1 /*
2 * Copyright © 2015 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 /**
26 * nir_opt_vectorize() aims to vectorize ALU instructions.
27 *
28 * The default vectorization width is 4.
29 * If desired, a callback function which returns the max vectorization width
30 * per instruction can be provided.
31 *
32 * The max vectorization width must be a power of 2.
33 */
34
35 #include "util/u_dynarray.h"
36 #include "nir.h"
37 #include "nir_builder.h"
38 #include "nir_vla.h"
39
40 #define HASH(hash, data) XXH32(&data, sizeof(data), hash)
41
42 static uint32_t
hash_src(uint32_t hash,const nir_src * src)43 hash_src(uint32_t hash, const nir_src *src)
44 {
45 void *hash_data = nir_src_is_const(*src) ? NULL : src->ssa;
46
47 return HASH(hash, hash_data);
48 }
49
50 static uint32_t
hash_alu_src(uint32_t hash,const nir_alu_src * src,uint32_t num_components,uint32_t max_vec)51 hash_alu_src(uint32_t hash, const nir_alu_src *src,
52 uint32_t num_components, uint32_t max_vec)
53 {
54 /* hash whether a swizzle accesses elements beyond the maximum
55 * vectorization factor:
56 * For example accesses to .x and .y are considered different variables
57 * compared to accesses to .z and .w for 16-bit vec2.
58 */
59 uint32_t swizzle = (src->swizzle[0] & ~(max_vec - 1));
60 hash = HASH(hash, swizzle);
61
62 return hash_src(hash, &src->src);
63 }
64
65 static uint32_t
hash_phi_src(uint32_t hash,const nir_phi_instr * phi,const nir_phi_src * src,uint32_t max_vec)66 hash_phi_src(uint32_t hash, const nir_phi_instr *phi, const nir_phi_src *src,
67 uint32_t max_vec)
68 {
69 hash = HASH(hash, src->pred);
70
71 nir_scalar chased = nir_scalar_chase_movs(nir_get_scalar(src->src.ssa, 0));
72 uint32_t swizzle = chased.comp & ~(max_vec - 1);
73 hash = HASH(hash, swizzle);
74
75 if (nir_scalar_is_const(chased)) {
76 void *data = NULL;
77 hash = HASH(hash, data);
78 } else if (src->pred->index < phi->instr.block->index) {
79 hash = HASH(hash, chased.def);
80 } else {
81 nir_instr *chased_instr = chased.def->parent_instr;
82 hash = HASH(hash, chased_instr->type);
83
84 if (chased_instr->type == nir_instr_type_alu)
85 hash = HASH(hash, nir_instr_as_alu(chased_instr)->op);
86 }
87
88 return hash;
89 }
90
91 static uint32_t
hash_instr(const void * data)92 hash_instr(const void *data)
93 {
94 const nir_instr *instr = (nir_instr *)data;
95 uint32_t hash = HASH(0, instr->type);
96
97 if (instr->type == nir_instr_type_phi) {
98 nir_phi_instr *phi = nir_instr_as_phi(instr);
99
100 hash = HASH(hash, instr->block);
101 hash = HASH(hash, phi->def.bit_size);
102
103 /* The order of phi sources is not guaranteed so hash commutatively. */
104 nir_foreach_phi_src(src, phi)
105 hash *= hash_phi_src(0, phi, src, instr->pass_flags);
106
107 return hash;
108 }
109
110 assert(instr->type == nir_instr_type_alu);
111 nir_alu_instr *alu = nir_instr_as_alu(instr);
112
113 hash = HASH(hash, alu->op);
114 hash = HASH(hash, alu->def.bit_size);
115
116 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++)
117 hash = hash_alu_src(hash, &alu->src[i],
118 alu->def.num_components,
119 instr->pass_flags);
120
121 return hash;
122 }
123
124 static bool
srcs_equal(const nir_src * src1,const nir_src * src2)125 srcs_equal(const nir_src *src1, const nir_src *src2)
126 {
127
128 return src1->ssa == src2->ssa ||
129 (nir_src_is_const(*src1) && nir_src_is_const(*src2));
130 }
131
132 static bool
alu_srcs_equal(const nir_alu_src * src1,const nir_alu_src * src2,uint32_t max_vec)133 alu_srcs_equal(const nir_alu_src *src1, const nir_alu_src *src2,
134 uint32_t max_vec)
135 {
136 uint32_t mask = ~(max_vec - 1);
137 if ((src1->swizzle[0] & mask) != (src2->swizzle[0] & mask))
138 return false;
139
140 return srcs_equal(&src1->src, &src2->src);
141 }
142
143 static bool
phi_srcs_equal(nir_block * block,const nir_phi_src * src1,const nir_phi_src * src2,uint32_t max_vec)144 phi_srcs_equal(nir_block *block, const nir_phi_src *src1,
145 const nir_phi_src *src2, uint32_t max_vec)
146 {
147 if (src1->pred != src2->pred)
148 return false;
149
150 /* Since phi sources don't have swizzles, they are swizzled using movs.
151 * Get the real sources first.
152 */
153 nir_scalar chased1 = nir_scalar_chase_movs(nir_get_scalar(src1->src.ssa, 0));
154 nir_scalar chased2 = nir_scalar_chase_movs(nir_get_scalar(src2->src.ssa, 0));
155
156 if (nir_scalar_is_const(chased1) && nir_scalar_is_const(chased2))
157 return true;
158
159 uint32_t mask = ~(max_vec - 1);
160 if ((chased1.comp & mask) != (chased2.comp & mask))
161 return false;
162
163 /* For phi sources whose defs we have already processed, we require that
164 * they point to the same def like we do for ALU instructions.
165 */
166 if (src1->pred->index < block->index)
167 return chased1.def == chased2.def;
168
169 /* Otherwise (i.e., for loop back-edges), we haven't processed the sources
170 * yet so they haven't been vectorized. In this case, try to guess if they
171 * could be vectorized later. Keep it simple for now: if they are the same
172 * type of instruction and, if ALU, have the same operation, assume they
173 * might be vectorized later. Although this won't be true in general, this
174 * heuristic is probable good enough in practice: since we check that other
175 * (forward-edge) sources are vectorized, chances are the back-edge will
176 * also be vectorized.
177 */
178 nir_instr *chased_instr1 = chased1.def->parent_instr;
179 nir_instr *chased_instr2 = chased2.def->parent_instr;
180
181 if (chased_instr1->type != chased_instr2->type)
182 return false;
183
184 if (chased_instr1->type != nir_instr_type_alu)
185 return true;
186
187 return nir_instr_as_alu(chased_instr1)->op ==
188 nir_instr_as_alu(chased_instr2)->op;
189 }
190
191 static bool
instrs_equal(const void * data1,const void * data2)192 instrs_equal(const void *data1, const void *data2)
193 {
194 const nir_instr *instr1 = (nir_instr *)data1;
195 const nir_instr *instr2 = (nir_instr *)data2;
196
197 if (instr1->type != instr2->type)
198 return false;
199
200 if (instr1->type == nir_instr_type_phi) {
201 if (instr1->block != instr2->block)
202 return false;
203
204 nir_phi_instr *phi1 = nir_instr_as_phi(instr1);
205 nir_phi_instr *phi2 = nir_instr_as_phi(instr2);
206
207 if (phi1->def.bit_size != phi2->def.bit_size)
208 return false;
209
210 nir_foreach_phi_src(src1, phi1) {
211 nir_phi_src *src2 = nir_phi_get_src_from_block(phi2, src1->pred);
212
213 if (!phi_srcs_equal(instr1->block, src1, src2, instr1->pass_flags))
214 return false;
215 }
216
217 return true;
218 }
219
220 assert(instr1->type == nir_instr_type_alu);
221 assert(instr2->type == nir_instr_type_alu);
222
223 nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
224 nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
225
226 if (alu1->op != alu2->op)
227 return false;
228
229 if (alu1->def.bit_size != alu2->def.bit_size)
230 return false;
231
232 for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
233 if (!alu_srcs_equal(&alu1->src[i], &alu2->src[i], instr1->pass_flags))
234 return false;
235 }
236
237 return true;
238 }
239
240 static bool
instr_can_rewrite(nir_instr * instr)241 instr_can_rewrite(nir_instr *instr)
242 {
243 switch (instr->type) {
244 case nir_instr_type_alu: {
245 nir_alu_instr *alu = nir_instr_as_alu(instr);
246
247 /* Don't try and vectorize mov's. Either they'll be handled by copy
248 * prop, or they're actually necessary and trying to vectorize them
249 * would result in fighting with copy prop.
250 */
251 if (alu->op == nir_op_mov)
252 return false;
253
254 /* no need to hash instructions which are already vectorized */
255 if (alu->def.num_components >= instr->pass_flags)
256 return false;
257
258 if (nir_op_infos[alu->op].output_size != 0)
259 return false;
260
261 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
262 if (nir_op_infos[alu->op].input_sizes[i] != 0)
263 return false;
264
265 /* don't hash instructions which are already swizzled
266 * outside of max_components: these should better be scalarized */
267 uint32_t mask = ~(instr->pass_flags - 1);
268 for (unsigned j = 1; j < alu->def.num_components; j++) {
269 if ((alu->src[i].swizzle[0] & mask) != (alu->src[i].swizzle[j] & mask))
270 return false;
271 }
272 }
273
274 return true;
275 }
276
277 case nir_instr_type_phi: {
278 nir_phi_instr *phi = nir_instr_as_phi(instr);
279 return phi->def.num_components < instr->pass_flags;
280 }
281
282 default:
283 break;
284 }
285
286 return false;
287 }
288
289 static void
rewrite_uses(nir_builder * b,struct set * instr_set,nir_def * def1,nir_def * def2,nir_def * new_def)290 rewrite_uses(nir_builder *b, struct set *instr_set, nir_def *def1,
291 nir_def *def2, nir_def *new_def)
292 {
293 /* update all ALU uses */
294 nir_foreach_use_safe(src, def1) {
295 nir_instr *user_instr = nir_src_parent_instr(src);
296 if (user_instr->type == nir_instr_type_alu) {
297 /* Check if user is found in the hashset */
298 struct set_entry *entry = _mesa_set_search(instr_set, user_instr);
299
300 /* For ALU instructions, rewrite the source directly to avoid a
301 * round-trip through copy propagation.
302 */
303 nir_src_rewrite(src, new_def);
304
305 /* Rehash user if it was found in the hashset */
306 if (entry && entry->key == user_instr) {
307 _mesa_set_remove(instr_set, entry);
308 _mesa_set_add(instr_set, user_instr);
309 }
310 }
311 }
312
313 nir_foreach_use_safe(src, def2) {
314 if (nir_src_parent_instr(src)->type == nir_instr_type_alu) {
315 /* For ALU instructions, rewrite the source directly to avoid a
316 * round-trip through copy propagation.
317 */
318 nir_src_rewrite(src, new_def);
319
320 nir_alu_src *alu_src = container_of(src, nir_alu_src, src);
321 nir_alu_instr *use = nir_instr_as_alu(nir_src_parent_instr(src));
322 unsigned components =
323 nir_ssa_alu_instr_src_components(use, alu_src - use->src);
324 for (unsigned i = 0; i < components; i++)
325 alu_src->swizzle[i] += def1->num_components;
326 }
327 }
328
329 /* update all other uses if there are any */
330 unsigned swiz[NIR_MAX_VEC_COMPONENTS];
331
332 if (!nir_def_is_unused(def1)) {
333 for (unsigned i = 0; i < def1->num_components; i++)
334 swiz[i] = i;
335 nir_def *new_def1 = nir_swizzle(b, new_def, swiz, def1->num_components);
336 nir_def_rewrite_uses(def1, new_def1);
337 }
338
339 if (!nir_def_is_unused(def2)) {
340 for (unsigned i = 0; i < def2->num_components; i++)
341 swiz[i] = i + def1->num_components;
342 nir_def *new_def2 = nir_swizzle(b, new_def, swiz, def2->num_components);
343 nir_def_rewrite_uses(def2, new_def2);
344 }
345
346 nir_instr_remove(def1->parent_instr);
347 nir_instr_remove(def2->parent_instr);
348 }
349
350 static nir_instr *
instr_try_combine_phi(struct set * instr_set,nir_phi_instr * phi1,nir_phi_instr * phi2)351 instr_try_combine_phi(struct set *instr_set, nir_phi_instr *phi1, nir_phi_instr *phi2)
352 {
353 assert(phi1->def.bit_size == phi2->def.bit_size);
354 unsigned phi1_components = phi1->def.num_components;
355 unsigned phi2_components = phi2->def.num_components;
356 unsigned total_components = phi1_components + phi2_components;
357
358 assert(phi1->instr.pass_flags == phi2->instr.pass_flags);
359 if (total_components > phi1->instr.pass_flags)
360 return NULL;
361
362 assert(phi1->instr.block == phi2->instr.block);
363 nir_block *block = phi1->instr.block;
364
365 nir_builder b = nir_builder_at(nir_after_instr(&phi1->instr));
366 nir_phi_instr *new_phi = nir_phi_instr_create(b.shader);
367 nir_def_init(&new_phi->instr, &new_phi->def, total_components,
368 phi1->def.bit_size);
369 nir_builder_instr_insert(&b, &new_phi->instr);
370 new_phi->instr.pass_flags = phi1->instr.pass_flags;
371
372 assert(exec_list_length(&phi1->srcs) == exec_list_length(&phi2->srcs));
373
374 nir_foreach_phi_src(src1, phi1) {
375 nir_phi_src *src2 = nir_phi_get_src_from_block(phi2, src1->pred);
376 nir_block *pred_block = src1->pred;
377
378 nir_scalar new_srcs[NIR_MAX_VEC_COMPONENTS];
379
380 for (unsigned i = 0; i < phi1_components; i++) {
381 nir_scalar s = nir_get_scalar(src1->src.ssa, i);
382 new_srcs[i] = nir_scalar_chase_movs(s);
383 }
384
385 for (unsigned i = 0; i < phi2_components; i++) {
386 nir_scalar s = nir_get_scalar(src2->src.ssa, i);
387 new_srcs[phi1_components + i] = nir_scalar_chase_movs(s);
388 }
389
390 nir_def *new_src;
391
392 if (nir_scalar_is_const(new_srcs[0])) {
393 nir_const_value value[NIR_MAX_VEC_COMPONENTS];
394
395 for (unsigned i = 0; i < total_components; i++) {
396 assert(nir_scalar_is_const(new_srcs[i]));
397 value[i] = nir_scalar_as_const_value(new_srcs[i]);
398 }
399
400 b.cursor = nir_after_block_before_jump(pred_block);
401 unsigned bit_size = src1->src.ssa->bit_size;
402 new_src = nir_build_imm(&b, total_components, bit_size, value);
403 } else if (pred_block->index < block->index) {
404 nir_def *def = new_srcs[0].def;
405 unsigned swizzle[NIR_MAX_VEC_COMPONENTS];
406
407 for (unsigned i = 0; i < total_components; i++) {
408 assert(new_srcs[i].def == def);
409 swizzle[i] = new_srcs[i].comp;
410 }
411
412 b.cursor = nir_after_instr_and_phis(def->parent_instr);
413 new_src = nir_swizzle(&b, def, swizzle, total_components);
414 } else {
415 /* This is a loop back-edge so we haven't vectorized the sources yet.
416 * Combine them in a vec which, if they are vectorized later, will be
417 * cleaned up by copy propagation.
418 */
419 b.cursor = nir_after_block_before_jump(pred_block);
420 new_src = nir_vec_scalars(&b, new_srcs, total_components);
421 }
422
423 nir_phi_src *new_phi_src =
424 nir_phi_instr_add_src(new_phi, src1->pred, new_src);
425 list_addtail(&new_phi_src->src.use_link, &new_src->uses);
426 }
427
428 b.cursor = nir_after_phis(block);
429 rewrite_uses(&b, instr_set, &phi1->def, &phi2->def, &new_phi->def);
430
431 return &new_phi->instr;
432 }
433
434 static nir_instr *
instr_try_combine_alu(struct set * instr_set,nir_alu_instr * alu1,nir_alu_instr * alu2)435 instr_try_combine_alu(struct set *instr_set, nir_alu_instr *alu1, nir_alu_instr *alu2)
436 {
437 assert(alu1->def.bit_size == alu2->def.bit_size);
438 unsigned alu1_components = alu1->def.num_components;
439 unsigned alu2_components = alu2->def.num_components;
440 unsigned total_components = alu1_components + alu2_components;
441
442 assert(alu1->instr.pass_flags == alu2->instr.pass_flags);
443 if (total_components > alu1->instr.pass_flags)
444 return NULL;
445
446 nir_builder b = nir_builder_at(nir_after_instr(&alu1->instr));
447
448 nir_alu_instr *new_alu = nir_alu_instr_create(b.shader, alu1->op);
449 nir_def_init(&new_alu->instr, &new_alu->def, total_components,
450 alu1->def.bit_size);
451 new_alu->instr.pass_flags = alu1->instr.pass_flags;
452
453 /* If either channel is exact, we have to preserve it even if it's
454 * not optimal for other channels.
455 */
456 new_alu->exact = alu1->exact || alu2->exact;
457
458 /* fp_fast_math is a set of FLOAT_CONTROLS_*_PRESERVE_*. Preserve anything
459 * preserved by either instruction.
460 */
461 new_alu->fp_fast_math = alu1->fp_fast_math | alu2->fp_fast_math;
462
463 /* If all channels don't wrap, we can say that the whole vector doesn't
464 * wrap.
465 */
466 new_alu->no_signed_wrap = alu1->no_signed_wrap && alu2->no_signed_wrap;
467 new_alu->no_unsigned_wrap = alu1->no_unsigned_wrap && alu2->no_unsigned_wrap;
468
469 for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
470 /* handle constant merging case */
471 if (alu1->src[i].src.ssa != alu2->src[i].src.ssa) {
472 nir_const_value *c1 = nir_src_as_const_value(alu1->src[i].src);
473 nir_const_value *c2 = nir_src_as_const_value(alu2->src[i].src);
474 assert(c1 && c2);
475 nir_const_value value[NIR_MAX_VEC_COMPONENTS];
476 unsigned bit_size = alu1->src[i].src.ssa->bit_size;
477
478 for (unsigned j = 0; j < total_components; j++) {
479 value[j].u64 = j < alu1_components ? c1[alu1->src[i].swizzle[j]].u64 : c2[alu2->src[i].swizzle[j - alu1_components]].u64;
480 }
481 nir_def *def = nir_build_imm(&b, total_components, bit_size, value);
482
483 new_alu->src[i].src = nir_src_for_ssa(def);
484 for (unsigned j = 0; j < total_components; j++)
485 new_alu->src[i].swizzle[j] = j;
486 continue;
487 }
488
489 new_alu->src[i].src = alu1->src[i].src;
490
491 for (unsigned j = 0; j < alu1_components; j++)
492 new_alu->src[i].swizzle[j] = alu1->src[i].swizzle[j];
493
494 for (unsigned j = 0; j < alu2_components; j++) {
495 new_alu->src[i].swizzle[j + alu1_components] =
496 alu2->src[i].swizzle[j];
497 }
498 }
499
500 nir_builder_instr_insert(&b, &new_alu->instr);
501 rewrite_uses(&b, instr_set, &alu1->def, &alu2->def, &new_alu->def);
502
503 return &new_alu->instr;
504 }
505
506 /*
507 * Tries to combine two instructions whose sources are different components of
508 * the same instructions into one vectorized instruction. Note that instr1
509 * should dominate instr2.
510 */
511 static nir_instr *
instr_try_combine(struct set * instr_set,nir_instr * instr1,nir_instr * instr2)512 instr_try_combine(struct set *instr_set, nir_instr *instr1, nir_instr *instr2)
513 {
514 switch (instr1->type) {
515 case nir_instr_type_alu:
516 assert(instr2->type == nir_instr_type_alu);
517 return instr_try_combine_alu(instr_set, nir_instr_as_alu(instr1),
518 nir_instr_as_alu(instr2));
519
520 case nir_instr_type_phi:
521 assert(instr2->type == nir_instr_type_phi);
522 return instr_try_combine_phi(instr_set, nir_instr_as_phi(instr1),
523 nir_instr_as_phi(instr2));
524
525 default:
526 unreachable("Unsupported instruction type");
527 }
528 }
529
530 static struct set *
vec_instr_set_create(void)531 vec_instr_set_create(void)
532 {
533 return _mesa_set_create(NULL, hash_instr, instrs_equal);
534 }
535
536 static void
vec_instr_set_destroy(struct set * instr_set)537 vec_instr_set_destroy(struct set *instr_set)
538 {
539 _mesa_set_destroy(instr_set, NULL);
540 }
541
542 static bool
vec_instr_set_add_or_rewrite(struct set * instr_set,nir_instr * instr,nir_vectorize_cb filter,void * data)543 vec_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr,
544 nir_vectorize_cb filter, void *data)
545 {
546 /* set max vector to instr pass flags: this is used to hash swizzles */
547 instr->pass_flags = filter ? filter(instr, data) : 4;
548 assert(util_is_power_of_two_or_zero(instr->pass_flags));
549
550 if (!instr_can_rewrite(instr))
551 return false;
552
553 struct set_entry *entry = _mesa_set_search(instr_set, instr);
554 if (entry) {
555 nir_instr *old_instr = (nir_instr *)entry->key;
556
557 /* We cannot combine the instructions if the old one doesn't dominate
558 * the new one. Since we will never encounter a block again that is
559 * dominated by the old instruction, overwrite it with the new one in
560 * the instruction set.
561 */
562 if (!nir_block_dominates(old_instr->block, instr->block)) {
563 entry->key = instr;
564 return false;
565 }
566
567 _mesa_set_remove(instr_set, entry);
568 nir_instr *new_instr = instr_try_combine(instr_set, old_instr, instr);
569 if (new_instr) {
570 if (instr_can_rewrite(new_instr))
571 _mesa_set_add(instr_set, new_instr);
572 return true;
573 }
574 }
575
576 _mesa_set_add(instr_set, instr);
577 return false;
578 }
579
580 static bool
nir_opt_vectorize_impl(nir_function_impl * impl,nir_vectorize_cb filter,void * data)581 nir_opt_vectorize_impl(nir_function_impl *impl,
582 nir_vectorize_cb filter, void *data)
583 {
584 struct set *instr_set = vec_instr_set_create();
585
586 nir_metadata_require(impl, nir_metadata_control_flow);
587
588 bool progress = false;
589
590 nir_foreach_block(block, impl) {
591 nir_foreach_instr_safe(instr, block) {
592 progress |= vec_instr_set_add_or_rewrite(instr_set, instr, filter, data);
593 }
594 }
595
596 if (progress) {
597 nir_metadata_preserve(impl, nir_metadata_control_flow);
598 } else {
599 nir_metadata_preserve(impl, nir_metadata_all);
600 }
601
602 vec_instr_set_destroy(instr_set);
603 return progress;
604 }
605
606 bool
nir_opt_vectorize(nir_shader * shader,nir_vectorize_cb filter,void * data)607 nir_opt_vectorize(nir_shader *shader, nir_vectorize_cb filter,
608 void *data)
609 {
610 bool progress = false;
611
612 nir_foreach_function_impl(impl, shader) {
613 progress |= nir_opt_vectorize_impl(impl, filter, data);
614 }
615
616 return progress;
617 }
618