1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <asm/kmap_size.h>
50 
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct perf_ctx_data;
69 struct pid_namespace;
70 struct pipe_inode_info;
71 struct rcu_node;
72 struct reclaim_state;
73 struct robust_list_head;
74 struct root_domain;
75 struct rq;
76 struct sched_attr;
77 struct sched_dl_entity;
78 struct seq_file;
79 struct sighand_struct;
80 struct signal_struct;
81 struct task_delay_info;
82 struct task_group;
83 struct task_struct;
84 struct user_event_mm;
85 
86 #include <linux/sched/ext.h>
87 
88 /*
89  * Task state bitmask. NOTE! These bits are also
90  * encoded in fs/proc/array.c: get_task_state().
91  *
92  * We have two separate sets of flags: task->__state
93  * is about runnability, while task->exit_state are
94  * about the task exiting. Confusing, but this way
95  * modifying one set can't modify the other one by
96  * mistake.
97  */
98 
99 /* Used in tsk->__state: */
100 #define TASK_RUNNING			0x00000000
101 #define TASK_INTERRUPTIBLE		0x00000001
102 #define TASK_UNINTERRUPTIBLE		0x00000002
103 #define __TASK_STOPPED			0x00000004
104 #define __TASK_TRACED			0x00000008
105 /* Used in tsk->exit_state: */
106 #define EXIT_DEAD			0x00000010
107 #define EXIT_ZOMBIE			0x00000020
108 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
109 /* Used in tsk->__state again: */
110 #define TASK_PARKED			0x00000040
111 #define TASK_DEAD			0x00000080
112 #define TASK_WAKEKILL			0x00000100
113 #define TASK_WAKING			0x00000200
114 #define TASK_NOLOAD			0x00000400
115 #define TASK_NEW			0x00000800
116 #define TASK_RTLOCK_WAIT		0x00001000
117 #define TASK_FREEZABLE			0x00002000
118 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
119 #define TASK_FROZEN			0x00008000
120 #define TASK_STATE_MAX			0x00010000
121 
122 #define TASK_ANY			(TASK_STATE_MAX-1)
123 
124 /*
125  * DO NOT ADD ANY NEW USERS !
126  */
127 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
128 
129 /* Convenience macros for the sake of set_current_state: */
130 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
131 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
132 #define TASK_TRACED			__TASK_TRACED
133 
134 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
135 
136 /* Convenience macros for the sake of wake_up(): */
137 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
138 
139 /* get_task_state(): */
140 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
141 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
142 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
143 					 TASK_PARKED)
144 
145 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
146 
147 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
148 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
149 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
150 
151 /*
152  * Special states are those that do not use the normal wait-loop pattern. See
153  * the comment with set_special_state().
154  */
155 #define is_special_task_state(state)					\
156 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
157 		    TASK_DEAD | TASK_FROZEN))
158 
159 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
160 # define debug_normal_state_change(state_value)				\
161 	do {								\
162 		WARN_ON_ONCE(is_special_task_state(state_value));	\
163 		current->task_state_change = _THIS_IP_;			\
164 	} while (0)
165 
166 # define debug_special_state_change(state_value)			\
167 	do {								\
168 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
169 		current->task_state_change = _THIS_IP_;			\
170 	} while (0)
171 
172 # define debug_rtlock_wait_set_state()					\
173 	do {								 \
174 		current->saved_state_change = current->task_state_change;\
175 		current->task_state_change = _THIS_IP_;			 \
176 	} while (0)
177 
178 # define debug_rtlock_wait_restore_state()				\
179 	do {								 \
180 		current->task_state_change = current->saved_state_change;\
181 	} while (0)
182 
183 #else
184 # define debug_normal_state_change(cond)	do { } while (0)
185 # define debug_special_state_change(cond)	do { } while (0)
186 # define debug_rtlock_wait_set_state()		do { } while (0)
187 # define debug_rtlock_wait_restore_state()	do { } while (0)
188 #endif
189 
190 /*
191  * set_current_state() includes a barrier so that the write of current->__state
192  * is correctly serialised wrt the caller's subsequent test of whether to
193  * actually sleep:
194  *
195  *   for (;;) {
196  *	set_current_state(TASK_UNINTERRUPTIBLE);
197  *	if (CONDITION)
198  *	   break;
199  *
200  *	schedule();
201  *   }
202  *   __set_current_state(TASK_RUNNING);
203  *
204  * If the caller does not need such serialisation (because, for instance, the
205  * CONDITION test and condition change and wakeup are under the same lock) then
206  * use __set_current_state().
207  *
208  * The above is typically ordered against the wakeup, which does:
209  *
210  *   CONDITION = 1;
211  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
212  *
213  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
214  * accessing p->__state.
215  *
216  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
217  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
218  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
219  *
220  * However, with slightly different timing the wakeup TASK_RUNNING store can
221  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
222  * a problem either because that will result in one extra go around the loop
223  * and our @cond test will save the day.
224  *
225  * Also see the comments of try_to_wake_up().
226  */
227 #define __set_current_state(state_value)				\
228 	do {								\
229 		debug_normal_state_change((state_value));		\
230 		WRITE_ONCE(current->__state, (state_value));		\
231 	} while (0)
232 
233 #define set_current_state(state_value)					\
234 	do {								\
235 		debug_normal_state_change((state_value));		\
236 		smp_store_mb(current->__state, (state_value));		\
237 	} while (0)
238 
239 /*
240  * set_special_state() should be used for those states when the blocking task
241  * can not use the regular condition based wait-loop. In that case we must
242  * serialize against wakeups such that any possible in-flight TASK_RUNNING
243  * stores will not collide with our state change.
244  */
245 #define set_special_state(state_value)					\
246 	do {								\
247 		unsigned long flags; /* may shadow */			\
248 									\
249 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
250 		debug_special_state_change((state_value));		\
251 		WRITE_ONCE(current->__state, (state_value));		\
252 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
253 	} while (0)
254 
255 /*
256  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
257  *
258  * RT's spin/rwlock substitutions are state preserving. The state of the
259  * task when blocking on the lock is saved in task_struct::saved_state and
260  * restored after the lock has been acquired.  These operations are
261  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
262  * lock related wakeups while the task is blocked on the lock are
263  * redirected to operate on task_struct::saved_state to ensure that these
264  * are not dropped. On restore task_struct::saved_state is set to
265  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
266  *
267  * The lock operation looks like this:
268  *
269  *	current_save_and_set_rtlock_wait_state();
270  *	for (;;) {
271  *		if (try_lock())
272  *			break;
273  *		raw_spin_unlock_irq(&lock->wait_lock);
274  *		schedule_rtlock();
275  *		raw_spin_lock_irq(&lock->wait_lock);
276  *		set_current_state(TASK_RTLOCK_WAIT);
277  *	}
278  *	current_restore_rtlock_saved_state();
279  */
280 #define current_save_and_set_rtlock_wait_state()			\
281 	do {								\
282 		lockdep_assert_irqs_disabled();				\
283 		raw_spin_lock(&current->pi_lock);			\
284 		current->saved_state = current->__state;		\
285 		debug_rtlock_wait_set_state();				\
286 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
287 		raw_spin_unlock(&current->pi_lock);			\
288 	} while (0);
289 
290 #define current_restore_rtlock_saved_state()				\
291 	do {								\
292 		lockdep_assert_irqs_disabled();				\
293 		raw_spin_lock(&current->pi_lock);			\
294 		debug_rtlock_wait_restore_state();			\
295 		WRITE_ONCE(current->__state, current->saved_state);	\
296 		current->saved_state = TASK_RUNNING;			\
297 		raw_spin_unlock(&current->pi_lock);			\
298 	} while (0);
299 
300 #define get_current_state()	READ_ONCE(current->__state)
301 
302 /*
303  * Define the task command name length as enum, then it can be visible to
304  * BPF programs.
305  */
306 enum {
307 	TASK_COMM_LEN = 16,
308 };
309 
310 extern void sched_tick(void);
311 
312 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
313 
314 extern long schedule_timeout(long timeout);
315 extern long schedule_timeout_interruptible(long timeout);
316 extern long schedule_timeout_killable(long timeout);
317 extern long schedule_timeout_uninterruptible(long timeout);
318 extern long schedule_timeout_idle(long timeout);
319 asmlinkage void schedule(void);
320 extern void schedule_preempt_disabled(void);
321 asmlinkage void preempt_schedule_irq(void);
322 #ifdef CONFIG_PREEMPT_RT
323  extern void schedule_rtlock(void);
324 #endif
325 
326 extern int __must_check io_schedule_prepare(void);
327 extern void io_schedule_finish(int token);
328 extern long io_schedule_timeout(long timeout);
329 extern void io_schedule(void);
330 
331 /**
332  * struct prev_cputime - snapshot of system and user cputime
333  * @utime: time spent in user mode
334  * @stime: time spent in system mode
335  * @lock: protects the above two fields
336  *
337  * Stores previous user/system time values such that we can guarantee
338  * monotonicity.
339  */
340 struct prev_cputime {
341 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
342 	u64				utime;
343 	u64				stime;
344 	raw_spinlock_t			lock;
345 #endif
346 };
347 
348 enum vtime_state {
349 	/* Task is sleeping or running in a CPU with VTIME inactive: */
350 	VTIME_INACTIVE = 0,
351 	/* Task is idle */
352 	VTIME_IDLE,
353 	/* Task runs in kernelspace in a CPU with VTIME active: */
354 	VTIME_SYS,
355 	/* Task runs in userspace in a CPU with VTIME active: */
356 	VTIME_USER,
357 	/* Task runs as guests in a CPU with VTIME active: */
358 	VTIME_GUEST,
359 };
360 
361 struct vtime {
362 	seqcount_t		seqcount;
363 	unsigned long long	starttime;
364 	enum vtime_state	state;
365 	unsigned int		cpu;
366 	u64			utime;
367 	u64			stime;
368 	u64			gtime;
369 };
370 
371 /*
372  * Utilization clamp constraints.
373  * @UCLAMP_MIN:	Minimum utilization
374  * @UCLAMP_MAX:	Maximum utilization
375  * @UCLAMP_CNT:	Utilization clamp constraints count
376  */
377 enum uclamp_id {
378 	UCLAMP_MIN = 0,
379 	UCLAMP_MAX,
380 	UCLAMP_CNT
381 };
382 
383 #ifdef CONFIG_SMP
384 extern struct root_domain def_root_domain;
385 extern struct mutex sched_domains_mutex;
386 extern void sched_domains_mutex_lock(void);
387 extern void sched_domains_mutex_unlock(void);
388 #else
sched_domains_mutex_lock(void)389 static inline void sched_domains_mutex_lock(void) { }
sched_domains_mutex_unlock(void)390 static inline void sched_domains_mutex_unlock(void) { }
391 #endif
392 
393 struct sched_param {
394 	int sched_priority;
395 };
396 
397 struct sched_info {
398 #ifdef CONFIG_SCHED_INFO
399 	/* Cumulative counters: */
400 
401 	/* # of times we have run on this CPU: */
402 	unsigned long			pcount;
403 
404 	/* Time spent waiting on a runqueue: */
405 	unsigned long long		run_delay;
406 
407 	/* Max time spent waiting on a runqueue: */
408 	unsigned long long		max_run_delay;
409 
410 	/* Min time spent waiting on a runqueue: */
411 	unsigned long long		min_run_delay;
412 
413 	/* Timestamps: */
414 
415 	/* When did we last run on a CPU? */
416 	unsigned long long		last_arrival;
417 
418 	/* When were we last queued to run? */
419 	unsigned long long		last_queued;
420 
421 #endif /* CONFIG_SCHED_INFO */
422 };
423 
424 /*
425  * Integer metrics need fixed point arithmetic, e.g., sched/fair
426  * has a few: load, load_avg, util_avg, freq, and capacity.
427  *
428  * We define a basic fixed point arithmetic range, and then formalize
429  * all these metrics based on that basic range.
430  */
431 # define SCHED_FIXEDPOINT_SHIFT		10
432 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
433 
434 /* Increase resolution of cpu_capacity calculations */
435 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
436 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
437 
438 struct load_weight {
439 	unsigned long			weight;
440 	u32				inv_weight;
441 };
442 
443 /*
444  * The load/runnable/util_avg accumulates an infinite geometric series
445  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
446  *
447  * [load_avg definition]
448  *
449  *   load_avg = runnable% * scale_load_down(load)
450  *
451  * [runnable_avg definition]
452  *
453  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
454  *
455  * [util_avg definition]
456  *
457  *   util_avg = running% * SCHED_CAPACITY_SCALE
458  *
459  * where runnable% is the time ratio that a sched_entity is runnable and
460  * running% the time ratio that a sched_entity is running.
461  *
462  * For cfs_rq, they are the aggregated values of all runnable and blocked
463  * sched_entities.
464  *
465  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
466  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
467  * for computing those signals (see update_rq_clock_pelt())
468  *
469  * N.B., the above ratios (runnable% and running%) themselves are in the
470  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
471  * to as large a range as necessary. This is for example reflected by
472  * util_avg's SCHED_CAPACITY_SCALE.
473  *
474  * [Overflow issue]
475  *
476  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
477  * with the highest load (=88761), always runnable on a single cfs_rq,
478  * and should not overflow as the number already hits PID_MAX_LIMIT.
479  *
480  * For all other cases (including 32-bit kernels), struct load_weight's
481  * weight will overflow first before we do, because:
482  *
483  *    Max(load_avg) <= Max(load.weight)
484  *
485  * Then it is the load_weight's responsibility to consider overflow
486  * issues.
487  */
488 struct sched_avg {
489 	u64				last_update_time;
490 	u64				load_sum;
491 	u64				runnable_sum;
492 	u32				util_sum;
493 	u32				period_contrib;
494 	unsigned long			load_avg;
495 	unsigned long			runnable_avg;
496 	unsigned long			util_avg;
497 	unsigned int			util_est;
498 } ____cacheline_aligned;
499 
500 /*
501  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
502  * updates. When a task is dequeued, its util_est should not be updated if its
503  * util_avg has not been updated in the meantime.
504  * This information is mapped into the MSB bit of util_est at dequeue time.
505  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
506  * it is safe to use MSB.
507  */
508 #define UTIL_EST_WEIGHT_SHIFT		2
509 #define UTIL_AVG_UNCHANGED		0x80000000
510 
511 struct sched_statistics {
512 #ifdef CONFIG_SCHEDSTATS
513 	u64				wait_start;
514 	u64				wait_max;
515 	u64				wait_count;
516 	u64				wait_sum;
517 	u64				iowait_count;
518 	u64				iowait_sum;
519 
520 	u64				sleep_start;
521 	u64				sleep_max;
522 	s64				sum_sleep_runtime;
523 
524 	u64				block_start;
525 	u64				block_max;
526 	s64				sum_block_runtime;
527 
528 	s64				exec_max;
529 	u64				slice_max;
530 
531 	u64				nr_migrations_cold;
532 	u64				nr_failed_migrations_affine;
533 	u64				nr_failed_migrations_running;
534 	u64				nr_failed_migrations_hot;
535 	u64				nr_forced_migrations;
536 
537 	u64				nr_wakeups;
538 	u64				nr_wakeups_sync;
539 	u64				nr_wakeups_migrate;
540 	u64				nr_wakeups_local;
541 	u64				nr_wakeups_remote;
542 	u64				nr_wakeups_affine;
543 	u64				nr_wakeups_affine_attempts;
544 	u64				nr_wakeups_passive;
545 	u64				nr_wakeups_idle;
546 
547 #ifdef CONFIG_SCHED_CORE
548 	u64				core_forceidle_sum;
549 #endif
550 #endif /* CONFIG_SCHEDSTATS */
551 } ____cacheline_aligned;
552 
553 struct sched_entity {
554 	/* For load-balancing: */
555 	struct load_weight		load;
556 	struct rb_node			run_node;
557 	u64				deadline;
558 	u64				min_vruntime;
559 	u64				min_slice;
560 
561 	struct list_head		group_node;
562 	unsigned char			on_rq;
563 	unsigned char			sched_delayed;
564 	unsigned char			rel_deadline;
565 	unsigned char			custom_slice;
566 					/* hole */
567 
568 	u64				exec_start;
569 	u64				sum_exec_runtime;
570 	u64				prev_sum_exec_runtime;
571 	u64				vruntime;
572 	s64				vlag;
573 	u64				slice;
574 
575 	u64				nr_migrations;
576 
577 #ifdef CONFIG_FAIR_GROUP_SCHED
578 	int				depth;
579 	struct sched_entity		*parent;
580 	/* rq on which this entity is (to be) queued: */
581 	struct cfs_rq			*cfs_rq;
582 	/* rq "owned" by this entity/group: */
583 	struct cfs_rq			*my_q;
584 	/* cached value of my_q->h_nr_running */
585 	unsigned long			runnable_weight;
586 #endif
587 
588 #ifdef CONFIG_SMP
589 	/*
590 	 * Per entity load average tracking.
591 	 *
592 	 * Put into separate cache line so it does not
593 	 * collide with read-mostly values above.
594 	 */
595 	struct sched_avg		avg;
596 #endif
597 };
598 
599 struct sched_rt_entity {
600 	struct list_head		run_list;
601 	unsigned long			timeout;
602 	unsigned long			watchdog_stamp;
603 	unsigned int			time_slice;
604 	unsigned short			on_rq;
605 	unsigned short			on_list;
606 
607 	struct sched_rt_entity		*back;
608 #ifdef CONFIG_RT_GROUP_SCHED
609 	struct sched_rt_entity		*parent;
610 	/* rq on which this entity is (to be) queued: */
611 	struct rt_rq			*rt_rq;
612 	/* rq "owned" by this entity/group: */
613 	struct rt_rq			*my_q;
614 #endif
615 } __randomize_layout;
616 
617 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
618 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
619 
620 struct sched_dl_entity {
621 	struct rb_node			rb_node;
622 
623 	/*
624 	 * Original scheduling parameters. Copied here from sched_attr
625 	 * during sched_setattr(), they will remain the same until
626 	 * the next sched_setattr().
627 	 */
628 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
629 	u64				dl_deadline;	/* Relative deadline of each instance	*/
630 	u64				dl_period;	/* Separation of two instances (period) */
631 	u64				dl_bw;		/* dl_runtime / dl_period		*/
632 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
633 
634 	/*
635 	 * Actual scheduling parameters. Initialized with the values above,
636 	 * they are continuously updated during task execution. Note that
637 	 * the remaining runtime could be < 0 in case we are in overrun.
638 	 */
639 	s64				runtime;	/* Remaining runtime for this instance	*/
640 	u64				deadline;	/* Absolute deadline for this instance	*/
641 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
642 
643 	/*
644 	 * Some bool flags:
645 	 *
646 	 * @dl_throttled tells if we exhausted the runtime. If so, the
647 	 * task has to wait for a replenishment to be performed at the
648 	 * next firing of dl_timer.
649 	 *
650 	 * @dl_yielded tells if task gave up the CPU before consuming
651 	 * all its available runtime during the last job.
652 	 *
653 	 * @dl_non_contending tells if the task is inactive while still
654 	 * contributing to the active utilization. In other words, it
655 	 * indicates if the inactive timer has been armed and its handler
656 	 * has not been executed yet. This flag is useful to avoid race
657 	 * conditions between the inactive timer handler and the wakeup
658 	 * code.
659 	 *
660 	 * @dl_overrun tells if the task asked to be informed about runtime
661 	 * overruns.
662 	 *
663 	 * @dl_server tells if this is a server entity.
664 	 *
665 	 * @dl_defer tells if this is a deferred or regular server. For
666 	 * now only defer server exists.
667 	 *
668 	 * @dl_defer_armed tells if the deferrable server is waiting
669 	 * for the replenishment timer to activate it.
670 	 *
671 	 * @dl_server_active tells if the dlserver is active(started).
672 	 * dlserver is started on first cfs enqueue on an idle runqueue
673 	 * and is stopped when a dequeue results in 0 cfs tasks on the
674 	 * runqueue. In other words, dlserver is active only when cpu's
675 	 * runqueue has atleast one cfs task.
676 	 *
677 	 * @dl_defer_running tells if the deferrable server is actually
678 	 * running, skipping the defer phase.
679 	 */
680 	unsigned int			dl_throttled      : 1;
681 	unsigned int			dl_yielded        : 1;
682 	unsigned int			dl_non_contending : 1;
683 	unsigned int			dl_overrun	  : 1;
684 	unsigned int			dl_server         : 1;
685 	unsigned int			dl_server_active  : 1;
686 	unsigned int			dl_defer	  : 1;
687 	unsigned int			dl_defer_armed	  : 1;
688 	unsigned int			dl_defer_running  : 1;
689 
690 	/*
691 	 * Bandwidth enforcement timer. Each -deadline task has its
692 	 * own bandwidth to be enforced, thus we need one timer per task.
693 	 */
694 	struct hrtimer			dl_timer;
695 
696 	/*
697 	 * Inactive timer, responsible for decreasing the active utilization
698 	 * at the "0-lag time". When a -deadline task blocks, it contributes
699 	 * to GRUB's active utilization until the "0-lag time", hence a
700 	 * timer is needed to decrease the active utilization at the correct
701 	 * time.
702 	 */
703 	struct hrtimer			inactive_timer;
704 
705 	/*
706 	 * Bits for DL-server functionality. Also see the comment near
707 	 * dl_server_update().
708 	 *
709 	 * @rq the runqueue this server is for
710 	 *
711 	 * @server_has_tasks() returns true if @server_pick return a
712 	 * runnable task.
713 	 */
714 	struct rq			*rq;
715 	dl_server_has_tasks_f		server_has_tasks;
716 	dl_server_pick_f		server_pick_task;
717 
718 #ifdef CONFIG_RT_MUTEXES
719 	/*
720 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
721 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
722 	 * to (the original one/itself).
723 	 */
724 	struct sched_dl_entity *pi_se;
725 #endif
726 };
727 
728 #ifdef CONFIG_UCLAMP_TASK
729 /* Number of utilization clamp buckets (shorter alias) */
730 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
731 
732 /*
733  * Utilization clamp for a scheduling entity
734  * @value:		clamp value "assigned" to a se
735  * @bucket_id:		bucket index corresponding to the "assigned" value
736  * @active:		the se is currently refcounted in a rq's bucket
737  * @user_defined:	the requested clamp value comes from user-space
738  *
739  * The bucket_id is the index of the clamp bucket matching the clamp value
740  * which is pre-computed and stored to avoid expensive integer divisions from
741  * the fast path.
742  *
743  * The active bit is set whenever a task has got an "effective" value assigned,
744  * which can be different from the clamp value "requested" from user-space.
745  * This allows to know a task is refcounted in the rq's bucket corresponding
746  * to the "effective" bucket_id.
747  *
748  * The user_defined bit is set whenever a task has got a task-specific clamp
749  * value requested from userspace, i.e. the system defaults apply to this task
750  * just as a restriction. This allows to relax default clamps when a less
751  * restrictive task-specific value has been requested, thus allowing to
752  * implement a "nice" semantic. For example, a task running with a 20%
753  * default boost can still drop its own boosting to 0%.
754  */
755 struct uclamp_se {
756 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
757 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
758 	unsigned int active		: 1;
759 	unsigned int user_defined	: 1;
760 };
761 #endif /* CONFIG_UCLAMP_TASK */
762 
763 union rcu_special {
764 	struct {
765 		u8			blocked;
766 		u8			need_qs;
767 		u8			exp_hint; /* Hint for performance. */
768 		u8			need_mb; /* Readers need smp_mb(). */
769 	} b; /* Bits. */
770 	u32 s; /* Set of bits. */
771 };
772 
773 enum perf_event_task_context {
774 	perf_invalid_context = -1,
775 	perf_hw_context = 0,
776 	perf_sw_context,
777 	perf_nr_task_contexts,
778 };
779 
780 /*
781  * Number of contexts where an event can trigger:
782  *      task, softirq, hardirq, nmi.
783  */
784 #define PERF_NR_CONTEXTS	4
785 
786 struct wake_q_node {
787 	struct wake_q_node *next;
788 };
789 
790 struct kmap_ctrl {
791 #ifdef CONFIG_KMAP_LOCAL
792 	int				idx;
793 	pte_t				pteval[KM_MAX_IDX];
794 #endif
795 };
796 
797 struct task_struct {
798 #ifdef CONFIG_THREAD_INFO_IN_TASK
799 	/*
800 	 * For reasons of header soup (see current_thread_info()), this
801 	 * must be the first element of task_struct.
802 	 */
803 	struct thread_info		thread_info;
804 #endif
805 	unsigned int			__state;
806 
807 	/* saved state for "spinlock sleepers" */
808 	unsigned int			saved_state;
809 
810 	/*
811 	 * This begins the randomizable portion of task_struct. Only
812 	 * scheduling-critical items should be added above here.
813 	 */
814 	randomized_struct_fields_start
815 
816 	void				*stack;
817 	refcount_t			usage;
818 	/* Per task flags (PF_*), defined further below: */
819 	unsigned int			flags;
820 	unsigned int			ptrace;
821 
822 #ifdef CONFIG_MEM_ALLOC_PROFILING
823 	struct alloc_tag		*alloc_tag;
824 #endif
825 
826 #ifdef CONFIG_SMP
827 	int				on_cpu;
828 	struct __call_single_node	wake_entry;
829 	unsigned int			wakee_flips;
830 	unsigned long			wakee_flip_decay_ts;
831 	struct task_struct		*last_wakee;
832 
833 	/*
834 	 * recent_used_cpu is initially set as the last CPU used by a task
835 	 * that wakes affine another task. Waker/wakee relationships can
836 	 * push tasks around a CPU where each wakeup moves to the next one.
837 	 * Tracking a recently used CPU allows a quick search for a recently
838 	 * used CPU that may be idle.
839 	 */
840 	int				recent_used_cpu;
841 	int				wake_cpu;
842 #endif
843 	int				on_rq;
844 
845 	int				prio;
846 	int				static_prio;
847 	int				normal_prio;
848 	unsigned int			rt_priority;
849 
850 	struct sched_entity		se;
851 	struct sched_rt_entity		rt;
852 	struct sched_dl_entity		dl;
853 	struct sched_dl_entity		*dl_server;
854 #ifdef CONFIG_SCHED_CLASS_EXT
855 	struct sched_ext_entity		scx;
856 #endif
857 	const struct sched_class	*sched_class;
858 
859 #ifdef CONFIG_SCHED_CORE
860 	struct rb_node			core_node;
861 	unsigned long			core_cookie;
862 	unsigned int			core_occupation;
863 #endif
864 
865 #ifdef CONFIG_CGROUP_SCHED
866 	struct task_group		*sched_task_group;
867 #endif
868 
869 
870 #ifdef CONFIG_UCLAMP_TASK
871 	/*
872 	 * Clamp values requested for a scheduling entity.
873 	 * Must be updated with task_rq_lock() held.
874 	 */
875 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
876 	/*
877 	 * Effective clamp values used for a scheduling entity.
878 	 * Must be updated with task_rq_lock() held.
879 	 */
880 	struct uclamp_se		uclamp[UCLAMP_CNT];
881 #endif
882 
883 	struct sched_statistics         stats;
884 
885 #ifdef CONFIG_PREEMPT_NOTIFIERS
886 	/* List of struct preempt_notifier: */
887 	struct hlist_head		preempt_notifiers;
888 #endif
889 
890 #ifdef CONFIG_BLK_DEV_IO_TRACE
891 	unsigned int			btrace_seq;
892 #endif
893 
894 	unsigned int			policy;
895 	unsigned long			max_allowed_capacity;
896 	int				nr_cpus_allowed;
897 	const cpumask_t			*cpus_ptr;
898 	cpumask_t			*user_cpus_ptr;
899 	cpumask_t			cpus_mask;
900 	void				*migration_pending;
901 #ifdef CONFIG_SMP
902 	unsigned short			migration_disabled;
903 #endif
904 	unsigned short			migration_flags;
905 
906 #ifdef CONFIG_PREEMPT_RCU
907 	int				rcu_read_lock_nesting;
908 	union rcu_special		rcu_read_unlock_special;
909 	struct list_head		rcu_node_entry;
910 	struct rcu_node			*rcu_blocked_node;
911 #endif /* #ifdef CONFIG_PREEMPT_RCU */
912 
913 #ifdef CONFIG_TASKS_RCU
914 	unsigned long			rcu_tasks_nvcsw;
915 	u8				rcu_tasks_holdout;
916 	u8				rcu_tasks_idx;
917 	int				rcu_tasks_idle_cpu;
918 	struct list_head		rcu_tasks_holdout_list;
919 	int				rcu_tasks_exit_cpu;
920 	struct list_head		rcu_tasks_exit_list;
921 #endif /* #ifdef CONFIG_TASKS_RCU */
922 
923 #ifdef CONFIG_TASKS_TRACE_RCU
924 	int				trc_reader_nesting;
925 	int				trc_ipi_to_cpu;
926 	union rcu_special		trc_reader_special;
927 	struct list_head		trc_holdout_list;
928 	struct list_head		trc_blkd_node;
929 	int				trc_blkd_cpu;
930 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
931 
932 	struct sched_info		sched_info;
933 
934 	struct list_head		tasks;
935 #ifdef CONFIG_SMP
936 	struct plist_node		pushable_tasks;
937 	struct rb_node			pushable_dl_tasks;
938 #endif
939 
940 	struct mm_struct		*mm;
941 	struct mm_struct		*active_mm;
942 	struct address_space		*faults_disabled_mapping;
943 
944 	int				exit_state;
945 	int				exit_code;
946 	int				exit_signal;
947 	/* The signal sent when the parent dies: */
948 	int				pdeath_signal;
949 	/* JOBCTL_*, siglock protected: */
950 	unsigned long			jobctl;
951 
952 	/* Used for emulating ABI behavior of previous Linux versions: */
953 	unsigned int			personality;
954 
955 	/* Scheduler bits, serialized by scheduler locks: */
956 	unsigned			sched_reset_on_fork:1;
957 	unsigned			sched_contributes_to_load:1;
958 	unsigned			sched_migrated:1;
959 	unsigned			sched_task_hot:1;
960 
961 	/* Force alignment to the next boundary: */
962 	unsigned			:0;
963 
964 	/* Unserialized, strictly 'current' */
965 
966 	/*
967 	 * This field must not be in the scheduler word above due to wakelist
968 	 * queueing no longer being serialized by p->on_cpu. However:
969 	 *
970 	 * p->XXX = X;			ttwu()
971 	 * schedule()			  if (p->on_rq && ..) // false
972 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
973 	 *   deactivate_task()		      ttwu_queue_wakelist())
974 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
975 	 *
976 	 * guarantees all stores of 'current' are visible before
977 	 * ->sched_remote_wakeup gets used, so it can be in this word.
978 	 */
979 	unsigned			sched_remote_wakeup:1;
980 #ifdef CONFIG_RT_MUTEXES
981 	unsigned			sched_rt_mutex:1;
982 #endif
983 
984 	/* Bit to tell TOMOYO we're in execve(): */
985 	unsigned			in_execve:1;
986 	unsigned			in_iowait:1;
987 #ifndef TIF_RESTORE_SIGMASK
988 	unsigned			restore_sigmask:1;
989 #endif
990 #ifdef CONFIG_MEMCG_V1
991 	unsigned			in_user_fault:1;
992 #endif
993 #ifdef CONFIG_LRU_GEN
994 	/* whether the LRU algorithm may apply to this access */
995 	unsigned			in_lru_fault:1;
996 #endif
997 #ifdef CONFIG_COMPAT_BRK
998 	unsigned			brk_randomized:1;
999 #endif
1000 #ifdef CONFIG_CGROUPS
1001 	/* disallow userland-initiated cgroup migration */
1002 	unsigned			no_cgroup_migration:1;
1003 	/* task is frozen/stopped (used by the cgroup freezer) */
1004 	unsigned			frozen:1;
1005 #endif
1006 #ifdef CONFIG_BLK_CGROUP
1007 	unsigned			use_memdelay:1;
1008 #endif
1009 #ifdef CONFIG_PSI
1010 	/* Stalled due to lack of memory */
1011 	unsigned			in_memstall:1;
1012 #endif
1013 #ifdef CONFIG_PAGE_OWNER
1014 	/* Used by page_owner=on to detect recursion in page tracking. */
1015 	unsigned			in_page_owner:1;
1016 #endif
1017 #ifdef CONFIG_EVENTFD
1018 	/* Recursion prevention for eventfd_signal() */
1019 	unsigned			in_eventfd:1;
1020 #endif
1021 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1022 	unsigned			pasid_activated:1;
1023 #endif
1024 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1025 	unsigned			reported_split_lock:1;
1026 #endif
1027 #ifdef CONFIG_TASK_DELAY_ACCT
1028 	/* delay due to memory thrashing */
1029 	unsigned                        in_thrashing:1;
1030 #endif
1031 #ifdef CONFIG_PREEMPT_RT
1032 	struct netdev_xmit		net_xmit;
1033 #endif
1034 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1035 
1036 	struct restart_block		restart_block;
1037 
1038 	pid_t				pid;
1039 	pid_t				tgid;
1040 
1041 #ifdef CONFIG_STACKPROTECTOR
1042 	/* Canary value for the -fstack-protector GCC feature: */
1043 	unsigned long			stack_canary;
1044 #endif
1045 	/*
1046 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1047 	 * older sibling, respectively.  (p->father can be replaced with
1048 	 * p->real_parent->pid)
1049 	 */
1050 
1051 	/* Real parent process: */
1052 	struct task_struct __rcu	*real_parent;
1053 
1054 	/* Recipient of SIGCHLD, wait4() reports: */
1055 	struct task_struct __rcu	*parent;
1056 
1057 	/*
1058 	 * Children/sibling form the list of natural children:
1059 	 */
1060 	struct list_head		children;
1061 	struct list_head		sibling;
1062 	struct task_struct		*group_leader;
1063 
1064 	/*
1065 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1066 	 *
1067 	 * This includes both natural children and PTRACE_ATTACH targets.
1068 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1069 	 */
1070 	struct list_head		ptraced;
1071 	struct list_head		ptrace_entry;
1072 
1073 	/* PID/PID hash table linkage. */
1074 	struct pid			*thread_pid;
1075 	struct hlist_node		pid_links[PIDTYPE_MAX];
1076 	struct list_head		thread_node;
1077 
1078 	struct completion		*vfork_done;
1079 
1080 	/* CLONE_CHILD_SETTID: */
1081 	int __user			*set_child_tid;
1082 
1083 	/* CLONE_CHILD_CLEARTID: */
1084 	int __user			*clear_child_tid;
1085 
1086 	/* PF_KTHREAD | PF_IO_WORKER */
1087 	void				*worker_private;
1088 
1089 	u64				utime;
1090 	u64				stime;
1091 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1092 	u64				utimescaled;
1093 	u64				stimescaled;
1094 #endif
1095 	u64				gtime;
1096 	struct prev_cputime		prev_cputime;
1097 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1098 	struct vtime			vtime;
1099 #endif
1100 
1101 #ifdef CONFIG_NO_HZ_FULL
1102 	atomic_t			tick_dep_mask;
1103 #endif
1104 	/* Context switch counts: */
1105 	unsigned long			nvcsw;
1106 	unsigned long			nivcsw;
1107 
1108 	/* Monotonic time in nsecs: */
1109 	u64				start_time;
1110 
1111 	/* Boot based time in nsecs: */
1112 	u64				start_boottime;
1113 
1114 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1115 	unsigned long			min_flt;
1116 	unsigned long			maj_flt;
1117 
1118 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1119 	struct posix_cputimers		posix_cputimers;
1120 
1121 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1122 	struct posix_cputimers_work	posix_cputimers_work;
1123 #endif
1124 
1125 	/* Process credentials: */
1126 
1127 	/* Tracer's credentials at attach: */
1128 	const struct cred __rcu		*ptracer_cred;
1129 
1130 	/* Objective and real subjective task credentials (COW): */
1131 	const struct cred __rcu		*real_cred;
1132 
1133 	/* Effective (overridable) subjective task credentials (COW): */
1134 	const struct cred __rcu		*cred;
1135 
1136 #ifdef CONFIG_KEYS
1137 	/* Cached requested key. */
1138 	struct key			*cached_requested_key;
1139 #endif
1140 
1141 	/*
1142 	 * executable name, excluding path.
1143 	 *
1144 	 * - normally initialized begin_new_exec()
1145 	 * - set it with set_task_comm()
1146 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1147 	 *     zero-padded
1148 	 *   - task_lock() to ensure the operation is atomic and the name is
1149 	 *     fully updated.
1150 	 */
1151 	char				comm[TASK_COMM_LEN];
1152 
1153 	struct nameidata		*nameidata;
1154 
1155 #ifdef CONFIG_SYSVIPC
1156 	struct sysv_sem			sysvsem;
1157 	struct sysv_shm			sysvshm;
1158 #endif
1159 #ifdef CONFIG_DETECT_HUNG_TASK
1160 	unsigned long			last_switch_count;
1161 	unsigned long			last_switch_time;
1162 #endif
1163 	/* Filesystem information: */
1164 	struct fs_struct		*fs;
1165 
1166 	/* Open file information: */
1167 	struct files_struct		*files;
1168 
1169 #ifdef CONFIG_IO_URING
1170 	struct io_uring_task		*io_uring;
1171 #endif
1172 
1173 	/* Namespaces: */
1174 	struct nsproxy			*nsproxy;
1175 
1176 	/* Signal handlers: */
1177 	struct signal_struct		*signal;
1178 	struct sighand_struct __rcu		*sighand;
1179 	sigset_t			blocked;
1180 	sigset_t			real_blocked;
1181 	/* Restored if set_restore_sigmask() was used: */
1182 	sigset_t			saved_sigmask;
1183 	struct sigpending		pending;
1184 	unsigned long			sas_ss_sp;
1185 	size_t				sas_ss_size;
1186 	unsigned int			sas_ss_flags;
1187 
1188 	struct callback_head		*task_works;
1189 
1190 #ifdef CONFIG_AUDIT
1191 #ifdef CONFIG_AUDITSYSCALL
1192 	struct audit_context		*audit_context;
1193 #endif
1194 	kuid_t				loginuid;
1195 	unsigned int			sessionid;
1196 #endif
1197 	struct seccomp			seccomp;
1198 	struct syscall_user_dispatch	syscall_dispatch;
1199 
1200 	/* Thread group tracking: */
1201 	u64				parent_exec_id;
1202 	u64				self_exec_id;
1203 
1204 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1205 	spinlock_t			alloc_lock;
1206 
1207 	/* Protection of the PI data structures: */
1208 	raw_spinlock_t			pi_lock;
1209 
1210 	struct wake_q_node		wake_q;
1211 
1212 #ifdef CONFIG_RT_MUTEXES
1213 	/* PI waiters blocked on a rt_mutex held by this task: */
1214 	struct rb_root_cached		pi_waiters;
1215 	/* Updated under owner's pi_lock and rq lock */
1216 	struct task_struct		*pi_top_task;
1217 	/* Deadlock detection and priority inheritance handling: */
1218 	struct rt_mutex_waiter		*pi_blocked_on;
1219 #endif
1220 
1221 #ifdef CONFIG_DEBUG_MUTEXES
1222 	/* Mutex deadlock detection: */
1223 	struct mutex_waiter		*blocked_on;
1224 #endif
1225 
1226 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1227 	int				non_block_count;
1228 #endif
1229 
1230 #ifdef CONFIG_TRACE_IRQFLAGS
1231 	struct irqtrace_events		irqtrace;
1232 	unsigned int			hardirq_threaded;
1233 	u64				hardirq_chain_key;
1234 	int				softirqs_enabled;
1235 	int				softirq_context;
1236 	int				irq_config;
1237 #endif
1238 #ifdef CONFIG_PREEMPT_RT
1239 	int				softirq_disable_cnt;
1240 #endif
1241 
1242 #ifdef CONFIG_LOCKDEP
1243 # define MAX_LOCK_DEPTH			48UL
1244 	u64				curr_chain_key;
1245 	int				lockdep_depth;
1246 	unsigned int			lockdep_recursion;
1247 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1248 #endif
1249 
1250 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1251 	unsigned int			in_ubsan;
1252 #endif
1253 
1254 	/* Journalling filesystem info: */
1255 	void				*journal_info;
1256 
1257 	/* Stacked block device info: */
1258 	struct bio_list			*bio_list;
1259 
1260 	/* Stack plugging: */
1261 	struct blk_plug			*plug;
1262 
1263 	/* VM state: */
1264 	struct reclaim_state		*reclaim_state;
1265 
1266 	struct io_context		*io_context;
1267 
1268 #ifdef CONFIG_COMPACTION
1269 	struct capture_control		*capture_control;
1270 #endif
1271 	/* Ptrace state: */
1272 	unsigned long			ptrace_message;
1273 	kernel_siginfo_t		*last_siginfo;
1274 
1275 	struct task_io_accounting	ioac;
1276 #ifdef CONFIG_PSI
1277 	/* Pressure stall state */
1278 	unsigned int			psi_flags;
1279 #endif
1280 #ifdef CONFIG_TASK_XACCT
1281 	/* Accumulated RSS usage: */
1282 	u64				acct_rss_mem1;
1283 	/* Accumulated virtual memory usage: */
1284 	u64				acct_vm_mem1;
1285 	/* stime + utime since last update: */
1286 	u64				acct_timexpd;
1287 #endif
1288 #ifdef CONFIG_CPUSETS
1289 	/* Protected by ->alloc_lock: */
1290 	nodemask_t			mems_allowed;
1291 	/* Sequence number to catch updates: */
1292 	seqcount_spinlock_t		mems_allowed_seq;
1293 	int				cpuset_mem_spread_rotor;
1294 #endif
1295 #ifdef CONFIG_CGROUPS
1296 	/* Control Group info protected by css_set_lock: */
1297 	struct css_set __rcu		*cgroups;
1298 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1299 	struct list_head		cg_list;
1300 #endif
1301 #ifdef CONFIG_X86_CPU_RESCTRL
1302 	u32				closid;
1303 	u32				rmid;
1304 #endif
1305 #ifdef CONFIG_FUTEX
1306 	struct robust_list_head __user	*robust_list;
1307 #ifdef CONFIG_COMPAT
1308 	struct compat_robust_list_head __user *compat_robust_list;
1309 #endif
1310 	struct list_head		pi_state_list;
1311 	struct futex_pi_state		*pi_state_cache;
1312 	struct mutex			futex_exit_mutex;
1313 	unsigned int			futex_state;
1314 #endif
1315 #ifdef CONFIG_PERF_EVENTS
1316 	u8				perf_recursion[PERF_NR_CONTEXTS];
1317 	struct perf_event_context	*perf_event_ctxp;
1318 	struct mutex			perf_event_mutex;
1319 	struct list_head		perf_event_list;
1320 	struct perf_ctx_data __rcu	*perf_ctx_data;
1321 #endif
1322 #ifdef CONFIG_DEBUG_PREEMPT
1323 	unsigned long			preempt_disable_ip;
1324 #endif
1325 #ifdef CONFIG_NUMA
1326 	/* Protected by alloc_lock: */
1327 	struct mempolicy		*mempolicy;
1328 	short				il_prev;
1329 	u8				il_weight;
1330 	short				pref_node_fork;
1331 #endif
1332 #ifdef CONFIG_NUMA_BALANCING
1333 	int				numa_scan_seq;
1334 	unsigned int			numa_scan_period;
1335 	unsigned int			numa_scan_period_max;
1336 	int				numa_preferred_nid;
1337 	unsigned long			numa_migrate_retry;
1338 	/* Migration stamp: */
1339 	u64				node_stamp;
1340 	u64				last_task_numa_placement;
1341 	u64				last_sum_exec_runtime;
1342 	struct callback_head		numa_work;
1343 
1344 	/*
1345 	 * This pointer is only modified for current in syscall and
1346 	 * pagefault context (and for tasks being destroyed), so it can be read
1347 	 * from any of the following contexts:
1348 	 *  - RCU read-side critical section
1349 	 *  - current->numa_group from everywhere
1350 	 *  - task's runqueue locked, task not running
1351 	 */
1352 	struct numa_group __rcu		*numa_group;
1353 
1354 	/*
1355 	 * numa_faults is an array split into four regions:
1356 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1357 	 * in this precise order.
1358 	 *
1359 	 * faults_memory: Exponential decaying average of faults on a per-node
1360 	 * basis. Scheduling placement decisions are made based on these
1361 	 * counts. The values remain static for the duration of a PTE scan.
1362 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1363 	 * hinting fault was incurred.
1364 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1365 	 * during the current scan window. When the scan completes, the counts
1366 	 * in faults_memory and faults_cpu decay and these values are copied.
1367 	 */
1368 	unsigned long			*numa_faults;
1369 	unsigned long			total_numa_faults;
1370 
1371 	/*
1372 	 * numa_faults_locality tracks if faults recorded during the last
1373 	 * scan window were remote/local or failed to migrate. The task scan
1374 	 * period is adapted based on the locality of the faults with different
1375 	 * weights depending on whether they were shared or private faults
1376 	 */
1377 	unsigned long			numa_faults_locality[3];
1378 
1379 	unsigned long			numa_pages_migrated;
1380 #endif /* CONFIG_NUMA_BALANCING */
1381 
1382 #ifdef CONFIG_RSEQ
1383 	struct rseq __user *rseq;
1384 	u32 rseq_len;
1385 	u32 rseq_sig;
1386 	/*
1387 	 * RmW on rseq_event_mask must be performed atomically
1388 	 * with respect to preemption.
1389 	 */
1390 	unsigned long rseq_event_mask;
1391 # ifdef CONFIG_DEBUG_RSEQ
1392 	/*
1393 	 * This is a place holder to save a copy of the rseq fields for
1394 	 * validation of read-only fields. The struct rseq has a
1395 	 * variable-length array at the end, so it cannot be used
1396 	 * directly. Reserve a size large enough for the known fields.
1397 	 */
1398 	char				rseq_fields[sizeof(struct rseq)];
1399 # endif
1400 #endif
1401 
1402 #ifdef CONFIG_SCHED_MM_CID
1403 	int				mm_cid;		/* Current cid in mm */
1404 	int				last_mm_cid;	/* Most recent cid in mm */
1405 	int				migrate_from_cpu;
1406 	int				mm_cid_active;	/* Whether cid bitmap is active */
1407 	struct callback_head		cid_work;
1408 #endif
1409 
1410 	struct tlbflush_unmap_batch	tlb_ubc;
1411 
1412 	/* Cache last used pipe for splice(): */
1413 	struct pipe_inode_info		*splice_pipe;
1414 
1415 	struct page_frag		task_frag;
1416 
1417 #ifdef CONFIG_TASK_DELAY_ACCT
1418 	struct task_delay_info		*delays;
1419 #endif
1420 
1421 #ifdef CONFIG_FAULT_INJECTION
1422 	int				make_it_fail;
1423 	unsigned int			fail_nth;
1424 #endif
1425 	/*
1426 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1427 	 * balance_dirty_pages() for a dirty throttling pause:
1428 	 */
1429 	int				nr_dirtied;
1430 	int				nr_dirtied_pause;
1431 	/* Start of a write-and-pause period: */
1432 	unsigned long			dirty_paused_when;
1433 
1434 #ifdef CONFIG_LATENCYTOP
1435 	int				latency_record_count;
1436 	struct latency_record		latency_record[LT_SAVECOUNT];
1437 #endif
1438 	/*
1439 	 * Time slack values; these are used to round up poll() and
1440 	 * select() etc timeout values. These are in nanoseconds.
1441 	 */
1442 	u64				timer_slack_ns;
1443 	u64				default_timer_slack_ns;
1444 
1445 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1446 	unsigned int			kasan_depth;
1447 #endif
1448 
1449 #ifdef CONFIG_KCSAN
1450 	struct kcsan_ctx		kcsan_ctx;
1451 #ifdef CONFIG_TRACE_IRQFLAGS
1452 	struct irqtrace_events		kcsan_save_irqtrace;
1453 #endif
1454 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1455 	int				kcsan_stack_depth;
1456 #endif
1457 #endif
1458 
1459 #ifdef CONFIG_KMSAN
1460 	struct kmsan_ctx		kmsan_ctx;
1461 #endif
1462 
1463 #if IS_ENABLED(CONFIG_KUNIT)
1464 	struct kunit			*kunit_test;
1465 #endif
1466 
1467 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1468 	/* Index of current stored address in ret_stack: */
1469 	int				curr_ret_stack;
1470 	int				curr_ret_depth;
1471 
1472 	/* Stack of return addresses for return function tracing: */
1473 	unsigned long			*ret_stack;
1474 
1475 	/* Timestamp for last schedule: */
1476 	unsigned long long		ftrace_timestamp;
1477 	unsigned long long		ftrace_sleeptime;
1478 
1479 	/*
1480 	 * Number of functions that haven't been traced
1481 	 * because of depth overrun:
1482 	 */
1483 	atomic_t			trace_overrun;
1484 
1485 	/* Pause tracing: */
1486 	atomic_t			tracing_graph_pause;
1487 #endif
1488 
1489 #ifdef CONFIG_TRACING
1490 	/* Bitmask and counter of trace recursion: */
1491 	unsigned long			trace_recursion;
1492 #endif /* CONFIG_TRACING */
1493 
1494 #ifdef CONFIG_KCOV
1495 	/* See kernel/kcov.c for more details. */
1496 
1497 	/* Coverage collection mode enabled for this task (0 if disabled): */
1498 	unsigned int			kcov_mode;
1499 
1500 	/* Size of the kcov_area: */
1501 	unsigned int			kcov_size;
1502 
1503 	/* Buffer for coverage collection: */
1504 	void				*kcov_area;
1505 
1506 	/* KCOV descriptor wired with this task or NULL: */
1507 	struct kcov			*kcov;
1508 
1509 	/* KCOV common handle for remote coverage collection: */
1510 	u64				kcov_handle;
1511 
1512 	/* KCOV sequence number: */
1513 	int				kcov_sequence;
1514 
1515 	/* Collect coverage from softirq context: */
1516 	unsigned int			kcov_softirq;
1517 #endif
1518 
1519 #ifdef CONFIG_MEMCG_V1
1520 	struct mem_cgroup		*memcg_in_oom;
1521 #endif
1522 
1523 #ifdef CONFIG_MEMCG
1524 	/* Number of pages to reclaim on returning to userland: */
1525 	unsigned int			memcg_nr_pages_over_high;
1526 
1527 	/* Used by memcontrol for targeted memcg charge: */
1528 	struct mem_cgroup		*active_memcg;
1529 
1530 	/* Cache for current->cgroups->memcg->objcg lookups: */
1531 	struct obj_cgroup		*objcg;
1532 #endif
1533 
1534 #ifdef CONFIG_BLK_CGROUP
1535 	struct gendisk			*throttle_disk;
1536 #endif
1537 
1538 #ifdef CONFIG_UPROBES
1539 	struct uprobe_task		*utask;
1540 #endif
1541 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1542 	unsigned int			sequential_io;
1543 	unsigned int			sequential_io_avg;
1544 #endif
1545 	struct kmap_ctrl		kmap_ctrl;
1546 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1547 	unsigned long			task_state_change;
1548 # ifdef CONFIG_PREEMPT_RT
1549 	unsigned long			saved_state_change;
1550 # endif
1551 #endif
1552 	struct rcu_head			rcu;
1553 	refcount_t			rcu_users;
1554 	int				pagefault_disabled;
1555 #ifdef CONFIG_MMU
1556 	struct task_struct		*oom_reaper_list;
1557 	struct timer_list		oom_reaper_timer;
1558 #endif
1559 #ifdef CONFIG_VMAP_STACK
1560 	struct vm_struct		*stack_vm_area;
1561 #endif
1562 #ifdef CONFIG_THREAD_INFO_IN_TASK
1563 	/* A live task holds one reference: */
1564 	refcount_t			stack_refcount;
1565 #endif
1566 #ifdef CONFIG_LIVEPATCH
1567 	int patch_state;
1568 #endif
1569 #ifdef CONFIG_SECURITY
1570 	/* Used by LSM modules for access restriction: */
1571 	void				*security;
1572 #endif
1573 #ifdef CONFIG_BPF_SYSCALL
1574 	/* Used by BPF task local storage */
1575 	struct bpf_local_storage __rcu	*bpf_storage;
1576 	/* Used for BPF run context */
1577 	struct bpf_run_ctx		*bpf_ctx;
1578 #endif
1579 	/* Used by BPF for per-TASK xdp storage */
1580 	struct bpf_net_context		*bpf_net_context;
1581 
1582 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1583 	unsigned long			lowest_stack;
1584 	unsigned long			prev_lowest_stack;
1585 #endif
1586 
1587 #ifdef CONFIG_X86_MCE
1588 	void __user			*mce_vaddr;
1589 	__u64				mce_kflags;
1590 	u64				mce_addr;
1591 	__u64				mce_ripv : 1,
1592 					mce_whole_page : 1,
1593 					__mce_reserved : 62;
1594 	struct callback_head		mce_kill_me;
1595 	int				mce_count;
1596 #endif
1597 
1598 #ifdef CONFIG_KRETPROBES
1599 	struct llist_head               kretprobe_instances;
1600 #endif
1601 #ifdef CONFIG_RETHOOK
1602 	struct llist_head               rethooks;
1603 #endif
1604 
1605 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1606 	/*
1607 	 * If L1D flush is supported on mm context switch
1608 	 * then we use this callback head to queue kill work
1609 	 * to kill tasks that are not running on SMT disabled
1610 	 * cores
1611 	 */
1612 	struct callback_head		l1d_flush_kill;
1613 #endif
1614 
1615 #ifdef CONFIG_RV
1616 	/*
1617 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1618 	 * If we find justification for more monitors, we can think
1619 	 * about adding more or developing a dynamic method. So far,
1620 	 * none of these are justified.
1621 	 */
1622 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1623 #endif
1624 
1625 #ifdef CONFIG_USER_EVENTS
1626 	struct user_event_mm		*user_event_mm;
1627 #endif
1628 
1629 	/*
1630 	 * New fields for task_struct should be added above here, so that
1631 	 * they are included in the randomized portion of task_struct.
1632 	 */
1633 	randomized_struct_fields_end
1634 
1635 	/* CPU-specific state of this task: */
1636 	struct thread_struct		thread;
1637 
1638 	/*
1639 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1640 	 * structure.  It *MUST* be at the end of 'task_struct'.
1641 	 *
1642 	 * Do not put anything below here!
1643 	 */
1644 };
1645 
1646 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1647 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1648 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1649 static inline unsigned int __task_state_index(unsigned int tsk_state,
1650 					      unsigned int tsk_exit_state)
1651 {
1652 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1653 
1654 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1655 
1656 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1657 		state = TASK_REPORT_IDLE;
1658 
1659 	/*
1660 	 * We're lying here, but rather than expose a completely new task state
1661 	 * to userspace, we can make this appear as if the task has gone through
1662 	 * a regular rt_mutex_lock() call.
1663 	 * Report frozen tasks as uninterruptible.
1664 	 */
1665 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1666 		state = TASK_UNINTERRUPTIBLE;
1667 
1668 	return fls(state);
1669 }
1670 
task_state_index(struct task_struct * tsk)1671 static inline unsigned int task_state_index(struct task_struct *tsk)
1672 {
1673 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1674 }
1675 
task_index_to_char(unsigned int state)1676 static inline char task_index_to_char(unsigned int state)
1677 {
1678 	static const char state_char[] = "RSDTtXZPI";
1679 
1680 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1681 
1682 	return state_char[state];
1683 }
1684 
task_state_to_char(struct task_struct * tsk)1685 static inline char task_state_to_char(struct task_struct *tsk)
1686 {
1687 	return task_index_to_char(task_state_index(tsk));
1688 }
1689 
1690 extern struct pid *cad_pid;
1691 
1692 /*
1693  * Per process flags
1694  */
1695 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1696 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1697 #define PF_EXITING		0x00000004	/* Getting shut down */
1698 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1699 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1700 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1701 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1702 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1703 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1704 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1705 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1706 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1707 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1708 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1709 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1710 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1711 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1712 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1713 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1714 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1715 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1716 						 * I am cleaning dirty pages from some other bdi. */
1717 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1718 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1719 #define PF__HOLE__00800000	0x00800000
1720 #define PF__HOLE__01000000	0x01000000
1721 #define PF__HOLE__02000000	0x02000000
1722 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1723 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1724 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1725 						 * See memalloc_pin_save() */
1726 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1727 #define PF__HOLE__40000000	0x40000000
1728 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1729 
1730 /*
1731  * Only the _current_ task can read/write to tsk->flags, but other
1732  * tasks can access tsk->flags in readonly mode for example
1733  * with tsk_used_math (like during threaded core dumping).
1734  * There is however an exception to this rule during ptrace
1735  * or during fork: the ptracer task is allowed to write to the
1736  * child->flags of its traced child (same goes for fork, the parent
1737  * can write to the child->flags), because we're guaranteed the
1738  * child is not running and in turn not changing child->flags
1739  * at the same time the parent does it.
1740  */
1741 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1742 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1743 #define clear_used_math()			clear_stopped_child_used_math(current)
1744 #define set_used_math()				set_stopped_child_used_math(current)
1745 
1746 #define conditional_stopped_child_used_math(condition, child) \
1747 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1748 
1749 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1750 
1751 #define copy_to_stopped_child_used_math(child) \
1752 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1753 
1754 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1755 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1756 #define used_math()				tsk_used_math(current)
1757 
is_percpu_thread(void)1758 static __always_inline bool is_percpu_thread(void)
1759 {
1760 #ifdef CONFIG_SMP
1761 	return (current->flags & PF_NO_SETAFFINITY) &&
1762 		(current->nr_cpus_allowed  == 1);
1763 #else
1764 	return true;
1765 #endif
1766 }
1767 
1768 /* Per-process atomic flags. */
1769 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1770 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1771 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1772 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1773 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1774 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1775 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1776 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1777 
1778 #define TASK_PFA_TEST(name, func)					\
1779 	static inline bool task_##func(struct task_struct *p)		\
1780 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1781 
1782 #define TASK_PFA_SET(name, func)					\
1783 	static inline void task_set_##func(struct task_struct *p)	\
1784 	{ set_bit(PFA_##name, &p->atomic_flags); }
1785 
1786 #define TASK_PFA_CLEAR(name, func)					\
1787 	static inline void task_clear_##func(struct task_struct *p)	\
1788 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1789 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1790 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1791 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1792 
1793 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1794 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1795 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1796 
1797 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1798 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1799 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1800 
1801 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1802 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1803 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1804 
1805 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1806 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1807 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1808 
1809 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1810 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1811 
1812 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1813 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1814 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1815 
1816 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1817 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1818 
1819 static inline void
1820 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1821 {
1822 	current->flags &= ~flags;
1823 	current->flags |= orig_flags & flags;
1824 }
1825 
1826 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1827 extern int task_can_attach(struct task_struct *p);
1828 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1829 extern void dl_bw_free(int cpu, u64 dl_bw);
1830 #ifdef CONFIG_SMP
1831 
1832 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1833 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1834 
1835 /**
1836  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1837  * @p: the task
1838  * @new_mask: CPU affinity mask
1839  *
1840  * Return: zero if successful, or a negative error code
1841  */
1842 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1843 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1844 extern void release_user_cpus_ptr(struct task_struct *p);
1845 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1846 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1847 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1848 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1849 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1850 {
1851 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1852 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1853 {
1854 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1855 	if ((*cpumask_bits(new_mask) & 1) == 0)
1856 		return -EINVAL;
1857 	return 0;
1858 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1859 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1860 {
1861 	if (src->user_cpus_ptr)
1862 		return -EINVAL;
1863 	return 0;
1864 }
release_user_cpus_ptr(struct task_struct * p)1865 static inline void release_user_cpus_ptr(struct task_struct *p)
1866 {
1867 	WARN_ON(p->user_cpus_ptr);
1868 }
1869 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1870 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1871 {
1872 	return 0;
1873 }
1874 #endif
1875 
1876 extern int yield_to(struct task_struct *p, bool preempt);
1877 extern void set_user_nice(struct task_struct *p, long nice);
1878 extern int task_prio(const struct task_struct *p);
1879 
1880 /**
1881  * task_nice - return the nice value of a given task.
1882  * @p: the task in question.
1883  *
1884  * Return: The nice value [ -20 ... 0 ... 19 ].
1885  */
task_nice(const struct task_struct * p)1886 static inline int task_nice(const struct task_struct *p)
1887 {
1888 	return PRIO_TO_NICE((p)->static_prio);
1889 }
1890 
1891 extern int can_nice(const struct task_struct *p, const int nice);
1892 extern int task_curr(const struct task_struct *p);
1893 extern int idle_cpu(int cpu);
1894 extern int available_idle_cpu(int cpu);
1895 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1896 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1897 extern void sched_set_fifo(struct task_struct *p);
1898 extern void sched_set_fifo_low(struct task_struct *p);
1899 extern void sched_set_normal(struct task_struct *p, int nice);
1900 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1901 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1902 extern struct task_struct *idle_task(int cpu);
1903 
1904 /**
1905  * is_idle_task - is the specified task an idle task?
1906  * @p: the task in question.
1907  *
1908  * Return: 1 if @p is an idle task. 0 otherwise.
1909  */
is_idle_task(const struct task_struct * p)1910 static __always_inline bool is_idle_task(const struct task_struct *p)
1911 {
1912 	return !!(p->flags & PF_IDLE);
1913 }
1914 
1915 extern struct task_struct *curr_task(int cpu);
1916 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1917 
1918 void yield(void);
1919 
1920 union thread_union {
1921 	struct task_struct task;
1922 #ifndef CONFIG_THREAD_INFO_IN_TASK
1923 	struct thread_info thread_info;
1924 #endif
1925 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1926 };
1927 
1928 #ifndef CONFIG_THREAD_INFO_IN_TASK
1929 extern struct thread_info init_thread_info;
1930 #endif
1931 
1932 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1933 
1934 #ifdef CONFIG_THREAD_INFO_IN_TASK
1935 # define task_thread_info(task)	(&(task)->thread_info)
1936 #else
1937 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1938 #endif
1939 
1940 /*
1941  * find a task by one of its numerical ids
1942  *
1943  * find_task_by_pid_ns():
1944  *      finds a task by its pid in the specified namespace
1945  * find_task_by_vpid():
1946  *      finds a task by its virtual pid
1947  *
1948  * see also find_vpid() etc in include/linux/pid.h
1949  */
1950 
1951 extern struct task_struct *find_task_by_vpid(pid_t nr);
1952 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1953 
1954 /*
1955  * find a task by its virtual pid and get the task struct
1956  */
1957 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1958 
1959 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1960 extern int wake_up_process(struct task_struct *tsk);
1961 extern void wake_up_new_task(struct task_struct *tsk);
1962 
1963 #ifdef CONFIG_SMP
1964 extern void kick_process(struct task_struct *tsk);
1965 #else
kick_process(struct task_struct * tsk)1966 static inline void kick_process(struct task_struct *tsk) { }
1967 #endif
1968 
1969 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1970 #define set_task_comm(tsk, from) ({			\
1971 	BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);	\
1972 	__set_task_comm(tsk, from, false);		\
1973 })
1974 
1975 /*
1976  * - Why not use task_lock()?
1977  *   User space can randomly change their names anyway, so locking for readers
1978  *   doesn't make sense. For writers, locking is probably necessary, as a race
1979  *   condition could lead to long-term mixed results.
1980  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1981  *   always NUL-terminated and zero-padded. Therefore the race condition between
1982  *   reader and writer is not an issue.
1983  *
1984  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1985  *   Since the callers don't perform any return value checks, this safeguard is
1986  *   necessary.
1987  */
1988 #define get_task_comm(buf, tsk) ({			\
1989 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
1990 	strscpy_pad(buf, (tsk)->comm);			\
1991 	buf;						\
1992 })
1993 
1994 #ifdef CONFIG_SMP
scheduler_ipi(void)1995 static __always_inline void scheduler_ipi(void)
1996 {
1997 	/*
1998 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1999 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2000 	 * this IPI.
2001 	 */
2002 	preempt_fold_need_resched();
2003 }
2004 #else
scheduler_ipi(void)2005 static inline void scheduler_ipi(void) { }
2006 #endif
2007 
2008 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2009 
2010 /*
2011  * Set thread flags in other task's structures.
2012  * See asm/thread_info.h for TIF_xxxx flags available:
2013  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2014 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2015 {
2016 	set_ti_thread_flag(task_thread_info(tsk), flag);
2017 }
2018 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2019 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2020 {
2021 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2022 }
2023 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2024 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2025 					  bool value)
2026 {
2027 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2028 }
2029 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2030 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2031 {
2032 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2033 }
2034 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2035 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2036 {
2037 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2038 }
2039 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2040 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2041 {
2042 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2043 }
2044 
set_tsk_need_resched(struct task_struct * tsk)2045 static inline void set_tsk_need_resched(struct task_struct *tsk)
2046 {
2047 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2048 }
2049 
clear_tsk_need_resched(struct task_struct * tsk)2050 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2051 {
2052 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2053 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2054 }
2055 
test_tsk_need_resched(struct task_struct * tsk)2056 static inline int test_tsk_need_resched(struct task_struct *tsk)
2057 {
2058 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2059 }
2060 
2061 /*
2062  * cond_resched() and cond_resched_lock(): latency reduction via
2063  * explicit rescheduling in places that are safe. The return
2064  * value indicates whether a reschedule was done in fact.
2065  * cond_resched_lock() will drop the spinlock before scheduling,
2066  */
2067 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2068 extern int __cond_resched(void);
2069 
2070 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2071 
2072 void sched_dynamic_klp_enable(void);
2073 void sched_dynamic_klp_disable(void);
2074 
2075 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2076 
_cond_resched(void)2077 static __always_inline int _cond_resched(void)
2078 {
2079 	return static_call_mod(cond_resched)();
2080 }
2081 
2082 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2083 
2084 extern int dynamic_cond_resched(void);
2085 
_cond_resched(void)2086 static __always_inline int _cond_resched(void)
2087 {
2088 	return dynamic_cond_resched();
2089 }
2090 
2091 #else /* !CONFIG_PREEMPTION */
2092 
_cond_resched(void)2093 static inline int _cond_resched(void)
2094 {
2095 	klp_sched_try_switch();
2096 	return __cond_resched();
2097 }
2098 
2099 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2100 
2101 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2102 
_cond_resched(void)2103 static inline int _cond_resched(void)
2104 {
2105 	klp_sched_try_switch();
2106 	return 0;
2107 }
2108 
2109 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2110 
2111 #define cond_resched() ({			\
2112 	__might_resched(__FILE__, __LINE__, 0);	\
2113 	_cond_resched();			\
2114 })
2115 
2116 extern int __cond_resched_lock(spinlock_t *lock);
2117 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2118 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2119 
2120 #define MIGHT_RESCHED_RCU_SHIFT		8
2121 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2122 
2123 #ifndef CONFIG_PREEMPT_RT
2124 /*
2125  * Non RT kernels have an elevated preempt count due to the held lock,
2126  * but are not allowed to be inside a RCU read side critical section
2127  */
2128 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2129 #else
2130 /*
2131  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2132  * cond_resched*lock() has to take that into account because it checks for
2133  * preempt_count() and rcu_preempt_depth().
2134  */
2135 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2136 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2137 #endif
2138 
2139 #define cond_resched_lock(lock) ({						\
2140 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2141 	__cond_resched_lock(lock);						\
2142 })
2143 
2144 #define cond_resched_rwlock_read(lock) ({					\
2145 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2146 	__cond_resched_rwlock_read(lock);					\
2147 })
2148 
2149 #define cond_resched_rwlock_write(lock) ({					\
2150 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2151 	__cond_resched_rwlock_write(lock);					\
2152 })
2153 
need_resched(void)2154 static __always_inline bool need_resched(void)
2155 {
2156 	return unlikely(tif_need_resched());
2157 }
2158 
2159 /*
2160  * Wrappers for p->thread_info->cpu access. No-op on UP.
2161  */
2162 #ifdef CONFIG_SMP
2163 
task_cpu(const struct task_struct * p)2164 static inline unsigned int task_cpu(const struct task_struct *p)
2165 {
2166 	return READ_ONCE(task_thread_info(p)->cpu);
2167 }
2168 
2169 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2170 
2171 #else
2172 
task_cpu(const struct task_struct * p)2173 static inline unsigned int task_cpu(const struct task_struct *p)
2174 {
2175 	return 0;
2176 }
2177 
set_task_cpu(struct task_struct * p,unsigned int cpu)2178 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2179 {
2180 }
2181 
2182 #endif /* CONFIG_SMP */
2183 
task_is_runnable(struct task_struct * p)2184 static inline bool task_is_runnable(struct task_struct *p)
2185 {
2186 	return p->on_rq && !p->se.sched_delayed;
2187 }
2188 
2189 extern bool sched_task_on_rq(struct task_struct *p);
2190 extern unsigned long get_wchan(struct task_struct *p);
2191 extern struct task_struct *cpu_curr_snapshot(int cpu);
2192 
2193 #include <linux/spinlock.h>
2194 
2195 /*
2196  * In order to reduce various lock holder preemption latencies provide an
2197  * interface to see if a vCPU is currently running or not.
2198  *
2199  * This allows us to terminate optimistic spin loops and block, analogous to
2200  * the native optimistic spin heuristic of testing if the lock owner task is
2201  * running or not.
2202  */
2203 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2204 static inline bool vcpu_is_preempted(int cpu)
2205 {
2206 	return false;
2207 }
2208 #endif
2209 
2210 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2211 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2212 
2213 #ifndef TASK_SIZE_OF
2214 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2215 #endif
2216 
2217 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2218 static inline bool owner_on_cpu(struct task_struct *owner)
2219 {
2220 	/*
2221 	 * As lock holder preemption issue, we both skip spinning if
2222 	 * task is not on cpu or its cpu is preempted
2223 	 */
2224 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2225 }
2226 
2227 /* Returns effective CPU energy utilization, as seen by the scheduler */
2228 unsigned long sched_cpu_util(int cpu);
2229 #endif /* CONFIG_SMP */
2230 
2231 #ifdef CONFIG_SCHED_CORE
2232 extern void sched_core_free(struct task_struct *tsk);
2233 extern void sched_core_fork(struct task_struct *p);
2234 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2235 				unsigned long uaddr);
2236 extern int sched_core_idle_cpu(int cpu);
2237 #else
sched_core_free(struct task_struct * tsk)2238 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2239 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2240 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2241 #endif
2242 
2243 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2244 
2245 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2246 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2247 {
2248 	swap(current->alloc_tag, tag);
2249 	return tag;
2250 }
2251 
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2252 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2253 {
2254 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2255 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2256 #endif
2257 	current->alloc_tag = old;
2258 }
2259 #else
2260 #define alloc_tag_save(_tag)			NULL
2261 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2262 #endif
2263 
2264 #endif
2265