300 	ret = do_write(ff, &evlist->first_sample_time,
1301 		       sizeof(evlist->first_sample_time));
1302 	if (ret < 0)
1303 		return ret;
1304 
1305 	return do_write(ff, &evlist->last_sample_time,
1306 			sizeof(evlist->last_sample_time));
1307 }
1308 
1309 
memory_node__read(struct memory_node * n,unsigned long idx)1310 static int memory_node__read(struct memory_node *n, unsigned long idx)
1311 {
1312 	unsigned int phys, size = 0;
1313 	char path[PATH_MAX];
1314 	struct dirent *ent;
1315 	DIR *dir;
1316 
1317 #define for_each_memory(mem, dir)					\
1318 	while ((ent = readdir(dir)))					\
1319 		if (strcmp(ent->d_name, ".") &&				\
1320 		    strcmp(ent->d_name, "..") &&			\
1321 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1322 
1323 	scnprintf(path, PATH_MAX,
1324 		  "%s/devices/system/node/node%lu",
1325 		  sysfs__mountpoint(), idx);
1326 
1327 	dir = opendir(path);
1328 	if (!dir) {
1329 		pr_warning("failed: can't open memory sysfs data\n");
1330 		return -1;
1331 	}
1332 
1333 	for_each_memory(phys, dir) {
1334 		size = max(phys, size);
1335 	}
1336 
1337 	size++;
1338 
1339 	n->set = bitmap_zalloc(size);
1340 	if (!n->set) {
1341 		closedir(dir);
1342 		return -ENOMEM;
1343 	}
1344 
1345 	n->node = idx;
1346 	n->size = size;
1347 
1348 	rewinddir(dir);
1349 
1350 	for_each_memory(phys, dir) {
1351 		__set_bit(phys, n->set);
1352 	}
1353 
1354 	closedir(dir);
1355 	return 0;
1356 }
1357 
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1358 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1359 {
1360 	for (u64 i = 0; i < cnt; i++)
1361 		bitmap_free(nodesp[i].set);
1362 
1363 	free(nodesp);
1364 }
1365 
memory_node__sort(const void * a,const void * b)1366 static int memory_node__sort(const void *a, const void *b)
1367 {
1368 	const struct memory_node *na = a;
1369 	const struct memory_node *nb = b;
1370 
1371 	return na->node - nb->node;
1372 }
1373 
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1374 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1375 {
1376 	char path[PATH_MAX];
1377 	struct dirent *ent;
1378 	DIR *dir;
1379 	int ret = 0;
1380 	size_t cnt = 0, size = 0;
1381 	struct memory_node *nodes = NULL;
1382 
1383 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1384 		  sysfs__mountpoint());
1385 
1386 	dir = opendir(path);
1387 	if (!dir) {
1388 		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1389 			  __func__, path);
1390 		return -1;
1391 	}
1392 
1393 	while (!ret && (ent = readdir(dir))) {
1394 		unsigned int idx;
1395 		int r;
1396 
1397 		if (!strcmp(ent->d_name, ".") ||
1398 		    !strcmp(ent->d_name, ".."))
1399 			continue;
1400 
1401 		r = sscanf(ent->d_name, "node%u", &idx);
1402 		if (r != 1)
1403 			continue;
1404 
1405 		if (cnt >= size) {
1406 			struct memory_node *new_nodes =
1407 				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1408 
1409 			if (!new_nodes) {
1410 				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1411 				ret = -ENOMEM;
1412 				goto out;
1413 			}
1414 			nodes = new_nodes;
1415 			size += 4;
1416 		}
1417 		ret = memory_node__read(&nodes[cnt], idx);
1418 		if (!ret)
1419 			cnt += 1;
1420 	}
1421 out:
1422 	closedir(dir);
1423 	if (!ret) {
1424 		*cntp = cnt;
1425 		*nodesp = nodes;
1426 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1427 	} else
1428 		memory_node__delete_nodes(nodes, cnt);
1429 
1430 	return ret;
1431 }
1432 
1433 /*
1434  * The MEM_TOPOLOGY holds physical memory map for every
1435  * node in system. The format of data is as follows:
1436  *
1437  *  0 - version          | for future changes
1438  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1439  * 16 - count            | number of nodes
1440  *
1441  * For each node we store map of physical indexes for
1442  * each node:
1443  *
1444  * 32 - node id          | node index
1445  * 40 - size             | size of bitmap
1446  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1447  */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1448 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1449 			      struct evlist *evlist __maybe_unused)
1450 {
1451 	struct memory_node *nodes = NULL;
1452 	u64 bsize, version = 1, i, nr = 0;
1453 	int ret;
1454 
1455 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1456 			      (unsigned long long *) &bsize);
1457 	if (ret)
1458 		return ret;
1459 
1460 	ret = build_mem_topology(&nodes, &nr);
1461 	if (ret)
1462 		return ret;
1463 
1464 	ret = do_write(ff, &version, sizeof(version));
1465 	if (ret < 0)
1466 		goto out;
1467 
1468 	ret = do_write(ff, &bsize, sizeof(bsize));
1469 	if (ret < 0)
1470 		goto out;
1471 
1472 	ret = do_write(ff, &nr, sizeof(nr));
1473 	if (ret < 0)
1474 		goto out;
1475 
1476 	for (i = 0; i < nr; i++) {
1477 		struct memory_node *n = &nodes[i];
1478 
1479 		#define _W(v)						\
1480 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1481 			if (ret < 0)					\
1482 				goto out;
1483 
1484 		_W(node)
1485 		_W(size)
1486 
1487 		#undef _W
1488 
1489 		ret = do_write_bitmap(ff, n->set, n->size);
1490 		if (ret < 0)
1491 			goto out;
1492 	}
1493 
1494 out:
1495 	memory_node__delete_nodes(nodes, nr);
1496 	return ret;
1497 }
1498 
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1499 static int write_compressed(struct feat_fd *ff __maybe_unused,
1500 			    struct evlist *evlist __maybe_unused)
1501 {
1502 	int ret;
1503 
1504 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1505 	if (ret)
1506 		return ret;
1507 
1508 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1509 	if (ret)
1510 		return ret;
1511 
1512 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1513 	if (ret)
1514 		return ret;
1515 
1516 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1517 	if (ret)
1518 		return ret;
1519 
1520 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1521 }
1522 
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1523 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1524 			    bool write_pmu)
1525 {
1526 	struct perf_pmu_caps *caps = NULL;
1527 	int ret;
1528 
1529 	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1530 	if (ret < 0)
1531 		return ret;
1532 
1533 	list_for_each_entry(caps, &pmu->caps, list) {
1534 		ret = do_write_string(ff, caps->name);
1535 		if (ret < 0)
1536 			return ret;
1537 
1538 		ret = do_write_string(ff, caps->value);
1539 		if (ret < 0)
1540 			return ret;
1541 	}
1542 
1543 	if (write_pmu) {
1544 		ret = do_write_string(ff, pmu->name);
1545 		if (ret < 0)
1546 			return ret;
1547 	}
1548 
1549 	return ret;
1550 }
1551 
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1552 static int write_cpu_pmu_caps(struct feat_fd *ff,
1553 			      struct evlist *evlist __maybe_unused)
1554 {
1555 	struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1556 	int ret;
1557 
1558 	if (!cpu_pmu)
1559 		return -ENOENT;
1560 
1561 	ret = perf_pmu__caps_parse(cpu_pmu);
1562 	if (ret < 0)
1563 		return ret;
1564 
1565 	return __write_pmu_caps(ff, cpu_pmu, false);
1566 }
1567 
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1568 static int write_pmu_caps(struct feat_fd *ff,
1569 			  struct evlist *evlist __maybe_unused)
1570 {
1571 	struct perf_pmu *pmu = NULL;
1572 	int nr_pmu = 0;
1573 	int ret;
1574 
1575 	while ((pmu = perf_pmus__scan(pmu))) {
1576 		if (!strcmp(pmu->name, "cpu")) {
1577 			/*
1578 			 * The "cpu" PMU is special and covered by
1579 			 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1580 			 * counted/written here for ARM, s390 and Intel hybrid.
1581 			 */
1582 			continue;
1583 		}
1584 		if (perf_pmu__caps_parse(pmu) <= 0)
1585 			continue;
1586 		nr_pmu++;
1587 	}
1588 
1589 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1590 	if (ret < 0)
1591 		return ret;
1592 
1593 	if (!nr_pmu)
1594 		return 0;
1595 
1596 	/*
1597 	 * Note older perf tools assume core PMUs come first, this is a property
1598 	 * of perf_pmus__scan.
1599 	 */
1600 	pmu = NULL;
1601 	while ((pmu = perf_pmus__scan(pmu))) {
1602 		if (!strcmp(pmu->name, "cpu")) {
1603 			/* Skip as above. */
1604 			continue;
1605 		}
1606 		if (perf_pmu__caps_parse(pmu) <= 0)
1607 			continue;
1608 		ret = __write_pmu_caps(ff, pmu, true);
1609 		if (ret < 0)
1610 			return ret;
1611 	}
1612 	return 0;
1613 }
1614 
print_hostname(struct feat_fd * ff,FILE * fp)1615 static void print_hostname(struct feat_fd *ff, FILE *fp)
1616 {
1617 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1618 }
1619 
print_osrelease(struct feat_fd * ff,FILE * fp)1620 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1621 {
1622 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1623 }
1624 
print_arch(struct feat_fd * ff,FILE * fp)1625 static void print_arch(struct feat_fd *ff, FILE *fp)
1626 {
1627 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1628 }
1629 
print_cpudesc(struct feat_fd * ff,FILE * fp)1630 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1631 {
1632 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1633 }
1634 
print_nrcpus(struct feat_fd * ff,FILE * fp)1635 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1636 {
1637 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1638 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1639 }
1640 
print_version(struct feat_fd * ff,FILE * fp)1641 static void print_version(struct feat_fd *ff, FILE *fp)
1642 {
1643 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1644 }
1645 
print_cmdline(struct feat_fd * ff,FILE * fp)1646 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1647 {
1648 	int nr, i;
1649 
1650 	nr = ff->ph->env.nr_cmdline;
1651 
1652 	fprintf(fp, "# cmdline : ");
1653 
1654 	for (i = 0; i < nr; i++) {
1655 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1656 		if (!argv_i) {
1657 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1658 		} else {
1659 			char *mem = argv_i;
1660 			do {
1661 				char *quote = strchr(argv_i, '\'');
1662 				if (!quote)
1663 					break;
1664 				*quote++ = '\0';
1665 				fprintf(fp, "%s\\\'", argv_i);
1666 				argv_i = quote;
1667 			} while (1);
1668 			fprintf(fp, "%s ", argv_i);
1669 			free(mem);
1670 		}
1671 	}
1672 	fputc('\n', fp);
1673 }
1674 
print_cpu_topology(struct feat_fd * ff,FILE * fp)1675 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1676 {
1677 	struct perf_header *ph = ff->ph;
1678 	int cpu_nr = ph->env.nr_cpus_avail;
1679 	int nr, i;
1680 	char *str;
1681 
1682 	nr = ph->env.nr_sibling_cores;
1683 	str = ph->env.sibling_cores;
1684 
1685 	for (i = 0; i < nr; i++) {
1686 		fprintf(fp, "# sibling sockets : %s\n", str);
1687 		str += strlen(str) + 1;
1688 	}
1689 
1690 	if (ph->env.nr_sibling_dies) {
1691 		nr = ph->env.nr_sibling_dies;
1692 		str = ph->env.sibling_dies;
1693 
1694 		for (i = 0; i < nr; i++) {
1695 			fprintf(fp, "# sibling dies    : %s\n", str);
1696 			str += strlen(str) + 1;
1697 		}
1698 	}
1699 
1700 	nr = ph->env.nr_sibling_threads;
1701 	str = ph->env.sibling_threads;
1702 
1703 	for (i = 0; i < nr; i++) {
1704 		fprintf(fp, "# sibling threads : %s\n", str);
1705 		str += strlen(str) + 1;
1706 	}
1707 
1708 	if (ph->env.nr_sibling_dies) {
1709 		if (ph->env.cpu != NULL) {
1710 			for (i = 0; i < cpu_nr; i++)
1711 				fprintf(fp, "# CPU %d: Core ID %d, "
1712 					    "Die ID %d, Socket ID %d\n",
1713 					    i, ph->env.cpu[i].core_id,
1714 					    ph->env.cpu[i].die_id,
1715 					    ph->env.cpu[i].socket_id);
1716 		} else
1717 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1718 				    "information is not available\n");
1719 	} else {
1720 		if (ph->env.cpu != NULL) {
1721 			for (i = 0; i < cpu_nr; i++)
1722 				fprintf(fp, "# CPU %d: Core ID %d, "
1723 					    "Socket ID %d\n",
1724 					    i, ph->env.cpu[i].core_id,
1725 					    ph->env.cpu[i].socket_id);
1726 		} else
1727 			fprintf(fp, "# Core ID and Socket ID "
1728 				    "information is not available\n");
1729 	}
1730 }
1731 
print_clockid(struct feat_fd * ff,FILE * fp)1732 static void print_clockid(struct feat_fd *ff, FILE *fp)
1733 {
1734 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1735 		ff->ph->env.clock.clockid_res_ns * 1000);
1736 }
1737 
print_clock_data(struct feat_fd * ff,FILE * fp)1738 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1739 {
1740 	struct timespec clockid_ns;
1741 	char tstr[64], date[64];
1742 	struct timeval tod_ns;
1743 	clockid_t clockid;
1744 	struct tm ltime;
1745 	u64 ref;
1746 
1747 	if (!ff->ph->env.clock.enabled) {
1748 		fprintf(fp, "# reference time disabled\n");
1749 		return;
1750 	}
1751 
1752 	/* Compute TOD time. */
1753 	ref = ff->ph->env.clock.tod_ns;
1754 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1755 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1756 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1757 
1758 	/* Compute clockid time. */
1759 	ref = ff->ph->env.clock.clockid_ns;
1760 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1761 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1762 	clockid_ns.tv_nsec = ref;
1763 
1764 	clockid = ff->ph->env.clock.clockid;
1765 
1766 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1767 		snprintf(tstr, sizeof(tstr), "<error>");
1768 	else {
1769 		strftime(date, sizeof(date), "%F %T", &ltime);
1770 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1771 			  date, (int) tod_ns.tv_usec);
1772 	}
1773 
1774 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1775 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1776 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1777 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1778 		    clockid_name(clockid));
1779 }
1780 
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1781 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1782 {
1783 	int i;
1784 	struct hybrid_node *n;
1785 
1786 	fprintf(fp, "# hybrid cpu system:\n");
1787 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1788 		n = &ff->ph->env.hybrid_nodes[i];
1789 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1790 	}
1791 }
1792 
print_dir_format(struct feat_fd * ff,FILE * fp)1793 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1794 {
1795 	struct perf_session *session;
1796 	struct perf_data *data;
1797 
1798 	session = container_of(ff->ph, struct perf_session, header);
1799 	data = session->data;
1800 
1801 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1802 }
1803 
1804 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1805 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1806 {
1807 	struct perf_env *env = &ff->ph->env;
1808 	struct rb_root *root;
1809 	struct rb_node *next;
1810 
1811 	down_read(&env->bpf_progs.lock);
1812 
1813 	root = &env->bpf_progs.infos;
1814 	next = rb_first(root);
1815 
1816 	while (next) {
1817 		struct bpf_prog_info_node *node;
1818 
1819 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1820 		next = rb_next(&node->rb_node);
1821 
1822 		__bpf_event__print_bpf_prog_info(&node->info_linear->info,
1823 						 env, fp);
1824 	}
1825 
1826 	up_read(&env->bpf_progs.lock);
1827 }
1828 
print_bpf_btf(struct feat_fd * ff,FILE * fp)1829 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1830 {
1831 	struct perf_env *env = &ff->ph->env;
1832 	struct rb_root *root;
1833 	struct rb_node *next;
1834 
1835 	down_read(&env->bpf_progs.lock);
1836 
1837 	root = &env->bpf_progs.btfs;
1838 	next = rb_first(root);
1839 
1840 	while (next) {
1841 		struct btf_node *node;
1842 
1843 		node = rb_entry(next, struct btf_node, rb_node);
1844 		next = rb_next(&node->rb_node);
1845 		fprintf(fp, "# btf info of id %u\n", node->id);
1846 	}
1847 
1848 	up_read(&env->bpf_progs.lock);
1849 }
1850 #endif // HAVE_LIBBPF_SUPPORT
1851 
free_event_desc(struct evsel * events)1852 static void free_event_desc(struct evsel *events)
1853 {
1854 	struct evsel *evsel;
1855 
1856 	if (!events)
1857 		return;
1858 
1859 	for (evsel = events; evsel->core.attr.size; evsel++) {
1860 		zfree(&evsel->name);
1861 		zfree(&evsel->core.id);
1862 	}
1863 
1864 	free(events);
1865 }
1866 
perf_attr_check(struct perf_event_attr * attr)1867 static bool perf_attr_check(struct perf_event_attr *attr)
1868 {
1869 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1870 		pr_warning("Reserved bits are set unexpectedly. "
1871 			   "Please update perf tool.\n");
1872 		return false;
1873 	}
1874 
1875 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1876 		pr_warning("Unknown sample type (0x%llx) is detected. "
1877 			   "Please update perf tool.\n",
1878 			   attr->sample_type);
1879 		return false;
1880 	}
1881 
1882 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1883 		pr_warning("Unknown read format (0x%llx) is detected. "
1884 			   "Please update perf tool.\n",
1885 			   attr->read_format);
1886 		return false;
1887 	}
1888 
1889 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1890 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1891 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1892 			   "Please update perf tool.\n",
1893 			   attr->branch_sample_type);
1894 
1895 		return false;
1896 	}
1897 
1898 	return true;
1899 }
1900 
read_event_desc(struct feat_fd * ff)1901 static struct evsel *read_event_desc(struct feat_fd *ff)
1902 {
1903 	struct evsel *evsel, *events = NULL;
1904 	u64 *id;
1905 	void *buf = NULL;
1906 	u32 nre, sz, nr, i, j;
1907 	size_t msz;
1908 
1909 	/* number of events */
1910 	if (do_read_u32(ff, &nre))
1911 		goto error;
1912 
1913 	if (do_read_u32(ff, &sz))
1914 		goto error;
1915 
1916 	/* buffer to hold on file attr struct */
1917 	buf = malloc(sz);
1918 	if (!buf)
1919 		goto error;
1920 
1921 	/* the last event terminates with evsel->core.attr.size == 0: */
1922 	events = calloc(nre + 1, sizeof(*events));
1923 	if (!events)
1924 		goto error;
1925 
1926 	msz = sizeof(evsel->core.attr);
1927 	if (sz < msz)
1928 		msz = sz;
1929 
1930 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1931 		evsel->core.idx = i;
1932 
1933 		/*
1934 		 * must read entire on-file attr struct to
1935 		 * sync up with layout.
1936 		 */
1937 		if (__do_read(ff, buf, sz))
1938 			goto error;
1939 
1940 		if (ff->ph->needs_swap)
1941 			perf_event__attr_swap(buf);
1942 
1943 		memcpy(&evsel->core.attr, buf, msz);
1944 
1945 		if (!perf_attr_check(&evsel->core.attr))
1946 			goto error;
1947 
1948 		if (do_read_u32(ff, &nr))
1949 			goto error;
1950 
1951 		if (ff->ph->needs_swap)
1952 			evsel->needs_swap = true;
1953 
1954 		evsel->name = do_read_string(ff);
1955 		if (!evsel->name)
1956 			goto error;
1957 
1958 		if (!nr)
1959 			continue;
1960 
1961 		id = calloc(nr, sizeof(*id));
1962 		if (!id)
1963 			goto error;
1964 		evsel->core.ids = nr;
1965 		evsel->core.id = id;
1966 
1967 		for (j = 0 ; j < nr; j++) {
1968 			if (do_read_u64(ff, id))
1969 				goto error;
1970 			id++;
1971 		}
1972 	}
1973 out:
1974 	free(buf);
1975 	return events;
1976 error:
1977 	free_event_desc(events);
1978 	events = NULL;
1979 	goto out;
1980 }
1981 
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1982 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1983 				void *priv __maybe_unused)
1984 {
1985 	return fprintf(fp, ", %s = %s", name, val);
1986 }
1987 
print_event_desc(struct feat_fd * ff,FILE * fp)1988 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1989 {
1990 	struct evsel *evsel, *events;
1991 	u32 j;
1992 	u64 *id;
1993 
1994 	if (ff->events)
1995 		events = ff->events;
1996 	else
1997 		events = read_event_desc(ff);
1998 
1999 	if (!events) {
2000 		fprintf(fp, "# event desc: not available or unable to read\n");
2001 		return;
2002 	}
2003 
2004 	for (evsel = events; evsel->core.attr.size; evsel++) {
2005 		fprintf(fp, "# event : name = %s, ", evsel->name);
2006 
2007 		if (evsel->core.ids) {
2008 			fprintf(fp, ", id = {");
2009 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2010 				if (j)
2011 					fputc(',', fp);
2012 				fprintf(fp, " %"PRIu64, *id);
2013 			}
2014 			fprintf(fp, " }");
2015 		}
2016 
2017 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2018 
2019 		fputc('\n', fp);
2020 	}
2021 
2022 	free_event_desc(events);
2023 	ff->events = NULL;
2024 }
2025 
print_total_mem(struct feat_fd * ff,FILE * fp)2026 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2027 {
2028 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2029 }
2030 
print_numa_topology(struct feat_fd * ff,FILE * fp)2031 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2032 {
2033 	int i;
2034 	struct numa_node *n;
2035 
2036 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2037 		n = &ff->ph->env.numa_nodes[i];
2038 
2039 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2040 			    " free = %"PRIu64" kB\n",
2041 			n->node, n->mem_total, n->mem_free);
2042 
2043 		fprintf(fp, "# node%u cpu list : ", n->node);
2044 		cpu_map__fprintf(n->map, fp);
2045 	}
2046 }
2047 
print_cpuid(struct feat_fd * ff,FILE * fp)2048 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2049 {
2050 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2051 }
2052 
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2053 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2054 {
2055 	fprintf(fp, "# contains samples with branch stack\n");
2056 }
2057 
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2058 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2059 {
2060 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2061 }
2062 
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2063 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2064 {
2065 	fprintf(fp, "# contains stat data\n");
2066 }
2067 
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2068 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2069 {
2070 	int i;
2071 
2072 	fprintf(fp, "# CPU cache info:\n");
2073 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2074 		fprintf(fp, "#  ");
2075 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2076 	}
2077 }
2078 
print_compressed(struct feat_fd * ff,FILE * fp)2079 static void print_compressed(struct feat_fd *ff, FILE *fp)
2080 {
2081 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2082 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2083 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2084 }
2085 
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2086 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2087 {
2088 	const char *delimiter = "";
2089 	int i;
2090 
2091 	if (!nr_caps) {
2092 		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2093 		return;
2094 	}
2095 
2096 	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2097 	for (i = 0; i < nr_caps; i++) {
2098 		fprintf(fp, "%s%s", delimiter, caps[i]);
2099 		delimiter = ", ";
2100 	}
2101 
2102 	fprintf(fp, "\n");
2103 }
2104 
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2105 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2106 {
2107 	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2108 			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2109 }
2110 
print_pmu_caps(struct feat_fd * ff,FILE * fp)2111 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2112 {
2113 	struct pmu_caps *pmu_caps;
2114 
2115 	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2116 		pmu_caps = &ff->ph->env.pmu_caps[i];
2117 		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2118 				 pmu_caps->pmu_name);
2119 	}
2120 
2121 	if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 &&
2122 	    perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) {
2123 		char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise");
2124 
2125 		if (max_precise != NULL && atoi(max_precise) == 0)
2126 			fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2127 	}
2128 }
2129 
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2130 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2131 {
2132 	const char *delimiter = "# pmu mappings: ";
2133 	char *str, *tmp;
2134 	u32 pmu_num;
2135 	u32 type;
2136 
2137 	pmu_num = ff->ph->env.nr_pmu_mappings;
2138 	if (!pmu_num) {
2139 		fprintf(fp, "# pmu mappings: not available\n");
2140 		return;
2141 	}
2142 
2143 	str = ff->ph->env.pmu_mappings;
2144 
2145 	while (pmu_num) {
2146 		type = strtoul(str, &tmp, 0);
2147 		if (*tmp != ':')
2148 			goto error;
2149 
2150 		str = tmp + 1;
2151 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2152 
2153 		delimiter = ", ";
2154 		str += strlen(str) + 1;
2155 		pmu_num--;
2156 	}
2157 
2158 	fprintf(fp, "\n");
2159 
2160 	if (!pmu_num)
2161 		return;
2162 error:
2163 	fprintf(fp, "# pmu mappings: unable to read\n");
2164 }
2165 
print_group_desc(struct feat_fd * ff,FILE * fp)2166 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2167 {
2168 	struct perf_session *session;
2169 	struct evsel *evsel;
2170 	u32 nr = 0;
2171 
2172 	session = container_of(ff->ph, struct perf_session, header);
2173 
2174 	evlist__for_each_entry(session->evlist, evsel) {
2175 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2176 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2177 
2178 			nr = evsel->core.nr_members - 1;
2179 		} else if (nr) {
2180 			fprintf(fp, ",%s", evsel__name(evsel));
2181 
2182 			if (--nr == 0)
2183 				fprintf(fp, "}\n");
2184 		}
2185 	}
2186 }
2187 
print_sample_time(struct feat_fd * ff,FILE * fp)2188 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2189 {
2190 	struct perf_session *session;
2191 	char time_buf[32];
2192 	double d;
2193 
2194 	session = container_of(ff->ph, struct perf_session, header);
2195 
2196 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2197 				  time_buf, sizeof(time_buf));
2198 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2199 
2200 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2201 				  time_buf, sizeof(time_buf));
2202 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2203 
2204 	d = (double)(session->evlist->last_sample_time -
2205 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2206 
2207 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2208 }
2209 
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2210 static void memory_node__fprintf(struct memory_node *n,
2211 				 unsigned long long bsize, FILE *fp)
2212 {
2213 	char buf_map[100], buf_size[50];
2214 	unsigned long long size;
2215 
2216 	size = bsize * bitmap_weight(n->set, n->size);
2217 	unit_number__scnprintf(buf_size, 50, size);
2218 
2219 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2220 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2221 }
2222 
print_mem_topology(struct feat_fd * ff,FILE * fp)2223 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2224 {
2225 	struct memory_node *nodes;
2226 	int i, nr;
2227 
2228 	nodes = ff->ph->env.memory_nodes;
2229 	nr    = ff->ph->env.nr_memory_nodes;
2230 
2231 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2232 		nr, ff->ph->env.memory_bsize);
2233 
2234 	for (i = 0; i < nr; i++) {
2235 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2236 	}
2237 }
2238 
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2239 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2240 				    char *filename,
2241 				    struct perf_session *session)
2242 {
2243 	int err = -1;
2244 	struct machine *machine;
2245 	u16 cpumode;
2246 	struct dso *dso;
2247 	enum dso_space_type dso_space;
2248 
2249 	machine = perf_session__findnew_machine(session, bev->pid);
2250 	if (!machine)
2251 		goto out;
2252 
2253 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2254 
2255 	switch (cpumode) {
2256 	case PERF_RECORD_MISC_KERNEL:
2257 		dso_space = DSO_SPACE__KERNEL;
2258 		break;
2259 	case PERF_RECORD_MISC_GUEST_KERNEL:
2260 		dso_space = DSO_SPACE__KERNEL_GUEST;
2261 		break;
2262 	case PERF_RECORD_MISC_USER:
2263 	case PERF_RECORD_MISC_GUEST_USER:
2264 		dso_space = DSO_SPACE__USER;
2265 		break;
2266 	default:
2267 		goto out;
2268 	}
2269 
2270 	dso = machine__findnew_dso(machine, filename);
2271 	if (dso != NULL) {
2272 		char sbuild_id[SBUILD_ID_SIZE];
2273 		struct build_id bid;
2274 		size_t size = BUILD_ID_SIZE;
2275 
2276 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2277 			size = bev->size;
2278 
2279 		build_id__init(&bid, bev->data, size);
2280 		dso__set_build_id(dso, &bid);
2281 		dso__set_header_build_id(dso, true);
2282 
2283 		if (dso_space != DSO_SPACE__USER) {
2284 			struct kmod_path m = { .name = NULL, };
2285 
2286 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2287 				dso__set_module_info(dso, &m, machine);
2288 
2289 			dso__set_kernel(dso, dso_space);
2290 			free(m.name);
2291 		}
2292 
2293 		build_id__sprintf(dso__bid(dso), sbuild_id);
2294 		pr_debug("build id event received for %s: %s [%zu]\n",
2295 			 dso__long_name(dso), sbuild_id, size);
2296 		dso__put(dso);
2297 	}
2298 
2299 	err = 0;
2300 out:
2301 	return err;
2302 }
2303 
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2304 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2305 						 int input, u64 offset, u64 size)
2306 {
2307 	struct perf_session *session = container_of(header, struct perf_session, header);
2308 	struct {
2309 		struct perf_event_header   header;
2310 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2311 		char			   filename[0];
2312 	} old_bev;
2313 	struct perf_record_header_build_id bev;
2314 	char filename[PATH_MAX];
2315 	u64 limit = offset + size;
2316 
2317 	while (offset < limit) {
2318 		ssize_t len;
2319 
2320 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2321 			return -1;
2322 
2323 		if (header->needs_swap)
2324 			perf_event_header__bswap(&old_bev.header);
2325 
2326 		len = old_bev.header.size - sizeof(old_bev);
2327 		if (readn(input, filename, len) != len)
2328 			return -1;
2329 
2330 		bev.header = old_bev.header;
2331 
2332 		/*
2333 		 * As the pid is the missing value, we need to fill
2334 		 * it properly. The header.misc value give us nice hint.
2335 		 */
2336 		bev.pid	= HOST_KERNEL_ID;
2337 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2338 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2339 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2340 
2341 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2342 		__event_process_build_id(&bev, filename, session);
2343 
2344 		offset += bev.header.size;
2345 	}
2346 
2347 	return 0;
2348 }
2349 
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2350 static int perf_header__read_build_ids(struct perf_header *header,
2351 				       int input, u64 offset, u64 size)
2352 {
2353 	struct perf_session *session = container_of(header, struct perf_session, header);
2354 	struct perf_record_header_build_id bev;
2355 	char filename[PATH_MAX];
2356 	u64 limit = offset + size, orig_offset = offset;
2357 	int err = -1;
2358 
2359 	while (offset < limit) {
2360 		ssize_t len;
2361 
2362 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2363 			goto out;
2364 
2365 		if (header->needs_swap)
2366 			perf_event_header__bswap(&bev.header);
2367 
2368 		len = bev.header.size - sizeof(bev);
2369 		if (readn(input, filename, len) != len)
2370 			goto out;
2371 		/*
2372 		 * The a1645ce1 changeset:
2373 		 *
2374 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2375 		 *
2376 		 * Added a field to struct perf_record_header_build_id that broke the file
2377 		 * format.
2378 		 *
2379 		 * Since the kernel build-id is the first entry, process the
2380 		 * table using the old format if the well known
2381 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2382 		 * first 4 characters chopped off (where the pid_t sits).
2383 		 */
2384 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2385 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2386 				return -1;
2387 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2388 		}
2389 
2390 		__event_process_build_id(&bev, filename, session);
2391 
2392 		offset += bev.header.size;
2393 	}
2394 	err = 0;
2395 out:
2396 	return err;
2397 }
2398 
2399 /* Macro for features that simply need to read and store a string. */
2400 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2401 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2402 {\
2403 	free(ff->ph->env.__feat_env);		     \
2404 	ff->ph->env.__feat_env = do_read_string(ff); \
2405 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2406 }
2407 
2408 FEAT_PROCESS_STR_FUN(hostname, hostname);
2409 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2410 FEAT_PROCESS_STR_FUN(version, version);
2411 FEAT_PROCESS_STR_FUN(arch, arch);
2412 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2413 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2414 
2415 #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2416 static int process_tracing_data(struct feat_fd *ff, void *data)
2417 {
2418 	ssize_t ret = trace_report(ff->fd, data, false);
2419 
2420 	return ret < 0 ? -1 : 0;
2421 }
2422 #endif
2423 
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2424 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2425 {
2426 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2427 		pr_debug("Failed to read buildids, continuing...\n");
2428 	return 0;
2429 }
2430 
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2431 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2432 {
2433 	int ret;
2434 	u32 nr_cpus_avail, nr_cpus_online;
2435 
2436 	ret = do_read_u32(ff, &nr_cpus_avail);
2437 	if (ret)
2438 		return ret;
2439 
2440 	ret = do_read_u32(ff, &nr_cpus_online);
2441 	if (ret)
2442 		return ret;
2443 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2444 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2445 	return 0;
2446 }
2447 
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2448 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2449 {
2450 	u64 total_mem;
2451 	int ret;
2452 
2453 	ret = do_read_u64(ff, &total_mem);
2454 	if (ret)
2455 		return -1;
2456 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2457 	return 0;
2458 }
2459 
evlist__find_by_index(struct evlist * evlist,int idx)2460 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2461 {
2462 	struct evsel *evsel;
2463 
2464 	evlist__for_each_entry(evlist, evsel) {
2465 		if (evsel->core.idx == idx)
2466 			return evsel;
2467 	}
2468 
2469 	return NULL;
2470 }
2471 
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2472 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2473 {
2474 	struct evsel *evsel;
2475 
2476 	if (!event->name)
2477 		return;
2478 
2479 	evsel = evlist__find_by_index(evlist, event->core.idx);
2480 	if (!evsel)
2481 		return;
2482 
2483 	if (evsel->name)
2484 		return;
2485 
2486 	evsel->name = strdup(event->name);
2487 }
2488 
2489 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2490 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2491 {
2492 	struct perf_session *session;
2493 	struct evsel *evsel, *events = read_event_desc(ff);
2494 
2495 	if (!events)
2496 		return 0;
2497 
2498 	session = container_of(ff->ph, struct perf_session, header);
2499 
2500 	if (session->data->is_pipe) {
2501 		/* Save events for reading later by print_event_desc,
2502 		 * since they can't be read again in pipe mode. */
2503 		ff->events = events;
2504 	}
2505 
2506 	for (evsel = events; evsel->core.attr.size; evsel++)
2507 		evlist__set_event_name(session->evlist, evsel);
2508 
2509 	if (!session->data->is_pipe)
2510 		free_event_desc(events);
2511 
2512 	return 0;
2513 }
2514 
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2515 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2516 {
2517 	char *str, *cmdline = NULL, **argv = NULL;
2518 	u32 nr, i, len = 0;
2519 
2520 	if (do_read_u32(ff, &nr))
2521 		return -1;
2522 
2523 	ff->ph->env.nr_cmdline = nr;
2524 
2525 	cmdline = zalloc(ff->size + nr + 1);
2526 	if (!cmdline)
2527 		return -1;
2528 
2529 	argv = zalloc(sizeof(char *) * (nr + 1));
2530 	if (!argv)
2531 		goto error;
2532 
2533 	for (i = 0; i < nr; i++) {
2534 		str = do_read_string(ff);
2535 		if (!str)
2536 			goto error;
2537 
2538 		argv[i] = cmdline + len;
2539 		memcpy(argv[i], str, strlen(str) + 1);
2540 		len += strlen(str) + 1;
2541 		free(str);
2542 	}
2543 	ff->ph->env.cmdline = cmdline;
2544 	ff->ph->env.cmdline_argv = (const char **) argv;
2545 	return 0;
2546 
2547 error:
2548 	free(argv);
2549 	free(cmdline);
2550 	return -1;
2551 }
2552 
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2553 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2554 {
2555 	u32 nr, i;
2556 	char *str = NULL;
2557 	struct strbuf sb;
2558 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2559 	u64 size = 0;
2560 	struct perf_header *ph = ff->ph;
2561 	bool do_core_id_test = true;
2562 
2563 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2564 	if (!ph->env.cpu)
2565 		return -1;
2566 
2567 	if (do_read_u32(ff, &nr))
2568 		goto free_cpu;
2569 
2570 	ph->env.nr_sibling_cores = nr;
2571 	size += sizeof(u32);
2572 	if (strbuf_init(&sb, 128) < 0)
2573 		goto free_cpu;
2574 
2575 	for (i = 0; i < nr; i++) {
2576 		str = do_read_string(ff);
2577 		if (!str)
2578 			goto error;
2579 
2580 		/* include a NULL character at the end */
2581 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2582 			goto error;
2583 		size += string_size(str);
2584 		zfree(&str);
2585 	}
2586 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2587 
2588 	if (do_read_u32(ff, &nr))
2589 		return -1;
2590 
2591 	ph->env.nr_sibling_threads = nr;
2592 	size += sizeof(u32);
2593 
2594 	for (i = 0; i < nr; i++) {
2595 		str = do_read_string(ff);
2596 		if (!str)
2597 			goto error;
2598 
2599 		/* include a NULL character at the end */
2600 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2601 			goto error;
2602 		size += string_size(str);
2603 		zfree(&str);
2604 	}
2605 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2606 
2607 	/*
2608 	 * The header may be from old perf,
2609 	 * which doesn't include core id and socket id information.
2610 	 */
2611 	if (ff->size <= size) {
2612 		zfree(&ph->env.cpu);
2613 		return 0;
2614 	}
2615 
2616 	/* On s390 the socket_id number is not related to the numbers of cpus.
2617 	 * The socket_id number might be higher than the numbers of cpus.
2618 	 * This depends on the configuration.
2619 	 * AArch64 is the same.
2620 	 */
2621 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2622 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2623 		do_core_id_test = false;
2624 
2625 	for (i = 0; i < (u32)cpu_nr; i++) {
2626 		if (do_read_u32(ff, &nr))
2627 			goto free_cpu;
2628 
2629 		ph->env.cpu[i].core_id = nr;
2630 		size += sizeof(u32);
2631 
2632 		if (do_read_u32(ff, &nr))
2633 			goto free_cpu;
2634 
2635 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2636 			pr_debug("socket_id number is too big."
2637 				 "You may need to upgrade the perf tool.\n");
2638 			goto free_cpu;
2639 		}
2640 
2641 		ph->env.cpu[i].socket_id = nr;
2642 		size += sizeof(u32);
2643 	}
2644 
2645 	/*
2646 	 * The header may be from old perf,
2647 	 * which doesn't include die information.
2648 	 */
2649 	if (ff->size <= size)
2650 		return 0;
2651 
2652 	if (do_read_u32(ff, &nr))
2653 		return -1;
2654 
2655 	ph->env.nr_sibling_dies = nr;
2656 	size += sizeof(u32);
2657 
2658 	for (i = 0; i < nr; i++) {
2659 		str = do_read_string(ff);
2660 		if (!str)
2661 			goto error;
2662 
2663 		/* include a NULL character at the end */
2664 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2665 			goto error;
2666 		size += string_size(str);
2667 		zfree(&str);
2668 	}
2669 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2670 
2671 	for (i = 0; i < (u32)cpu_nr; i++) {
2672 		if (do_read_u32(ff, &nr))
2673 			goto free_cpu;
2674 
2675 		ph->env.cpu[i].die_id = nr;
2676 	}
2677 
2678 	return 0;
2679 
2680 error:
2681 	strbuf_release(&sb);
2682 	zfree(&str);
2683 free_cpu:
2684 	zfree(&ph->env.cpu);
2685 	return -1;
2686 }
2687 
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2688 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2689 {
2690 	struct numa_node *nodes, *n;
2691 	u32 nr, i;
2692 	char *str;
2693 
2694 	/* nr nodes */
2695 	if (do_read_u32(ff, &nr))
2696 		return -1;
2697 
2698 	nodes = zalloc(sizeof(*nodes) * nr);
2699 	if (!nodes)
2700 		return -ENOMEM;
2701 
2702 	for (i = 0; i < nr; i++) {
2703 		n = &nodes[i];
2704 
2705 		/* node number */
2706 		if (do_read_u32(ff, &n->node))
2707 			goto error;
2708 
2709 		if (do_read_u64(ff, &n->mem_total))
2710 			goto error;
2711 
2712 		if (do_read_u64(ff, &n->mem_free))
2713 			goto error;
2714 
2715 		str = do_read_string(ff);
2716 		if (!str)
2717 			goto error;
2718 
2719 		n->map = perf_cpu_map__new(str);
2720 		free(str);
2721 		if (!n->map)
2722 			goto error;
2723 	}
2724 	ff->ph->env.nr_numa_nodes = nr;
2725 	ff->ph->env.numa_nodes = nodes;
2726 	return 0;
2727 
2728 error:
2729 	free(nodes);
2730 	return -1;
2731 }
2732 
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2733 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2734 {
2735 	char *name;
2736 	u32 pmu_num;
2737 	u32 type;
2738 	struct strbuf sb;
2739 
2740 	if (do_read_u32(ff, &pmu_num))
2741 		return -1;
2742 
2743 	if (!pmu_num) {
2744 		pr_debug("pmu mappings not available\n");
2745 		return 0;
2746 	}
2747 
2748 	ff->ph->env.nr_pmu_mappings = pmu_num;
2749 	if (strbuf_init(&sb, 128) < 0)
2750 		return -1;
2751 
2752 	while (pmu_num) {
2753 		if (do_read_u32(ff, &type))
2754 			goto error;
2755 
2756 		name = do_read_string(ff);
2757 		if (!name)
2758 			goto error;
2759 
2760 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2761 			goto error;
2762 		/* include a NULL character at the end */
2763 		if (strbuf_add(&sb, "", 1) < 0)
2764 			goto error;
2765 
2766 		if (!strcmp(name, "msr"))
2767 			ff->ph->env.msr_pmu_type = type;
2768 
2769 		free(name);
2770 		pmu_num--;
2771 	}
2772 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2773 	return 0;
2774 
2775 error:
2776 	strbuf_release(&sb);
2777 	return -1;
2778 }
2779 
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2780 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2781 {
2782 	size_t ret = -1;
2783 	u32 i, nr, nr_groups;
2784 	struct perf_session *session;
2785 	struct evsel *evsel, *leader = NULL;
2786 	struct group_desc {
2787 		char *name;
2788 		u32 leader_idx;
2789 		u32 nr_members;
2790 	} *desc;
2791 
2792 	if (do_read_u32(ff, &nr_groups))
2793 		return -1;
2794 
2795 	ff->ph->env.nr_groups = nr_groups;
2796 	if (!nr_groups) {
2797 		pr_debug("group desc not available\n");
2798 		return 0;
2799 	}
2800 
2801 	desc = calloc(nr_groups, sizeof(*desc));
2802 	if (!desc)
2803 		return -1;
2804 
2805 	for (i = 0; i < nr_groups; i++) {
2806 		desc[i].name = do_read_string(ff);
2807 		if (!desc[i].name)
2808 			goto out_free;
2809 
2810 		if (do_read_u32(ff, &desc[i].leader_idx))
2811 			goto out_free;
2812 
2813 		if (do_read_u32(ff, &desc[i].nr_members))
2814 			goto out_free;
2815 	}
2816 
2817 	/*
2818 	 * Rebuild group relationship based on the group_desc
2819 	 */
2820 	session = container_of(ff->ph, struct perf_session, header);
2821 
2822 	i = nr = 0;
2823 	evlist__for_each_entry(session->evlist, evsel) {
2824 		if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2825 			evsel__set_leader(evsel, evsel);
2826 			/* {anon_group} is a dummy name */
2827 			if (strcmp(desc[i].name, "{anon_group}")) {
2828 				evsel->group_name = desc[i].name;
2829 				desc[i].name = NULL;
2830 			}
2831 			evsel->core.nr_members = desc[i].nr_members;
2832 
2833 			if (i >= nr_groups || nr > 0) {
2834 				pr_debug("invalid group desc\n");
2835 				goto out_free;
2836 			}
2837 
2838 			leader = evsel;
2839 			nr = evsel->core.nr_members - 1;
2840 			i++;
2841 		} else if (nr) {
2842 			/* This is a group member */
2843 			evsel__set_leader(evsel, leader);
2844 
2845 			nr--;
2846 		}
2847 	}
2848 
2849 	if (i != nr_groups || nr != 0) {
2850 		pr_debug("invalid group desc\n");
2851 		goto out_free;
2852 	}
2853 
2854 	ret = 0;
2855 out_free:
2856 	for (i = 0; i < nr_groups; i++)
2857 		zfree(&desc[i].name);
2858 	free(desc);
2859 
2860 	return ret;
2861 }
2862 
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2863 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2864 {
2865 	struct perf_session *session;
2866 	int err;
2867 
2868 	session = container_of(ff->ph, struct perf_session, header);
2869 
2870 	err = auxtrace_index__process(ff->fd, ff->size, session,
2871 				      ff->ph->needs_swap);
2872 	if (err < 0)
2873 		pr_err("Failed to process auxtrace index\n");
2874 	return err;
2875 }
2876 
process_cache(struct feat_fd * ff,void * data __maybe_unused)2877 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2878 {
2879 	struct cpu_cache_level *caches;
2880 	u32 cnt, i, version;
2881 
2882 	if (do_read_u32(ff, &version))
2883 		return -1;
2884 
2885 	if (version != 1)
2886 		return -1;
2887 
2888 	if (do_read_u32(ff, &cnt))
2889 		return -1;
2890 
2891 	caches = zalloc(sizeof(*caches) * cnt);
2892 	if (!caches)
2893 		return -1;
2894 
2895 	for (i = 0; i < cnt; i++) {
2896 		struct cpu_cache_level *c = &caches[i];
2897 
2898 		#define _R(v)						\
2899 			if (do_read_u32(ff, &c->v))			\
2900 				goto out_free_caches;			\
2901 
2902 		_R(level)
2903 		_R(line_size)
2904 		_R(sets)
2905 		_R(ways)
2906 		#undef _R
2907 
2908 		#define _R(v)					\
2909 			c->v = do_read_string(ff);		\
2910 			if (!c->v)				\
2911 				goto out_free_caches;		\
2912 
2913 		_R(type)
2914 		_R(size)
2915 		_R(map)
2916 		#undef _R
2917 	}
2918 
2919 	ff->ph->env.caches = caches;
2920 	ff->ph->env.caches_cnt = cnt;
2921 	return 0;
2922 out_free_caches:
2923 	for (i = 0; i < cnt; i++) {
2924 		free(caches[i].type);
2925 		free(caches[i].size);
2926 		free(caches[i].map);
2927 	}
2928 	free(caches);
2929 	return -1;
2930 }
2931 
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2932 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2933 {
2934 	struct perf_session *session;
2935 	u64 first_sample_time, last_sample_time;
2936 	int ret;
2937 
2938 	session = container_of(ff->ph, struct perf_session, header);
2939 
2940 	ret = do_read_u64(ff, &first_sample_time);
2941 	if (ret)
2942 		return -1;
2943 
2944 	ret = do_read_u64(ff, &last_sample_time);
2945 	if (ret)
2946 		return -1;
2947 
2948 	session->evlist->first_sample_time = first_sample_time;
2949 	session->evlist->last_sample_time = last_sample_time;
2950 	return 0;
2951 }
2952 
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2953 static int process_mem_topology(struct feat_fd *ff,
2954 				void *data __maybe_unused)
2955 {
2956 	struct memory_node *nodes;
2957 	u64 version, i, nr, bsize;
2958 	int ret = -1;
2959 
2960 	if (do_read_u64(ff, &version))
2961 		return -1;
2962 
2963 	if (version != 1)
2964 		return -1;
2965 
2966 	if (do_read_u64(ff, &bsize))
2967 		return -1;
2968 
2969 	if (do_read_u64(ff, &nr))
2970 		return -1;
2971 
2972 	nodes = zalloc(sizeof(*nodes) * nr);
2973 	if (!nodes)
2974 		return -1;
2975 
2976 	for (i = 0; i < nr; i++) {
2977 		struct memory_node n;
2978 
2979 		#define _R(v)				\
2980 			if (do_read_u64(ff, &n.v))	\
2981 				goto out;		\
2982 
2983 		_R(node)
2984 		_R(size)
2985 
2986 		#undef _R
2987 
2988 		if (do_read_bitmap(ff, &n.set, &n.size))
2989 			goto out;
2990 
2991 		nodes[i] = n;
2992 	}
2993 
2994 	ff->ph->env.memory_bsize    = bsize;
2995 	ff->ph->env.memory_nodes    = nodes;
2996 	ff->ph->env.nr_memory_nodes = nr;
2997 	ret = 0;
2998 
2999 out:
3000 	if (ret)
3001 		free(nodes);
3002 	return ret;
3003 }
3004 
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3005 static int process_clockid(struct feat_fd *ff,
3006 			   void *data __maybe_unused)
3007 {
3008 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3009 		return -1;
3010 
3011 	return 0;
3012 }
3013 
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3014 static int process_clock_data(struct feat_fd *ff,
3015 			      void *_data __maybe_unused)
3016 {
3017 	u32 data32;
3018 	u64 data64;
3019 
3020 	/* version */
3021 	if (do_read_u32(ff, &data32))
3022 		return -1;
3023 
3024 	if (data32 != 1)
3025 		return -1;
3026 
3027 	/* clockid */
3028 	if (do_read_u32(ff, &data32))
3029 		return -1;
3030 
3031 	ff->ph->env.clock.clockid = data32;
3032 
3033 	/* TOD ref time */
3034 	if (do_read_u64(ff, &data64))
3035 		return -1;
3036 
3037 	ff->ph->env.clock.tod_ns = data64;
3038 
3039 	/* clockid ref time */
3040 	if (do_read_u64(ff, &data64))
3041 		return -1;
3042 
3043 	ff->ph->env.clock.clockid_ns = data64;
3044 	ff->ph->env.clock.enabled = true;
3045 	return 0;
3046 }
3047 
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3048 static int process_hybrid_topology(struct feat_fd *ff,
3049 				   void *data __maybe_unused)
3050 {
3051 	struct hybrid_node *nodes, *n;
3052 	u32 nr, i;
3053 
3054 	/* nr nodes */
3055 	if (do_read_u32(ff, &nr))
3056 		return -1;
3057 
3058 	nodes = zalloc(sizeof(*nodes) * nr);
3059 	if (!nodes)
3060 		return -ENOMEM;
3061 
3062 	for (i = 0; i < nr; i++) {
3063 		n = &nodes[i];
3064 
3065 		n->pmu_name = do_read_string(ff);
3066 		if (!n->pmu_name)
3067 			goto error;
3068 
3069 		n->cpus = do_read_string(ff);
3070 		if (!n->cpus)
3071 			goto error;
3072 	}
3073 
3074 	ff->ph->env.nr_hybrid_nodes = nr;
3075 	ff->ph->env.hybrid_nodes = nodes;
3076 	return 0;
3077 
3078 error:
3079 	for (i = 0; i < nr; i++) {
3080 		free(nodes[i].pmu_name);
3081 		free(nodes[i].cpus);
3082 	}
3083 
3084 	free(nodes);
3085 	return -1;
3086 }
3087 
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3088 static int process_dir_format(struct feat_fd *ff,
3089 			      void *_data __maybe_unused)
3090 {
3091 	struct perf_session *session;
3092 	struct perf_data *data;
3093 
3094 	session = container_of(ff->ph, struct perf_session, header);
3095 	data = session->data;
3096 
3097 	if (WARN_ON(!perf_data__is_dir(data)))
3098 		return -1;
3099 
3100 	return do_read_u64(ff, &data->dir.version);
3101 }
3102 
3103 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3104 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3105 {
3106 	struct bpf_prog_info_node *info_node;
3107 	struct perf_env *env = &ff->ph->env;
3108 	struct perf_bpil *info_linear;
3109 	u32 count, i;
3110 	int err = -1;
3111 
3112 	if (ff->ph->needs_swap) {
3113 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3114 		return 0;
3115 	}
3116 
3117 	if (do_read_u32(ff, &count))
3118 		return -1;
3119 
3120 	down_write(&env->bpf_progs.lock);
3121 
3122 	for (i = 0; i < count; ++i) {
3123 		u32 info_len, data_len;
3124 
3125 		info_linear = NULL;
3126 		info_node = NULL;
3127 		if (do_read_u32(ff, &info_len))
3128 			goto out;
3129 		if (do_read_u32(ff, &data_len))
3130 			goto out;
3131 
3132 		if (info_len > sizeof(struct bpf_prog_info)) {
3133 			pr_warning("detected invalid bpf_prog_info\n");
3134 			goto out;
3135 		}
3136 
3137 		info_linear = malloc(sizeof(struct perf_bpil) +
3138 				     data_len);
3139 		if (!info_linear)
3140 			goto out;
3141 		info_linear->info_len = sizeof(struct bpf_prog_info);
3142 		info_linear->data_len = data_len;
3143 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3144 			goto out;
3145 		if (__do_read(ff, &info_linear->info, info_len))
3146 			goto out;
3147 		if (info_len < sizeof(struct bpf_prog_info))
3148 			memset(((void *)(&info_linear->info)) + info_len, 0,
3149 			       sizeof(struct bpf_prog_info) - info_len);
3150 
3151 		if (__do_read(ff, info_linear->data, data_len))
3152 			goto out;
3153 
3154 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3155 		if (!info_node)
3156 			goto out;
3157 
3158 		/* after reading from file, translate offset to address */
3159 		bpil_offs_to_addr(info_linear);
3160 		info_node->info_linear = info_linear;
3161 		if (!__perf_env__insert_bpf_prog_info(env, info_node)) {
3162 			free(info_linear);
3163 			free(info_node);
3164 		}
3165 	}
3166 
3167 	up_write(&env->bpf_progs.lock);
3168 	return 0;
3169 out:
3170 	free(info_linear);
3171 	free(info_node);
3172 	up_write(&env->bpf_progs.lock);
3173 	return err;
3174 }
3175 
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3176 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3177 {
3178 	struct perf_env *env = &ff->ph->env;
3179 	struct btf_node *node = NULL;
3180 	u32 count, i;
3181 	int err = -1;
3182 
3183 	if (ff->ph->needs_swap) {
3184 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3185 		return 0;
3186 	}
3187 
3188 	if (do_read_u32(ff, &count))
3189 		return -1;
3190 
3191 	down_write(&env->bpf_progs.lock);
3192 
3193 	for (i = 0; i < count; ++i) {
3194 		u32 id, data_size;
3195 
3196 		if (do_read_u32(ff, &id))
3197 			goto out;
3198 		if (do_read_u32(ff, &data_size))
3199 			goto out;
3200 
3201 		node = malloc(sizeof(struct btf_node) + data_size);
3202 		if (!node)
3203 			goto out;
3204 
3205 		node->id = id;
3206 		node->data_size = data_size;
3207 
3208 		if (__do_read(ff, node->data, data_size))
3209 			goto out;
3210 
3211 		if (!__perf_env__insert_btf(env, node))
3212 			free(node);
3213 		node = NULL;
3214 	}
3215 
3216 	err = 0;
3217 out:
3218 	up_write(&env->bpf_progs.lock);
3219 	free(node);
3220 	return err;
3221 }
3222 #endif // HAVE_LIBBPF_SUPPORT
3223 
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3224 static int process_compressed(struct feat_fd *ff,
3225 			      void *data __maybe_unused)
3226 {
3227 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3228 		return -1;
3229 
3230 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3231 		return -1;
3232 
3233 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3234 		return -1;
3235 
3236 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3237 		return -1;
3238 
3239 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3240 		return -1;
3241 
3242 	return 0;
3243 }
3244 
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches,unsigned int * br_cntr_nr,unsigned int * br_cntr_width)3245 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3246 			      char ***caps, unsigned int *max_branches,
3247 			      unsigned int *br_cntr_nr,
3248 			      unsigned int *br_cntr_width)
3249 {
3250 	char *name, *value, *ptr;
3251 	u32 nr_pmu_caps, i;
3252 
3253 	*nr_caps = 0;
3254 	*caps = NULL;
3255 
3256 	if (do_read_u32(ff, &nr_pmu_caps))
3257 		return -1;
3258 
3259 	if (!nr_pmu_caps)
3260 		return 0;
3261 
3262 	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3263 	if (!*caps)
3264 		return -1;
3265 
3266 	for (i = 0; i < nr_pmu_caps; i++) {
3267 		name = do_read_string(ff);
3268 		if (!name)
3269 			goto error;
3270 
3271 		value = do_read_string(ff);
3272 		if (!value)
3273 			goto free_name;
3274 
3275 		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3276 			goto free_value;
3277 
3278 		(*caps)[i] = ptr;
3279 
3280 		if (!strcmp(name, "branches"))
3281 			*max_branches = atoi(value);
3282 
3283 		if (!strcmp(name, "branch_counter_nr"))
3284 			*br_cntr_nr = atoi(value);
3285 
3286 		if (!strcmp(name, "branch_counter_width"))
3287 			*br_cntr_width = atoi(value);
3288 
3289 		free(value);
3290 		free(name);
3291 	}
3292 	*nr_caps = nr_pmu_caps;
3293 	return 0;
3294 
3295 free_value:
3296 	free(value);
3297 free_name:
3298 	free(name);
3299 error:
3300 	for (; i > 0; i--)
3301 		free((*caps)[i - 1]);
3302 	free(*caps);
3303 	*caps = NULL;
3304 	*nr_caps = 0;
3305 	return -1;
3306 }
3307 
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3308 static int process_cpu_pmu_caps(struct feat_fd *ff,
3309 				void *data __maybe_unused)
3310 {
3311 	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3312 				     &ff->ph->env.cpu_pmu_caps,
3313 				     &ff->ph->env.max_branches,
3314 				     &ff->ph->env.br_cntr_nr,
3315 				     &ff->ph->env.br_cntr_width);
3316 
3317 	if (!ret && !ff->ph->env.cpu_pmu_caps)
3318 		pr_debug("cpu pmu capabilities not available\n");
3319 	return ret;
3320 }
3321 
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3322 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3323 {
3324 	struct pmu_caps *pmu_caps;
3325 	u32 nr_pmu, i;
3326 	int ret;
3327 	int j;
3328 
3329 	if (do_read_u32(ff, &nr_pmu))
3330 		return -1;
3331 
3332 	if (!nr_pmu) {
3333 		pr_debug("pmu capabilities not available\n");
3334 		return 0;
3335 	}
3336 
3337 	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3338 	if (!pmu_caps)
3339 		return -ENOMEM;
3340 
3341 	for (i = 0; i < nr_pmu; i++) {
3342 		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3343 					 &pmu_caps[i].caps,
3344 					 &pmu_caps[i].max_branches,
3345 					 &pmu_caps[i].br_cntr_nr,
3346 					 &pmu_caps[i].br_cntr_width);
3347 		if (ret)
3348 			goto err;
3349 
3350 		pmu_caps[i].pmu_name = do_read_string(ff);
3351 		if (!pmu_caps[i].pmu_name) {
3352 			ret = -1;
3353 			goto err;
3354 		}
3355 		if (!pmu_caps[i].nr_caps) {
3356 			pr_debug("%s pmu capabilities not available\n",
3357 				 pmu_caps[i].pmu_name);
3358 		}
3359 	}
3360 
3361 	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3362 	ff->ph->env.pmu_caps = pmu_caps;
3363 	return 0;
3364 
3365 err:
3366 	for (i = 0; i < nr_pmu; i++) {
3367 		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3368 			free(pmu_caps[i].caps[j]);
3369 		free(pmu_caps[i].caps);
3370 		free(pmu_caps[i].pmu_name);
3371 	}
3372 
3373 	free(pmu_caps);
3374 	return ret;
3375 }
3376 
3377 #define FEAT_OPR(n, func, __full_only) \
3378 	[HEADER_##n] = {					\
3379 		.name	    = __stringify(n),			\
3380 		.write	    = write_##func,			\
3381 		.print	    = print_##func,			\
3382 		.full_only  = __full_only,			\
3383 		.process    = process_##func,			\
3384 		.synthesize = true				\
3385 	}
3386 
3387 #define FEAT_OPN(n, func, __full_only) \
3388 	[HEADER_##n] = {					\
3389 		.name	    = __stringify(n),			\
3390 		.write	    = write_##func,			\
3391 		.print	    = print_##func,			\
3392 		.full_only  = __full_only,			\
3393 		.process    = process_##func			\
3394 	}
3395 
3396 /* feature_ops not implemented: */
3397 #define print_tracing_data	NULL
3398 #define print_build_id		NULL
3399 
3400 #define process_branch_stack	NULL
3401 #define process_stat		NULL
3402 
3403 // Only used in util/synthetic-events.c
3404 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3405 
3406 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3407 #ifdef HAVE_LIBTRACEEVENT
3408 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3409 #endif
3410 	FEAT_OPN(BUILD_ID,	build_id,	false),
3411 	FEAT_OPR(HOSTNAME,	hostname,	false),
3412 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3413 	FEAT_OPR(VERSION,	version,	false),
3414 	FEAT_OPR(ARCH,		arch,		false),
3415 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3416 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3417 	FEAT_OPR(CPUID,		cpuid,		false),
3418 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3419 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3420 	FEAT_OPR(CMDLINE,	cmdline,	false),
3421 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3422 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3423 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3424 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3425 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3426 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3427 	FEAT_OPN(STAT,		stat,		false),
3428 	FEAT_OPN(CACHE,		cache,		true),
3429 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3430 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3431 	FEAT_OPR(CLOCKID,	clockid,	false),
3432 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3433 #ifdef HAVE_LIBBPF_SUPPORT
3434 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3435 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3436 #endif
3437 	FEAT_OPR(COMPRESSED,	compressed,	false),
3438 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3439 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3440 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3441 	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3442 };
3443 
3444 struct header_print_data {
3445 	FILE *fp;
3446 	bool full; /* extended list of headers */
3447 };
3448 
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3449 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3450 					   struct perf_header *ph,
3451 					   int feat, int fd, void *data)
3452 {
3453 	struct header_print_data *hd = data;
3454 	struct feat_fd ff;
3455 
3456 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3457 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3458 				"%d, continuing...\n", section->offset, feat);
3459 		return 0;
3460 	}
3461 	if (feat >= HEADER_LAST_FEATURE) {
3462 		pr_warning("unknown feature %d\n", feat);
3463 		return 0;
3464 	}
3465 	if (!feat_ops[feat].print)
3466 		return 0;
3467 
3468 	ff = (struct  feat_fd) {
3469 		.fd = fd,
3470 		.ph = ph,
3471 	};
3472 
3473 	if (!feat_ops[feat].full_only || hd->full)
3474 		feat_ops[feat].print(&ff, hd->fp);
3475 	else
3476 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3477 			feat_ops[feat].name);
3478 
3479 	return 0;
3480 }
3481 
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3482 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3483 {
3484 	struct header_print_data hd;
3485 	struct perf_header *header = &session->header;
3486 	int fd = perf_data__fd(session->data);
3487 	struct stat st;
3488 	time_t stctime;
3489 	int ret, bit;
3490 
3491 	hd.fp = fp;
3492 	hd.full = full;
3493 
3494 	ret = fstat(fd, &st);
3495 	if (ret == -1)
3496 		return -1;
3497 
3498 	stctime = st.st_mtime;
3499 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3500 
3501 	fprintf(fp, "# header version : %u\n", header->version);
3502 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3503 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3504 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3505 
3506 	perf_header__process_sections(header, fd, &hd,
3507 				      perf_file_section__fprintf_info);
3508 
3509 	if (session->data->is_pipe)
3510 		return 0;
3511 
3512 	fprintf(fp, "# missing features: ");
3513 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3514 		if (bit)
3515 			fprintf(fp, "%s ", feat_ops[bit].name);
3516 	}
3517 
3518 	fprintf(fp, "\n");
3519 	return 0;
3520 }
3521 
3522 struct header_fw {
3523 	struct feat_writer	fw;
3524 	struct feat_fd		*ff;
3525 };
3526 
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3527 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3528 {
3529 	struct header_fw *h = container_of(fw, struct header_fw, fw);
3530 
3531 	return do_write(h->ff, buf, sz);
3532 }
3533 
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3534 static int do_write_feat(struct feat_fd *ff, int type,
3535 			 struct perf_file_section **p,
3536 			 struct evlist *evlist,
3537 			 struct feat_copier *fc)
3538 {
3539 	int err;
3540 	int ret = 0;
3541 
3542 	if (perf_header__has_feat(ff->ph, type)) {
3543 		if (!feat_ops[type].write)
3544 			return -1;
3545 
3546 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3547 			return -1;
3548 
3549 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3550 
3551 		/*
3552 		 * Hook to let perf inject copy features sections from the input
3553 		 * file.
3554 		 */
3555 		if (fc && fc->copy) {
3556 			struct header_fw h = {
3557 				.fw.write = feat_writer_cb,
3558 				.ff = ff,
3559 			};
3560 
3561 			/* ->copy() returns 0 if the feature was not copied */
3562 			err = fc->copy(fc, type, &h.fw);
3563 		} else {
3564 			err = 0;
3565 		}
3566 		if (!err)
3567 			err = feat_ops[type].write(ff, evlist);
3568 		if (err < 0) {
3569 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3570 
3571 			/* undo anything written */
3572 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3573 
3574 			return -1;
3575 		}
3576 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3577 		(*p)++;
3578 	}
3579 	return ret;
3580 }
3581 
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3582 static int perf_header__adds_write(struct perf_header *header,
3583 				   struct evlist *evlist, int fd,
3584 				   struct feat_copier *fc)
3585 {
3586 	int nr_sections;
3587 	struct feat_fd ff = {
3588 		.fd  = fd,
3589 		.ph = header,
3590 	};
3591 	struct perf_file_section *feat_sec, *p;
3592 	int sec_size;
3593 	u64 sec_start;
3594 	int feat;
3595 	int err;
3596 
3597 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3598 	if (!nr_sections)
3599 		return 0;
3600 
3601 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3602 	if (feat_sec == NULL)
3603 		return -ENOMEM;
3604 
3605 	sec_size = sizeof(*feat_sec) * nr_sections;
3606 
3607 	sec_start = header->feat_offset;
3608 	lseek(fd, sec_start + sec_size, SEEK_SET);
3609 
3610 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3611 		if (do_write_feat(&ff, feat, &p, evlist, fc))
3612 			perf_header__clear_feat(header, feat);
3613 	}
3614 
3615 	lseek(fd, sec_start, SEEK_SET);
3616 	/*
3617 	 * may write more than needed due to dropped feature, but
3618 	 * this is okay, reader will skip the missing entries
3619 	 */
3620 	err = do_write(&ff, feat_sec, sec_size);
3621 	if (err < 0)
3622 		pr_debug("failed to write feature section\n");
3623 	free(ff.buf); /* TODO: added to silence clang-tidy. */
3624 	free(feat_sec);
3625 	return err;
3626 }
3627 
perf_header__write_pipe(int fd)3628 int perf_header__write_pipe(int fd)
3629 {
3630 	struct perf_pipe_file_header f_header;
3631 	struct feat_fd ff = {
3632 		.fd = fd,
3633 	};
3634 	int err;
3635 
3636 	f_header = (struct perf_pipe_file_header){
3637 		.magic	   = PERF_MAGIC,
3638 		.size	   = sizeof(f_header),
3639 	};
3640 
3641 	err = do_write(&ff, &f_header, sizeof(f_header));
3642 	if (err < 0) {
3643 		pr_debug("failed to write perf pipe header\n");
3644 		return err;
3645 	}
3646 	free(ff.buf);
3647 	return 0;
3648 }
3649 
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc,bool write_attrs_after_data)3650 static int perf_session__do_write_header(struct perf_session *session,
3651 					 struct evlist *evlist,
3652 					 int fd, bool at_exit,
3653 					 struct feat_copier *fc,
3654 					 bool write_attrs_after_data)
3655 {
3656 	struct perf_file_header f_header;
3657 	struct perf_header *header = &session->header;
3658 	struct evsel *evsel;
3659 	struct feat_fd ff = {
3660 		.fd = fd,
3661 	};
3662 	u64 attr_offset = sizeof(f_header), attr_size = 0;
3663 	int err;
3664 
3665 	if (write_attrs_after_data && at_exit) {
3666 		/*
3667 		 * Write features at the end of the file first so that
3668 		 * attributes may come after them.
3669 		 */
3670 		if (!header->data_offset && header->data_size) {
3671 			pr_err("File contains data but offset unknown\n");
3672 			err = -1;
3673 			goto err_out;
3674 		}
3675 		header->feat_offset = header->data_offset + header->data_size;
3676 		err = perf_header__adds_write(header, evlist, fd, fc);
3677 		if (err < 0)
3678 			goto err_out;
3679 		attr_offset = lseek(fd, 0, SEEK_CUR);
3680 	} else {
3681 		lseek(fd, attr_offset, SEEK_SET);
3682 	}
3683 
3684 	evlist__for_each_entry(session->evlist, evsel) {
3685 		evsel->id_offset = attr_offset;
3686 		/* Avoid writing at the end of the file until the session is exiting. */
3687 		if (!write_attrs_after_data || at_exit) {
3688 			err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3689 			if (err < 0) {
3690 				pr_debug("failed to write perf header\n");
3691 				goto err_out;
3692 			}
3693 		}
3694 		attr_offset += evsel->core.ids * sizeof(u64);
3695 	}
3696 
3697 	evlist__for_each_entry(evlist, evsel) {
3698 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3699 			/*
3700 			 * We are likely in "perf inject" and have read
3701 			 * from an older file. Update attr size so that
3702 			 * reader gets the right offset to the ids.
3703 			 */
3704 			evsel->core.attr.size = sizeof(evsel->core.attr);
3705 		}
3706 		/* Avoid writing at the end of the file until the session is exiting. */
3707 		if (!write_attrs_after_data || at_exit) {
3708 			struct perf_file_attr f_attr = {
3709 				.attr = evsel->core.attr,
3710 				.ids  = {
3711 					.offset = evsel->id_offset,
3712 					.size   = evsel->core.ids * sizeof(u64),
3713 				}
3714 			};
3715 			err = do_write(&ff, &f_attr, sizeof(f_attr));
3716 			if (err < 0) {
3717 				pr_debug("failed to write perf header attribute\n");
3718 				goto err_out;
3719 			}
3720 		}
3721 		attr_size += sizeof(struct perf_file_attr);
3722 	}
3723 
3724 	if (!header->data_offset) {
3725 		if (write_attrs_after_data)
3726 			header->data_offset = sizeof(f_header);
3727 		else
3728 			header->data_offset = attr_offset + attr_size;
3729 	}
3730 	header->feat_offset = header->data_offset + header->data_size;
3731 
3732 	if (!write_attrs_after_data && at_exit) {
3733 		/* Write features now feat_offset is known. */
3734 		err = perf_header__adds_write(header, evlist, fd, fc);
3735 		if (err < 0)
3736 			goto err_out;
3737 	}
3738 
3739 	f_header = (struct perf_file_header){
3740 		.magic	   = PERF_MAGIC,
3741 		.size	   = sizeof(f_header),
3742 		.attr_size = sizeof(struct perf_file_attr),
3743 		.attrs = {
3744 			.offset = attr_offset,
3745 			.size   = attr_size,
3746 		},
3747 		.data = {
3748 			.offset = header->data_offset,
3749 			.size	= header->data_size,
3750 		},
3751 		/* event_types is ignored, store zeros */
3752 	};
3753 
3754 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3755 
3756 	lseek(fd, 0, SEEK_SET);
3757 	err = do_write(&ff, &f_header, sizeof(f_header));
3758 	if (err < 0) {
3759 		pr_debug("failed to write perf header\n");
3760 		goto err_out;
3761 	} else {
3762 		lseek(fd, 0, SEEK_END);
3763 		err = 0;
3764 	}
3765 err_out:
3766 	free(ff.buf);
3767 	return err;
3768 }
3769 
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3770 int perf_session__write_header(struct perf_session *session,
3771 			       struct evlist *evlist,
3772 			       int fd, bool at_exit)
3773 {
3774 	return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
3775 					     /*write_attrs_after_data=*/false);
3776 }
3777 
perf_session__data_offset(const struct evlist * evlist)3778 size_t perf_session__data_offset(const struct evlist *evlist)
3779 {
3780 	struct evsel *evsel;
3781 	size_t data_offset;
3782 
3783 	data_offset = sizeof(struct perf_file_header);
3784 	evlist__for_each_entry(evlist, evsel) {
3785 		data_offset += evsel->core.ids * sizeof(u64);
3786 	}
3787 	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3788 
3789 	return data_offset;
3790 }
3791 
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc,bool write_attrs_after_data)3792 int perf_session__inject_header(struct perf_session *session,
3793 				struct evlist *evlist,
3794 				int fd,
3795 				struct feat_copier *fc,
3796 				bool write_attrs_after_data)
3797 {
3798 	return perf_session__do_write_header(session, evlist, fd, true, fc,
3799 					     write_attrs_after_data);
3800 }
3801 
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3802 static int perf_header__getbuffer64(struct perf_header *header,
3803 				    int fd, void *buf, size_t size)
3804 {
3805 	if (readn(fd, buf, size) <= 0)
3806 		return -1;
3807 
3808 	if (header->needs_swap)
3809 		mem_bswap_64(buf, size);
3810 
3811 	return 0;
3812 }
3813 
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3814 int perf_header__process_sections(struct perf_header *header, int fd,
3815 				  void *data,
3816 				  int (*process)(struct perf_file_section *section,
3817 						 struct perf_header *ph,
3818 						 int feat, int fd, void *data))
3819 {
3820 	struct perf_file_section *feat_sec, *sec;
3821 	int nr_sections;
3822 	int sec_size;
3823 	int feat;
3824 	int err;
3825 
3826 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3827 	if (!nr_sections)
3828 		return 0;
3829 
3830 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3831 	if (!feat_sec)
3832 		return -1;
3833 
3834 	sec_size = sizeof(*feat_sec) * nr_sections;
3835 
3836 	lseek(fd, header->feat_offset, SEEK_SET);
3837 
3838 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3839 	if (err < 0)
3840 		goto out_free;
3841 
3842 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3843 		err = process(sec++, header, feat, fd, data);
3844 		if (err < 0)
3845 			goto out_free;
3846 	}
3847 	err = 0;
3848 out_free:
3849 	free(feat_sec);
3850 	return err;
3851 }
3852 
3853 static const int attr_file_abi_sizes[] = {
3854 	[0] = PERF_ATTR_SIZE_VER0,
3855 	[1] = PERF_ATTR_SIZE_VER1,
3856 	[2] = PERF_ATTR_SIZE_VER2,
3857 	[3] = PERF_ATTR_SIZE_VER3,
3858 	[4] = PERF_ATTR_SIZE_VER4,
3859 	0,
3860 };
3861 
3862 /*
3863  * In the legacy file format, the magic number is not used to encode endianness.
3864  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3865  * on ABI revisions, we need to try all combinations for all endianness to
3866  * detect the endianness.
3867  */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3868 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3869 {
3870 	uint64_t ref_size, attr_size;
3871 	int i;
3872 
3873 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3874 		ref_size = attr_file_abi_sizes[i]
3875 			 + sizeof(struct perf_file_section);
3876 		if (hdr_sz != ref_size) {
3877 			attr_size = bswap_64(hdr_sz);
3878 			if (attr_size != ref_size)
3879 				continue;
3880 
3881 			ph->needs_swap = true;
3882 		}
3883 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3884 			 i,
3885 			 ph->needs_swap);
3886 		return 0;
3887 	}
3888 	/* could not determine endianness */
3889 	return -1;
3890 }
3891 
3892 #define PERF_PIPE_HDR_VER0	16
3893 
3894 static const size_t attr_pipe_abi_sizes[] = {
3895 	[0] = PERF_PIPE_HDR_VER0,
3896 	0,
3897 };
3898 
3899 /*
3900  * In the legacy pipe format, there is an implicit assumption that endianness
3901  * between host recording the samples, and host parsing the samples is the
3902  * same. This is not always the case given that the pipe output may always be
3903  * redirected into a file and analyzed on a different machine with possibly a
3904  * different endianness and perf_event ABI revisions in the perf tool itself.
3905  */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3906 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3907 {
3908 	u64 attr_size;
3909 	int i;
3910 
3911 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3912 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3913 			attr_size = bswap_64(hdr_sz);
3914 			if (attr_size != hdr_sz)
3915 				continue;
3916 
3917 			ph->needs_swap = true;
3918 		}
3919 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3920 		return 0;
3921 	}
3922 	return -1;
3923 }
3924 
is_perf_magic(u64 magic)3925 bool is_perf_magic(u64 magic)
3926 {
3927 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3928 		|| magic == __perf_magic2
3929 		|| magic == __perf_magic2_sw)
3930 		return true;
3931 
3932 	return false;
3933 }
3934 
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3935 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3936 			      bool is_pipe, struct perf_header *ph)
3937 {
3938 	int ret;
3939 
3940 	/* check for legacy format */
3941 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3942 	if (ret == 0) {
3943 		ph->version = PERF_HEADER_VERSION_1;
3944 		pr_debug("legacy perf.data format\n");
3945 		if (is_pipe)
3946 			return try_all_pipe_abis(hdr_sz, ph);
3947 
3948 		return try_all_file_abis(hdr_sz, ph);
3949 	}
3950 	/*
3951 	 * the new magic number serves two purposes:
3952 	 * - unique number to identify actual perf.data files
3953 	 * - encode endianness of file
3954 	 */
3955 	ph->version = PERF_HEADER_VERSION_2;
3956 
3957 	/* check magic number with one endianness */
3958 	if (magic == __perf_magic2)
3959 		return 0;
3960 
3961 	/* check magic number with opposite endianness */
3962 	if (magic != __perf_magic2_sw)
3963 		return -1;
3964 
3965 	ph->needs_swap = true;
3966 
3967 	return 0;
3968 }
3969 
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3970 int perf_file_header__read(struct perf_file_header *header,
3971 			   struct perf_header *ph, int fd)
3972 {
3973 	ssize_t ret;
3974 
3975 	lseek(fd, 0, SEEK_SET);
3976 
3977 	ret = readn(fd, header, sizeof(*header));
3978 	if (ret <= 0)
3979 		return -1;
3980 
3981 	if (check_magic_endian(header->magic,
3982 			       header->attr_size, false, ph) < 0) {
3983 		pr_debug("magic/endian check failed\n");
3984 		return -1;
3985 	}
3986 
3987 	if (ph->needs_swap) {
3988 		mem_bswap_64(header, offsetof(struct perf_file_header,
3989 			     adds_features));
3990 	}
3991 
3992 	if (header->size > header->attrs.offset) {
3993 		pr_err("Perf file header corrupt: header overlaps attrs\n");
3994 		return -1;
3995 	}
3996 
3997 	if (header->size > header->data.offset) {
3998 		pr_err("Perf file header corrupt: header overlaps data\n");
3999 		return -1;
4000 	}
4001 
4002 	if ((header->attrs.offset <= header->data.offset &&
4003 	     header->attrs.offset + header->attrs.size > header->data.offset) ||
4004 	    (header->attrs.offset > header->data.offset &&
4005 	     header->data.offset + header->data.size > header->attrs.offset)) {
4006 		pr_err("Perf file header corrupt: Attributes and data overlap\n");
4007 		return -1;
4008 	}
4009 
4010 	if (header->size != sizeof(*header)) {
4011 		/* Support the previous format */
4012 		if (header->size == offsetof(typeof(*header), adds_features))
4013 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4014 		else
4015 			return -1;
4016 	} else if (ph->needs_swap) {
4017 		/*
4018 		 * feature bitmap is declared as an array of unsigned longs --
4019 		 * not good since its size can differ between the host that
4020 		 * generated the data file and the host analyzing the file.
4021 		 *
4022 		 * We need to handle endianness, but we don't know the size of
4023 		 * the unsigned long where the file was generated. Take a best
4024 		 * guess at determining it: try 64-bit swap first (ie., file
4025 		 * created on a 64-bit host), and check if the hostname feature
4026 		 * bit is set (this feature bit is forced on as of fbe96f2).
4027 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
4028 		 * swap. If the hostname bit is still not set (e.g., older data
4029 		 * file), punt and fallback to the original behavior --
4030 		 * clearing all feature bits and setting buildid.
4031 		 */
4032 		mem_bswap_64(&header->adds_features,
4033 			    BITS_TO_U64(HEADER_FEAT_BITS));
4034 
4035 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4036 			/* unswap as u64 */
4037 			mem_bswap_64(&header->adds_features,
4038 				    BITS_TO_U64(HEADER_FEAT_BITS));
4039 
4040 			/* unswap as u32 */
4041 			mem_bswap_32(&header->adds_features,
4042 				    BITS_TO_U32(HEADER_FEAT_BITS));
4043 		}
4044 
4045 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4046 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4047 			__set_bit(HEADER_BUILD_ID, header->adds_features);
4048 		}
4049 	}
4050 
4051 	memcpy(&ph->adds_features, &header->adds_features,
4052 	       sizeof(ph->adds_features));
4053 
4054 	ph->data_offset  = header->data.offset;
4055 	ph->data_size	 = header->data.size;
4056 	ph->feat_offset  = header->data.offset + header->data.size;
4057 	return 0;
4058 }
4059 
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4060 static int perf_file_section__process(struct perf_file_section *section,
4061 				      struct perf_header *ph,
4062 				      int feat, int fd, void *data)
4063 {
4064 	struct feat_fd fdd = {
4065 		.fd	= fd,
4066 		.ph	= ph,
4067 		.size	= section->size,
4068 		.offset	= section->offset,
4069 	};
4070 
4071 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4072 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4073 			  "%d, continuing...\n", section->offset, feat);
4074 		return 0;
4075 	}
4076 
4077 	if (feat >= HEADER_LAST_FEATURE) {
4078 		pr_debug("unknown feature %d, continuing...\n", feat);
4079 		return 0;
4080 	}
4081 
4082 	if (!feat_ops[feat].process)
4083 		return 0;
4084 
4085 	return feat_ops[feat].process(&fdd, data);
4086 }
4087 
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data)4088 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4089 				       struct perf_header *ph,
4090 				       struct perf_data *data)
4091 {
4092 	ssize_t ret;
4093 
4094 	ret = perf_data__read(data, header, sizeof(*header));
4095 	if (ret <= 0)
4096 		return -1;
4097 
4098 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4099 		pr_debug("endian/magic failed\n");
4100 		return -1;
4101 	}
4102 
4103 	if (ph->needs_swap)
4104 		header->size = bswap_64(header->size);
4105 
4106 	return 0;
4107 }
4108 
perf_header__read_pipe(struct perf_session * session)4109 static int perf_header__read_pipe(struct perf_session *session)
4110 {
4111 	struct perf_header *header = &session->header;
4112 	struct perf_pipe_file_header f_header;
4113 
4114 	if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
4115 		pr_debug("incompatible file format\n");
4116 		return -EINVAL;
4117 	}
4118 
4119 	return f_header.size == sizeof(f_header) ? 0 : -1;
4120 }
4121 
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4122 static int read_attr(int fd, struct perf_header *ph,
4123 		     struct perf_file_attr *f_attr)
4124 {
4125 	struct perf_event_attr *attr = &f_attr->attr;
4126 	size_t sz, left;
4127 	size_t our_sz = sizeof(f_attr->attr);
4128 	ssize_t ret;
4129 
4130 	memset(f_attr, 0, sizeof(*f_attr));
4131 
4132 	/* read minimal guaranteed structure */
4133 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4134 	if (ret <= 0) {
4135 		pr_debug("cannot read %d bytes of header attr\n",
4136 			 PERF_ATTR_SIZE_VER0);
4137 		return -1;
4138 	}
4139 
4140 	/* on file perf_event_attr size */
4141 	sz = attr->size;
4142 
4143 	if (ph->needs_swap)
4144 		sz = bswap_32(sz);
4145 
4146 	if (sz == 0) {
4147 		/* assume ABI0 */
4148 		sz =  PERF_ATTR_SIZE_VER0;
4149 	} else if (sz > our_sz) {
4150 		pr_debug("file uses a more recent and unsupported ABI"
4151 			 " (%zu bytes extra)\n", sz - our_sz);
4152 		return -1;
4153 	}
4154 	/* what we have not yet read and that we know about */
4155 	left = sz - PERF_ATTR_SIZE_VER0;
4156 	if (left) {
4157 		void *ptr = attr;
4158 		ptr += PERF_ATTR_SIZE_VER0;
4159 
4160 		ret = readn(fd, ptr, left);
4161 	}
4162 	/* read perf_file_section, ids are read in caller */
4163 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4164 
4165 	return ret <= 0 ? -1 : 0;
4166 }
4167 
4168 #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4169 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4170 {
4171 	struct tep_event *event;
4172 	char bf[128];
4173 
4174 	/* already prepared */
4175 	if (evsel->tp_format)
4176 		return 0;
4177 
4178 	if (pevent == NULL) {
4179 		pr_debug("broken or missing trace data\n");
4180 		return -1;
4181 	}
4182 
4183 	event = tep_find_event(pevent, evsel->core.attr.config);
4184 	if (event == NULL) {
4185 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4186 		return -1;
4187 	}
4188 
4189 	if (!evsel->name) {
4190 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4191 		evsel->name = strdup(bf);
4192 		if (evsel->name == NULL)
4193 			return -1;
4194 	}
4195 
4196 	evsel->tp_format = event;
4197 	return 0;
4198 }
4199 
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4200 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4201 {
4202 	struct evsel *pos;
4203 
4204 	evlist__for_each_entry(evlist, pos) {
4205 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4206 		    evsel__prepare_tracepoint_event(pos, pevent))
4207 			return -1;
4208 	}
4209 
4210 	return 0;
4211 }
4212 #endif
4213 
perf_session__read_header(struct perf_session * session)4214 int perf_session__read_header(struct perf_session *session)
4215 {
4216 	struct perf_data *data = session->data;
4217 	struct perf_header *header = &session->header;
4218 	struct perf_file_header	f_header;
4219 	struct perf_file_attr	f_attr;
4220 	u64			f_id;
4221 	int nr_attrs, nr_ids, i, j, err;
4222 	int fd = perf_data__fd(data);
4223 
4224 	session->evlist = evlist__new();
4225 	if (session->evlist == NULL)
4226 		return -ENOMEM;
4227 
4228 	session->evlist->env = &header->env;
4229 	session->machines.host.env = &header->env;
4230 
4231 	/*
4232 	 * We can read 'pipe' data event from regular file,
4233 	 * check for the pipe header regardless of source.
4234 	 */
4235 	err = perf_header__read_pipe(session);
4236 	if (!err || perf_data__is_pipe(data)) {
4237 		data->is_pipe = true;
4238 		return err;
4239 	}
4240 
4241 	if (perf_file_header__read(&f_header, header, fd) < 0)
4242 		return -EINVAL;
4243 
4244 	if (header->needs_swap && data->in_place_update) {
4245 		pr_err("In-place update not supported when byte-swapping is required\n");
4246 		return -EINVAL;
4247 	}
4248 
4249 	/*
4250 	 * Sanity check that perf.data was written cleanly; data size is
4251 	 * initialized to 0 and updated only if the on_exit function is run.
4252 	 * If data size is still 0 then the file contains only partial
4253 	 * information.  Just warn user and process it as much as it can.
4254 	 */
4255 	if (f_header.data.size == 0) {
4256 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4257 			   "Was the 'perf record' command properly terminated?\n",
4258 			   data->file.path);
4259 	}
4260 
4261 	if (f_header.attr_size == 0) {
4262 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4263 		       "Was the 'perf record' command properly terminated?\n",
4264 		       data->file.path);
4265 		return -EINVAL;
4266 	}
4267 
4268 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4269 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4270 
4271 	for (i = 0; i < nr_attrs; i++) {
4272 		struct evsel *evsel;
4273 		off_t tmp;
4274 
4275 		if (read_attr(fd, header, &f_attr) < 0)
4276 			goto out_errno;
4277 
4278 		if (header->needs_swap) {
4279 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4280 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4281 			perf_event__attr_swap(&f_attr.attr);
4282 		}
4283 
4284 		tmp = lseek(fd, 0, SEEK_CUR);
4285 		evsel = evsel__new(&f_attr.attr);
4286 
4287 		if (evsel == NULL)
4288 			goto out_delete_evlist;
4289 
4290 		evsel->needs_swap = header->needs_swap;
4291 		/*
4292 		 * Do it before so that if perf_evsel__alloc_id fails, this
4293 		 * entry gets purged too at evlist__delete().
4294 		 */
4295 		evlist__add(session->evlist, evsel);
4296 
4297 		nr_ids = f_attr.ids.size / sizeof(u64);
4298 		/*
4299 		 * We don't have the cpu and thread maps on the header, so
4300 		 * for allocating the perf_sample_id table we fake 1 cpu and
4301 		 * hattr->ids threads.
4302 		 */
4303 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4304 			goto out_delete_evlist;
4305 
4306 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4307 
4308 		for (j = 0; j < nr_ids; j++) {
4309 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4310 				goto out_errno;
4311 
4312 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4313 		}
4314 
4315 		lseek(fd, tmp, SEEK_SET);
4316 	}
4317 
4318 #ifdef HAVE_LIBTRACEEVENT
4319 	perf_header__process_sections(header, fd, &session->tevent,
4320 				      perf_file_section__process);
4321 
4322 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4323 		goto out_delete_evlist;
4324 #else
4325 	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4326 #endif
4327 
4328 	return 0;
4329 out_errno:
4330 	return -errno;
4331 
4332 out_delete_evlist:
4333 	evlist__delete(session->evlist);
4334 	session->evlist = NULL;
4335 	return -ENOMEM;
4336 }
4337 
perf_event__process_feature(struct perf_session * session,union perf_event * event)4338 int perf_event__process_feature(struct perf_session *session,
4339 				union perf_event *event)
4340 {
4341 	const struct perf_tool *tool = session->tool;
4342 	struct feat_fd ff = { .fd = 0 };
4343 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4344 	int type = fe->header.type;
4345 	u64 feat = fe->feat_id;
4346 	int ret = 0;
4347 
4348 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4349 		pr_warning("invalid record type %d in pipe-mode\n", type);
4350 		return 0;
4351 	}
4352 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4353 		pr_warning("invalid record type %d in pipe-mode\n", type);
4354 		return -1;
4355 	}
4356 
4357 	if (!feat_ops[feat].process)
4358 		return 0;
4359 
4360 	ff.buf  = (void *)fe->data;
4361 	ff.size = event->header.size - sizeof(*fe);
4362 	ff.ph = &session->header;
4363 
4364 	if (feat_ops[feat].process(&ff, NULL)) {
4365 		ret = -1;
4366 		goto out;
4367 	}
4368 
4369 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4370 		goto out;
4371 
4372 	if (!feat_ops[feat].full_only ||
4373 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4374 		feat_ops[feat].print(&ff, stdout);
4375 	} else {
4376 		fprintf(stdout, "# %s info available, use -I to display\n",
4377 			feat_ops[feat].name);
4378 	}
4379 out:
4380 	free_event_desc(ff.events);
4381 	return ret;
4382 }
4383 
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4384 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4385 {
4386 	struct perf_record_event_update *ev = &event->event_update;
4387 	struct perf_cpu_map *map;
4388 	size_t ret;
4389 
4390 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4391 
4392 	switch (ev->type) {
4393 	case PERF_EVENT_UPDATE__SCALE:
4394 		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4395 		break;
4396 	case PERF_EVENT_UPDATE__UNIT:
4397 		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4398 		break;
4399 	case PERF_EVENT_UPDATE__NAME:
4400 		ret += fprintf(fp, "... name:  %s\n", ev->name);
4401 		break;
4402 	case PERF_EVENT_UPDATE__CPUS:
4403 		ret += fprintf(fp, "... ");
4404 
4405 		map = cpu_map__new_data(&ev->cpus.cpus);
4406 		if (map) {
4407 			ret += cpu_map__fprintf(map, fp);
4408 			perf_cpu_map__put(map);
4409 		} else
4410 			ret += fprintf(fp, "failed to get cpus\n");
4411 		break;
4412 	default:
4413 		ret += fprintf(fp, "... unknown type\n");
4414 		break;
4415 	}
4416 
4417 	return ret;
4418 }
4419 
perf_event__process_attr(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4420 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
4421 			     union perf_event *event,
4422 			     struct evlist **pevlist)
4423 {
4424 	u32 i, n_ids;
4425 	u64 *ids;
4426 	struct evsel *evsel;
4427 	struct evlist *evlist = *pevlist;
4428 
4429 	if (evlist == NULL) {
4430 		*pevlist = evlist = evlist__new();
4431 		if (evlist == NULL)
4432 			return -ENOMEM;
4433 	}
4434 
4435 	evsel = evsel__new(&event->attr.attr);
4436 	if (evsel == NULL)
4437 		return -ENOMEM;
4438 
4439 	evlist__add(evlist, evsel);
4440 
4441 	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4442 	n_ids = n_ids / sizeof(u64);
4443 	/*
4444 	 * We don't have the cpu and thread maps on the header, so
4445 	 * for allocating the perf_sample_id table we fake 1 cpu and
4446 	 * hattr->ids threads.
4447 	 */
4448 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4449 		return -ENOMEM;
4450 
4451 	ids = perf_record_header_attr_id(event);
4452 	for (i = 0; i < n_ids; i++) {
4453 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4454 	}
4455 
4456 	return 0;
4457 }
4458 
perf_event__process_event_update(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4459 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4460 				     union perf_event *event,
4461 				     struct evlist **pevlist)
4462 {
4463 	struct perf_record_event_update *ev = &event->event_update;
4464 	struct evlist *evlist;
4465 	struct evsel *evsel;
4466 	struct perf_cpu_map *map;
4467 
4468 	if (dump_trace)
4469 		perf_event__fprintf_event_update(event, stdout);
4470 
4471 	if (!pevlist || *pevlist == NULL)
4472 		return -EINVAL;
4473 
4474 	evlist = *pevlist;
4475 
4476 	evsel = evlist__id2evsel(evlist, ev->id);
4477 	if (evsel == NULL)
4478 		return -EINVAL;
4479 
4480 	switch (ev->type) {
4481 	case PERF_EVENT_UPDATE__UNIT:
4482 		free((char *)evsel->unit);
4483 		evsel->unit = strdup(ev->unit);
4484 		break;
4485 	case PERF_EVENT_UPDATE__NAME:
4486 		free(evsel->name);
4487 		evsel->name = strdup(ev->name);
4488 		break;
4489 	case PERF_EVENT_UPDATE__SCALE:
4490 		evsel->scale = ev->scale.scale;
4491 		break;
4492 	case PERF_EVENT_UPDATE__CPUS:
4493 		map = cpu_map__new_data(&ev->cpus.cpus);
4494 		if (map) {
4495 			perf_cpu_map__put(evsel->core.own_cpus);
4496 			evsel->core.own_cpus = map;
4497 		} else
4498 			pr_err("failed to get event_update cpus\n");
4499 	default:
4500 		break;
4501 	}
4502 
4503 	return 0;
4504 }
4505 
4506 #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4507 int perf_event__process_tracing_data(struct perf_session *session,
4508 				     union perf_event *event)
4509 {
4510 	ssize_t size_read, padding, size = event->tracing_data.size;
4511 	int fd = perf_data__fd(session->data);
4512 	char buf[BUFSIZ];
4513 
4514 	/*
4515 	 * The pipe fd is already in proper place and in any case
4516 	 * we can't move it, and we'd screw the case where we read
4517 	 * 'pipe' data from regular file. The trace_report reads
4518 	 * data from 'fd' so we need to set it directly behind the
4519 	 * event, where the tracing data starts.
4520 	 */
4521 	if (!perf_data__is_pipe(session->data)) {
4522 		off_t offset = lseek(fd, 0, SEEK_CUR);
4523 
4524 		/* setup for reading amidst mmap */
4525 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4526 		      SEEK_SET);
4527 	}
4528 
4529 	size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
4530 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4531 
4532 	if (readn(fd, buf, padding) < 0) {
4533 		pr_err("%s: reading input file", __func__);
4534 		return -1;
4535 	}
4536 	if (session->trace_event_repipe) {
4537 		int retw = write(STDOUT_FILENO, buf, padding);
4538 		if (retw <= 0 || retw != padding) {
4539 			pr_err("%s: repiping tracing data padding", __func__);
4540 			return -1;
4541 		}
4542 	}
4543 
4544 	if (size_read + padding != size) {
4545 		pr_err("%s: tracing data size mismatch", __func__);
4546 		return -1;
4547 	}
4548 
4549 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4550 
4551 	return size_read + padding;
4552 }
4553 #endif
4554 
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4555 int perf_event__process_build_id(struct perf_session *session,
4556 				 union perf_event *event)
4557 {
4558 	__event_process_build_id(&event->build_id,
4559 				 event->build_id.filename,
4560 				 session);
4561 	return 0;
4562 }
4563