1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 #define PERF_GUEST_ACTIVE 0x01
30 #define PERF_GUEST_USER 0x02
31
32 struct perf_guest_info_callbacks {
33 unsigned int (*state)(void);
34 unsigned long (*get_ip)(void);
35 unsigned int (*handle_intel_pt_intr)(void);
36 };
37
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66
67 struct perf_callchain_entry {
68 __u64 nr;
69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71
72 struct perf_callchain_entry_ctx {
73 struct perf_callchain_entry *entry;
74 u32 max_stack;
75 u32 nr;
76 short contexts;
77 bool contexts_maxed;
78 };
79
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 unsigned long off, unsigned long len);
82
83 struct perf_raw_frag {
84 union {
85 struct perf_raw_frag *next;
86 unsigned long pad;
87 };
88 perf_copy_f copy;
89 void *data;
90 u32 size;
91 } __packed;
92
93 struct perf_raw_record {
94 struct perf_raw_frag frag;
95 u32 size;
96 };
97
perf_raw_frag_last(const struct perf_raw_frag * frag)98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 return frag->pad < sizeof(u64);
101 }
102
103 /*
104 * branch stack layout:
105 * nr: number of taken branches stored in entries[]
106 * hw_idx: The low level index of raw branch records
107 * for the most recent branch.
108 * -1ULL means invalid/unknown.
109 *
110 * Note that nr can vary from sample to sample
111 * branches (to, from) are stored from most recent
112 * to least recent, i.e., entries[0] contains the most
113 * recent branch.
114 * The entries[] is an abstraction of raw branch records,
115 * which may not be stored in age order in HW, e.g. Intel LBR.
116 * The hw_idx is to expose the low level index of raw
117 * branch record for the most recent branch aka entries[0].
118 * The hw_idx index is between -1 (unknown) and max depth,
119 * which can be retrieved in /sys/devices/cpu/caps/branches.
120 * For the architectures whose raw branch records are
121 * already stored in age order, the hw_idx should be 0.
122 */
123 struct perf_branch_stack {
124 __u64 nr;
125 __u64 hw_idx;
126 struct perf_branch_entry entries[];
127 };
128
129 struct task_struct;
130
131 /*
132 * extra PMU register associated with an event
133 */
134 struct hw_perf_event_extra {
135 u64 config; /* register value */
136 unsigned int reg; /* register address or index */
137 int alloc; /* extra register already allocated */
138 int idx; /* index in shared_regs->regs[] */
139 };
140
141 /**
142 * hw_perf_event::flag values
143 *
144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145 * usage.
146 */
147 #define PERF_EVENT_FLAG_ARCH 0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000
149
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151
152 /**
153 * struct hw_perf_event - performance event hardware details:
154 */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 union {
158 struct { /* hardware */
159 u64 config;
160 u64 last_tag;
161 unsigned long config_base;
162 unsigned long event_base;
163 int event_base_rdpmc;
164 int idx;
165 int last_cpu;
166 int flags;
167
168 struct hw_perf_event_extra extra_reg;
169 struct hw_perf_event_extra branch_reg;
170 };
171 struct { /* aux / Intel-PT */
172 u64 aux_config;
173 /*
174 * For AUX area events, aux_paused cannot be a state
175 * flag because it can be updated asynchronously to
176 * state.
177 */
178 unsigned int aux_paused;
179 };
180 struct { /* software */
181 struct hrtimer hrtimer;
182 };
183 struct { /* tracepoint */
184 /* for tp_event->class */
185 struct list_head tp_list;
186 };
187 struct { /* amd_power */
188 u64 pwr_acc;
189 u64 ptsc;
190 };
191 #ifdef CONFIG_HAVE_HW_BREAKPOINT
192 struct { /* breakpoint */
193 /*
194 * Crufty hack to avoid the chicken and egg
195 * problem hw_breakpoint has with context
196 * creation and event initalization.
197 */
198 struct arch_hw_breakpoint info;
199 struct rhlist_head bp_list;
200 };
201 #endif
202 struct { /* amd_iommu */
203 u8 iommu_bank;
204 u8 iommu_cntr;
205 u16 padding;
206 u64 conf;
207 u64 conf1;
208 };
209 };
210 /*
211 * If the event is a per task event, this will point to the task in
212 * question. See the comment in perf_event_alloc().
213 */
214 struct task_struct *target;
215
216 /*
217 * PMU would store hardware filter configuration
218 * here.
219 */
220 void *addr_filters;
221
222 /* Last sync'ed generation of filters */
223 unsigned long addr_filters_gen;
224
225 /*
226 * hw_perf_event::state flags; used to track the PERF_EF_* state.
227 */
228 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
229 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
230 #define PERF_HES_ARCH 0x04
231
232 int state;
233
234 /*
235 * The last observed hardware counter value, updated with a
236 * local64_cmpxchg() such that pmu::read() can be called nested.
237 */
238 local64_t prev_count;
239
240 /*
241 * The period to start the next sample with.
242 */
243 u64 sample_period;
244
245 union {
246 struct { /* Sampling */
247 /*
248 * The period we started this sample with.
249 */
250 u64 last_period;
251
252 /*
253 * However much is left of the current period;
254 * note that this is a full 64bit value and
255 * allows for generation of periods longer
256 * than hardware might allow.
257 */
258 local64_t period_left;
259 };
260 struct { /* Topdown events counting for context switch */
261 u64 saved_metric;
262 u64 saved_slots;
263 };
264 };
265
266 /*
267 * State for throttling the event, see __perf_event_overflow() and
268 * perf_adjust_freq_unthr_context().
269 */
270 u64 interrupts_seq;
271 u64 interrupts;
272
273 /*
274 * State for freq target events, see __perf_event_overflow() and
275 * perf_adjust_freq_unthr_context().
276 */
277 u64 freq_time_stamp;
278 u64 freq_count_stamp;
279 #endif
280 };
281
282 struct perf_event;
283 struct perf_event_pmu_context;
284
285 /*
286 * Common implementation detail of pmu::{start,commit,cancel}_txn
287 */
288 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
289 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
290
291 /**
292 * pmu::capabilities flags
293 */
294 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
295 #define PERF_PMU_CAP_NO_NMI 0x0002
296 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
297 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
298 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
299 #define PERF_PMU_CAP_ITRACE 0x0020
300 #define PERF_PMU_CAP_NO_EXCLUDE 0x0040
301 #define PERF_PMU_CAP_AUX_OUTPUT 0x0080
302 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100
303 #define PERF_PMU_CAP_AUX_PAUSE 0x0200
304
305 /**
306 * pmu::scope
307 */
308 enum perf_pmu_scope {
309 PERF_PMU_SCOPE_NONE = 0,
310 PERF_PMU_SCOPE_CORE,
311 PERF_PMU_SCOPE_DIE,
312 PERF_PMU_SCOPE_CLUSTER,
313 PERF_PMU_SCOPE_PKG,
314 PERF_PMU_SCOPE_SYS_WIDE,
315 PERF_PMU_MAX_SCOPE,
316 };
317
318 struct perf_output_handle;
319
320 #define PMU_NULL_DEV ((void *)(~0UL))
321
322 /**
323 * struct pmu - generic performance monitoring unit
324 */
325 struct pmu {
326 struct list_head entry;
327
328 struct module *module;
329 struct device *dev;
330 struct device *parent;
331 const struct attribute_group **attr_groups;
332 const struct attribute_group **attr_update;
333 const char *name;
334 int type;
335
336 /*
337 * various common per-pmu feature flags
338 */
339 int capabilities;
340
341 /*
342 * PMU scope
343 */
344 unsigned int scope;
345
346 int __percpu *pmu_disable_count;
347 struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
348 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
349 int task_ctx_nr;
350 int hrtimer_interval_ms;
351
352 /* number of address filters this PMU can do */
353 unsigned int nr_addr_filters;
354
355 /*
356 * Fully disable/enable this PMU, can be used to protect from the PMI
357 * as well as for lazy/batch writing of the MSRs.
358 */
359 void (*pmu_enable) (struct pmu *pmu); /* optional */
360 void (*pmu_disable) (struct pmu *pmu); /* optional */
361
362 /*
363 * Try and initialize the event for this PMU.
364 *
365 * Returns:
366 * -ENOENT -- @event is not for this PMU
367 *
368 * -ENODEV -- @event is for this PMU but PMU not present
369 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
370 * -EINVAL -- @event is for this PMU but @event is not valid
371 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
372 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
373 *
374 * 0 -- @event is for this PMU and valid
375 *
376 * Other error return values are allowed.
377 */
378 int (*event_init) (struct perf_event *event);
379
380 /*
381 * Notification that the event was mapped or unmapped. Called
382 * in the context of the mapping task.
383 */
384 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
385 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
386
387 /*
388 * Flags for ->add()/->del()/ ->start()/->stop(). There are
389 * matching hw_perf_event::state flags.
390 */
391 #define PERF_EF_START 0x01 /* start the counter when adding */
392 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
393 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
394 #define PERF_EF_PAUSE 0x08 /* AUX area event, pause tracing */
395 #define PERF_EF_RESUME 0x10 /* AUX area event, resume tracing */
396
397 /*
398 * Adds/Removes a counter to/from the PMU, can be done inside a
399 * transaction, see the ->*_txn() methods.
400 *
401 * The add/del callbacks will reserve all hardware resources required
402 * to service the event, this includes any counter constraint
403 * scheduling etc.
404 *
405 * Called with IRQs disabled and the PMU disabled on the CPU the event
406 * is on.
407 *
408 * ->add() called without PERF_EF_START should result in the same state
409 * as ->add() followed by ->stop().
410 *
411 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
412 * ->stop() that must deal with already being stopped without
413 * PERF_EF_UPDATE.
414 */
415 int (*add) (struct perf_event *event, int flags);
416 void (*del) (struct perf_event *event, int flags);
417
418 /*
419 * Starts/Stops a counter present on the PMU.
420 *
421 * The PMI handler should stop the counter when perf_event_overflow()
422 * returns !0. ->start() will be used to continue.
423 *
424 * Also used to change the sample period.
425 *
426 * Called with IRQs disabled and the PMU disabled on the CPU the event
427 * is on -- will be called from NMI context with the PMU generates
428 * NMIs.
429 *
430 * ->stop() with PERF_EF_UPDATE will read the counter and update
431 * period/count values like ->read() would.
432 *
433 * ->start() with PERF_EF_RELOAD will reprogram the counter
434 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
435 *
436 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not
437 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with
438 * PERF_EF_RESUME.
439 *
440 * ->start() with PERF_EF_RESUME will start as simply as possible but
441 * only if the counter is not otherwise stopped. Will not overlap
442 * another ->start() with PERF_EF_RESUME nor ->stop() with
443 * PERF_EF_PAUSE.
444 *
445 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other
446 * ->stop()/->start() invocations, just not itself.
447 */
448 void (*start) (struct perf_event *event, int flags);
449 void (*stop) (struct perf_event *event, int flags);
450
451 /*
452 * Updates the counter value of the event.
453 *
454 * For sampling capable PMUs this will also update the software period
455 * hw_perf_event::period_left field.
456 */
457 void (*read) (struct perf_event *event);
458
459 /*
460 * Group events scheduling is treated as a transaction, add
461 * group events as a whole and perform one schedulability test.
462 * If the test fails, roll back the whole group
463 *
464 * Start the transaction, after this ->add() doesn't need to
465 * do schedulability tests.
466 *
467 * Optional.
468 */
469 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
470 /*
471 * If ->start_txn() disabled the ->add() schedulability test
472 * then ->commit_txn() is required to perform one. On success
473 * the transaction is closed. On error the transaction is kept
474 * open until ->cancel_txn() is called.
475 *
476 * Optional.
477 */
478 int (*commit_txn) (struct pmu *pmu);
479 /*
480 * Will cancel the transaction, assumes ->del() is called
481 * for each successful ->add() during the transaction.
482 *
483 * Optional.
484 */
485 void (*cancel_txn) (struct pmu *pmu);
486
487 /*
488 * Will return the value for perf_event_mmap_page::index for this event,
489 * if no implementation is provided it will default to 0 (see
490 * perf_event_idx_default).
491 */
492 int (*event_idx) (struct perf_event *event); /*optional */
493
494 /*
495 * context-switches callback
496 */
497 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx,
498 struct task_struct *task, bool sched_in);
499
500 /*
501 * Kmem cache of PMU specific data
502 */
503 struct kmem_cache *task_ctx_cache;
504
505 /*
506 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
507 * can be synchronized using this function. See Intel LBR callstack support
508 * implementation and Perf core context switch handling callbacks for usage
509 * examples.
510 */
511 void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc,
512 struct perf_event_pmu_context *next_epc);
513 /* optional */
514
515 /*
516 * Set up pmu-private data structures for an AUX area
517 */
518 void *(*setup_aux) (struct perf_event *event, void **pages,
519 int nr_pages, bool overwrite);
520 /* optional */
521
522 /*
523 * Free pmu-private AUX data structures
524 */
525 void (*free_aux) (void *aux); /* optional */
526
527 /*
528 * Take a snapshot of the AUX buffer without touching the event
529 * state, so that preempting ->start()/->stop() callbacks does
530 * not interfere with their logic. Called in PMI context.
531 *
532 * Returns the size of AUX data copied to the output handle.
533 *
534 * Optional.
535 */
536 long (*snapshot_aux) (struct perf_event *event,
537 struct perf_output_handle *handle,
538 unsigned long size);
539
540 /*
541 * Validate address range filters: make sure the HW supports the
542 * requested configuration and number of filters; return 0 if the
543 * supplied filters are valid, -errno otherwise.
544 *
545 * Runs in the context of the ioctl()ing process and is not serialized
546 * with the rest of the PMU callbacks.
547 */
548 int (*addr_filters_validate) (struct list_head *filters);
549 /* optional */
550
551 /*
552 * Synchronize address range filter configuration:
553 * translate hw-agnostic filters into hardware configuration in
554 * event::hw::addr_filters.
555 *
556 * Runs as a part of filter sync sequence that is done in ->start()
557 * callback by calling perf_event_addr_filters_sync().
558 *
559 * May (and should) traverse event::addr_filters::list, for which its
560 * caller provides necessary serialization.
561 */
562 void (*addr_filters_sync) (struct perf_event *event);
563 /* optional */
564
565 /*
566 * Check if event can be used for aux_output purposes for
567 * events of this PMU.
568 *
569 * Runs from perf_event_open(). Should return 0 for "no match"
570 * or non-zero for "match".
571 */
572 int (*aux_output_match) (struct perf_event *event);
573 /* optional */
574
575 /*
576 * Skip programming this PMU on the given CPU. Typically needed for
577 * big.LITTLE things.
578 */
579 bool (*filter) (struct pmu *pmu, int cpu); /* optional */
580
581 /*
582 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
583 */
584 int (*check_period) (struct perf_event *event, u64 value); /* optional */
585 };
586
587 enum perf_addr_filter_action_t {
588 PERF_ADDR_FILTER_ACTION_STOP = 0,
589 PERF_ADDR_FILTER_ACTION_START,
590 PERF_ADDR_FILTER_ACTION_FILTER,
591 };
592
593 /**
594 * struct perf_addr_filter - address range filter definition
595 * @entry: event's filter list linkage
596 * @path: object file's path for file-based filters
597 * @offset: filter range offset
598 * @size: filter range size (size==0 means single address trigger)
599 * @action: filter/start/stop
600 *
601 * This is a hardware-agnostic filter configuration as specified by the user.
602 */
603 struct perf_addr_filter {
604 struct list_head entry;
605 struct path path;
606 unsigned long offset;
607 unsigned long size;
608 enum perf_addr_filter_action_t action;
609 };
610
611 /**
612 * struct perf_addr_filters_head - container for address range filters
613 * @list: list of filters for this event
614 * @lock: spinlock that serializes accesses to the @list and event's
615 * (and its children's) filter generations.
616 * @nr_file_filters: number of file-based filters
617 *
618 * A child event will use parent's @list (and therefore @lock), so they are
619 * bundled together; see perf_event_addr_filters().
620 */
621 struct perf_addr_filters_head {
622 struct list_head list;
623 raw_spinlock_t lock;
624 unsigned int nr_file_filters;
625 };
626
627 struct perf_addr_filter_range {
628 unsigned long start;
629 unsigned long size;
630 };
631
632 /**
633 * enum perf_event_state - the states of an event:
634 */
635 enum perf_event_state {
636 PERF_EVENT_STATE_DEAD = -4,
637 PERF_EVENT_STATE_EXIT = -3,
638 PERF_EVENT_STATE_ERROR = -2,
639 PERF_EVENT_STATE_OFF = -1,
640 PERF_EVENT_STATE_INACTIVE = 0,
641 PERF_EVENT_STATE_ACTIVE = 1,
642 };
643
644 struct file;
645 struct perf_sample_data;
646
647 typedef void (*perf_overflow_handler_t)(struct perf_event *,
648 struct perf_sample_data *,
649 struct pt_regs *regs);
650
651 /*
652 * Event capabilities. For event_caps and groups caps.
653 *
654 * PERF_EV_CAP_SOFTWARE: Is a software event.
655 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
656 * from any CPU in the package where it is active.
657 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
658 * cannot be a group leader. If an event with this flag is detached from the
659 * group it is scheduled out and moved into an unrecoverable ERROR state.
660 * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
661 * PMU scope where it is active.
662 */
663 #define PERF_EV_CAP_SOFTWARE BIT(0)
664 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
665 #define PERF_EV_CAP_SIBLING BIT(2)
666 #define PERF_EV_CAP_READ_SCOPE BIT(3)
667
668 #define SWEVENT_HLIST_BITS 8
669 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
670
671 struct swevent_hlist {
672 struct hlist_head heads[SWEVENT_HLIST_SIZE];
673 struct rcu_head rcu_head;
674 };
675
676 #define PERF_ATTACH_CONTEXT 0x0001
677 #define PERF_ATTACH_GROUP 0x0002
678 #define PERF_ATTACH_TASK 0x0004
679 #define PERF_ATTACH_TASK_DATA 0x0008
680 #define PERF_ATTACH_ITRACE 0x0010
681 #define PERF_ATTACH_SCHED_CB 0x0020
682 #define PERF_ATTACH_CHILD 0x0040
683 #define PERF_ATTACH_EXCLUSIVE 0x0080
684 #define PERF_ATTACH_CALLCHAIN 0x0100
685
686 struct bpf_prog;
687 struct perf_cgroup;
688 struct perf_buffer;
689
690 struct pmu_event_list {
691 raw_spinlock_t lock;
692 struct list_head list;
693 };
694
695 /*
696 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
697 * as such iteration must hold either lock. However, since ctx->lock is an IRQ
698 * safe lock, and is only held by the CPU doing the modification, having IRQs
699 * disabled is sufficient since it will hold-off the IPIs.
700 */
701 #ifdef CONFIG_PROVE_LOCKING
702 #define lockdep_assert_event_ctx(event) \
703 WARN_ON_ONCE(__lockdep_enabled && \
704 (this_cpu_read(hardirqs_enabled) && \
705 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
706 #else
707 #define lockdep_assert_event_ctx(event)
708 #endif
709
710 #define for_each_sibling_event(sibling, event) \
711 lockdep_assert_event_ctx(event); \
712 if ((event)->group_leader == (event)) \
713 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
714
715 /**
716 * struct perf_event - performance event kernel representation:
717 */
718 struct perf_event {
719 #ifdef CONFIG_PERF_EVENTS
720 /*
721 * entry onto perf_event_context::event_list;
722 * modifications require ctx->lock
723 * RCU safe iterations.
724 */
725 struct list_head event_entry;
726
727 /*
728 * Locked for modification by both ctx->mutex and ctx->lock; holding
729 * either sufficies for read.
730 */
731 struct list_head sibling_list;
732 struct list_head active_list;
733 /*
734 * Node on the pinned or flexible tree located at the event context;
735 */
736 struct rb_node group_node;
737 u64 group_index;
738 /*
739 * We need storage to track the entries in perf_pmu_migrate_context; we
740 * cannot use the event_entry because of RCU and we want to keep the
741 * group in tact which avoids us using the other two entries.
742 */
743 struct list_head migrate_entry;
744
745 struct hlist_node hlist_entry;
746 struct list_head active_entry;
747 int nr_siblings;
748
749 /* Not serialized. Only written during event initialization. */
750 int event_caps;
751 /* The cumulative AND of all event_caps for events in this group. */
752 int group_caps;
753
754 unsigned int group_generation;
755 struct perf_event *group_leader;
756 /*
757 * event->pmu will always point to pmu in which this event belongs.
758 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
759 * different pmu events is created.
760 */
761 struct pmu *pmu;
762 void *pmu_private;
763
764 enum perf_event_state state;
765 unsigned int attach_state;
766 local64_t count;
767 atomic64_t child_count;
768
769 /*
770 * These are the total time in nanoseconds that the event
771 * has been enabled (i.e. eligible to run, and the task has
772 * been scheduled in, if this is a per-task event)
773 * and running (scheduled onto the CPU), respectively.
774 */
775 u64 total_time_enabled;
776 u64 total_time_running;
777 u64 tstamp;
778
779 struct perf_event_attr attr;
780 u16 header_size;
781 u16 id_header_size;
782 u16 read_size;
783 struct hw_perf_event hw;
784
785 struct perf_event_context *ctx;
786 /*
787 * event->pmu_ctx points to perf_event_pmu_context in which the event
788 * is added. This pmu_ctx can be of other pmu for sw event when that
789 * sw event is part of a group which also contains non-sw events.
790 */
791 struct perf_event_pmu_context *pmu_ctx;
792 atomic_long_t refcount;
793
794 /*
795 * These accumulate total time (in nanoseconds) that children
796 * events have been enabled and running, respectively.
797 */
798 atomic64_t child_total_time_enabled;
799 atomic64_t child_total_time_running;
800
801 /*
802 * Protect attach/detach and child_list:
803 */
804 struct mutex child_mutex;
805 struct list_head child_list;
806 struct perf_event *parent;
807
808 int oncpu;
809 int cpu;
810
811 struct list_head owner_entry;
812 struct task_struct *owner;
813
814 /* mmap bits */
815 struct mutex mmap_mutex;
816 atomic_t mmap_count;
817
818 struct perf_buffer *rb;
819 struct list_head rb_entry;
820 unsigned long rcu_batches;
821 int rcu_pending;
822
823 /* poll related */
824 wait_queue_head_t waitq;
825 struct fasync_struct *fasync;
826
827 /* delayed work for NMIs and such */
828 unsigned int pending_wakeup;
829 unsigned int pending_kill;
830 unsigned int pending_disable;
831 unsigned long pending_addr; /* SIGTRAP */
832 struct irq_work pending_irq;
833 struct irq_work pending_disable_irq;
834 struct callback_head pending_task;
835 unsigned int pending_work;
836
837 atomic_t event_limit;
838
839 /* address range filters */
840 struct perf_addr_filters_head addr_filters;
841 /* vma address array for file-based filders */
842 struct perf_addr_filter_range *addr_filter_ranges;
843 unsigned long addr_filters_gen;
844
845 /* for aux_output events */
846 struct perf_event *aux_event;
847
848 void (*destroy)(struct perf_event *);
849 struct rcu_head rcu_head;
850
851 struct pid_namespace *ns;
852 u64 id;
853
854 atomic64_t lost_samples;
855
856 u64 (*clock)(void);
857 perf_overflow_handler_t overflow_handler;
858 void *overflow_handler_context;
859 struct bpf_prog *prog;
860 u64 bpf_cookie;
861
862 #ifdef CONFIG_EVENT_TRACING
863 struct trace_event_call *tp_event;
864 struct event_filter *filter;
865 #ifdef CONFIG_FUNCTION_TRACER
866 struct ftrace_ops ftrace_ops;
867 #endif
868 #endif
869
870 #ifdef CONFIG_CGROUP_PERF
871 struct perf_cgroup *cgrp; /* cgroup event is attach to */
872 #endif
873
874 #ifdef CONFIG_SECURITY
875 void *security;
876 #endif
877 struct list_head sb_list;
878
879 /*
880 * Certain events gets forwarded to another pmu internally by over-
881 * writing kernel copy of event->attr.type without user being aware
882 * of it. event->orig_type contains original 'type' requested by
883 * user.
884 */
885 __u32 orig_type;
886 #endif /* CONFIG_PERF_EVENTS */
887 };
888
889 /*
890 * ,-----------------------[1:n]------------------------.
891 * V V
892 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
893 * | |
894 * `--[n:1]-> pmu <-[1:n]--'
895 *
896 *
897 * struct perf_event_pmu_context lifetime is refcount based and RCU freed
898 * (similar to perf_event_context). Locking is as if it were a member of
899 * perf_event_context; specifically:
900 *
901 * modification, both: ctx->mutex && ctx->lock
902 * reading, either: ctx->mutex || ctx->lock
903 *
904 * There is one exception to this; namely put_pmu_ctx() isn't always called
905 * with ctx->mutex held; this means that as long as we can guarantee the epc
906 * has events the above rules hold.
907 *
908 * Specificially, sys_perf_event_open()'s group_leader case depends on
909 * ctx->mutex pinning the configuration. Since we hold a reference on
910 * group_leader (through the filedesc) it can't go away, therefore it's
911 * associated pmu_ctx must exist and cannot change due to ctx->mutex.
912 *
913 * perf_event holds a refcount on perf_event_context
914 * perf_event holds a refcount on perf_event_pmu_context
915 */
916 struct perf_event_pmu_context {
917 struct pmu *pmu;
918 struct perf_event_context *ctx;
919
920 struct list_head pmu_ctx_entry;
921
922 struct list_head pinned_active;
923 struct list_head flexible_active;
924
925 /* Used to avoid freeing per-cpu perf_event_pmu_context */
926 unsigned int embedded : 1;
927
928 unsigned int nr_events;
929 unsigned int nr_cgroups;
930 unsigned int nr_freq;
931
932 atomic_t refcount; /* event <-> epc */
933 struct rcu_head rcu_head;
934
935 void *task_ctx_data; /* pmu specific data */
936 /*
937 * Set when one or more (plausibly active) event can't be scheduled
938 * due to pmu overcommit or pmu constraints, except tolerant to
939 * events not necessary to be active due to scheduling constraints,
940 * such as cgroups.
941 */
942 int rotate_necessary;
943 };
944
perf_pmu_ctx_is_active(struct perf_event_pmu_context * epc)945 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc)
946 {
947 return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active);
948 }
949
950 struct perf_event_groups {
951 struct rb_root tree;
952 u64 index;
953 };
954
955
956 /**
957 * struct perf_event_context - event context structure
958 *
959 * Used as a container for task events and CPU events as well:
960 */
961 struct perf_event_context {
962 /*
963 * Protect the states of the events in the list,
964 * nr_active, and the list:
965 */
966 raw_spinlock_t lock;
967 /*
968 * Protect the list of events. Locking either mutex or lock
969 * is sufficient to ensure the list doesn't change; to change
970 * the list you need to lock both the mutex and the spinlock.
971 */
972 struct mutex mutex;
973
974 struct list_head pmu_ctx_list;
975 struct perf_event_groups pinned_groups;
976 struct perf_event_groups flexible_groups;
977 struct list_head event_list;
978
979 int nr_events;
980 int nr_user;
981 int is_active;
982
983 int nr_task_data;
984 int nr_stat;
985 int nr_freq;
986 int rotate_disable;
987
988 refcount_t refcount; /* event <-> ctx */
989 struct task_struct *task;
990
991 /*
992 * Context clock, runs when context enabled.
993 */
994 u64 time;
995 u64 timestamp;
996 u64 timeoffset;
997
998 /*
999 * These fields let us detect when two contexts have both
1000 * been cloned (inherited) from a common ancestor.
1001 */
1002 struct perf_event_context *parent_ctx;
1003 u64 parent_gen;
1004 u64 generation;
1005 int pin_count;
1006 #ifdef CONFIG_CGROUP_PERF
1007 int nr_cgroups; /* cgroup evts */
1008 #endif
1009 struct rcu_head rcu_head;
1010
1011 /*
1012 * The count of events for which using the switch-out fast path
1013 * should be avoided.
1014 *
1015 * Sum (event->pending_work + events with
1016 * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)))
1017 *
1018 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
1019 * that until the signal is delivered.
1020 */
1021 local_t nr_no_switch_fast;
1022 };
1023
1024 /**
1025 * struct perf_ctx_data - PMU specific data for a task
1026 * @rcu_head: To avoid the race on free PMU specific data
1027 * @refcount: To track users
1028 * @global: To track system-wide users
1029 * @ctx_cache: Kmem cache of PMU specific data
1030 * @data: PMU specific data
1031 *
1032 * Currently, the struct is only used in Intel LBR call stack mode to
1033 * save/restore the call stack of a task on context switches.
1034 *
1035 * The rcu_head is used to prevent the race on free the data.
1036 * The data only be allocated when Intel LBR call stack mode is enabled.
1037 * The data will be freed when the mode is disabled.
1038 * The content of the data will only be accessed in context switch, which
1039 * should be protected by rcu_read_lock().
1040 *
1041 * Because of the alignment requirement of Intel Arch LBR, the Kmem cache
1042 * is used to allocate the PMU specific data. The ctx_cache is to track
1043 * the Kmem cache.
1044 *
1045 * Careful: Struct perf_ctx_data is added as a pointer in struct task_struct.
1046 * When system-wide Intel LBR call stack mode is enabled, a buffer with
1047 * constant size will be allocated for each task.
1048 * Also, system memory consumption can further grow when the size of
1049 * struct perf_ctx_data enlarges.
1050 */
1051 struct perf_ctx_data {
1052 struct rcu_head rcu_head;
1053 refcount_t refcount;
1054 int global;
1055 struct kmem_cache *ctx_cache;
1056 void *data;
1057 };
1058
1059 struct perf_cpu_pmu_context {
1060 struct perf_event_pmu_context epc;
1061 struct perf_event_pmu_context *task_epc;
1062
1063 struct list_head sched_cb_entry;
1064 int sched_cb_usage;
1065
1066 int active_oncpu;
1067 int exclusive;
1068
1069 raw_spinlock_t hrtimer_lock;
1070 struct hrtimer hrtimer;
1071 ktime_t hrtimer_interval;
1072 unsigned int hrtimer_active;
1073 };
1074
1075 /**
1076 * struct perf_event_cpu_context - per cpu event context structure
1077 */
1078 struct perf_cpu_context {
1079 struct perf_event_context ctx;
1080 struct perf_event_context *task_ctx;
1081 int online;
1082
1083 #ifdef CONFIG_CGROUP_PERF
1084 struct perf_cgroup *cgrp;
1085 #endif
1086
1087 /*
1088 * Per-CPU storage for iterators used in visit_groups_merge. The default
1089 * storage is of size 2 to hold the CPU and any CPU event iterators.
1090 */
1091 int heap_size;
1092 struct perf_event **heap;
1093 struct perf_event *heap_default[2];
1094 };
1095
1096 struct perf_output_handle {
1097 struct perf_event *event;
1098 struct perf_buffer *rb;
1099 unsigned long wakeup;
1100 unsigned long size;
1101 u64 aux_flags;
1102 union {
1103 void *addr;
1104 unsigned long head;
1105 };
1106 int page;
1107 };
1108
1109 struct bpf_perf_event_data_kern {
1110 bpf_user_pt_regs_t *regs;
1111 struct perf_sample_data *data;
1112 struct perf_event *event;
1113 };
1114
1115 #ifdef CONFIG_CGROUP_PERF
1116
1117 /*
1118 * perf_cgroup_info keeps track of time_enabled for a cgroup.
1119 * This is a per-cpu dynamically allocated data structure.
1120 */
1121 struct perf_cgroup_info {
1122 u64 time;
1123 u64 timestamp;
1124 u64 timeoffset;
1125 int active;
1126 };
1127
1128 struct perf_cgroup {
1129 struct cgroup_subsys_state css;
1130 struct perf_cgroup_info __percpu *info;
1131 };
1132
1133 /*
1134 * Must ensure cgroup is pinned (css_get) before calling
1135 * this function. In other words, we cannot call this function
1136 * if there is no cgroup event for the current CPU context.
1137 */
1138 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)1139 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1140 {
1141 return container_of(task_css_check(task, perf_event_cgrp_id,
1142 ctx ? lockdep_is_held(&ctx->lock)
1143 : true),
1144 struct perf_cgroup, css);
1145 }
1146 #endif /* CONFIG_CGROUP_PERF */
1147
1148 #ifdef CONFIG_PERF_EVENTS
1149
1150 extern struct perf_event_context *perf_cpu_task_ctx(void);
1151
1152 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1153 struct perf_event *event);
1154 extern void perf_aux_output_end(struct perf_output_handle *handle,
1155 unsigned long size);
1156 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1157 unsigned long size);
1158 extern void *perf_get_aux(struct perf_output_handle *handle);
1159 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1160 extern void perf_event_itrace_started(struct perf_event *event);
1161
1162 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1163 extern void perf_pmu_unregister(struct pmu *pmu);
1164
1165 extern void __perf_event_task_sched_in(struct task_struct *prev,
1166 struct task_struct *task);
1167 extern void __perf_event_task_sched_out(struct task_struct *prev,
1168 struct task_struct *next);
1169 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1170 extern void perf_event_exit_task(struct task_struct *child);
1171 extern void perf_event_free_task(struct task_struct *task);
1172 extern void perf_event_delayed_put(struct task_struct *task);
1173 extern struct file *perf_event_get(unsigned int fd);
1174 extern const struct perf_event *perf_get_event(struct file *file);
1175 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1176 extern void perf_event_print_debug(void);
1177 extern void perf_pmu_disable(struct pmu *pmu);
1178 extern void perf_pmu_enable(struct pmu *pmu);
1179 extern void perf_sched_cb_dec(struct pmu *pmu);
1180 extern void perf_sched_cb_inc(struct pmu *pmu);
1181 extern int perf_event_task_disable(void);
1182 extern int perf_event_task_enable(void);
1183
1184 extern void perf_pmu_resched(struct pmu *pmu);
1185
1186 extern int perf_event_refresh(struct perf_event *event, int refresh);
1187 extern void perf_event_update_userpage(struct perf_event *event);
1188 extern int perf_event_release_kernel(struct perf_event *event);
1189 extern struct perf_event *
1190 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1191 int cpu,
1192 struct task_struct *task,
1193 perf_overflow_handler_t callback,
1194 void *context);
1195 extern void perf_pmu_migrate_context(struct pmu *pmu,
1196 int src_cpu, int dst_cpu);
1197 int perf_event_read_local(struct perf_event *event, u64 *value,
1198 u64 *enabled, u64 *running);
1199 extern u64 perf_event_read_value(struct perf_event *event,
1200 u64 *enabled, u64 *running);
1201
1202 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1203
branch_sample_no_flags(const struct perf_event * event)1204 static inline bool branch_sample_no_flags(const struct perf_event *event)
1205 {
1206 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1207 }
1208
branch_sample_no_cycles(const struct perf_event * event)1209 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1210 {
1211 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1212 }
1213
branch_sample_type(const struct perf_event * event)1214 static inline bool branch_sample_type(const struct perf_event *event)
1215 {
1216 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1217 }
1218
branch_sample_hw_index(const struct perf_event * event)1219 static inline bool branch_sample_hw_index(const struct perf_event *event)
1220 {
1221 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1222 }
1223
branch_sample_priv(const struct perf_event * event)1224 static inline bool branch_sample_priv(const struct perf_event *event)
1225 {
1226 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1227 }
1228
branch_sample_counters(const struct perf_event * event)1229 static inline bool branch_sample_counters(const struct perf_event *event)
1230 {
1231 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS;
1232 }
1233
branch_sample_call_stack(const struct perf_event * event)1234 static inline bool branch_sample_call_stack(const struct perf_event *event)
1235 {
1236 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK;
1237 }
1238
1239 struct perf_sample_data {
1240 /*
1241 * Fields set by perf_sample_data_init() unconditionally,
1242 * group so as to minimize the cachelines touched.
1243 */
1244 u64 sample_flags;
1245 u64 period;
1246 u64 dyn_size;
1247
1248 /*
1249 * Fields commonly set by __perf_event_header__init_id(),
1250 * group so as to minimize the cachelines touched.
1251 */
1252 u64 type;
1253 struct {
1254 u32 pid;
1255 u32 tid;
1256 } tid_entry;
1257 u64 time;
1258 u64 id;
1259 struct {
1260 u32 cpu;
1261 u32 reserved;
1262 } cpu_entry;
1263
1264 /*
1265 * The other fields, optionally {set,used} by
1266 * perf_{prepare,output}_sample().
1267 */
1268 u64 ip;
1269 struct perf_callchain_entry *callchain;
1270 struct perf_raw_record *raw;
1271 struct perf_branch_stack *br_stack;
1272 u64 *br_stack_cntr;
1273 union perf_sample_weight weight;
1274 union perf_mem_data_src data_src;
1275 u64 txn;
1276
1277 struct perf_regs regs_user;
1278 struct perf_regs regs_intr;
1279 u64 stack_user_size;
1280
1281 u64 stream_id;
1282 u64 cgroup;
1283 u64 addr;
1284 u64 phys_addr;
1285 u64 data_page_size;
1286 u64 code_page_size;
1287 u64 aux_size;
1288 } ____cacheline_aligned;
1289
1290 /* default value for data source */
1291 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1292 PERF_MEM_S(LVL, NA) |\
1293 PERF_MEM_S(SNOOP, NA) |\
1294 PERF_MEM_S(LOCK, NA) |\
1295 PERF_MEM_S(TLB, NA) |\
1296 PERF_MEM_S(LVLNUM, NA))
1297
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1298 static inline void perf_sample_data_init(struct perf_sample_data *data,
1299 u64 addr, u64 period)
1300 {
1301 /* remaining struct members initialized in perf_prepare_sample() */
1302 data->sample_flags = PERF_SAMPLE_PERIOD;
1303 data->period = period;
1304 data->dyn_size = 0;
1305
1306 if (addr) {
1307 data->addr = addr;
1308 data->sample_flags |= PERF_SAMPLE_ADDR;
1309 }
1310 }
1311
perf_sample_save_callchain(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)1312 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1313 struct perf_event *event,
1314 struct pt_regs *regs)
1315 {
1316 int size = 1;
1317
1318 if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1319 return;
1320 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN))
1321 return;
1322
1323 data->callchain = perf_callchain(event, regs);
1324 size += data->callchain->nr;
1325
1326 data->dyn_size += size * sizeof(u64);
1327 data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1328 }
1329
perf_sample_save_raw_data(struct perf_sample_data * data,struct perf_event * event,struct perf_raw_record * raw)1330 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1331 struct perf_event *event,
1332 struct perf_raw_record *raw)
1333 {
1334 struct perf_raw_frag *frag = &raw->frag;
1335 u32 sum = 0;
1336 int size;
1337
1338 if (!(event->attr.sample_type & PERF_SAMPLE_RAW))
1339 return;
1340 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW))
1341 return;
1342
1343 do {
1344 sum += frag->size;
1345 if (perf_raw_frag_last(frag))
1346 break;
1347 frag = frag->next;
1348 } while (1);
1349
1350 size = round_up(sum + sizeof(u32), sizeof(u64));
1351 raw->size = size - sizeof(u32);
1352 frag->pad = raw->size - sum;
1353
1354 data->raw = raw;
1355 data->dyn_size += size;
1356 data->sample_flags |= PERF_SAMPLE_RAW;
1357 }
1358
has_branch_stack(struct perf_event * event)1359 static inline bool has_branch_stack(struct perf_event *event)
1360 {
1361 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1362 }
1363
perf_sample_save_brstack(struct perf_sample_data * data,struct perf_event * event,struct perf_branch_stack * brs,u64 * brs_cntr)1364 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1365 struct perf_event *event,
1366 struct perf_branch_stack *brs,
1367 u64 *brs_cntr)
1368 {
1369 int size = sizeof(u64); /* nr */
1370
1371 if (!has_branch_stack(event))
1372 return;
1373 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK))
1374 return;
1375
1376 if (branch_sample_hw_index(event))
1377 size += sizeof(u64);
1378 size += brs->nr * sizeof(struct perf_branch_entry);
1379
1380 /*
1381 * The extension space for counters is appended after the
1382 * struct perf_branch_stack. It is used to store the occurrences
1383 * of events of each branch.
1384 */
1385 if (brs_cntr)
1386 size += brs->nr * sizeof(u64);
1387
1388 data->br_stack = brs;
1389 data->br_stack_cntr = brs_cntr;
1390 data->dyn_size += size;
1391 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1392 }
1393
perf_sample_data_size(struct perf_sample_data * data,struct perf_event * event)1394 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1395 struct perf_event *event)
1396 {
1397 u32 size = sizeof(struct perf_event_header);
1398
1399 size += event->header_size + event->id_header_size;
1400 size += data->dyn_size;
1401
1402 return size;
1403 }
1404
1405 /*
1406 * Clear all bitfields in the perf_branch_entry.
1407 * The to and from fields are not cleared because they are
1408 * systematically modified by caller.
1409 */
perf_clear_branch_entry_bitfields(struct perf_branch_entry * br)1410 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1411 {
1412 br->mispred = 0;
1413 br->predicted = 0;
1414 br->in_tx = 0;
1415 br->abort = 0;
1416 br->cycles = 0;
1417 br->type = 0;
1418 br->spec = PERF_BR_SPEC_NA;
1419 br->reserved = 0;
1420 }
1421
1422 extern void perf_output_sample(struct perf_output_handle *handle,
1423 struct perf_event_header *header,
1424 struct perf_sample_data *data,
1425 struct perf_event *event);
1426 extern void perf_prepare_sample(struct perf_sample_data *data,
1427 struct perf_event *event,
1428 struct pt_regs *regs);
1429 extern void perf_prepare_header(struct perf_event_header *header,
1430 struct perf_sample_data *data,
1431 struct perf_event *event,
1432 struct pt_regs *regs);
1433
1434 extern int perf_event_overflow(struct perf_event *event,
1435 struct perf_sample_data *data,
1436 struct pt_regs *regs);
1437
1438 extern void perf_event_output_forward(struct perf_event *event,
1439 struct perf_sample_data *data,
1440 struct pt_regs *regs);
1441 extern void perf_event_output_backward(struct perf_event *event,
1442 struct perf_sample_data *data,
1443 struct pt_regs *regs);
1444 extern int perf_event_output(struct perf_event *event,
1445 struct perf_sample_data *data,
1446 struct pt_regs *regs);
1447
1448 static inline bool
is_default_overflow_handler(struct perf_event * event)1449 is_default_overflow_handler(struct perf_event *event)
1450 {
1451 perf_overflow_handler_t overflow_handler = event->overflow_handler;
1452
1453 if (likely(overflow_handler == perf_event_output_forward))
1454 return true;
1455 if (unlikely(overflow_handler == perf_event_output_backward))
1456 return true;
1457 return false;
1458 }
1459
1460 extern void
1461 perf_event_header__init_id(struct perf_event_header *header,
1462 struct perf_sample_data *data,
1463 struct perf_event *event);
1464 extern void
1465 perf_event__output_id_sample(struct perf_event *event,
1466 struct perf_output_handle *handle,
1467 struct perf_sample_data *sample);
1468
1469 extern void
1470 perf_log_lost_samples(struct perf_event *event, u64 lost);
1471
event_has_any_exclude_flag(struct perf_event * event)1472 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1473 {
1474 struct perf_event_attr *attr = &event->attr;
1475
1476 return attr->exclude_idle || attr->exclude_user ||
1477 attr->exclude_kernel || attr->exclude_hv ||
1478 attr->exclude_guest || attr->exclude_host;
1479 }
1480
is_sampling_event(struct perf_event * event)1481 static inline bool is_sampling_event(struct perf_event *event)
1482 {
1483 return event->attr.sample_period != 0;
1484 }
1485
1486 /*
1487 * Return 1 for a software event, 0 for a hardware event
1488 */
is_software_event(struct perf_event * event)1489 static inline int is_software_event(struct perf_event *event)
1490 {
1491 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1492 }
1493
1494 /*
1495 * Return 1 for event in sw context, 0 for event in hw context
1496 */
in_software_context(struct perf_event * event)1497 static inline int in_software_context(struct perf_event *event)
1498 {
1499 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1500 }
1501
is_exclusive_pmu(struct pmu * pmu)1502 static inline int is_exclusive_pmu(struct pmu *pmu)
1503 {
1504 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1505 }
1506
1507 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1508
1509 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1510 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1511
1512 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1513 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1514 #endif
1515
1516 /*
1517 * When generating a perf sample in-line, instead of from an interrupt /
1518 * exception, we lack a pt_regs. This is typically used from software events
1519 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1520 *
1521 * We typically don't need a full set, but (for x86) do require:
1522 * - ip for PERF_SAMPLE_IP
1523 * - cs for user_mode() tests
1524 * - sp for PERF_SAMPLE_CALLCHAIN
1525 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1526 *
1527 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1528 * things like PERF_SAMPLE_REGS_INTR.
1529 */
perf_fetch_caller_regs(struct pt_regs * regs)1530 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1531 {
1532 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1533 }
1534
1535 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1536 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1537 {
1538 if (static_key_false(&perf_swevent_enabled[event_id]))
1539 __perf_sw_event(event_id, nr, regs, addr);
1540 }
1541
1542 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1543
1544 /*
1545 * 'Special' version for the scheduler, it hard assumes no recursion,
1546 * which is guaranteed by us not actually scheduling inside other swevents
1547 * because those disable preemption.
1548 */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1549 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1550 {
1551 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1552
1553 perf_fetch_caller_regs(regs);
1554 ___perf_sw_event(event_id, nr, regs, addr);
1555 }
1556
1557 extern struct static_key_false perf_sched_events;
1558
__perf_sw_enabled(int swevt)1559 static __always_inline bool __perf_sw_enabled(int swevt)
1560 {
1561 return static_key_false(&perf_swevent_enabled[swevt]);
1562 }
1563
perf_event_task_migrate(struct task_struct * task)1564 static inline void perf_event_task_migrate(struct task_struct *task)
1565 {
1566 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1567 task->sched_migrated = 1;
1568 }
1569
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1570 static inline void perf_event_task_sched_in(struct task_struct *prev,
1571 struct task_struct *task)
1572 {
1573 if (static_branch_unlikely(&perf_sched_events))
1574 __perf_event_task_sched_in(prev, task);
1575
1576 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1577 task->sched_migrated) {
1578 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1579 task->sched_migrated = 0;
1580 }
1581 }
1582
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1583 static inline void perf_event_task_sched_out(struct task_struct *prev,
1584 struct task_struct *next)
1585 {
1586 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1587 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1588
1589 #ifdef CONFIG_CGROUP_PERF
1590 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1591 perf_cgroup_from_task(prev, NULL) !=
1592 perf_cgroup_from_task(next, NULL))
1593 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1594 #endif
1595
1596 if (static_branch_unlikely(&perf_sched_events))
1597 __perf_event_task_sched_out(prev, next);
1598 }
1599
1600 extern void perf_event_mmap(struct vm_area_struct *vma);
1601
1602 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1603 bool unregister, const char *sym);
1604 extern void perf_event_bpf_event(struct bpf_prog *prog,
1605 enum perf_bpf_event_type type,
1606 u16 flags);
1607
1608 #ifdef CONFIG_GUEST_PERF_EVENTS
1609 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1610
1611 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1612 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1613 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1614
perf_guest_state(void)1615 static inline unsigned int perf_guest_state(void)
1616 {
1617 return static_call(__perf_guest_state)();
1618 }
perf_guest_get_ip(void)1619 static inline unsigned long perf_guest_get_ip(void)
1620 {
1621 return static_call(__perf_guest_get_ip)();
1622 }
perf_guest_handle_intel_pt_intr(void)1623 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1624 {
1625 return static_call(__perf_guest_handle_intel_pt_intr)();
1626 }
1627 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1628 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1629 #else
perf_guest_state(void)1630 static inline unsigned int perf_guest_state(void) { return 0; }
perf_guest_get_ip(void)1631 static inline unsigned long perf_guest_get_ip(void) { return 0; }
perf_guest_handle_intel_pt_intr(void)1632 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1633 #endif /* CONFIG_GUEST_PERF_EVENTS */
1634
1635 extern void perf_event_exec(void);
1636 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1637 extern void perf_event_namespaces(struct task_struct *tsk);
1638 extern void perf_event_fork(struct task_struct *tsk);
1639 extern void perf_event_text_poke(const void *addr,
1640 const void *old_bytes, size_t old_len,
1641 const void *new_bytes, size_t new_len);
1642
1643 /* Callchains */
1644 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1645
1646 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1647 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1648 extern struct perf_callchain_entry *
1649 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1650 u32 max_stack, bool crosstask, bool add_mark);
1651 extern int get_callchain_buffers(int max_stack);
1652 extern void put_callchain_buffers(void);
1653 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1654 extern void put_callchain_entry(int rctx);
1655
1656 extern int sysctl_perf_event_max_stack;
1657 extern int sysctl_perf_event_max_contexts_per_stack;
1658
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1659 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1660 {
1661 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1662 struct perf_callchain_entry *entry = ctx->entry;
1663 entry->ip[entry->nr++] = ip;
1664 ++ctx->contexts;
1665 return 0;
1666 } else {
1667 ctx->contexts_maxed = true;
1668 return -1; /* no more room, stop walking the stack */
1669 }
1670 }
1671
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1672 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1673 {
1674 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1675 struct perf_callchain_entry *entry = ctx->entry;
1676 entry->ip[entry->nr++] = ip;
1677 ++ctx->nr;
1678 return 0;
1679 } else {
1680 return -1; /* no more room, stop walking the stack */
1681 }
1682 }
1683
1684 extern int sysctl_perf_event_paranoid;
1685 extern int sysctl_perf_event_mlock;
1686 extern int sysctl_perf_event_sample_rate;
1687 extern int sysctl_perf_cpu_time_max_percent;
1688
1689 extern void perf_sample_event_took(u64 sample_len_ns);
1690
1691 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
1692 void *buffer, size_t *lenp, loff_t *ppos);
1693 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
1694 void *buffer, size_t *lenp, loff_t *ppos);
1695 int perf_event_max_stack_handler(const struct ctl_table *table, int write,
1696 void *buffer, size_t *lenp, loff_t *ppos);
1697
1698 /* Access to perf_event_open(2) syscall. */
1699 #define PERF_SECURITY_OPEN 0
1700
1701 /* Finer grained perf_event_open(2) access control. */
1702 #define PERF_SECURITY_CPU 1
1703 #define PERF_SECURITY_KERNEL 2
1704 #define PERF_SECURITY_TRACEPOINT 3
1705
perf_is_paranoid(void)1706 static inline int perf_is_paranoid(void)
1707 {
1708 return sysctl_perf_event_paranoid > -1;
1709 }
1710
1711 int perf_allow_kernel(struct perf_event_attr *attr);
1712
perf_allow_cpu(struct perf_event_attr * attr)1713 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1714 {
1715 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1716 return -EACCES;
1717
1718 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1719 }
1720
perf_allow_tracepoint(struct perf_event_attr * attr)1721 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1722 {
1723 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1724 return -EPERM;
1725
1726 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1727 }
1728
1729 extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs);
1730
1731 extern void perf_event_init(void);
1732 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1733 int entry_size, struct pt_regs *regs,
1734 struct hlist_head *head, int rctx,
1735 struct task_struct *task);
1736 extern void perf_bp_event(struct perf_event *event, void *data);
1737
1738 extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs);
1739 extern unsigned long perf_instruction_pointer(struct perf_event *event,
1740 struct pt_regs *regs);
1741
1742 #ifndef perf_arch_misc_flags
1743 # define perf_arch_misc_flags(regs) \
1744 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1745 # define perf_arch_instruction_pointer(regs) instruction_pointer(regs)
1746 #endif
1747 #ifndef perf_arch_bpf_user_pt_regs
1748 # define perf_arch_bpf_user_pt_regs(regs) regs
1749 #endif
1750
1751 #ifndef perf_arch_guest_misc_flags
perf_arch_guest_misc_flags(struct pt_regs * regs)1752 static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
1753 {
1754 unsigned long guest_state = perf_guest_state();
1755
1756 if (!(guest_state & PERF_GUEST_ACTIVE))
1757 return 0;
1758
1759 if (guest_state & PERF_GUEST_USER)
1760 return PERF_RECORD_MISC_GUEST_USER;
1761 else
1762 return PERF_RECORD_MISC_GUEST_KERNEL;
1763 }
1764 # define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs)
1765 #endif
1766
needs_branch_stack(struct perf_event * event)1767 static inline bool needs_branch_stack(struct perf_event *event)
1768 {
1769 return event->attr.branch_sample_type != 0;
1770 }
1771
has_aux(struct perf_event * event)1772 static inline bool has_aux(struct perf_event *event)
1773 {
1774 return event->pmu->setup_aux;
1775 }
1776
has_aux_action(struct perf_event * event)1777 static inline bool has_aux_action(struct perf_event *event)
1778 {
1779 return event->attr.aux_sample_size ||
1780 event->attr.aux_pause ||
1781 event->attr.aux_resume;
1782 }
1783
is_write_backward(struct perf_event * event)1784 static inline bool is_write_backward(struct perf_event *event)
1785 {
1786 return !!event->attr.write_backward;
1787 }
1788
has_addr_filter(struct perf_event * event)1789 static inline bool has_addr_filter(struct perf_event *event)
1790 {
1791 return event->pmu->nr_addr_filters;
1792 }
1793
1794 /*
1795 * An inherited event uses parent's filters
1796 */
1797 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1798 perf_event_addr_filters(struct perf_event *event)
1799 {
1800 struct perf_addr_filters_head *ifh = &event->addr_filters;
1801
1802 if (event->parent)
1803 ifh = &event->parent->addr_filters;
1804
1805 return ifh;
1806 }
1807
perf_event_fasync(struct perf_event * event)1808 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
1809 {
1810 /* Only the parent has fasync state */
1811 if (event->parent)
1812 event = event->parent;
1813 return &event->fasync;
1814 }
1815
1816 extern void perf_event_addr_filters_sync(struct perf_event *event);
1817 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1818
1819 extern int perf_output_begin(struct perf_output_handle *handle,
1820 struct perf_sample_data *data,
1821 struct perf_event *event, unsigned int size);
1822 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1823 struct perf_sample_data *data,
1824 struct perf_event *event,
1825 unsigned int size);
1826 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1827 struct perf_sample_data *data,
1828 struct perf_event *event,
1829 unsigned int size);
1830
1831 extern void perf_output_end(struct perf_output_handle *handle);
1832 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1833 const void *buf, unsigned int len);
1834 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1835 unsigned int len);
1836 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1837 struct perf_output_handle *handle,
1838 unsigned long from, unsigned long to);
1839 extern int perf_swevent_get_recursion_context(void);
1840 extern void perf_swevent_put_recursion_context(int rctx);
1841 extern u64 perf_swevent_set_period(struct perf_event *event);
1842 extern void perf_event_enable(struct perf_event *event);
1843 extern void perf_event_disable(struct perf_event *event);
1844 extern void perf_event_disable_local(struct perf_event *event);
1845 extern void perf_event_disable_inatomic(struct perf_event *event);
1846 extern void perf_event_task_tick(void);
1847 extern int perf_event_account_interrupt(struct perf_event *event);
1848 extern int perf_event_period(struct perf_event *event, u64 value);
1849 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1850 #else /* !CONFIG_PERF_EVENTS: */
1851 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1852 perf_aux_output_begin(struct perf_output_handle *handle,
1853 struct perf_event *event) { return NULL; }
1854 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1855 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1856 { }
1857 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1858 perf_aux_output_skip(struct perf_output_handle *handle,
1859 unsigned long size) { return -EINVAL; }
1860 static inline void *
perf_get_aux(struct perf_output_handle * handle)1861 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1862 static inline void
perf_event_task_migrate(struct task_struct * task)1863 perf_event_task_migrate(struct task_struct *task) { }
1864 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1865 perf_event_task_sched_in(struct task_struct *prev,
1866 struct task_struct *task) { }
1867 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1868 perf_event_task_sched_out(struct task_struct *prev,
1869 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1870 static inline int perf_event_init_task(struct task_struct *child,
1871 u64 clone_flags) { return 0; }
perf_event_exit_task(struct task_struct * child)1872 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1873 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1874 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1875 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1876 static inline const struct perf_event *perf_get_event(struct file *file)
1877 {
1878 return ERR_PTR(-EINVAL);
1879 }
perf_event_attrs(struct perf_event * event)1880 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1881 {
1882 return ERR_PTR(-EINVAL);
1883 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1884 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1885 u64 *enabled, u64 *running)
1886 {
1887 return -EINVAL;
1888 }
perf_event_print_debug(void)1889 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1890 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1891 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1892 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1893 {
1894 return -EINVAL;
1895 }
1896
1897 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1898 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1899 static inline void
perf_bp_event(struct perf_event * event,void * data)1900 perf_bp_event(struct perf_event *event, void *data) { }
1901
perf_event_mmap(struct vm_area_struct * vma)1902 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1903
1904 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1905 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1906 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1907 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1908 enum perf_bpf_event_type type,
1909 u16 flags) { }
perf_event_exec(void)1910 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1911 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1912 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1913 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1914 static inline void perf_event_text_poke(const void *addr,
1915 const void *old_bytes,
1916 size_t old_len,
1917 const void *new_bytes,
1918 size_t new_len) { }
perf_event_init(void)1919 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1920 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1921 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1922 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1923 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1924 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1925 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1926 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1927 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1928 static inline int perf_event_period(struct perf_event *event, u64 value)
1929 {
1930 return -EINVAL;
1931 }
perf_event_pause(struct perf_event * event,bool reset)1932 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1933 {
1934 return 0;
1935 }
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)1936 static inline int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
1937 {
1938 return 0;
1939 }
1940 #endif
1941
1942 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1943 extern void perf_restore_debug_store(void);
1944 #else
perf_restore_debug_store(void)1945 static inline void perf_restore_debug_store(void) { }
1946 #endif
1947
1948 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1949
1950 struct perf_pmu_events_attr {
1951 struct device_attribute attr;
1952 u64 id;
1953 const char *event_str;
1954 };
1955
1956 struct perf_pmu_events_ht_attr {
1957 struct device_attribute attr;
1958 u64 id;
1959 const char *event_str_ht;
1960 const char *event_str_noht;
1961 };
1962
1963 struct perf_pmu_events_hybrid_attr {
1964 struct device_attribute attr;
1965 u64 id;
1966 const char *event_str;
1967 u64 pmu_type;
1968 };
1969
1970 struct perf_pmu_format_hybrid_attr {
1971 struct device_attribute attr;
1972 u64 pmu_type;
1973 };
1974
1975 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1976 char *page);
1977
1978 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1979 static struct perf_pmu_events_attr _var = { \
1980 .attr = __ATTR(_name, 0444, _show, NULL), \
1981 .id = _id, \
1982 };
1983
1984 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1985 static struct perf_pmu_events_attr _var = { \
1986 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1987 .id = 0, \
1988 .event_str = _str, \
1989 };
1990
1991 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1992 (&((struct perf_pmu_events_attr[]) { \
1993 { .attr = __ATTR(_name, 0444, _show, NULL), \
1994 .id = _id, } \
1995 })[0].attr.attr)
1996
1997 #define PMU_FORMAT_ATTR_SHOW(_name, _format) \
1998 static ssize_t \
1999 _name##_show(struct device *dev, \
2000 struct device_attribute *attr, \
2001 char *page) \
2002 { \
2003 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
2004 return sprintf(page, _format "\n"); \
2005 } \
2006
2007 #define PMU_FORMAT_ATTR(_name, _format) \
2008 PMU_FORMAT_ATTR_SHOW(_name, _format) \
2009 \
2010 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
2011
2012 /* Performance counter hotplug functions */
2013 #ifdef CONFIG_PERF_EVENTS
2014 int perf_event_init_cpu(unsigned int cpu);
2015 int perf_event_exit_cpu(unsigned int cpu);
2016 #else
2017 #define perf_event_init_cpu NULL
2018 #define perf_event_exit_cpu NULL
2019 #endif
2020
2021 extern void arch_perf_update_userpage(struct perf_event *event,
2022 struct perf_event_mmap_page *userpg,
2023 u64 now);
2024
2025 /*
2026 * Snapshot branch stack on software events.
2027 *
2028 * Branch stack can be very useful in understanding software events. For
2029 * example, when a long function, e.g. sys_perf_event_open, returns an
2030 * errno, it is not obvious why the function failed. Branch stack could
2031 * provide very helpful information in this type of scenarios.
2032 *
2033 * On software event, it is necessary to stop the hardware branch recorder
2034 * fast. Otherwise, the hardware register/buffer will be flushed with
2035 * entries of the triggering event. Therefore, static call is used to
2036 * stop the hardware recorder.
2037 */
2038
2039 /*
2040 * cnt is the number of entries allocated for entries.
2041 * Return number of entries copied to .
2042 */
2043 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
2044 unsigned int cnt);
2045 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
2046
2047 #ifndef PERF_NEEDS_LOPWR_CB
perf_lopwr_cb(bool mode)2048 static inline void perf_lopwr_cb(bool mode)
2049 {
2050 }
2051 #endif
2052
2053 #endif /* _LINUX_PERF_EVENT_H */
2054