xref: /aosp_15_r20/external/swiftshader/third_party/llvm-10.0/llvm/include/llvm/Analysis/AliasAnalysis.h (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/Pass.h"
51 #include <cstdint>
52 #include <functional>
53 #include <memory>
54 #include <vector>
55 
56 namespace llvm {
57 
58 class AnalysisUsage;
59 class BasicAAResult;
60 class BasicBlock;
61 class DominatorTree;
62 class OrderedBasicBlock;
63 class Value;
64 
65 /// The possible results of an alias query.
66 ///
67 /// These results are always computed between two MemoryLocation objects as
68 /// a query to some alias analysis.
69 ///
70 /// Note that these are unscoped enumerations because we would like to support
71 /// implicitly testing a result for the existence of any possible aliasing with
72 /// a conversion to bool, but an "enum class" doesn't support this. The
73 /// canonical names from the literature are suffixed and unique anyways, and so
74 /// they serve as global constants in LLVM for these results.
75 ///
76 /// See docs/AliasAnalysis.html for more information on the specific meanings
77 /// of these values.
78 enum AliasResult : uint8_t {
79   /// The two locations do not alias at all.
80   ///
81   /// This value is arranged to convert to false, while all other values
82   /// convert to true. This allows a boolean context to convert the result to
83   /// a binary flag indicating whether there is the possibility of aliasing.
84   NoAlias = 0,
85   /// The two locations may or may not alias. This is the least precise result.
86   MayAlias,
87   /// The two locations alias, but only due to a partial overlap.
88   PartialAlias,
89   /// The two locations precisely alias each other.
90   MustAlias,
91 };
92 
93 /// << operator for AliasResult.
94 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
95 
96 /// Flags indicating whether a memory access modifies or references memory.
97 ///
98 /// This is no access at all, a modification, a reference, or both
99 /// a modification and a reference. These are specifically structured such that
100 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
101 /// work with any of the possible values.
102 enum class ModRefInfo : uint8_t {
103   /// Must is provided for completeness, but no routines will return only
104   /// Must today. See definition of Must below.
105   Must = 0,
106   /// The access may reference the value stored in memory,
107   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
108   MustRef = 1,
109   /// The access may modify the value stored in memory,
110   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
111   MustMod = 2,
112   /// The access may reference, modify or both the value stored in memory,
113   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
114   MustModRef = MustRef | MustMod,
115   /// The access neither references nor modifies the value stored in memory.
116   NoModRef = 4,
117   /// The access may reference the value stored in memory.
118   Ref = NoModRef | MustRef,
119   /// The access may modify the value stored in memory.
120   Mod = NoModRef | MustMod,
121   /// The access may reference and may modify the value stored in memory.
122   ModRef = Ref | Mod,
123 
124   /// About Must:
125   /// Must is set in a best effort manner.
126   /// We usually do not try our best to infer Must, instead it is merely
127   /// another piece of "free" information that is presented when available.
128   /// Must set means there was certainly a MustAlias found. For calls,
129   /// where multiple arguments are checked (argmemonly), this translates to
130   /// only MustAlias or NoAlias was found.
131   /// Must is not set for RAR accesses, even if the two locations must
132   /// alias. The reason is that two read accesses translate to an early return
133   /// of NoModRef. An additional alias check to set Must may be
134   /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
135   /// We refer to Must being *set* when the most significant bit is *cleared*.
136   /// Conversely we *clear* Must information by *setting* the Must bit to 1.
137 };
138 
isNoModRef(const ModRefInfo MRI)139 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
140   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
141          static_cast<int>(ModRefInfo::Must);
142 }
isModOrRefSet(const ModRefInfo MRI)143 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
144   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
145 }
isModAndRefSet(const ModRefInfo MRI)146 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
147   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
148          static_cast<int>(ModRefInfo::MustModRef);
149 }
isModSet(const ModRefInfo MRI)150 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
151   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
152 }
isRefSet(const ModRefInfo MRI)153 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
154   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
155 }
isMustSet(const ModRefInfo MRI)156 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
157   return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
158 }
159 
setMod(const ModRefInfo MRI)160 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
161   return ModRefInfo(static_cast<int>(MRI) |
162                     static_cast<int>(ModRefInfo::MustMod));
163 }
setRef(const ModRefInfo MRI)164 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
165   return ModRefInfo(static_cast<int>(MRI) |
166                     static_cast<int>(ModRefInfo::MustRef));
167 }
setMust(const ModRefInfo MRI)168 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
169   return ModRefInfo(static_cast<int>(MRI) &
170                     static_cast<int>(ModRefInfo::MustModRef));
171 }
setModAndRef(const ModRefInfo MRI)172 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
173   return ModRefInfo(static_cast<int>(MRI) |
174                     static_cast<int>(ModRefInfo::MustModRef));
175 }
clearMod(const ModRefInfo MRI)176 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
177   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
178 }
clearRef(const ModRefInfo MRI)179 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
180   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
181 }
clearMust(const ModRefInfo MRI)182 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
183   return ModRefInfo(static_cast<int>(MRI) |
184                     static_cast<int>(ModRefInfo::NoModRef));
185 }
unionModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)186 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
187                                              const ModRefInfo MRI2) {
188   return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
189 }
intersectModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)190 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
191                                                  const ModRefInfo MRI2) {
192   return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
193 }
194 
195 /// The locations at which a function might access memory.
196 ///
197 /// These are primarily used in conjunction with the \c AccessKind bits to
198 /// describe both the nature of access and the locations of access for a
199 /// function call.
200 enum FunctionModRefLocation {
201   /// Base case is no access to memory.
202   FMRL_Nowhere = 0,
203   /// Access to memory via argument pointers.
204   FMRL_ArgumentPointees = 8,
205   /// Memory that is inaccessible via LLVM IR.
206   FMRL_InaccessibleMem = 16,
207   /// Access to any memory.
208   FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
209 };
210 
211 /// Summary of how a function affects memory in the program.
212 ///
213 /// Loads from constant globals are not considered memory accesses for this
214 /// interface. Also, functions may freely modify stack space local to their
215 /// invocation without having to report it through these interfaces.
216 using FunctionModRefBehavior = int;
217 /// This function does not perform any non-local loads or stores to memory.
218 ///
219 /// This property corresponds to the GCC 'const' attribute.
220 /// This property corresponds to the LLVM IR 'readnone' attribute.
221 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
222 constexpr FunctionModRefBehavior FMRB_DoesNotAccessMemory =
223     FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef);
224 
225 /// The only memory references in this function (if it has any) are
226 /// non-volatile loads from objects pointed to by its pointer-typed
227 /// arguments, with arbitrary offsets.
228 ///
229 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
230 constexpr FunctionModRefBehavior FMRB_OnlyReadsArgumentPointees =
231     FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref);
232 
233 /// The only memory references in this function (if it has any) are
234 /// non-volatile loads and stores from objects pointed to by its
235 /// pointer-typed arguments, with arbitrary offsets.
236 ///
237 /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
238 constexpr FunctionModRefBehavior FMRB_OnlyAccessesArgumentPointees =
239     FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef);
240 
241 /// The only memory references in this function (if it has any) are
242 /// references of memory that is otherwise inaccessible via LLVM IR.
243 ///
244 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
245 constexpr FunctionModRefBehavior FMRB_OnlyAccessesInaccessibleMem =
246     FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef);
247 
248 /// The function may perform non-volatile loads and stores of objects
249 /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
250 /// it may also perform loads and stores of memory that is otherwise
251 /// inaccessible via LLVM IR.
252 ///
253 /// This property corresponds to the LLVM IR
254 /// inaccessiblemem_or_argmemonly attribute.
255 constexpr FunctionModRefBehavior FMRB_OnlyAccessesInaccessibleOrArgMem =
256     FMRL_InaccessibleMem | FMRL_ArgumentPointees |
257     static_cast<int>(ModRefInfo::ModRef);
258 
259 /// This function does not perform any non-local stores or volatile loads,
260 /// but may read from any memory location.
261 ///
262 /// This property corresponds to the GCC 'pure' attribute.
263 /// This property corresponds to the LLVM IR 'readonly' attribute.
264 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
265 constexpr FunctionModRefBehavior FMRB_OnlyReadsMemory =
266     FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref);
267 
268 // This function does not read from memory anywhere, but may write to any
269 // memory location.
270 //
271 // This property corresponds to the LLVM IR 'writeonly' attribute.
272 // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
273 constexpr FunctionModRefBehavior FMRB_DoesNotReadMemory =
274     FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod);
275 
276 /// This indicates that the function could not be classified into one of the
277 /// behaviors above.
278 constexpr FunctionModRefBehavior FMRB_UnknownModRefBehavior =
279     FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef);
280 
281 // Wrapper method strips bits significant only in FunctionModRefBehavior,
282 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
283 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
284 // entry with all bits set to 1.
285 LLVM_NODISCARD inline ModRefInfo
createModRefInfo(const FunctionModRefBehavior FMRB)286 createModRefInfo(const FunctionModRefBehavior FMRB) {
287   return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
288 }
289 
290 /// This class stores info we want to provide to or retain within an alias
291 /// query. By default, the root query is stateless and starts with a freshly
292 /// constructed info object. Specific alias analyses can use this query info to
293 /// store per-query state that is important for recursive or nested queries to
294 /// avoid recomputing. To enable preserving this state across multiple queries
295 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
296 /// The information stored in an `AAQueryInfo` is currently limitted to the
297 /// caches used by BasicAA, but can further be extended to fit other AA needs.
298 class AAQueryInfo {
299 public:
300   using LocPair = std::pair<MemoryLocation, MemoryLocation>;
301   using AliasCacheT = SmallDenseMap<LocPair, AliasResult, 8>;
302   AliasCacheT AliasCache;
303 
304   using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
305   IsCapturedCacheT IsCapturedCache;
306 
AAQueryInfo()307   AAQueryInfo() : AliasCache(), IsCapturedCache() {}
308 };
309 
310 class BatchAAResults;
311 
312 class AAResults {
313 public:
314   // Make these results default constructable and movable. We have to spell
315   // these out because MSVC won't synthesize them.
AAResults(const TargetLibraryInfo & TLI)316   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
317   AAResults(AAResults &&Arg);
318   ~AAResults();
319 
320   /// Register a specific AA result.
addAAResult(AAResultT & AAResult)321   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
322     // FIXME: We should use a much lighter weight system than the usual
323     // polymorphic pattern because we don't own AAResult. It should
324     // ideally involve two pointers and no separate allocation.
325     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
326   }
327 
328   /// Register a function analysis ID that the results aggregation depends on.
329   ///
330   /// This is used in the new pass manager to implement the invalidation logic
331   /// where we must invalidate the results aggregation if any of our component
332   /// analyses become invalid.
addAADependencyID(AnalysisKey * ID)333   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
334 
335   /// Handle invalidation events in the new pass manager.
336   ///
337   /// The aggregation is invalidated if any of the underlying analyses is
338   /// invalidated.
339   bool invalidate(Function &F, const PreservedAnalyses &PA,
340                   FunctionAnalysisManager::Invalidator &Inv);
341 
342   //===--------------------------------------------------------------------===//
343   /// \name Alias Queries
344   /// @{
345 
346   /// The main low level interface to the alias analysis implementation.
347   /// Returns an AliasResult indicating whether the two pointers are aliased to
348   /// each other. This is the interface that must be implemented by specific
349   /// alias analysis implementations.
350   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
351 
352   /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)353   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
354                     LocationSize V2Size) {
355     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
356   }
357 
358   /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,const Value * V2)359   AliasResult alias(const Value *V1, const Value *V2) {
360     return alias(V1, LocationSize::unknown(), V2, LocationSize::unknown());
361   }
362 
363   /// A trivial helper function to check to see if the specified pointers are
364   /// no-alias.
isNoAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)365   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
366     return alias(LocA, LocB) == NoAlias;
367   }
368 
369   /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)370   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
371                  LocationSize V2Size) {
372     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
373   }
374 
375   /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,const Value * V2)376   bool isNoAlias(const Value *V1, const Value *V2) {
377     return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
378   }
379 
380   /// A trivial helper function to check to see if the specified pointers are
381   /// must-alias.
isMustAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)382   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
383     return alias(LocA, LocB) == MustAlias;
384   }
385 
386   /// A convenience wrapper around the \c isMustAlias helper interface.
isMustAlias(const Value * V1,const Value * V2)387   bool isMustAlias(const Value *V1, const Value *V2) {
388     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
389            MustAlias;
390   }
391 
392   /// Checks whether the given location points to constant memory, or if
393   /// \p OrLocal is true whether it points to a local alloca.
394   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
395 
396   /// A convenience wrapper around the primary \c pointsToConstantMemory
397   /// interface.
398   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
399     return pointsToConstantMemory(MemoryLocation(P), OrLocal);
400   }
401 
402   /// @}
403   //===--------------------------------------------------------------------===//
404   /// \name Simple mod/ref information
405   /// @{
406 
407   /// Get the ModRef info associated with a pointer argument of a call. The
408   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
409   /// that these bits do not necessarily account for the overall behavior of
410   /// the function, but rather only provide additional per-argument
411   /// information. This never sets ModRefInfo::Must.
412   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
413 
414   /// Return the behavior of the given call site.
415   FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
416 
417   /// Return the behavior when calling the given function.
418   FunctionModRefBehavior getModRefBehavior(const Function *F);
419 
420   /// Checks if the specified call is known to never read or write memory.
421   ///
422   /// Note that if the call only reads from known-constant memory, it is also
423   /// legal to return true. Also, calls that unwind the stack are legal for
424   /// this predicate.
425   ///
426   /// Many optimizations (such as CSE and LICM) can be performed on such calls
427   /// without worrying about aliasing properties, and many calls have this
428   /// property (e.g. calls to 'sin' and 'cos').
429   ///
430   /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const CallBase * Call)431   bool doesNotAccessMemory(const CallBase *Call) {
432     return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
433   }
434 
435   /// Checks if the specified function is known to never read or write memory.
436   ///
437   /// Note that if the function only reads from known-constant memory, it is
438   /// also legal to return true. Also, function that unwind the stack are legal
439   /// for this predicate.
440   ///
441   /// Many optimizations (such as CSE and LICM) can be performed on such calls
442   /// to such functions without worrying about aliasing properties, and many
443   /// functions have this property (e.g. 'sin' and 'cos').
444   ///
445   /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const Function * F)446   bool doesNotAccessMemory(const Function *F) {
447     return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
448   }
449 
450   /// Checks if the specified call is known to only read from non-volatile
451   /// memory (or not access memory at all).
452   ///
453   /// Calls that unwind the stack are legal for this predicate.
454   ///
455   /// This property allows many common optimizations to be performed in the
456   /// absence of interfering store instructions, such as CSE of strlen calls.
457   ///
458   /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const CallBase * Call)459   bool onlyReadsMemory(const CallBase *Call) {
460     return onlyReadsMemory(getModRefBehavior(Call));
461   }
462 
463   /// Checks if the specified function is known to only read from non-volatile
464   /// memory (or not access memory at all).
465   ///
466   /// Functions that unwind the stack are legal for this predicate.
467   ///
468   /// This property allows many common optimizations to be performed in the
469   /// absence of interfering store instructions, such as CSE of strlen calls.
470   ///
471   /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const Function * F)472   bool onlyReadsMemory(const Function *F) {
473     return onlyReadsMemory(getModRefBehavior(F));
474   }
475 
476   /// Checks if functions with the specified behavior are known to only read
477   /// from non-volatile memory (or not access memory at all).
onlyReadsMemory(FunctionModRefBehavior MRB)478   static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
479     return !isModSet(createModRefInfo(MRB));
480   }
481 
482   /// Checks if functions with the specified behavior are known to only write
483   /// memory (or not access memory at all).
doesNotReadMemory(FunctionModRefBehavior MRB)484   static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
485     return !isRefSet(createModRefInfo(MRB));
486   }
487 
488   /// Checks if functions with the specified behavior are known to read and
489   /// write at most from objects pointed to by their pointer-typed arguments
490   /// (with arbitrary offsets).
onlyAccessesArgPointees(FunctionModRefBehavior MRB)491   static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
492     return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
493   }
494 
495   /// Checks if functions with the specified behavior are known to potentially
496   /// read or write from objects pointed to be their pointer-typed arguments
497   /// (with arbitrary offsets).
doesAccessArgPointees(FunctionModRefBehavior MRB)498   static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
499     return isModOrRefSet(createModRefInfo(MRB)) &&
500            (MRB & FMRL_ArgumentPointees);
501   }
502 
503   /// Checks if functions with the specified behavior are known to read and
504   /// write at most from memory that is inaccessible from LLVM IR.
onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB)505   static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
506     return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
507   }
508 
509   /// Checks if functions with the specified behavior are known to potentially
510   /// read or write from memory that is inaccessible from LLVM IR.
doesAccessInaccessibleMem(FunctionModRefBehavior MRB)511   static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
512     return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem);
513   }
514 
515   /// Checks if functions with the specified behavior are known to read and
516   /// write at most from memory that is inaccessible from LLVM IR or objects
517   /// pointed to by their pointer-typed arguments (with arbitrary offsets).
onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB)518   static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
519     return !(MRB & FMRL_Anywhere &
520              ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
521   }
522 
523   /// getModRefInfo (for call sites) - Return information about whether
524   /// a particular call site modifies or reads the specified memory location.
525   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
526 
527   /// getModRefInfo (for call sites) - A convenience wrapper.
getModRefInfo(const CallBase * Call,const Value * P,LocationSize Size)528   ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
529                            LocationSize Size) {
530     return getModRefInfo(Call, MemoryLocation(P, Size));
531   }
532 
533   /// getModRefInfo (for loads) - Return information about whether
534   /// a particular load modifies or reads the specified memory location.
535   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
536 
537   /// getModRefInfo (for loads) - A convenience wrapper.
getModRefInfo(const LoadInst * L,const Value * P,LocationSize Size)538   ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
539                            LocationSize Size) {
540     return getModRefInfo(L, MemoryLocation(P, Size));
541   }
542 
543   /// getModRefInfo (for stores) - Return information about whether
544   /// a particular store modifies or reads the specified memory location.
545   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
546 
547   /// getModRefInfo (for stores) - A convenience wrapper.
getModRefInfo(const StoreInst * S,const Value * P,LocationSize Size)548   ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
549                            LocationSize Size) {
550     return getModRefInfo(S, MemoryLocation(P, Size));
551   }
552 
553   /// getModRefInfo (for fences) - Return information about whether
554   /// a particular store modifies or reads the specified memory location.
555   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
556 
557   /// getModRefInfo (for fences) - A convenience wrapper.
getModRefInfo(const FenceInst * S,const Value * P,LocationSize Size)558   ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
559                            LocationSize Size) {
560     return getModRefInfo(S, MemoryLocation(P, Size));
561   }
562 
563   /// getModRefInfo (for cmpxchges) - Return information about whether
564   /// a particular cmpxchg modifies or reads the specified memory location.
565   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
566                            const MemoryLocation &Loc);
567 
568   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
getModRefInfo(const AtomicCmpXchgInst * CX,const Value * P,LocationSize Size)569   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
570                            LocationSize Size) {
571     return getModRefInfo(CX, MemoryLocation(P, Size));
572   }
573 
574   /// getModRefInfo (for atomicrmws) - Return information about whether
575   /// a particular atomicrmw modifies or reads the specified memory location.
576   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
577 
578   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
getModRefInfo(const AtomicRMWInst * RMW,const Value * P,LocationSize Size)579   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
580                            LocationSize Size) {
581     return getModRefInfo(RMW, MemoryLocation(P, Size));
582   }
583 
584   /// getModRefInfo (for va_args) - Return information about whether
585   /// a particular va_arg modifies or reads the specified memory location.
586   ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
587 
588   /// getModRefInfo (for va_args) - A convenience wrapper.
getModRefInfo(const VAArgInst * I,const Value * P,LocationSize Size)589   ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
590                            LocationSize Size) {
591     return getModRefInfo(I, MemoryLocation(P, Size));
592   }
593 
594   /// getModRefInfo (for catchpads) - Return information about whether
595   /// a particular catchpad modifies or reads the specified memory location.
596   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
597 
598   /// getModRefInfo (for catchpads) - A convenience wrapper.
getModRefInfo(const CatchPadInst * I,const Value * P,LocationSize Size)599   ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
600                            LocationSize Size) {
601     return getModRefInfo(I, MemoryLocation(P, Size));
602   }
603 
604   /// getModRefInfo (for catchrets) - Return information about whether
605   /// a particular catchret modifies or reads the specified memory location.
606   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
607 
608   /// getModRefInfo (for catchrets) - A convenience wrapper.
getModRefInfo(const CatchReturnInst * I,const Value * P,LocationSize Size)609   ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
610                            LocationSize Size) {
611     return getModRefInfo(I, MemoryLocation(P, Size));
612   }
613 
614   /// Check whether or not an instruction may read or write the optionally
615   /// specified memory location.
616   ///
617   ///
618   /// An instruction that doesn't read or write memory may be trivially LICM'd
619   /// for example.
620   ///
621   /// For function calls, this delegates to the alias-analysis specific
622   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
623   /// helpers above.
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc)624   ModRefInfo getModRefInfo(const Instruction *I,
625                            const Optional<MemoryLocation> &OptLoc) {
626     AAQueryInfo AAQIP;
627     return getModRefInfo(I, OptLoc, AAQIP);
628   }
629 
630   /// A convenience wrapper for constructing the memory location.
getModRefInfo(const Instruction * I,const Value * P,LocationSize Size)631   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
632                            LocationSize Size) {
633     return getModRefInfo(I, MemoryLocation(P, Size));
634   }
635 
636   /// Return information about whether a call and an instruction may refer to
637   /// the same memory locations.
638   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
639 
640   /// Return information about whether two call sites may refer to the same set
641   /// of memory locations. See the AA documentation for details:
642   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
643   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
644 
645   /// Return information about whether a particular call site modifies
646   /// or reads the specified memory location \p MemLoc before instruction \p I
647   /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
648   /// instruction ordering queries inside the BasicBlock containing \p I.
649   /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
650   /// set.
651   ModRefInfo callCapturesBefore(const Instruction *I,
652                                 const MemoryLocation &MemLoc, DominatorTree *DT,
653                                 OrderedBasicBlock *OBB = nullptr);
654 
655   /// A convenience wrapper to synthesize a memory location.
656   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
657                                 LocationSize Size, DominatorTree *DT,
658                                 OrderedBasicBlock *OBB = nullptr) {
659     return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
660   }
661 
662   /// @}
663   //===--------------------------------------------------------------------===//
664   /// \name Higher level methods for querying mod/ref information.
665   /// @{
666 
667   /// Check if it is possible for execution of the specified basic block to
668   /// modify the location Loc.
669   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
670 
671   /// A convenience wrapper synthesizing a memory location.
canBasicBlockModify(const BasicBlock & BB,const Value * P,LocationSize Size)672   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
673                            LocationSize Size) {
674     return canBasicBlockModify(BB, MemoryLocation(P, Size));
675   }
676 
677   /// Check if it is possible for the execution of the specified instructions
678   /// to mod\ref (according to the mode) the location Loc.
679   ///
680   /// The instructions to consider are all of the instructions in the range of
681   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
682   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
683                                  const MemoryLocation &Loc,
684                                  const ModRefInfo Mode);
685 
686   /// A convenience wrapper synthesizing a memory location.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const Value * Ptr,LocationSize Size,const ModRefInfo Mode)687   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
688                                  const Value *Ptr, LocationSize Size,
689                                  const ModRefInfo Mode) {
690     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
691   }
692 
693 private:
694   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
695                     AAQueryInfo &AAQI);
696   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
697                               bool OrLocal = false);
698   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
699                            AAQueryInfo &AAQIP);
700   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
701                            AAQueryInfo &AAQI);
702   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
703                            AAQueryInfo &AAQI);
704   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
705                            AAQueryInfo &AAQI);
706   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
707                            AAQueryInfo &AAQI);
708   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
709                            AAQueryInfo &AAQI);
710   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
711                            AAQueryInfo &AAQI);
712   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
713                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
714   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
715                            AAQueryInfo &AAQI);
716   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
717                            AAQueryInfo &AAQI);
718   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
719                            AAQueryInfo &AAQI);
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc,AAQueryInfo & AAQIP)720   ModRefInfo getModRefInfo(const Instruction *I,
721                            const Optional<MemoryLocation> &OptLoc,
722                            AAQueryInfo &AAQIP) {
723     if (OptLoc == None) {
724       if (const auto *Call = dyn_cast<CallBase>(I)) {
725         return createModRefInfo(getModRefBehavior(Call));
726       }
727     }
728 
729     const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
730 
731     switch (I->getOpcode()) {
732     case Instruction::VAArg:
733       return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
734     case Instruction::Load:
735       return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
736     case Instruction::Store:
737       return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
738     case Instruction::Fence:
739       return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
740     case Instruction::AtomicCmpXchg:
741       return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
742     case Instruction::AtomicRMW:
743       return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
744     case Instruction::Call:
745       return getModRefInfo((const CallInst *)I, Loc, AAQIP);
746     case Instruction::Invoke:
747       return getModRefInfo((const InvokeInst *)I, Loc, AAQIP);
748     case Instruction::CatchPad:
749       return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
750     case Instruction::CatchRet:
751       return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
752     default:
753       return ModRefInfo::NoModRef;
754     }
755   }
756 
757   class Concept;
758 
759   template <typename T> class Model;
760 
761   template <typename T> friend class AAResultBase;
762 
763   const TargetLibraryInfo &TLI;
764 
765   std::vector<std::unique_ptr<Concept>> AAs;
766 
767   std::vector<AnalysisKey *> AADeps;
768 
769   friend class BatchAAResults;
770 };
771 
772 /// This class is a wrapper over an AAResults, and it is intended to be used
773 /// only when there are no IR changes inbetween queries. BatchAAResults is
774 /// reusing the same `AAQueryInfo` to preserve the state across queries,
775 /// esentially making AA work in "batch mode". The internal state cannot be
776 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
777 /// or create a new BatchAAResults.
778 class BatchAAResults {
779   AAResults &AA;
780   AAQueryInfo AAQI;
781 
782 public:
BatchAAResults(AAResults & AAR)783   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)784   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
785     return AA.alias(LocA, LocB, AAQI);
786   }
787   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
788     return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
789   }
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc)790   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
791     return AA.getModRefInfo(Call, Loc, AAQI);
792   }
getModRefInfo(const CallBase * Call1,const CallBase * Call2)793   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
794     return AA.getModRefInfo(Call1, Call2, AAQI);
795   }
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc)796   ModRefInfo getModRefInfo(const Instruction *I,
797                            const Optional<MemoryLocation> &OptLoc) {
798     return AA.getModRefInfo(I, OptLoc, AAQI);
799   }
getModRefInfo(Instruction * I,const CallBase * Call2)800   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
801     return AA.getModRefInfo(I, Call2, AAQI);
802   }
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)803   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
804     return AA.getArgModRefInfo(Call, ArgIdx);
805   }
getModRefBehavior(const CallBase * Call)806   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
807     return AA.getModRefBehavior(Call);
808   }
809 };
810 
811 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
812 /// pointer or reference.
813 using AliasAnalysis = AAResults;
814 
815 /// A private abstract base class describing the concept of an individual alias
816 /// analysis implementation.
817 ///
818 /// This interface is implemented by any \c Model instantiation. It is also the
819 /// interface which a type used to instantiate the model must provide.
820 ///
821 /// All of these methods model methods by the same name in the \c
822 /// AAResults class. Only differences and specifics to how the
823 /// implementations are called are documented here.
824 class AAResults::Concept {
825 public:
826   virtual ~Concept() = 0;
827 
828   /// An update API used internally by the AAResults to provide
829   /// a handle back to the top level aggregation.
830   virtual void setAAResults(AAResults *NewAAR) = 0;
831 
832   //===--------------------------------------------------------------------===//
833   /// \name Alias Queries
834   /// @{
835 
836   /// The main low level interface to the alias analysis implementation.
837   /// Returns an AliasResult indicating whether the two pointers are aliased to
838   /// each other. This is the interface that must be implemented by specific
839   /// alias analysis implementations.
840   virtual AliasResult alias(const MemoryLocation &LocA,
841                             const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
842 
843   /// Checks whether the given location points to constant memory, or if
844   /// \p OrLocal is true whether it points to a local alloca.
845   virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
846                                       AAQueryInfo &AAQI, bool OrLocal) = 0;
847 
848   /// @}
849   //===--------------------------------------------------------------------===//
850   /// \name Simple mod/ref information
851   /// @{
852 
853   /// Get the ModRef info associated with a pointer argument of a callsite. The
854   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
855   /// that these bits do not necessarily account for the overall behavior of
856   /// the function, but rather only provide additional per-argument
857   /// information.
858   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
859                                       unsigned ArgIdx) = 0;
860 
861   /// Return the behavior of the given call site.
862   virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
863 
864   /// Return the behavior when calling the given function.
865   virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
866 
867   /// getModRefInfo (for call sites) - Return information about whether
868   /// a particular call site modifies or reads the specified memory location.
869   virtual ModRefInfo getModRefInfo(const CallBase *Call,
870                                    const MemoryLocation &Loc,
871                                    AAQueryInfo &AAQI) = 0;
872 
873   /// Return information about whether two call sites may refer to the same set
874   /// of memory locations. See the AA documentation for details:
875   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
876   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
877                                    AAQueryInfo &AAQI) = 0;
878 
879   /// @}
880 };
881 
882 /// A private class template which derives from \c Concept and wraps some other
883 /// type.
884 ///
885 /// This models the concept by directly forwarding each interface point to the
886 /// wrapped type which must implement a compatible interface. This provides
887 /// a type erased binding.
888 template <typename AAResultT> class AAResults::Model final : public Concept {
889   AAResultT &Result;
890 
891 public:
Model(AAResultT & Result,AAResults & AAR)892   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
893     Result.setAAResults(&AAR);
894   }
895   ~Model() override = default;
896 
setAAResults(AAResults * NewAAR)897   void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
898 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)899   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
900                     AAQueryInfo &AAQI) override {
901     return Result.alias(LocA, LocB, AAQI);
902   }
903 
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)904   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
905                               bool OrLocal) override {
906     return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
907   }
908 
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)909   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
910     return Result.getArgModRefInfo(Call, ArgIdx);
911   }
912 
getModRefBehavior(const CallBase * Call)913   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
914     return Result.getModRefBehavior(Call);
915   }
916 
getModRefBehavior(const Function * F)917   FunctionModRefBehavior getModRefBehavior(const Function *F) override {
918     return Result.getModRefBehavior(F);
919   }
920 
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)921   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
922                            AAQueryInfo &AAQI) override {
923     return Result.getModRefInfo(Call, Loc, AAQI);
924   }
925 
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)926   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
927                            AAQueryInfo &AAQI) override {
928     return Result.getModRefInfo(Call1, Call2, AAQI);
929   }
930 };
931 
932 /// A CRTP-driven "mixin" base class to help implement the function alias
933 /// analysis results concept.
934 ///
935 /// Because of the nature of many alias analysis implementations, they often
936 /// only implement a subset of the interface. This base class will attempt to
937 /// implement the remaining portions of the interface in terms of simpler forms
938 /// of the interface where possible, and otherwise provide conservatively
939 /// correct fallback implementations.
940 ///
941 /// Implementors of an alias analysis should derive from this CRTP, and then
942 /// override specific methods that they wish to customize. There is no need to
943 /// use virtual anywhere, the CRTP base class does static dispatch to the
944 /// derived type passed into it.
945 template <typename DerivedT> class AAResultBase {
946   // Expose some parts of the interface only to the AAResults::Model
947   // for wrapping. Specifically, this allows the model to call our
948   // setAAResults method without exposing it as a fully public API.
949   friend class AAResults::Model<DerivedT>;
950 
951   /// A pointer to the AAResults object that this AAResult is
952   /// aggregated within. May be null if not aggregated.
953   AAResults *AAR = nullptr;
954 
955   /// Helper to dispatch calls back through the derived type.
derived()956   DerivedT &derived() { return static_cast<DerivedT &>(*this); }
957 
958   /// A setter for the AAResults pointer, which is used to satisfy the
959   /// AAResults::Model contract.
setAAResults(AAResults * NewAAR)960   void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
961 
962 protected:
963   /// This proxy class models a common pattern where we delegate to either the
964   /// top-level \c AAResults aggregation if one is registered, or to the
965   /// current result if none are registered.
966   class AAResultsProxy {
967     AAResults *AAR;
968     DerivedT &CurrentResult;
969 
970   public:
AAResultsProxy(AAResults * AAR,DerivedT & CurrentResult)971     AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
972         : AAR(AAR), CurrentResult(CurrentResult) {}
973 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)974     AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
975                       AAQueryInfo &AAQI) {
976       return AAR ? AAR->alias(LocA, LocB, AAQI)
977                  : CurrentResult.alias(LocA, LocB, AAQI);
978     }
979 
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)980     bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
981                                 bool OrLocal) {
982       return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
983                  : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
984     }
985 
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)986     ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
987       return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
988                  : CurrentResult.getArgModRefInfo(Call, ArgIdx);
989     }
990 
getModRefBehavior(const CallBase * Call)991     FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
992       return AAR ? AAR->getModRefBehavior(Call)
993                  : CurrentResult.getModRefBehavior(Call);
994     }
995 
getModRefBehavior(const Function * F)996     FunctionModRefBehavior getModRefBehavior(const Function *F) {
997       return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
998     }
999 
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)1000     ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1001                              AAQueryInfo &AAQI) {
1002       return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1003                  : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1004     }
1005 
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)1006     ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1007                              AAQueryInfo &AAQI) {
1008       return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1009                  : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1010     }
1011   };
1012 
1013   explicit AAResultBase() = default;
1014 
1015   // Provide all the copy and move constructors so that derived types aren't
1016   // constrained.
AAResultBase(const AAResultBase & Arg)1017   AAResultBase(const AAResultBase &Arg) {}
AAResultBase(AAResultBase && Arg)1018   AAResultBase(AAResultBase &&Arg) {}
1019 
1020   /// Get a proxy for the best AA result set to query at this time.
1021   ///
1022   /// When this result is part of a larger aggregation, this will proxy to that
1023   /// aggregation. When this result is used in isolation, it will just delegate
1024   /// back to the derived class's implementation.
1025   ///
1026   /// Note that callers of this need to take considerable care to not cause
1027   /// performance problems when they use this routine, in the case of a large
1028   /// number of alias analyses being aggregated, it can be expensive to walk
1029   /// back across the chain.
getBestAAResults()1030   AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1031 
1032 public:
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)1033   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1034                     AAQueryInfo &AAQI) {
1035     return MayAlias;
1036   }
1037 
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)1038   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1039                               bool OrLocal) {
1040     return false;
1041   }
1042 
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)1043   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1044     return ModRefInfo::ModRef;
1045   }
1046 
getModRefBehavior(const CallBase * Call)1047   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1048     return FMRB_UnknownModRefBehavior;
1049   }
1050 
getModRefBehavior(const Function * F)1051   FunctionModRefBehavior getModRefBehavior(const Function *F) {
1052     return FMRB_UnknownModRefBehavior;
1053   }
1054 
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)1055   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1056                            AAQueryInfo &AAQI) {
1057     return ModRefInfo::ModRef;
1058   }
1059 
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)1060   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1061                            AAQueryInfo &AAQI) {
1062     return ModRefInfo::ModRef;
1063   }
1064 };
1065 
1066 /// Return true if this pointer is returned by a noalias function.
1067 bool isNoAliasCall(const Value *V);
1068 
1069 /// Return true if this is an argument with the noalias attribute.
1070 bool isNoAliasArgument(const Value *V);
1071 
1072 /// Return true if this pointer refers to a distinct and identifiable object.
1073 /// This returns true for:
1074 ///    Global Variables and Functions (but not Global Aliases)
1075 ///    Allocas
1076 ///    ByVal and NoAlias Arguments
1077 ///    NoAlias returns (e.g. calls to malloc)
1078 ///
1079 bool isIdentifiedObject(const Value *V);
1080 
1081 /// Return true if V is umabigously identified at the function-level.
1082 /// Different IdentifiedFunctionLocals can't alias.
1083 /// Further, an IdentifiedFunctionLocal can not alias with any function
1084 /// arguments other than itself, which is not necessarily true for
1085 /// IdentifiedObjects.
1086 bool isIdentifiedFunctionLocal(const Value *V);
1087 
1088 /// A manager for alias analyses.
1089 ///
1090 /// This class can have analyses registered with it and when run, it will run
1091 /// all of them and aggregate their results into single AA results interface
1092 /// that dispatches across all of the alias analysis results available.
1093 ///
1094 /// Note that the order in which analyses are registered is very significant.
1095 /// That is the order in which the results will be aggregated and queried.
1096 ///
1097 /// This manager effectively wraps the AnalysisManager for registering alias
1098 /// analyses. When you register your alias analysis with this manager, it will
1099 /// ensure the analysis itself is registered with its AnalysisManager.
1100 ///
1101 /// The result of this analysis is only invalidated if one of the particular
1102 /// aggregated AA results end up being invalidated. This removes the need to
1103 /// explicitly preserve the results of `AAManager`. Note that analyses should no
1104 /// longer be registered once the `AAManager` is run.
1105 class AAManager : public AnalysisInfoMixin<AAManager> {
1106 public:
1107   using Result = AAResults;
1108 
1109   /// Register a specific AA result.
registerFunctionAnalysis()1110   template <typename AnalysisT> void registerFunctionAnalysis() {
1111     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1112   }
1113 
1114   /// Register a specific AA result.
registerModuleAnalysis()1115   template <typename AnalysisT> void registerModuleAnalysis() {
1116     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1117   }
1118 
run(Function & F,FunctionAnalysisManager & AM)1119   Result run(Function &F, FunctionAnalysisManager &AM) {
1120     Result R(AM.getResult<TargetLibraryAnalysis>(F));
1121     for (auto &Getter : ResultGetters)
1122       (*Getter)(F, AM, R);
1123     return R;
1124   }
1125 
1126 private:
1127   friend AnalysisInfoMixin<AAManager>;
1128 
1129   static AnalysisKey Key;
1130 
1131   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1132                        AAResults &AAResults),
1133               4> ResultGetters;
1134 
1135   template <typename AnalysisT>
getFunctionAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1136   static void getFunctionAAResultImpl(Function &F,
1137                                       FunctionAnalysisManager &AM,
1138                                       AAResults &AAResults) {
1139     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1140     AAResults.addAADependencyID(AnalysisT::ID());
1141   }
1142 
1143   template <typename AnalysisT>
getModuleAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1144   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1145                                     AAResults &AAResults) {
1146     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1147     auto &MAM = MAMProxy.getManager();
1148     if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
1149       AAResults.addAAResult(*R);
1150       MAMProxy
1151           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1152     }
1153   }
1154 };
1155 
1156 /// A wrapper pass to provide the legacy pass manager access to a suitably
1157 /// prepared AAResults object.
1158 class AAResultsWrapperPass : public FunctionPass {
1159   std::unique_ptr<AAResults> AAR;
1160 
1161 public:
1162   static char ID;
1163 
1164   AAResultsWrapperPass();
1165 
getAAResults()1166   AAResults &getAAResults() { return *AAR; }
getAAResults()1167   const AAResults &getAAResults() const { return *AAR; }
1168 
1169   bool runOnFunction(Function &F) override;
1170 
1171   void getAnalysisUsage(AnalysisUsage &AU) const override;
1172 };
1173 
1174 /// A wrapper pass for external alias analyses. This just squirrels away the
1175 /// callback used to run any analyses and register their results.
1176 struct ExternalAAWrapperPass : ImmutablePass {
1177   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1178 
1179   CallbackT CB;
1180 
1181   static char ID;
1182 
1183   ExternalAAWrapperPass();
1184 
1185   explicit ExternalAAWrapperPass(CallbackT CB);
1186 
getAnalysisUsageExternalAAWrapperPass1187   void getAnalysisUsage(AnalysisUsage &AU) const override {
1188     AU.setPreservesAll();
1189   }
1190 };
1191 
1192 FunctionPass *createAAResultsWrapperPass();
1193 
1194 /// A wrapper pass around a callback which can be used to populate the
1195 /// AAResults in the AAResultsWrapperPass from an external AA.
1196 ///
1197 /// The callback provided here will be used each time we prepare an AAResults
1198 /// object, and will receive a reference to the function wrapper pass, the
1199 /// function, and the AAResults object to populate. This should be used when
1200 /// setting up a custom pass pipeline to inject a hook into the AA results.
1201 ImmutablePass *createExternalAAWrapperPass(
1202     std::function<void(Pass &, Function &, AAResults &)> Callback);
1203 
1204 /// A helper for the legacy pass manager to create a \c AAResults
1205 /// object populated to the best of our ability for a particular function when
1206 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1207 ///
1208 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1209 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1210 /// getAnalysisUsage.
1211 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1212 
1213 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1214 /// sure the analyses required by \p createLegacyPMAAResults are available.
1215 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1216 
1217 } // end namespace llvm
1218 
1219 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1220