1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Package asn1 implements parsing of DER-encoded ASN.1 data structures, 6// as defined in ITU-T Rec X.690. 7// 8// See also “A Layman's Guide to a Subset of ASN.1, BER, and DER,” 9// http://luca.ntop.org/Teaching/Appunti/asn1.html. 10package asn1 11 12// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc 13// are different encoding formats for those objects. Here, we'll be dealing 14// with DER, the Distinguished Encoding Rules. DER is used in X.509 because 15// it's fast to parse and, unlike BER, has a unique encoding for every object. 16// When calculating hashes over objects, it's important that the resulting 17// bytes be the same at both ends and DER removes this margin of error. 18// 19// ASN.1 is very complex and this package doesn't attempt to implement 20// everything by any means. 21 22import ( 23 "errors" 24 "fmt" 25 "math" 26 "math/big" 27 "reflect" 28 "strconv" 29 "strings" 30 "time" 31 "unicode/utf16" 32 "unicode/utf8" 33) 34 35// A StructuralError suggests that the ASN.1 data is valid, but the Go type 36// which is receiving it doesn't match. 37type StructuralError struct { 38 Msg string 39} 40 41func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg } 42 43// A SyntaxError suggests that the ASN.1 data is invalid. 44type SyntaxError struct { 45 Msg string 46} 47 48func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg } 49 50// We start by dealing with each of the primitive types in turn. 51 52// BOOLEAN 53 54func parseBool(bytes []byte) (ret bool, err error) { 55 if len(bytes) != 1 { 56 err = SyntaxError{"invalid boolean"} 57 return 58 } 59 60 // DER demands that "If the encoding represents the boolean value TRUE, 61 // its single contents octet shall have all eight bits set to one." 62 // Thus only 0 and 255 are valid encoded values. 63 switch bytes[0] { 64 case 0: 65 ret = false 66 case 0xff: 67 ret = true 68 default: 69 err = SyntaxError{"invalid boolean"} 70 } 71 72 return 73} 74 75// INTEGER 76 77// checkInteger returns nil if the given bytes are a valid DER-encoded 78// INTEGER and an error otherwise. 79func checkInteger(bytes []byte) error { 80 if len(bytes) == 0 { 81 return StructuralError{"empty integer"} 82 } 83 if len(bytes) == 1 { 84 return nil 85 } 86 if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) { 87 return StructuralError{"integer not minimally-encoded"} 88 } 89 return nil 90} 91 92// parseInt64 treats the given bytes as a big-endian, signed integer and 93// returns the result. 94func parseInt64(bytes []byte) (ret int64, err error) { 95 err = checkInteger(bytes) 96 if err != nil { 97 return 98 } 99 if len(bytes) > 8 { 100 // We'll overflow an int64 in this case. 101 err = StructuralError{"integer too large"} 102 return 103 } 104 for bytesRead := 0; bytesRead < len(bytes); bytesRead++ { 105 ret <<= 8 106 ret |= int64(bytes[bytesRead]) 107 } 108 109 // Shift up and down in order to sign extend the result. 110 ret <<= 64 - uint8(len(bytes))*8 111 ret >>= 64 - uint8(len(bytes))*8 112 return 113} 114 115// parseInt32 treats the given bytes as a big-endian, signed integer and returns 116// the result. 117func parseInt32(bytes []byte) (int32, error) { 118 if err := checkInteger(bytes); err != nil { 119 return 0, err 120 } 121 ret64, err := parseInt64(bytes) 122 if err != nil { 123 return 0, err 124 } 125 if ret64 != int64(int32(ret64)) { 126 return 0, StructuralError{"integer too large"} 127 } 128 return int32(ret64), nil 129} 130 131var bigOne = big.NewInt(1) 132 133// parseBigInt treats the given bytes as a big-endian, signed integer and returns 134// the result. 135func parseBigInt(bytes []byte) (*big.Int, error) { 136 if err := checkInteger(bytes); err != nil { 137 return nil, err 138 } 139 ret := new(big.Int) 140 if len(bytes) > 0 && bytes[0]&0x80 == 0x80 { 141 // This is a negative number. 142 notBytes := make([]byte, len(bytes)) 143 for i := range notBytes { 144 notBytes[i] = ^bytes[i] 145 } 146 ret.SetBytes(notBytes) 147 ret.Add(ret, bigOne) 148 ret.Neg(ret) 149 return ret, nil 150 } 151 ret.SetBytes(bytes) 152 return ret, nil 153} 154 155// BIT STRING 156 157// BitString is the structure to use when you want an ASN.1 BIT STRING type. A 158// bit string is padded up to the nearest byte in memory and the number of 159// valid bits is recorded. Padding bits will be zero. 160type BitString struct { 161 Bytes []byte // bits packed into bytes. 162 BitLength int // length in bits. 163} 164 165// At returns the bit at the given index. If the index is out of range it 166// returns 0. 167func (b BitString) At(i int) int { 168 if i < 0 || i >= b.BitLength { 169 return 0 170 } 171 x := i / 8 172 y := 7 - uint(i%8) 173 return int(b.Bytes[x]>>y) & 1 174} 175 176// RightAlign returns a slice where the padding bits are at the beginning. The 177// slice may share memory with the BitString. 178func (b BitString) RightAlign() []byte { 179 shift := uint(8 - (b.BitLength % 8)) 180 if shift == 8 || len(b.Bytes) == 0 { 181 return b.Bytes 182 } 183 184 a := make([]byte, len(b.Bytes)) 185 a[0] = b.Bytes[0] >> shift 186 for i := 1; i < len(b.Bytes); i++ { 187 a[i] = b.Bytes[i-1] << (8 - shift) 188 a[i] |= b.Bytes[i] >> shift 189 } 190 191 return a 192} 193 194// parseBitString parses an ASN.1 bit string from the given byte slice and returns it. 195func parseBitString(bytes []byte) (ret BitString, err error) { 196 if len(bytes) == 0 { 197 err = SyntaxError{"zero length BIT STRING"} 198 return 199 } 200 paddingBits := int(bytes[0]) 201 if paddingBits > 7 || 202 len(bytes) == 1 && paddingBits > 0 || 203 bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 { 204 err = SyntaxError{"invalid padding bits in BIT STRING"} 205 return 206 } 207 ret.BitLength = (len(bytes)-1)*8 - paddingBits 208 ret.Bytes = bytes[1:] 209 return 210} 211 212// NULL 213 214// NullRawValue is a [RawValue] with its Tag set to the ASN.1 NULL type tag (5). 215var NullRawValue = RawValue{Tag: TagNull} 216 217// NullBytes contains bytes representing the DER-encoded ASN.1 NULL type. 218var NullBytes = []byte{TagNull, 0} 219 220// OBJECT IDENTIFIER 221 222// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER. 223type ObjectIdentifier []int 224 225// Equal reports whether oi and other represent the same identifier. 226func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool { 227 if len(oi) != len(other) { 228 return false 229 } 230 for i := 0; i < len(oi); i++ { 231 if oi[i] != other[i] { 232 return false 233 } 234 } 235 236 return true 237} 238 239func (oi ObjectIdentifier) String() string { 240 var s strings.Builder 241 s.Grow(32) 242 243 buf := make([]byte, 0, 19) 244 for i, v := range oi { 245 if i > 0 { 246 s.WriteByte('.') 247 } 248 s.Write(strconv.AppendInt(buf, int64(v), 10)) 249 } 250 251 return s.String() 252} 253 254// parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and 255// returns it. An object identifier is a sequence of variable length integers 256// that are assigned in a hierarchy. 257func parseObjectIdentifier(bytes []byte) (s ObjectIdentifier, err error) { 258 if len(bytes) == 0 { 259 err = SyntaxError{"zero length OBJECT IDENTIFIER"} 260 return 261 } 262 263 // In the worst case, we get two elements from the first byte (which is 264 // encoded differently) and then every varint is a single byte long. 265 s = make([]int, len(bytes)+1) 266 267 // The first varint is 40*value1 + value2: 268 // According to this packing, value1 can take the values 0, 1 and 2 only. 269 // When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2, 270 // then there are no restrictions on value2. 271 v, offset, err := parseBase128Int(bytes, 0) 272 if err != nil { 273 return 274 } 275 if v < 80 { 276 s[0] = v / 40 277 s[1] = v % 40 278 } else { 279 s[0] = 2 280 s[1] = v - 80 281 } 282 283 i := 2 284 for ; offset < len(bytes); i++ { 285 v, offset, err = parseBase128Int(bytes, offset) 286 if err != nil { 287 return 288 } 289 s[i] = v 290 } 291 s = s[0:i] 292 return 293} 294 295// ENUMERATED 296 297// An Enumerated is represented as a plain int. 298type Enumerated int 299 300// FLAG 301 302// A Flag accepts any data and is set to true if present. 303type Flag bool 304 305// parseBase128Int parses a base-128 encoded int from the given offset in the 306// given byte slice. It returns the value and the new offset. 307func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) { 308 offset = initOffset 309 var ret64 int64 310 for shifted := 0; offset < len(bytes); shifted++ { 311 // 5 * 7 bits per byte == 35 bits of data 312 // Thus the representation is either non-minimal or too large for an int32 313 if shifted == 5 { 314 err = StructuralError{"base 128 integer too large"} 315 return 316 } 317 ret64 <<= 7 318 b := bytes[offset] 319 // integers should be minimally encoded, so the leading octet should 320 // never be 0x80 321 if shifted == 0 && b == 0x80 { 322 err = SyntaxError{"integer is not minimally encoded"} 323 return 324 } 325 ret64 |= int64(b & 0x7f) 326 offset++ 327 if b&0x80 == 0 { 328 ret = int(ret64) 329 // Ensure that the returned value fits in an int on all platforms 330 if ret64 > math.MaxInt32 { 331 err = StructuralError{"base 128 integer too large"} 332 } 333 return 334 } 335 } 336 err = SyntaxError{"truncated base 128 integer"} 337 return 338} 339 340// UTCTime 341 342func parseUTCTime(bytes []byte) (ret time.Time, err error) { 343 s := string(bytes) 344 345 formatStr := "0601021504Z0700" 346 ret, err = time.Parse(formatStr, s) 347 if err != nil { 348 formatStr = "060102150405Z0700" 349 ret, err = time.Parse(formatStr, s) 350 } 351 if err != nil { 352 return 353 } 354 355 if serialized := ret.Format(formatStr); serialized != s { 356 err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized) 357 return 358 } 359 360 if ret.Year() >= 2050 { 361 // UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1 362 ret = ret.AddDate(-100, 0, 0) 363 } 364 365 return 366} 367 368// parseGeneralizedTime parses the GeneralizedTime from the given byte slice 369// and returns the resulting time. 370func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) { 371 const formatStr = "20060102150405.999999999Z0700" 372 s := string(bytes) 373 374 if ret, err = time.Parse(formatStr, s); err != nil { 375 return 376 } 377 378 if serialized := ret.Format(formatStr); serialized != s { 379 err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized) 380 } 381 382 return 383} 384 385// NumericString 386 387// parseNumericString parses an ASN.1 NumericString from the given byte array 388// and returns it. 389func parseNumericString(bytes []byte) (ret string, err error) { 390 for _, b := range bytes { 391 if !isNumeric(b) { 392 return "", SyntaxError{"NumericString contains invalid character"} 393 } 394 } 395 return string(bytes), nil 396} 397 398// isNumeric reports whether the given b is in the ASN.1 NumericString set. 399func isNumeric(b byte) bool { 400 return '0' <= b && b <= '9' || 401 b == ' ' 402} 403 404// PrintableString 405 406// parsePrintableString parses an ASN.1 PrintableString from the given byte 407// array and returns it. 408func parsePrintableString(bytes []byte) (ret string, err error) { 409 for _, b := range bytes { 410 if !isPrintable(b, allowAsterisk, allowAmpersand) { 411 err = SyntaxError{"PrintableString contains invalid character"} 412 return 413 } 414 } 415 ret = string(bytes) 416 return 417} 418 419type asteriskFlag bool 420type ampersandFlag bool 421 422const ( 423 allowAsterisk asteriskFlag = true 424 rejectAsterisk asteriskFlag = false 425 426 allowAmpersand ampersandFlag = true 427 rejectAmpersand ampersandFlag = false 428) 429 430// isPrintable reports whether the given b is in the ASN.1 PrintableString set. 431// If asterisk is allowAsterisk then '*' is also allowed, reflecting existing 432// practice. If ampersand is allowAmpersand then '&' is allowed as well. 433func isPrintable(b byte, asterisk asteriskFlag, ampersand ampersandFlag) bool { 434 return 'a' <= b && b <= 'z' || 435 'A' <= b && b <= 'Z' || 436 '0' <= b && b <= '9' || 437 '\'' <= b && b <= ')' || 438 '+' <= b && b <= '/' || 439 b == ' ' || 440 b == ':' || 441 b == '=' || 442 b == '?' || 443 // This is technically not allowed in a PrintableString. 444 // However, x509 certificates with wildcard strings don't 445 // always use the correct string type so we permit it. 446 (bool(asterisk) && b == '*') || 447 // This is not technically allowed either. However, not 448 // only is it relatively common, but there are also a 449 // handful of CA certificates that contain it. At least 450 // one of which will not expire until 2027. 451 (bool(ampersand) && b == '&') 452} 453 454// IA5String 455 456// parseIA5String parses an ASN.1 IA5String (ASCII string) from the given 457// byte slice and returns it. 458func parseIA5String(bytes []byte) (ret string, err error) { 459 for _, b := range bytes { 460 if b >= utf8.RuneSelf { 461 err = SyntaxError{"IA5String contains invalid character"} 462 return 463 } 464 } 465 ret = string(bytes) 466 return 467} 468 469// T61String 470 471// parseT61String parses an ASN.1 T61String (8-bit clean string) from the given 472// byte slice and returns it. 473func parseT61String(bytes []byte) (ret string, err error) { 474 return string(bytes), nil 475} 476 477// UTF8String 478 479// parseUTF8String parses an ASN.1 UTF8String (raw UTF-8) from the given byte 480// array and returns it. 481func parseUTF8String(bytes []byte) (ret string, err error) { 482 if !utf8.Valid(bytes) { 483 return "", errors.New("asn1: invalid UTF-8 string") 484 } 485 return string(bytes), nil 486} 487 488// BMPString 489 490// parseBMPString parses an ASN.1 BMPString (Basic Multilingual Plane of 491// ISO/IEC/ITU 10646-1) from the given byte slice and returns it. 492func parseBMPString(bmpString []byte) (string, error) { 493 if len(bmpString)%2 != 0 { 494 return "", errors.New("pkcs12: odd-length BMP string") 495 } 496 497 // Strip terminator if present. 498 if l := len(bmpString); l >= 2 && bmpString[l-1] == 0 && bmpString[l-2] == 0 { 499 bmpString = bmpString[:l-2] 500 } 501 502 s := make([]uint16, 0, len(bmpString)/2) 503 for len(bmpString) > 0 { 504 s = append(s, uint16(bmpString[0])<<8+uint16(bmpString[1])) 505 bmpString = bmpString[2:] 506 } 507 508 return string(utf16.Decode(s)), nil 509} 510 511// A RawValue represents an undecoded ASN.1 object. 512type RawValue struct { 513 Class, Tag int 514 IsCompound bool 515 Bytes []byte 516 FullBytes []byte // includes the tag and length 517} 518 519// RawContent is used to signal that the undecoded, DER data needs to be 520// preserved for a struct. To use it, the first field of the struct must have 521// this type. It's an error for any of the other fields to have this type. 522type RawContent []byte 523 524// Tagging 525 526// parseTagAndLength parses an ASN.1 tag and length pair from the given offset 527// into a byte slice. It returns the parsed data and the new offset. SET and 528// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we 529// don't distinguish between ordered and unordered objects in this code. 530func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) { 531 offset = initOffset 532 // parseTagAndLength should not be called without at least a single 533 // byte to read. Thus this check is for robustness: 534 if offset >= len(bytes) { 535 err = errors.New("asn1: internal error in parseTagAndLength") 536 return 537 } 538 b := bytes[offset] 539 offset++ 540 ret.class = int(b >> 6) 541 ret.isCompound = b&0x20 == 0x20 542 ret.tag = int(b & 0x1f) 543 544 // If the bottom five bits are set, then the tag number is actually base 128 545 // encoded afterwards 546 if ret.tag == 0x1f { 547 ret.tag, offset, err = parseBase128Int(bytes, offset) 548 if err != nil { 549 return 550 } 551 // Tags should be encoded in minimal form. 552 if ret.tag < 0x1f { 553 err = SyntaxError{"non-minimal tag"} 554 return 555 } 556 } 557 if offset >= len(bytes) { 558 err = SyntaxError{"truncated tag or length"} 559 return 560 } 561 b = bytes[offset] 562 offset++ 563 if b&0x80 == 0 { 564 // The length is encoded in the bottom 7 bits. 565 ret.length = int(b & 0x7f) 566 } else { 567 // Bottom 7 bits give the number of length bytes to follow. 568 numBytes := int(b & 0x7f) 569 if numBytes == 0 { 570 err = SyntaxError{"indefinite length found (not DER)"} 571 return 572 } 573 ret.length = 0 574 for i := 0; i < numBytes; i++ { 575 if offset >= len(bytes) { 576 err = SyntaxError{"truncated tag or length"} 577 return 578 } 579 b = bytes[offset] 580 offset++ 581 if ret.length >= 1<<23 { 582 // We can't shift ret.length up without 583 // overflowing. 584 err = StructuralError{"length too large"} 585 return 586 } 587 ret.length <<= 8 588 ret.length |= int(b) 589 if ret.length == 0 { 590 // DER requires that lengths be minimal. 591 err = StructuralError{"superfluous leading zeros in length"} 592 return 593 } 594 } 595 // Short lengths must be encoded in short form. 596 if ret.length < 0x80 { 597 err = StructuralError{"non-minimal length"} 598 return 599 } 600 } 601 602 return 603} 604 605// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse 606// a number of ASN.1 values from the given byte slice and returns them as a 607// slice of Go values of the given type. 608func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) { 609 matchAny, expectedTag, compoundType, ok := getUniversalType(elemType) 610 if !ok { 611 err = StructuralError{"unknown Go type for slice"} 612 return 613 } 614 615 // First we iterate over the input and count the number of elements, 616 // checking that the types are correct in each case. 617 numElements := 0 618 for offset := 0; offset < len(bytes); { 619 var t tagAndLength 620 t, offset, err = parseTagAndLength(bytes, offset) 621 if err != nil { 622 return 623 } 624 switch t.tag { 625 case TagIA5String, TagGeneralString, TagT61String, TagUTF8String, TagNumericString, TagBMPString: 626 // We pretend that various other string types are 627 // PRINTABLE STRINGs so that a sequence of them can be 628 // parsed into a []string. 629 t.tag = TagPrintableString 630 case TagGeneralizedTime, TagUTCTime: 631 // Likewise, both time types are treated the same. 632 t.tag = TagUTCTime 633 } 634 635 if !matchAny && (t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag) { 636 err = StructuralError{"sequence tag mismatch"} 637 return 638 } 639 if invalidLength(offset, t.length, len(bytes)) { 640 err = SyntaxError{"truncated sequence"} 641 return 642 } 643 offset += t.length 644 numElements++ 645 } 646 ret = reflect.MakeSlice(sliceType, numElements, numElements) 647 params := fieldParameters{} 648 offset := 0 649 for i := 0; i < numElements; i++ { 650 offset, err = parseField(ret.Index(i), bytes, offset, params) 651 if err != nil { 652 return 653 } 654 } 655 return 656} 657 658var ( 659 bitStringType = reflect.TypeFor[BitString]() 660 objectIdentifierType = reflect.TypeFor[ObjectIdentifier]() 661 enumeratedType = reflect.TypeFor[Enumerated]() 662 flagType = reflect.TypeFor[Flag]() 663 timeType = reflect.TypeFor[time.Time]() 664 rawValueType = reflect.TypeFor[RawValue]() 665 rawContentsType = reflect.TypeFor[RawContent]() 666 bigIntType = reflect.TypeFor[*big.Int]() 667) 668 669// invalidLength reports whether offset + length > sliceLength, or if the 670// addition would overflow. 671func invalidLength(offset, length, sliceLength int) bool { 672 return offset+length < offset || offset+length > sliceLength 673} 674 675// parseField is the main parsing function. Given a byte slice and an offset 676// into the array, it will try to parse a suitable ASN.1 value out and store it 677// in the given Value. 678func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) { 679 offset = initOffset 680 fieldType := v.Type() 681 682 // If we have run out of data, it may be that there are optional elements at the end. 683 if offset == len(bytes) { 684 if !setDefaultValue(v, params) { 685 err = SyntaxError{"sequence truncated"} 686 } 687 return 688 } 689 690 // Deal with the ANY type. 691 if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 { 692 var t tagAndLength 693 t, offset, err = parseTagAndLength(bytes, offset) 694 if err != nil { 695 return 696 } 697 if invalidLength(offset, t.length, len(bytes)) { 698 err = SyntaxError{"data truncated"} 699 return 700 } 701 var result any 702 if !t.isCompound && t.class == ClassUniversal { 703 innerBytes := bytes[offset : offset+t.length] 704 switch t.tag { 705 case TagPrintableString: 706 result, err = parsePrintableString(innerBytes) 707 case TagNumericString: 708 result, err = parseNumericString(innerBytes) 709 case TagIA5String: 710 result, err = parseIA5String(innerBytes) 711 case TagT61String: 712 result, err = parseT61String(innerBytes) 713 case TagUTF8String: 714 result, err = parseUTF8String(innerBytes) 715 case TagInteger: 716 result, err = parseInt64(innerBytes) 717 case TagBitString: 718 result, err = parseBitString(innerBytes) 719 case TagOID: 720 result, err = parseObjectIdentifier(innerBytes) 721 case TagUTCTime: 722 result, err = parseUTCTime(innerBytes) 723 case TagGeneralizedTime: 724 result, err = parseGeneralizedTime(innerBytes) 725 case TagOctetString: 726 result = innerBytes 727 case TagBMPString: 728 result, err = parseBMPString(innerBytes) 729 default: 730 // If we don't know how to handle the type, we just leave Value as nil. 731 } 732 } 733 offset += t.length 734 if err != nil { 735 return 736 } 737 if result != nil { 738 v.Set(reflect.ValueOf(result)) 739 } 740 return 741 } 742 743 t, offset, err := parseTagAndLength(bytes, offset) 744 if err != nil { 745 return 746 } 747 if params.explicit { 748 expectedClass := ClassContextSpecific 749 if params.application { 750 expectedClass = ClassApplication 751 } 752 if offset == len(bytes) { 753 err = StructuralError{"explicit tag has no child"} 754 return 755 } 756 if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) { 757 if fieldType == rawValueType { 758 // The inner element should not be parsed for RawValues. 759 } else if t.length > 0 { 760 t, offset, err = parseTagAndLength(bytes, offset) 761 if err != nil { 762 return 763 } 764 } else { 765 if fieldType != flagType { 766 err = StructuralError{"zero length explicit tag was not an asn1.Flag"} 767 return 768 } 769 v.SetBool(true) 770 return 771 } 772 } else { 773 // The tags didn't match, it might be an optional element. 774 ok := setDefaultValue(v, params) 775 if ok { 776 offset = initOffset 777 } else { 778 err = StructuralError{"explicitly tagged member didn't match"} 779 } 780 return 781 } 782 } 783 784 matchAny, universalTag, compoundType, ok1 := getUniversalType(fieldType) 785 if !ok1 { 786 err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)} 787 return 788 } 789 790 // Special case for strings: all the ASN.1 string types map to the Go 791 // type string. getUniversalType returns the tag for PrintableString 792 // when it sees a string, so if we see a different string type on the 793 // wire, we change the universal type to match. 794 if universalTag == TagPrintableString { 795 if t.class == ClassUniversal { 796 switch t.tag { 797 case TagIA5String, TagGeneralString, TagT61String, TagUTF8String, TagNumericString, TagBMPString: 798 universalTag = t.tag 799 } 800 } else if params.stringType != 0 { 801 universalTag = params.stringType 802 } 803 } 804 805 // Special case for time: UTCTime and GeneralizedTime both map to the 806 // Go type time.Time. 807 if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal { 808 universalTag = TagGeneralizedTime 809 } 810 811 if params.set { 812 universalTag = TagSet 813 } 814 815 matchAnyClassAndTag := matchAny 816 expectedClass := ClassUniversal 817 expectedTag := universalTag 818 819 if !params.explicit && params.tag != nil { 820 expectedClass = ClassContextSpecific 821 expectedTag = *params.tag 822 matchAnyClassAndTag = false 823 } 824 825 if !params.explicit && params.application && params.tag != nil { 826 expectedClass = ClassApplication 827 expectedTag = *params.tag 828 matchAnyClassAndTag = false 829 } 830 831 if !params.explicit && params.private && params.tag != nil { 832 expectedClass = ClassPrivate 833 expectedTag = *params.tag 834 matchAnyClassAndTag = false 835 } 836 837 // We have unwrapped any explicit tagging at this point. 838 if !matchAnyClassAndTag && (t.class != expectedClass || t.tag != expectedTag) || 839 (!matchAny && t.isCompound != compoundType) { 840 // Tags don't match. Again, it could be an optional element. 841 ok := setDefaultValue(v, params) 842 if ok { 843 offset = initOffset 844 } else { 845 err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)} 846 } 847 return 848 } 849 if invalidLength(offset, t.length, len(bytes)) { 850 err = SyntaxError{"data truncated"} 851 return 852 } 853 innerBytes := bytes[offset : offset+t.length] 854 offset += t.length 855 856 // We deal with the structures defined in this package first. 857 switch v := v.Addr().Interface().(type) { 858 case *RawValue: 859 *v = RawValue{t.class, t.tag, t.isCompound, innerBytes, bytes[initOffset:offset]} 860 return 861 case *ObjectIdentifier: 862 *v, err = parseObjectIdentifier(innerBytes) 863 return 864 case *BitString: 865 *v, err = parseBitString(innerBytes) 866 return 867 case *time.Time: 868 if universalTag == TagUTCTime { 869 *v, err = parseUTCTime(innerBytes) 870 return 871 } 872 *v, err = parseGeneralizedTime(innerBytes) 873 return 874 case *Enumerated: 875 parsedInt, err1 := parseInt32(innerBytes) 876 if err1 == nil { 877 *v = Enumerated(parsedInt) 878 } 879 err = err1 880 return 881 case *Flag: 882 *v = true 883 return 884 case **big.Int: 885 parsedInt, err1 := parseBigInt(innerBytes) 886 if err1 == nil { 887 *v = parsedInt 888 } 889 err = err1 890 return 891 } 892 switch val := v; val.Kind() { 893 case reflect.Bool: 894 parsedBool, err1 := parseBool(innerBytes) 895 if err1 == nil { 896 val.SetBool(parsedBool) 897 } 898 err = err1 899 return 900 case reflect.Int, reflect.Int32, reflect.Int64: 901 if val.Type().Size() == 4 { 902 parsedInt, err1 := parseInt32(innerBytes) 903 if err1 == nil { 904 val.SetInt(int64(parsedInt)) 905 } 906 err = err1 907 } else { 908 parsedInt, err1 := parseInt64(innerBytes) 909 if err1 == nil { 910 val.SetInt(parsedInt) 911 } 912 err = err1 913 } 914 return 915 // TODO(dfc) Add support for the remaining integer types 916 case reflect.Struct: 917 structType := fieldType 918 919 for i := 0; i < structType.NumField(); i++ { 920 if !structType.Field(i).IsExported() { 921 err = StructuralError{"struct contains unexported fields"} 922 return 923 } 924 } 925 926 if structType.NumField() > 0 && 927 structType.Field(0).Type == rawContentsType { 928 bytes := bytes[initOffset:offset] 929 val.Field(0).Set(reflect.ValueOf(RawContent(bytes))) 930 } 931 932 innerOffset := 0 933 for i := 0; i < structType.NumField(); i++ { 934 field := structType.Field(i) 935 if i == 0 && field.Type == rawContentsType { 936 continue 937 } 938 innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1"))) 939 if err != nil { 940 return 941 } 942 } 943 // We allow extra bytes at the end of the SEQUENCE because 944 // adding elements to the end has been used in X.509 as the 945 // version numbers have increased. 946 return 947 case reflect.Slice: 948 sliceType := fieldType 949 if sliceType.Elem().Kind() == reflect.Uint8 { 950 val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes))) 951 reflect.Copy(val, reflect.ValueOf(innerBytes)) 952 return 953 } 954 newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem()) 955 if err1 == nil { 956 val.Set(newSlice) 957 } 958 err = err1 959 return 960 case reflect.String: 961 var v string 962 switch universalTag { 963 case TagPrintableString: 964 v, err = parsePrintableString(innerBytes) 965 case TagNumericString: 966 v, err = parseNumericString(innerBytes) 967 case TagIA5String: 968 v, err = parseIA5String(innerBytes) 969 case TagT61String: 970 v, err = parseT61String(innerBytes) 971 case TagUTF8String: 972 v, err = parseUTF8String(innerBytes) 973 case TagGeneralString: 974 // GeneralString is specified in ISO-2022/ECMA-35, 975 // A brief review suggests that it includes structures 976 // that allow the encoding to change midstring and 977 // such. We give up and pass it as an 8-bit string. 978 v, err = parseT61String(innerBytes) 979 case TagBMPString: 980 v, err = parseBMPString(innerBytes) 981 982 default: 983 err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)} 984 } 985 if err == nil { 986 val.SetString(v) 987 } 988 return 989 } 990 err = StructuralError{"unsupported: " + v.Type().String()} 991 return 992} 993 994// canHaveDefaultValue reports whether k is a Kind that we will set a default 995// value for. (A signed integer, essentially.) 996func canHaveDefaultValue(k reflect.Kind) bool { 997 switch k { 998 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 999 return true 1000 } 1001 1002 return false 1003} 1004 1005// setDefaultValue is used to install a default value, from a tag string, into 1006// a Value. It is successful if the field was optional, even if a default value 1007// wasn't provided or it failed to install it into the Value. 1008func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) { 1009 if !params.optional { 1010 return 1011 } 1012 ok = true 1013 if params.defaultValue == nil { 1014 return 1015 } 1016 if canHaveDefaultValue(v.Kind()) { 1017 v.SetInt(*params.defaultValue) 1018 } 1019 return 1020} 1021 1022// Unmarshal parses the DER-encoded ASN.1 data structure b 1023// and uses the reflect package to fill in an arbitrary value pointed at by val. 1024// Because Unmarshal uses the reflect package, the structs 1025// being written to must use upper case field names. If val 1026// is nil or not a pointer, Unmarshal returns an error. 1027// 1028// After parsing b, any bytes that were leftover and not used to fill 1029// val will be returned in rest. When parsing a SEQUENCE into a struct, 1030// any trailing elements of the SEQUENCE that do not have matching 1031// fields in val will not be included in rest, as these are considered 1032// valid elements of the SEQUENCE and not trailing data. 1033// 1034// - An ASN.1 INTEGER can be written to an int, int32, int64, 1035// or *[big.Int]. 1036// If the encoded value does not fit in the Go type, 1037// Unmarshal returns a parse error. 1038// 1039// - An ASN.1 BIT STRING can be written to a [BitString]. 1040// 1041// - An ASN.1 OCTET STRING can be written to a []byte. 1042// 1043// - An ASN.1 OBJECT IDENTIFIER can be written to an [ObjectIdentifier]. 1044// 1045// - An ASN.1 ENUMERATED can be written to an [Enumerated]. 1046// 1047// - An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a [time.Time]. 1048// 1049// - An ASN.1 PrintableString, IA5String, or NumericString can be written to a string. 1050// 1051// - Any of the above ASN.1 values can be written to an interface{}. 1052// The value stored in the interface has the corresponding Go type. 1053// For integers, that type is int64. 1054// 1055// - An ASN.1 SEQUENCE OF x or SET OF x can be written 1056// to a slice if an x can be written to the slice's element type. 1057// 1058// - An ASN.1 SEQUENCE or SET can be written to a struct 1059// if each of the elements in the sequence can be 1060// written to the corresponding element in the struct. 1061// 1062// The following tags on struct fields have special meaning to Unmarshal: 1063// 1064// application specifies that an APPLICATION tag is used 1065// private specifies that a PRIVATE tag is used 1066// default:x sets the default value for optional integer fields (only used if optional is also present) 1067// explicit specifies that an additional, explicit tag wraps the implicit one 1068// optional marks the field as ASN.1 OPTIONAL 1069// set causes a SET, rather than a SEQUENCE type to be expected 1070// tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC 1071// 1072// When decoding an ASN.1 value with an IMPLICIT tag into a string field, 1073// Unmarshal will default to a PrintableString, which doesn't support 1074// characters such as '@' and '&'. To force other encodings, use the following 1075// tags: 1076// 1077// ia5 causes strings to be unmarshaled as ASN.1 IA5String values 1078// numeric causes strings to be unmarshaled as ASN.1 NumericString values 1079// utf8 causes strings to be unmarshaled as ASN.1 UTF8String values 1080// 1081// If the type of the first field of a structure is RawContent then the raw 1082// ASN1 contents of the struct will be stored in it. 1083// 1084// If the name of a slice type ends with "SET" then it's treated as if 1085// the "set" tag was set on it. This results in interpreting the type as a 1086// SET OF x rather than a SEQUENCE OF x. This can be used with nested slices 1087// where a struct tag cannot be given. 1088// 1089// Other ASN.1 types are not supported; if it encounters them, 1090// Unmarshal returns a parse error. 1091func Unmarshal(b []byte, val any) (rest []byte, err error) { 1092 return UnmarshalWithParams(b, val, "") 1093} 1094 1095// An invalidUnmarshalError describes an invalid argument passed to Unmarshal. 1096// (The argument to Unmarshal must be a non-nil pointer.) 1097type invalidUnmarshalError struct { 1098 Type reflect.Type 1099} 1100 1101func (e *invalidUnmarshalError) Error() string { 1102 if e.Type == nil { 1103 return "asn1: Unmarshal recipient value is nil" 1104 } 1105 1106 if e.Type.Kind() != reflect.Pointer { 1107 return "asn1: Unmarshal recipient value is non-pointer " + e.Type.String() 1108 } 1109 return "asn1: Unmarshal recipient value is nil " + e.Type.String() 1110} 1111 1112// UnmarshalWithParams allows field parameters to be specified for the 1113// top-level element. The form of the params is the same as the field tags. 1114func UnmarshalWithParams(b []byte, val any, params string) (rest []byte, err error) { 1115 v := reflect.ValueOf(val) 1116 if v.Kind() != reflect.Pointer || v.IsNil() { 1117 return nil, &invalidUnmarshalError{reflect.TypeOf(val)} 1118 } 1119 offset, err := parseField(v.Elem(), b, 0, parseFieldParameters(params)) 1120 if err != nil { 1121 return nil, err 1122 } 1123 return b[offset:], nil 1124} 1125