1 //! Provide helpers for making ioctl system calls. 2 //! 3 //! This library is pretty low-level and messy. `ioctl` is not fun. 4 //! 5 //! What is an `ioctl`? 6 //! =================== 7 //! 8 //! The `ioctl` syscall is the grab-bag syscall on POSIX systems. Don't want to add a new 9 //! syscall? Make it an `ioctl`! `ioctl` refers to both the syscall, and the commands that can be 10 //! sent with it. `ioctl` stands for "IO control", and the commands are always sent to a file 11 //! descriptor. 12 //! 13 //! It is common to see `ioctl`s used for the following purposes: 14 //! 15 //! * Provide read/write access to out-of-band data related to a device such as configuration 16 //! (for instance, setting serial port options) 17 //! * Provide a mechanism for performing full-duplex data transfers (for instance, xfer on SPI 18 //! devices). 19 //! * Provide access to control functions on a device (for example, on Linux you can send 20 //! commands like pause, resume, and eject to the CDROM device. 21 //! * Do whatever else the device driver creator thought made most sense. 22 //! 23 //! `ioctl`s are synchronous system calls and are similar to read and write calls in that regard. 24 //! They operate on file descriptors and have an identifier that specifies what the ioctl is. 25 //! Additionally they may read or write data and therefore need to pass along a data pointer. 26 //! Besides the semantics of the ioctls being confusing, the generation of this identifer can also 27 //! be difficult. 28 //! 29 //! Historically `ioctl` numbers were arbitrary hard-coded values. In Linux (before 2.6) and some 30 //! unices this has changed to a more-ordered system where the ioctl numbers are partitioned into 31 //! subcomponents (For linux this is documented in 32 //! [`Documentation/ioctl/ioctl-number.rst`](https://elixir.bootlin.com/linux/latest/source/Documentation/userspace-api/ioctl/ioctl-number.rst)): 33 //! 34 //! * Number: The actual ioctl ID 35 //! * Type: A grouping of ioctls for a common purpose or driver 36 //! * Size: The size in bytes of the data that will be transferred 37 //! * Direction: Whether there is any data and if it's read, write, or both 38 //! 39 //! Newer drivers should not generate complete integer identifiers for their `ioctl`s instead 40 //! preferring to use the 4 components above to generate the final ioctl identifier. Because of 41 //! how old `ioctl`s are, however, there are many hard-coded `ioctl` identifiers. These are 42 //! commonly referred to as "bad" in `ioctl` documentation. 43 //! 44 //! Defining `ioctl`s 45 //! ================= 46 //! 47 //! This library provides several `ioctl_*!` macros for binding `ioctl`s. These generate public 48 //! unsafe functions that can then be used for calling the ioctl. This macro has a few different 49 //! ways it can be used depending on the specific ioctl you're working with. 50 //! 51 //! A simple `ioctl` is `SPI_IOC_RD_MODE`. This ioctl works with the SPI interface on Linux. This 52 //! specific `ioctl` reads the mode of the SPI device as a `u8`. It's declared in 53 //! `/include/uapi/linux/spi/spidev.h` as `_IOR(SPI_IOC_MAGIC, 1, __u8)`. Since it uses the `_IOR` 54 //! macro, we know it's a `read` ioctl and can use the `ioctl_read!` macro as follows: 55 //! 56 //! ``` 57 //! # #[macro_use] extern crate nix; 58 //! const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 59 //! const SPI_IOC_TYPE_MODE: u8 = 1; 60 //! ioctl_read!(spi_read_mode, SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, u8); 61 //! # fn main() {} 62 //! ``` 63 //! 64 //! This generates the function: 65 //! 66 //! ``` 67 //! # #[macro_use] extern crate nix; 68 //! # use std::mem; 69 //! # use nix::{libc, Result}; 70 //! # use nix::errno::Errno; 71 //! # use nix::libc::c_int as c_int; 72 //! # const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 73 //! # const SPI_IOC_TYPE_MODE: u8 = 1; 74 //! pub unsafe fn spi_read_mode(fd: c_int, data: *mut u8) -> Result<c_int> { 75 //! let res = unsafe { libc::ioctl(fd, request_code_read!(SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, mem::size_of::<u8>()), data) }; 76 //! Errno::result(res) 77 //! } 78 //! # fn main() {} 79 //! ``` 80 //! 81 //! The return value for the wrapper functions generated by the `ioctl_*!` macros are `nix::Error`s. 82 //! These are generated by assuming the return value of the ioctl is `-1` on error and everything 83 //! else is a valid return value. If this is not the case, `Result::map` can be used to map some 84 //! of the range of "good" values (-Inf..-2, 0..Inf) into a smaller range in a helper function. 85 //! 86 //! Writing `ioctl`s generally use pointers as their data source and these should use the 87 //! `ioctl_write_ptr!`. But in some cases an `int` is passed directly. For these `ioctl`s use the 88 //! `ioctl_write_int!` macro. This variant does not take a type as the last argument: 89 //! 90 //! ``` 91 //! # #[macro_use] extern crate nix; 92 //! const HCI_IOC_MAGIC: u8 = b'k'; 93 //! const HCI_IOC_HCIDEVUP: u8 = 1; 94 //! ioctl_write_int!(hci_dev_up, HCI_IOC_MAGIC, HCI_IOC_HCIDEVUP); 95 //! # fn main() {} 96 //! ``` 97 //! 98 //! Some `ioctl`s don't transfer any data, and those should use `ioctl_none!`. This macro 99 //! doesn't take a type and so it is declared similar to the `write_int` variant shown above. 100 //! 101 //! The mode for a given `ioctl` should be clear from the documentation if it has good 102 //! documentation. Otherwise it will be clear based on the macro used to generate the `ioctl` 103 //! number where `_IO`, `_IOR`, `_IOW`, and `_IOWR` map to "none", "read", "write_*", and "readwrite" 104 //! respectively. To determine the specific `write_` variant to use you'll need to find 105 //! what the argument type is supposed to be. If it's an `int`, then `write_int` should be used, 106 //! otherwise it should be a pointer and `write_ptr` should be used. On Linux the 107 //! [`ioctl_list` man page](https://man7.org/linux/man-pages/man2/ioctl_list.2.html) describes a 108 //! large number of `ioctl`s and describes their argument data type. 109 //! 110 //! Using "bad" `ioctl`s 111 //! -------------------- 112 //! 113 //! As mentioned earlier, there are many old `ioctl`s that do not use the newer method of 114 //! generating `ioctl` numbers and instead use hardcoded values. These can be used with the 115 //! `ioctl_*_bad!` macros. This naming comes from the Linux kernel which refers to these 116 //! `ioctl`s as "bad". These are a different variant as they bypass calling the macro that generates 117 //! the ioctl number and instead use the defined value directly. 118 //! 119 //! For example the `TCGETS` `ioctl` reads a `termios` data structure for a given file descriptor. 120 //! It's defined as `0x5401` in `ioctls.h` on Linux and can be implemented as: 121 //! 122 //! ``` 123 //! # #[macro_use] extern crate nix; 124 //! # #[cfg(linux_android)] 125 //! # use nix::libc::TCGETS as TCGETS; 126 //! # #[cfg(linux_android)] 127 //! # use nix::libc::termios as termios; 128 //! # #[cfg(linux_android)] 129 //! ioctl_read_bad!(tcgets, TCGETS, termios); 130 //! # fn main() {} 131 //! ``` 132 //! 133 //! The generated function has the same form as that generated by `ioctl_read!`: 134 //! 135 //! ```text 136 //! pub unsafe fn tcgets(fd: c_int, data: *mut termios) -> Result<c_int>; 137 //! ``` 138 //! 139 //! Working with Arrays 140 //! ------------------- 141 //! 142 //! Some `ioctl`s work with entire arrays of elements. These are supported by the `ioctl_*_buf` 143 //! family of macros: `ioctl_read_buf`, `ioctl_write_buf`, and `ioctl_readwrite_buf`. Note that 144 //! there are no "bad" versions for working with buffers. The generated functions include a `len` 145 //! argument to specify the number of elements (where the type of each element is specified in the 146 //! macro). 147 //! 148 //! Again looking to the SPI `ioctl`s on Linux for an example, there is a `SPI_IOC_MESSAGE` `ioctl` 149 //! that queues up multiple SPI messages by writing an entire array of `spi_ioc_transfer` structs. 150 //! `linux/spi/spidev.h` defines a macro to calculate the `ioctl` number like: 151 //! 152 //! ```C 153 //! #define SPI_IOC_MAGIC 'k' 154 //! #define SPI_MSGSIZE(N) ... 155 //! #define SPI_IOC_MESSAGE(N) _IOW(SPI_IOC_MAGIC, 0, char[SPI_MSGSIZE(N)]) 156 //! ``` 157 //! 158 //! The `SPI_MSGSIZE(N)` calculation is already handled by the `ioctl_*!` macros, so all that's 159 //! needed to define this `ioctl` is: 160 //! 161 //! ``` 162 //! # #[macro_use] extern crate nix; 163 //! const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 164 //! const SPI_IOC_TYPE_MESSAGE: u8 = 0; 165 //! # pub struct spi_ioc_transfer(u64); 166 //! ioctl_write_buf!(spi_transfer, SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, spi_ioc_transfer); 167 //! # fn main() {} 168 //! ``` 169 //! 170 //! This generates a function like: 171 //! 172 //! ``` 173 //! # #[macro_use] extern crate nix; 174 //! # use std::mem; 175 //! # use nix::{libc, Result}; 176 //! # use nix::errno::Errno; 177 //! # use nix::libc::c_int as c_int; 178 //! # const SPI_IOC_MAGIC: u8 = b'k'; 179 //! # const SPI_IOC_TYPE_MESSAGE: u8 = 0; 180 //! # pub struct spi_ioc_transfer(u64); 181 //! pub unsafe fn spi_message(fd: c_int, data: &mut [spi_ioc_transfer]) -> Result<c_int> { 182 //! let res = unsafe { 183 //! libc::ioctl( 184 //! fd, 185 //! request_code_write!(SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, data.len() * mem::size_of::<spi_ioc_transfer>()), 186 //! data 187 //! ) 188 //! }; 189 //! Errno::result(res) 190 //! } 191 //! # fn main() {} 192 //! ``` 193 //! 194 //! Finding `ioctl` Documentation 195 //! ----------------------------- 196 //! 197 //! For Linux, look at your system's headers. For example, `/usr/include/linux/input.h` has a lot 198 //! of lines defining macros which use `_IO`, `_IOR`, `_IOW`, `_IOC`, and `_IOWR`. Some `ioctl`s are 199 //! documented directly in the headers defining their constants, but others have more extensive 200 //! documentation in man pages (like termios' `ioctl`s which are in `tty_ioctl(4)`). 201 //! 202 //! Documenting the Generated Functions 203 //! =================================== 204 //! 205 //! In many cases, users will wish for the functions generated by the `ioctl` 206 //! macro to be public and documented. For this reason, the generated functions 207 //! are public by default. If you wish to hide the ioctl, you will need to put 208 //! them in a private module. 209 //! 210 //! For documentation, it is possible to use doc comments inside the `ioctl_*!` macros. Here is an 211 //! example : 212 //! 213 //! ``` 214 //! # #[macro_use] extern crate nix; 215 //! # use nix::libc::c_int; 216 //! ioctl_read! { 217 //! /// Make the given terminal the controlling terminal of the calling process. The calling 218 //! /// process must be a session leader and not have a controlling terminal already. If the 219 //! /// terminal is already the controlling terminal of a different session group then the 220 //! /// ioctl will fail with **EPERM**, unless the caller is root (more precisely: has the 221 //! /// **CAP_SYS_ADMIN** capability) and arg equals 1, in which case the terminal is stolen 222 //! /// and all processes that had it as controlling terminal lose it. 223 //! tiocsctty, b't', 19, c_int 224 //! } 225 //! 226 //! # fn main() {} 227 //! ``` 228 use cfg_if::cfg_if; 229 230 #[cfg(any(linux_android, target_os = "redox"))] 231 #[macro_use] 232 mod linux; 233 234 #[cfg(any(linux_android, target_os = "redox"))] 235 pub use self::linux::*; 236 237 #[cfg(any(bsd, solarish, target_os = "haiku",))] 238 #[macro_use] 239 mod bsd; 240 241 #[cfg(any(bsd, solarish, target_os = "haiku",))] 242 pub use self::bsd::*; 243 244 /// Convert raw ioctl return value to a Nix result 245 #[macro_export] 246 #[doc(hidden)] 247 macro_rules! convert_ioctl_res { 248 ($w:expr) => {{ 249 $crate::errno::Errno::result($w) 250 }}; 251 } 252 253 /// Generates a wrapper function for an ioctl that passes no data to the kernel. 254 /// 255 /// The arguments to this macro are: 256 /// 257 /// * The function name 258 /// * The ioctl identifier 259 /// * The ioctl sequence number 260 /// 261 /// The generated function has the following signature: 262 /// 263 /// ```rust,ignore 264 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int) -> Result<libc::c_int> 265 /// ``` 266 /// 267 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 268 /// 269 /// # Example 270 /// 271 /// The `videodev2` driver on Linux defines the `log_status` `ioctl` as: 272 /// 273 /// ```C 274 /// #define VIDIOC_LOG_STATUS _IO('V', 70) 275 /// ``` 276 /// 277 /// This can be implemented in Rust like: 278 /// 279 /// ```no_run 280 /// # #[macro_use] extern crate nix; 281 /// ioctl_none!(log_status, b'V', 70); 282 /// fn main() {} 283 /// ``` 284 #[macro_export(local_inner_macros)] 285 macro_rules! ioctl_none { 286 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => ( 287 $(#[$attr])* 288 pub unsafe fn $name(fd: $crate::libc::c_int) 289 -> $crate::Result<$crate::libc::c_int> { 290 unsafe { 291 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_none!($ioty, $nr) as $crate::sys::ioctl::ioctl_num_type)) 292 } 293 } 294 ) 295 } 296 297 /// Generates a wrapper function for a "bad" ioctl that passes no data to the kernel. 298 /// 299 /// The arguments to this macro are: 300 /// 301 /// * The function name 302 /// * The ioctl request code 303 /// 304 /// The generated function has the following signature: 305 /// 306 /// ```rust,ignore 307 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int) -> Result<libc::c_int> 308 /// ``` 309 /// 310 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 311 /// 312 /// # Example 313 /// 314 /// ```no_run 315 /// # #[macro_use] extern crate nix; 316 /// # use libc::TIOCNXCL; 317 /// # use std::fs::File; 318 /// # use std::os::unix::io::AsRawFd; 319 /// ioctl_none_bad!(tiocnxcl, TIOCNXCL); 320 /// fn main() { 321 /// let file = File::open("/dev/ttyUSB0").unwrap(); 322 /// unsafe { tiocnxcl(file.as_raw_fd()) }.unwrap(); 323 /// } 324 /// ``` 325 // TODO: add an example using request_code_*!() 326 #[macro_export(local_inner_macros)] 327 macro_rules! ioctl_none_bad { 328 ($(#[$attr:meta])* $name:ident, $nr:expr) => ( 329 $(#[$attr])* 330 pub unsafe fn $name(fd: $crate::libc::c_int) 331 -> $crate::Result<$crate::libc::c_int> { 332 unsafe { 333 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type)) 334 } 335 } 336 ) 337 } 338 339 /// Generates a wrapper function for an ioctl that reads data from the kernel. 340 /// 341 /// The arguments to this macro are: 342 /// 343 /// * The function name 344 /// * The ioctl identifier 345 /// * The ioctl sequence number 346 /// * The data type passed by this ioctl 347 /// 348 /// The generated function has the following signature: 349 /// 350 /// ```rust,ignore 351 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> 352 /// ``` 353 /// 354 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 355 /// 356 /// # Example 357 /// 358 /// ``` 359 /// # #[macro_use] extern crate nix; 360 /// const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 361 /// const SPI_IOC_TYPE_MODE: u8 = 1; 362 /// ioctl_read!(spi_read_mode, SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, u8); 363 /// # fn main() {} 364 /// ``` 365 #[macro_export(local_inner_macros)] 366 macro_rules! ioctl_read { 367 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 368 $(#[$attr])* 369 pub unsafe fn $name(fd: $crate::libc::c_int, 370 data: *mut $ty) 371 -> $crate::Result<$crate::libc::c_int> { 372 unsafe { 373 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_read!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) 374 } 375 } 376 ) 377 } 378 379 /// Generates a wrapper function for a "bad" ioctl that reads data from the kernel. 380 /// 381 /// The arguments to this macro are: 382 /// 383 /// * The function name 384 /// * The ioctl request code 385 /// * The data type passed by this ioctl 386 /// 387 /// The generated function has the following signature: 388 /// 389 /// ```rust,ignore 390 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> 391 /// ``` 392 /// 393 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 394 /// 395 /// # Example 396 /// 397 /// ``` 398 /// # #[macro_use] extern crate nix; 399 /// # #[cfg(linux_android)] 400 /// ioctl_read_bad!(tcgets, libc::TCGETS, libc::termios); 401 /// # fn main() {} 402 /// ``` 403 #[macro_export(local_inner_macros)] 404 macro_rules! ioctl_read_bad { 405 ($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => ( 406 $(#[$attr])* 407 pub unsafe fn $name(fd: $crate::libc::c_int, 408 data: *mut $ty) 409 -> $crate::Result<$crate::libc::c_int> { 410 unsafe { 411 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) 412 } 413 } 414 ) 415 } 416 417 /// Generates a wrapper function for an ioctl that writes data through a pointer to the kernel. 418 /// 419 /// The arguments to this macro are: 420 /// 421 /// * The function name 422 /// * The ioctl identifier 423 /// * The ioctl sequence number 424 /// * The data type passed by this ioctl 425 /// 426 /// The generated function has the following signature: 427 /// 428 /// ```rust,ignore 429 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *const DATA_TYPE) -> Result<libc::c_int> 430 /// ``` 431 /// 432 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 433 /// 434 /// # Example 435 /// 436 /// ``` 437 /// # #[macro_use] extern crate nix; 438 /// # pub struct v4l2_audio {} 439 /// ioctl_write_ptr!(s_audio, b'V', 34, v4l2_audio); 440 /// # fn main() {} 441 /// ``` 442 #[macro_export(local_inner_macros)] 443 macro_rules! ioctl_write_ptr { 444 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 445 $(#[$attr])* 446 pub unsafe fn $name(fd: $crate::libc::c_int, 447 data: *const $ty) 448 -> $crate::Result<$crate::libc::c_int> { 449 unsafe { 450 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) 451 } 452 } 453 ) 454 } 455 456 /// Generates a wrapper function for a "bad" ioctl that writes data through a pointer to the kernel. 457 /// 458 /// The arguments to this macro are: 459 /// 460 /// * The function name 461 /// * The ioctl request code 462 /// * The data type passed by this ioctl 463 /// 464 /// The generated function has the following signature: 465 /// 466 /// ```rust,ignore 467 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *const DATA_TYPE) -> Result<libc::c_int> 468 /// ``` 469 /// 470 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 471 /// 472 /// # Example 473 /// 474 /// ``` 475 /// # #[macro_use] extern crate nix; 476 /// # #[cfg(linux_android)] 477 /// ioctl_write_ptr_bad!(tcsets, libc::TCSETS, libc::termios); 478 /// # fn main() {} 479 /// ``` 480 #[macro_export(local_inner_macros)] 481 macro_rules! ioctl_write_ptr_bad { 482 ($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => ( 483 $(#[$attr])* 484 pub unsafe fn $name(fd: $crate::libc::c_int, 485 data: *const $ty) 486 -> $crate::Result<$crate::libc::c_int> { 487 unsafe { 488 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) 489 } 490 } 491 ) 492 } 493 494 cfg_if! { 495 if #[cfg(freebsdlike)] { 496 /// Generates a wrapper function for a ioctl that writes an integer to the kernel. 497 /// 498 /// The arguments to this macro are: 499 /// 500 /// * The function name 501 /// * The ioctl identifier 502 /// * The ioctl sequence number 503 /// 504 /// The generated function has the following signature: 505 /// 506 /// ```rust,ignore 507 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: nix::sys::ioctl::ioctl_param_type) -> Result<libc::c_int> 508 /// ``` 509 /// 510 /// `nix::sys::ioctl::ioctl_param_type` depends on the OS: 511 /// * BSD - `libc::c_int` 512 /// * Linux - `libc::c_ulong` 513 /// 514 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 515 /// 516 /// # Example 517 /// 518 /// ``` 519 /// # #[macro_use] extern crate nix; 520 /// ioctl_write_int!(vt_activate, b'v', 4); 521 /// # fn main() {} 522 /// ``` 523 #[macro_export(local_inner_macros)] 524 macro_rules! ioctl_write_int { 525 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => ( 526 $(#[$attr])* 527 pub unsafe fn $name(fd: $crate::libc::c_int, 528 data: $crate::sys::ioctl::ioctl_param_type) 529 -> $crate::Result<$crate::libc::c_int> { 530 unsafe { 531 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write_int!($ioty, $nr) as $crate::sys::ioctl::ioctl_num_type, data)) 532 } 533 } 534 ) 535 } 536 } else { 537 /// Generates a wrapper function for a ioctl that writes an integer to the kernel. 538 /// 539 /// The arguments to this macro are: 540 /// 541 /// * The function name 542 /// * The ioctl identifier 543 /// * The ioctl sequence number 544 /// 545 /// The generated function has the following signature: 546 /// 547 /// ```rust,ignore 548 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: nix::sys::ioctl::ioctl_param_type) -> Result<libc::c_int> 549 /// ``` 550 /// 551 /// `nix::sys::ioctl::ioctl_param_type` depends on the OS: 552 /// * BSD - `libc::c_int` 553 /// * Linux - `libc::c_ulong` 554 /// 555 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 556 /// 557 /// # Example 558 /// 559 /// ``` 560 /// # #[macro_use] extern crate nix; 561 /// const HCI_IOC_MAGIC: u8 = b'k'; 562 /// const HCI_IOC_HCIDEVUP: u8 = 1; 563 /// ioctl_write_int!(hci_dev_up, HCI_IOC_MAGIC, HCI_IOC_HCIDEVUP); 564 /// # fn main() {} 565 /// ``` 566 #[macro_export(local_inner_macros)] 567 macro_rules! ioctl_write_int { 568 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => ( 569 $(#[$attr])* 570 pub unsafe fn $name(fd: $crate::libc::c_int, 571 data: $crate::sys::ioctl::ioctl_param_type) 572 -> $crate::Result<$crate::libc::c_int> { 573 unsafe { 574 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, ::std::mem::size_of::<$crate::libc::c_int>()) as $crate::sys::ioctl::ioctl_num_type, data)) 575 } 576 } 577 ) 578 } 579 } 580 } 581 582 /// Generates a wrapper function for a "bad" ioctl that writes an integer to the kernel. 583 /// 584 /// The arguments to this macro are: 585 /// 586 /// * The function name 587 /// * The ioctl request code 588 /// 589 /// The generated function has the following signature: 590 /// 591 /// ```rust,ignore 592 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: libc::c_int) -> Result<libc::c_int> 593 /// ``` 594 /// 595 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 596 /// 597 /// # Examples 598 /// 599 /// ``` 600 /// # #[macro_use] extern crate nix; 601 /// # #[cfg(linux_android)] 602 /// ioctl_write_int_bad!(tcsbrk, libc::TCSBRK); 603 /// # fn main() {} 604 /// ``` 605 /// 606 /// ```rust 607 /// # #[macro_use] extern crate nix; 608 /// const KVMIO: u8 = 0xAE; 609 /// ioctl_write_int_bad!(kvm_create_vm, request_code_none!(KVMIO, 0x03)); 610 /// # fn main() {} 611 /// ``` 612 #[macro_export(local_inner_macros)] 613 macro_rules! ioctl_write_int_bad { 614 ($(#[$attr:meta])* $name:ident, $nr:expr) => ( 615 $(#[$attr])* 616 pub unsafe fn $name(fd: $crate::libc::c_int, 617 data: $crate::libc::c_int) 618 -> $crate::Result<$crate::libc::c_int> { 619 unsafe { 620 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) 621 } 622 } 623 ) 624 } 625 626 /// Generates a wrapper function for an ioctl that reads and writes data to the kernel. 627 /// 628 /// The arguments to this macro are: 629 /// 630 /// * The function name 631 /// * The ioctl identifier 632 /// * The ioctl sequence number 633 /// * The data type passed by this ioctl 634 /// 635 /// The generated function has the following signature: 636 /// 637 /// ```rust,ignore 638 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> 639 /// ``` 640 /// 641 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 642 /// 643 /// # Example 644 /// 645 /// ``` 646 /// # #[macro_use] extern crate nix; 647 /// # pub struct v4l2_audio {} 648 /// ioctl_readwrite!(enum_audio, b'V', 65, v4l2_audio); 649 /// # fn main() {} 650 /// ``` 651 #[macro_export(local_inner_macros)] 652 macro_rules! ioctl_readwrite { 653 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 654 $(#[$attr])* 655 pub unsafe fn $name(fd: $crate::libc::c_int, 656 data: *mut $ty) 657 -> $crate::Result<$crate::libc::c_int> { 658 unsafe { 659 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_readwrite!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data)) 660 } 661 } 662 ) 663 } 664 665 /// Generates a wrapper function for a "bad" ioctl that reads and writes data to the kernel. 666 /// 667 /// The arguments to this macro are: 668 /// 669 /// * The function name 670 /// * The ioctl request code 671 /// * The data type passed by this ioctl 672 /// 673 /// The generated function has the following signature: 674 /// 675 /// ```rust,ignore 676 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int> 677 /// ``` 678 /// 679 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 680 // TODO: Find an example for ioctl_readwrite_bad 681 #[macro_export(local_inner_macros)] 682 macro_rules! ioctl_readwrite_bad { 683 ($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => ( 684 $(#[$attr])* 685 pub unsafe fn $name(fd: $crate::libc::c_int, 686 data: *mut $ty) 687 -> $crate::Result<$crate::libc::c_int> { 688 unsafe { 689 convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data)) 690 } 691 } 692 ) 693 } 694 695 /// Generates a wrapper function for an ioctl that reads an array of elements from the kernel. 696 /// 697 /// The arguments to this macro are: 698 /// 699 /// * The function name 700 /// * The ioctl identifier 701 /// * The ioctl sequence number 702 /// * The data type passed by this ioctl 703 /// 704 /// The generated function has the following signature: 705 /// 706 /// ```rust,ignore 707 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &mut [DATA_TYPE]) -> Result<libc::c_int> 708 /// ``` 709 /// 710 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 711 // TODO: Find an example for ioctl_read_buf 712 #[macro_export(local_inner_macros)] 713 macro_rules! ioctl_read_buf { 714 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 715 $(#[$attr])* 716 pub unsafe fn $name(fd: $crate::libc::c_int, 717 data: &mut [$ty]) 718 -> $crate::Result<$crate::libc::c_int> { 719 unsafe { 720 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_read!($ioty, $nr, ::std::mem::size_of_val(data)) as $crate::sys::ioctl::ioctl_num_type, data.as_mut_ptr())) 721 } 722 } 723 ) 724 } 725 726 /// Generates a wrapper function for an ioctl that writes an array of elements to the kernel. 727 /// 728 /// The arguments to this macro are: 729 /// 730 /// * The function name 731 /// * The ioctl identifier 732 /// * The ioctl sequence number 733 /// * The data type passed by this ioctl 734 /// 735 /// The generated function has the following signature: 736 /// 737 /// ```rust,ignore 738 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &[DATA_TYPE]) -> Result<libc::c_int> 739 /// ``` 740 /// 741 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 742 /// 743 /// # Examples 744 /// 745 /// ``` 746 /// # #[macro_use] extern crate nix; 747 /// const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h 748 /// const SPI_IOC_TYPE_MESSAGE: u8 = 0; 749 /// # pub struct spi_ioc_transfer(u64); 750 /// ioctl_write_buf!(spi_transfer, SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, spi_ioc_transfer); 751 /// # fn main() {} 752 /// ``` 753 #[macro_export(local_inner_macros)] 754 macro_rules! ioctl_write_buf { 755 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 756 $(#[$attr])* 757 pub unsafe fn $name(fd: $crate::libc::c_int, 758 data: &[$ty]) 759 -> $crate::Result<$crate::libc::c_int> { 760 unsafe { 761 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, ::std::mem::size_of_val(data)) as $crate::sys::ioctl::ioctl_num_type, data.as_ptr())) 762 } 763 } 764 ) 765 } 766 767 /// Generates a wrapper function for an ioctl that reads and writes an array of elements to the kernel. 768 /// 769 /// The arguments to this macro are: 770 /// 771 /// * The function name 772 /// * The ioctl identifier 773 /// * The ioctl sequence number 774 /// * The data type passed by this ioctl 775 /// 776 /// The generated function has the following signature: 777 /// 778 /// ```rust,ignore 779 /// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &mut [DATA_TYPE]) -> Result<libc::c_int> 780 /// ``` 781 /// 782 /// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html). 783 // TODO: Find an example for readwrite_buf 784 #[macro_export(local_inner_macros)] 785 macro_rules! ioctl_readwrite_buf { 786 ($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => ( 787 $(#[$attr])* 788 pub unsafe fn $name(fd: $crate::libc::c_int, 789 data: &mut [$ty]) 790 -> $crate::Result<$crate::libc::c_int> { 791 unsafe { 792 convert_ioctl_res!($crate::libc::ioctl(fd, request_code_readwrite!($ioty, $nr, ::std::mem::size_of_val(data)) as $crate::sys::ioctl::ioctl_num_type, data.as_mut_ptr())) 793 } 794 } 795 ) 796 } 797