xref: /aosp_15_r20/external/tensorflow/tensorflow/python/eager/lift_to_graph.py (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15# pylint: disable=unidiomatic-typecheck
16"""Utility to lift subgraphs."""
17
18import collections
19
20from tensorflow.python.framework import func_graph
21from tensorflow.python.framework import ops
22from tensorflow.python.ops import array_ops
23from tensorflow.python.ops import op_selector
24from tensorflow.python.ops import resource_variable_ops
25from tensorflow.python.util import compat
26from tensorflow.python.util import object_identity
27from tensorflow.python.util.tf_export import tf_export
28
29
30UnliftableError = op_selector.UnliftableError
31
32
33def _as_operation(op_or_tensor):
34  if isinstance(op_or_tensor, ops.Tensor):
35    return op_or_tensor.op
36  return op_or_tensor
37
38
39def _constant_inputs(op_or_tensor):
40  return all(_as_operation(i).type == u"Const"
41             and not _as_operation(i).control_inputs
42             for i in op_selector.graph_inputs(_as_operation(op_or_tensor)))
43
44
45# Represents an input to `copied_op` which must be updated once
46# `old_graph_tensor` has been copied.
47_InputMutation = collections.namedtuple(
48    "_InputMutation",
49    ["copied_op", "input_index", "old_graph_tensor"])
50
51
52# Represents a control input to `copied_op` which must be added once
53# `old_graph_op` has been copied.
54_ControlMutation = collections.namedtuple(
55    "_ControlMutation",
56    ["copied_op", "old_graph_op"])
57
58
59def _copy_non_source(op, graph, op_map, base_graph):
60  """Copy an op directly to a given graph.
61
62  Generally `op`'s inputs should already have been copied. If this is not the
63  case, for example with v1 while_loops, then `_copy_non_source` inserts
64  placeholders for the unavailable Tensors and returns a list of required
65  mutations.
66
67  Args:
68    op: The op to be copied.
69    graph: The destination graph.
70    op_map: A dict mapping ops and tensors in the old graph to the new one.
71    base_graph: The graph we're copying from, for any necessary functions.
72  Returns:
73    A tuple of (required_inputs, required_control_inputs):
74      required_inputs:
75        A list of `_InputMutation` tuples containing inputs to `copied_op` which
76        must be updated once `old_graph_tensor` has been copied.
77      required_control_inputs:
78        A list of `_ControlMutation` tuples containing control inputs to
79        `copied_op` which must be added once `old_graph_op` has been copied.
80  """
81  input_mutations = []
82  control_mutations = []
83  copied_inputs = []
84  for input_index, original_input in enumerate(op.inputs):
85    copied_input = op_map.get(original_input, None)
86    if copied_input is None:
87      # An input for this op is missing due to a loop in the graph. We'll insert
88      # a placeholder for now and return information about the required post-hoc
89      # mutation.
90      copied_input = array_ops.placeholder(
91          name="unused_control_flow_input",
92          shape=original_input.shape,
93          dtype=original_input.dtype)
94      input_mutations.append(
95          # `copied_op` is filled in below, after we've created it.
96          _InputMutation(copied_op=None,
97                         input_index=input_index,
98                         old_graph_tensor=original_input))
99    copied_inputs.append(copied_input)
100
101  copied_control_inputs = []
102  for original_control_input in op.control_inputs:
103    copied_control_input = op_map.get(original_control_input, None)
104    if copied_control_input is None:
105      control_mutations.append(
106          _ControlMutation(copied_op=None,
107                           old_graph_op=original_control_input))
108    else:
109      copied_control_inputs.append(copied_control_input)
110
111  # Don't copy over nodes with _tpu_replicate attribute. This attributed is used
112  # to signal that the op was built inside a tpu_replicate context; if we're
113  # lifting it to another graph we're similarly lifting it into another context.
114  with ops.control_dependencies(copied_control_inputs), ops.device(op.device):
115    # pylint: disable=protected-access
116    f = base_graph._functions.get(op.type, None)
117    if f is not None and compat.as_str(f.name) not in graph._functions:
118      f.add_to_graph(graph)
119    # pylint: enable=protected-access
120
121    # Create a new op in the destination graph if it doesn't exist before.
122    copied_op = graph.create_op(
123        op_type=op.type,
124        inputs=copied_inputs,
125        dtypes=[x.dtype for x in op.outputs],
126        attrs={
127            key: value for key, value in op.node_def.attr.items()
128            if not key.startswith("_class") and
129            not key.startswith("_tpu_replicate")
130        },  # b/128981532.
131        name=op.name)
132  op_map[op] = copied_op
133  for i, o in enumerate(op.outputs):
134    op_map[o] = copied_op.outputs[i]
135
136  return ([mutation._replace(copied_op=copied_op)
137           for mutation in input_mutations],
138          [mutation._replace(copied_op=copied_op)
139           for mutation in control_mutations])
140
141
142def _copy_source(s, graph, op_map, handle_captures, inverse_captures,
143                 base_graph):
144  """Create a source in a graph based on a Tensor from a different graph.
145
146  This function creates a placeholder analog of `s` in a graph with the
147  following behavior:
148
149  1) If s is a captured Tensor or Variable and handle_captures is set to True,
150     simply capture it in the new graph as well.
151
152  2) If s is a PlaceholderWithDefault whose default is a constant, preserve
153     said default in the new graph.
154
155  3) When applicable, copy resource variable metadata from `s` to the newly
156     created placeholder.
157
158  Args:
159    s: The source of interest.
160    graph: The destination graph.
161    op_map: A dict mapping ops and tensors in the old graph to the new one.
162    handle_captures: A boolean indicating whether to re-capture s in the new
163      graph or simply create a vanilla placeholder.
164    inverse_captures: A dict mapping s back to the Tensor or Variable that it
165      captures.
166    base_graph: The graph being copied from.
167  """
168  if handle_captures and s in inverse_captures:
169    copied_placeholder = graph.capture(inverse_captures[s], name=s.op.name)
170  elif s.op.type == "PlaceholderWithDefault" and _constant_inputs(s):
171    # Copy the default value to the graph.
172    default_value = s.op.inputs[0]
173    unavailable_inputs, unavailable_control_inputs = _copy_non_source(
174        op=default_value.op, graph=graph, op_map=op_map,
175        base_graph=base_graph)
176    if unavailable_inputs or unavailable_control_inputs:
177      raise AssertionError(
178          "Could not copy source node {} because it has inputs."
179          .format(default_value))
180
181    with ops.device(s.op.device):
182      copied_placeholder = array_ops.placeholder_with_default(
183          input=op_map[default_value], shape=s.shape, name=s.op.name)
184  else:
185    with ops.device(s.op.device):
186      copied_placeholder = array_ops.placeholder(
187          dtype=s.dtype, shape=s.shape, name=s.op.name)
188
189  base_handle = resource_variable_ops.get_resource_handle_data(s)
190  if base_handle.shape_and_type:
191    resource_variable_ops._set_handle_shapes_and_types(  # pylint: disable=protected-access
192        copied_placeholder,
193        base_handle,
194        graph_mode=True)
195
196  op_map[s] = copied_placeholder
197  # Add an entry for the op of the source tensor so that if there are any nodes
198  # depending on that op via control dependencies it can work correctly.
199  op_map[s.op] = copied_placeholder.op
200
201
202@tf_export("__internal__.lift_to_graph", v1=[])
203def lift_to_graph(tensors,
204                  graph,
205                  sources=None,
206                  disallowed_placeholders=None,
207                  add_sources=False,
208                  handle_captures=False,
209                  base_graph=None,
210                  op_map=None):
211  """Copies the tensor and all its inputs recursively to the outer graph.
212
213  Args:
214    tensors: The Tensors to lift.
215    graph: The graph to lift to.
216    sources: Optional sequence of nodes to start from. If omitted the whole
217      subgraph which feeds into `init_tensor` is lifted.
218    disallowed_placeholders: An optional set of ops which may not appear in the
219      lifted graph. Defaults to all placeholders.
220    add_sources: A boolean indicating whether placeholders which are not in
221      sources should be allowed.
222    handle_captures: A boolean indicating whether to re-capture s in the new
223      graph or simply create a vanilla placeholder.
224    base_graph: The graph from which to lift ops. This will be inferred if not
225      specified.
226    op_map: A map contains all the existing nodes that have been lifted to the
227      destination graph, so they won't be lifted and copied again.
228
229  Returns:
230    A mapping from ops in the current default graph to ops in `graph`.
231
232  Raises:
233    UnliftableError: If a placeholder blocks lifting.
234  """
235  variable_init_tensors = []
236  init_tensors = []
237  for tensor in tensors:
238    if isinstance(tensor, resource_variable_ops.ResourceVariable):
239      variable_init_tensors.append(tensor)
240    else:
241      init_tensors.append(tensor)
242  base_graph = base_graph or init_tensors[0].graph
243  op_map = op_map or object_identity.ObjectIdentityDictionary()
244
245  # Check that the initializer does not depend on any placeholders.
246  sources = object_identity.ObjectIdentitySet(sources or [])
247  visited_ops = set(x.op for x in sources)
248  op_outputs = collections.defaultdict(set)
249
250  # First we extract the subgraph between init_tensors and sources.
251  for init_tensor in init_tensors:
252    sources.update(op_selector.map_subgraph(
253        init_tensor=init_tensor,
254        sources=sources,
255        disallowed_placeholders=disallowed_placeholders,
256        visited_ops=visited_ops,
257        op_outputs=op_outputs,
258        add_sources=add_sources))
259
260  # Try to topologically sort the nodes we've extracted. Now we know how many of
261  # their outputs are part of this subgraph.
262  ops_to_copy = []
263  marked_ops = set([])
264  ops_to_visit = [_as_operation(t) for t in init_tensors
265                  if not op_outputs[_as_operation(t)]]
266  unvisited_ops = set(ops_to_visit)
267  while unvisited_ops:
268    while ops_to_visit:
269      op = ops_to_visit.pop()
270      if op in marked_ops:
271        continue
272      marked_ops.add(op)
273      ops_to_copy.append(op)
274      for inp in op_selector.graph_inputs(op):
275        # Don't lift the TPUReplicateMetadata nodes out of the function, because
276        # it has no registered kernels.
277        if inp.type == "TPUReplicateMetadata":
278          continue
279        unvisited_ops.add(inp)
280        if (all(x in marked_ops for x in op_outputs[inp]) and
281            inp not in sources):
282          ops_to_visit.append(inp)
283    unvisited_ops.difference_update(marked_ops)
284    if unvisited_ops:
285      # `unvisited_ops` should only have elements if the graph has a loop. In
286      # this case we want to keep copying and there's no topological ordering;
287      # we'll do ugly post-hoc mutations instead.
288      ops_to_visit.append(next(iter(unvisited_ops)))
289
290  # When the topological sort fails due to loops, it can result in exceptions
291  # later when copying a node which inputs haven't been copied yet. We can
292  # improve that pseudo-topological order slightly by putting the ops without
293  # inputs, such as constants, at the start of the topological order (i.e at
294  # the end of ops_to_copy).
295  ops_to_copy.sort(key=(lambda op: len(op_selector.graph_inputs(op)) == 0))
296
297  # When lifting from one FuncGraph to another, we will need to capture the
298  # relevant tensors as well.
299  captures = []
300  inverse_captures = object_identity.ObjectIdentityDictionary()
301  internal_captures = []
302  if (isinstance(base_graph, func_graph.FuncGraph) and
303      isinstance(graph, func_graph.FuncGraph)):
304    captures = base_graph.captures
305    for external_capture, internal_capture in captures:
306      inverse_captures[internal_capture] = external_capture
307    internal_captures = base_graph.internal_captures
308
309  # ops_to_copy now holds a reverse topologically sorted list of ops which
310  # ends in the initializer. We copy those to the outermost graph and
311  # build the initialization op there.
312  with graph.as_default():
313    for i in variable_init_tensors:
314      op_map[i] = i
315    source_ops = set()
316    # Add the sources in the same order as the original graph.
317    for s in internal_captures:
318      if s in sources:
319        sources.remove(s)
320        source_ops.add(s.op)
321        _copy_source(
322            s=s,
323            graph=graph,
324            op_map=op_map,
325            handle_captures=handle_captures,
326            inverse_captures=inverse_captures,
327            base_graph=base_graph)
328    for s in sources:
329      source_ops.add(s.op)
330      _copy_source(
331          s=s,
332          graph=graph,
333          op_map=op_map,
334          handle_captures=handle_captures,
335          inverse_captures=inverse_captures,
336          base_graph=base_graph)
337
338    input_mutations = []
339    control_mutations = []
340    for op in reversed(ops_to_copy):
341      if op in source_ops or op in op_map:
342        continue
343      new_input_mutations, new_control_mutations = _copy_non_source(
344          op=op, graph=graph, op_map=op_map, base_graph=base_graph)
345      input_mutations.extend(new_input_mutations)
346      control_mutations.extend(new_control_mutations)
347
348    # Mutate the new graph to insert any loops which existed in the source
349    # graph due to v1 while_loops.
350    #
351    # pylint: disable=protected-access
352    with graph._mutation_lock():
353      for mutation in input_mutations:
354        mutation.copied_op._update_input(
355            mutation.input_index, op_map[mutation.old_graph_tensor])
356      for mutation in control_mutations:
357        # Don't lift the TPUReplicateMetadata nodes out of the function, because
358        # it has no registered kernels.
359        if mutation.old_graph_op.type == "TPUReplicateMetadata":
360          continue
361        mutation.copied_op._add_control_input(op_map[mutation.old_graph_op])
362    # pylint: enable=protected-access
363
364    return op_map
365