xref: /aosp_15_r20/external/cronet/third_party/libc++abi/src/src/cxa_guard_impl.h (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LIBCXXABI_SRC_INCLUDE_CXA_GUARD_IMPL_H
10 #define LIBCXXABI_SRC_INCLUDE_CXA_GUARD_IMPL_H
11 
12 /* cxa_guard_impl.h - Implements the C++ runtime support for function local
13  * static guards.
14  * The layout of the guard object is the same across ARM and Itanium.
15  *
16  * The first "guard byte" (which is checked by the compiler) is set only upon
17  * the completion of cxa release.
18  *
19  * The second "init byte" does the rest of the bookkeeping. It tracks if
20  * initialization is complete or pending, and if there are waiting threads.
21  *
22  * If the guard variable is 64-bits and the platforms supplies a 32-bit thread
23  * identifier, it is used to detect recursive initialization. The thread ID of
24  * the thread currently performing initialization is stored in the second word.
25  *
26  *  Guard Object Layout:
27  * ---------------------------------------------------------------------------
28  * | a+0: guard byte | a+1: init byte | a+2: unused ... | a+4: thread-id ... |
29  * ---------------------------------------------------------------------------
30  *
31  * Note that we don't do what the ABI docs suggest (put a mutex in the guard
32  * object which we acquire in cxa_guard_acquire and release in
33  * cxa_guard_release). Instead we use the init byte to imitate that behaviour,
34  * but without actually holding anything mutex related between aquire and
35  * release/abort.
36  *
37  *  Access Protocol:
38  *    For each implementation the guard byte is checked and set before accessing
39  *    the init byte.
40  *
41  *  Overall Design:
42  *    The implementation was designed to allow each implementation to be tested
43  *    independent of the C++ runtime or platform support.
44  *
45  */
46 
47 #include "__cxxabi_config.h"
48 #include "include/atomic_support.h" // from libc++
49 #if defined(__has_include)
50 #  if __has_include(<sys/syscall.h>)
51 #    include <sys/syscall.h>
52 #  endif
53 #  if __has_include(<unistd.h>)
54 #    include <unistd.h>
55 #  endif
56 #endif
57 
58 #include <__thread/support.h>
59 #include <cstdint>
60 #include <cstring>
61 #include <limits.h>
62 #include <stdlib.h>
63 
64 #ifndef _LIBCXXABI_HAS_NO_THREADS
65 #  if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB)
66 #    pragma comment(lib, "pthread")
67 #  endif
68 #endif
69 
70 #if defined(__clang__)
71 #  pragma clang diagnostic push
72 #  pragma clang diagnostic ignored "-Wtautological-pointer-compare"
73 #elif defined(__GNUC__)
74 #  pragma GCC diagnostic push
75 #  pragma GCC diagnostic ignored "-Waddress"
76 #endif
77 
78 // To make testing possible, this header is included from both cxa_guard.cpp
79 // and a number of tests.
80 //
81 // For this reason we place everything in an anonymous namespace -- even though
82 // we're in a header. We want the actual implementation and the tests to have
83 // unique definitions of the types in this header (since the tests may depend
84 // on function local statics).
85 //
86 // To enforce this either `BUILDING_CXA_GUARD` or `TESTING_CXA_GUARD` must be
87 // defined when including this file. Only `src/cxa_guard.cpp` should define
88 // the former.
89 #ifdef BUILDING_CXA_GUARD
90 #  include "abort_message.h"
91 #  define ABORT_WITH_MESSAGE(...) ::abort_message(__VA_ARGS__)
92 #elif defined(TESTING_CXA_GUARD)
93 #  define ABORT_WITH_MESSAGE(...) ::abort()
94 #else
95 #  error "Either BUILDING_CXA_GUARD or TESTING_CXA_GUARD must be defined"
96 #endif
97 
98 #if __has_feature(thread_sanitizer)
99 extern "C" void __tsan_acquire(void*);
100 extern "C" void __tsan_release(void*);
101 #else
102 #  define __tsan_acquire(addr) ((void)0)
103 #  define __tsan_release(addr) ((void)0)
104 #endif
105 
106 namespace __cxxabiv1 {
107 // Use an anonymous namespace to ensure that the tests and actual implementation
108 // have unique definitions of these symbols.
109 namespace {
110 
111 //===----------------------------------------------------------------------===//
112 //                          Misc Utilities
113 //===----------------------------------------------------------------------===//
114 
115 template <class T, T (*Init)()>
116 struct LazyValue {
LazyValueLazyValue117   LazyValue() : is_init(false) {}
118 
getLazyValue119   T& get() {
120     if (!is_init) {
121       value = Init();
122       is_init = true;
123     }
124     return value;
125   }
126 
127 private:
128   T value;
129   bool is_init = false;
130 };
131 
132 template <class IntType>
133 class AtomicInt {
134 public:
135   using MemoryOrder = std::__libcpp_atomic_order;
136 
AtomicInt(IntType * b)137   explicit AtomicInt(IntType* b) : b_(b) {}
138   AtomicInt(AtomicInt const&) = delete;
139   AtomicInt& operator=(AtomicInt const&) = delete;
140 
load(MemoryOrder ord)141   IntType load(MemoryOrder ord) { return std::__libcpp_atomic_load(b_, ord); }
store(IntType val,MemoryOrder ord)142   void store(IntType val, MemoryOrder ord) { std::__libcpp_atomic_store(b_, val, ord); }
exchange(IntType new_val,MemoryOrder ord)143   IntType exchange(IntType new_val, MemoryOrder ord) { return std::__libcpp_atomic_exchange(b_, new_val, ord); }
compare_exchange(IntType * expected,IntType desired,MemoryOrder ord_success,MemoryOrder ord_failure)144   bool compare_exchange(IntType* expected, IntType desired, MemoryOrder ord_success, MemoryOrder ord_failure) {
145     return std::__libcpp_atomic_compare_exchange(b_, expected, desired, ord_success, ord_failure);
146   }
147 
148 private:
149   IntType* b_;
150 };
151 
152 //===----------------------------------------------------------------------===//
153 //                       PlatformGetThreadID
154 //===----------------------------------------------------------------------===//
155 
156 #if defined(__APPLE__) && defined(_LIBCPP_HAS_THREAD_API_PTHREAD)
PlatformThreadID()157 uint32_t PlatformThreadID() {
158   static_assert(sizeof(mach_port_t) == sizeof(uint32_t), "");
159   return static_cast<uint32_t>(pthread_mach_thread_np(std::__libcpp_thread_get_current_id()));
160 }
161 #elif defined(SYS_gettid) && defined(_LIBCPP_HAS_THREAD_API_PTHREAD)
PlatformThreadID()162 uint32_t PlatformThreadID() {
163   static_assert(sizeof(pid_t) == sizeof(uint32_t), "");
164   return static_cast<uint32_t>(syscall(SYS_gettid));
165 }
166 #else
167 constexpr uint32_t (*PlatformThreadID)() = nullptr;
168 #endif
169 
170 //===----------------------------------------------------------------------===//
171 //                          GuardByte
172 //===----------------------------------------------------------------------===//
173 
174 static constexpr uint8_t UNSET = 0;
175 static constexpr uint8_t COMPLETE_BIT = (1 << 0);
176 static constexpr uint8_t PENDING_BIT = (1 << 1);
177 static constexpr uint8_t WAITING_BIT = (1 << 2);
178 
179 /// Manages reads and writes to the guard byte.
180 struct GuardByte {
181   GuardByte() = delete;
182   GuardByte(GuardByte const&) = delete;
183   GuardByte& operator=(GuardByte const&) = delete;
184 
GuardByteGuardByte185   explicit GuardByte(uint8_t* const guard_byte_address) : guard_byte(guard_byte_address) {}
186 
187 public:
188   /// The guard byte portion of cxa_guard_acquire. Returns true if
189   /// initialization has already been completed.
acquireGuardByte190   bool acquire() {
191     // if guard_byte is non-zero, we have already completed initialization
192     // (i.e. release has been called)
193     return guard_byte.load(std::_AO_Acquire) != UNSET;
194   }
195 
196   /// The guard byte portion of cxa_guard_release.
releaseGuardByte197   void release() { guard_byte.store(COMPLETE_BIT, std::_AO_Release); }
198 
199   /// The guard byte portion of cxa_guard_abort.
abortGuardByte200   void abort() {} // Nothing to do
201 
202 private:
203   AtomicInt<uint8_t> guard_byte;
204 };
205 
206 //===----------------------------------------------------------------------===//
207 //                       InitByte Implementations
208 //===----------------------------------------------------------------------===//
209 //
210 // Each initialization byte implementation supports the following methods:
211 //
212 //  InitByte(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
213 //    Construct the InitByte object, initializing our member variables
214 //
215 //  bool acquire()
216 //    Called before we start the initialization. Check if someone else has already started, and if
217 //    not to signal our intent to start it ourselves. We determine the current status from the init
218 //    byte, which is one of 4 possible values:
219 //      COMPLETE:           Initialization was finished by somebody else. Return true.
220 //      PENDING:            Somebody has started the initialization already, set the WAITING bit,
221 //                          then wait for the init byte to get updated with a new value.
222 //      (PENDING|WAITING):  Somebody has started the initialization already, and we're not the
223 //                          first one waiting. Wait for the init byte to get updated.
224 //      UNSET:              Initialization hasn't successfully completed, and nobody is currently
225 //                          performing the initialization. Set the PENDING bit to indicate our
226 //                          intention to start the initialization, and return false.
227 //    The return value indicates whether initialization has already been completed.
228 //
229 //  void release()
230 //    Called after successfully completing the initialization. Update the init byte to reflect
231 //    that, then if anybody else is waiting, wake them up.
232 //
233 //  void abort()
234 //    Called after an error is thrown during the initialization. Reset the init byte to UNSET to
235 //    indicate that we're no longer performing the initialization, then if anybody is waiting, wake
236 //    them up so they can try performing the initialization.
237 //
238 
239 //===----------------------------------------------------------------------===//
240 //                    Single Threaded Implementation
241 //===----------------------------------------------------------------------===//
242 
243 /// InitByteNoThreads - Doesn't use any inter-thread synchronization when
244 /// managing reads and writes to the init byte.
245 struct InitByteNoThreads {
246   InitByteNoThreads() = delete;
247   InitByteNoThreads(InitByteNoThreads const&) = delete;
248   InitByteNoThreads& operator=(InitByteNoThreads const&) = delete;
249 
InitByteNoThreadsInitByteNoThreads250   explicit InitByteNoThreads(uint8_t* _init_byte_address, uint32_t*) : init_byte_address(_init_byte_address) {}
251 
252   /// The init byte portion of cxa_guard_acquire. Returns true if
253   /// initialization has already been completed.
acquireInitByteNoThreads254   bool acquire() {
255     if (*init_byte_address == COMPLETE_BIT)
256       return true;
257     if (*init_byte_address & PENDING_BIT)
258       ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization: do you have a function-local static variable whose initialization depends on that function?");
259     *init_byte_address = PENDING_BIT;
260     return false;
261   }
262 
263   /// The init byte portion of cxa_guard_release.
releaseInitByteNoThreads264   void release() { *init_byte_address = COMPLETE_BIT; }
265   /// The init byte portion of cxa_guard_abort.
abortInitByteNoThreads266   void abort() { *init_byte_address = UNSET; }
267 
268 private:
269   /// The address of the byte used during initialization.
270   uint8_t* const init_byte_address;
271 };
272 
273 //===----------------------------------------------------------------------===//
274 //                     Global Mutex Implementation
275 //===----------------------------------------------------------------------===//
276 
277 struct LibcppMutex;
278 struct LibcppCondVar;
279 
280 #ifndef _LIBCXXABI_HAS_NO_THREADS
281 struct LibcppMutex {
282   LibcppMutex() = default;
283   LibcppMutex(LibcppMutex const&) = delete;
284   LibcppMutex& operator=(LibcppMutex const&) = delete;
285 
lockLibcppMutex286   bool lock() { return std::__libcpp_mutex_lock(&mutex); }
unlockLibcppMutex287   bool unlock() { return std::__libcpp_mutex_unlock(&mutex); }
288 
289 private:
290   friend struct LibcppCondVar;
291   std::__libcpp_mutex_t mutex = _LIBCPP_MUTEX_INITIALIZER;
292 };
293 
294 struct LibcppCondVar {
295   LibcppCondVar() = default;
296   LibcppCondVar(LibcppCondVar const&) = delete;
297   LibcppCondVar& operator=(LibcppCondVar const&) = delete;
298 
waitLibcppCondVar299   bool wait(LibcppMutex& mut) { return std::__libcpp_condvar_wait(&cond, &mut.mutex); }
broadcastLibcppCondVar300   bool broadcast() { return std::__libcpp_condvar_broadcast(&cond); }
301 
302 private:
303   std::__libcpp_condvar_t cond = _LIBCPP_CONDVAR_INITIALIZER;
304 };
305 #else
306 struct LibcppMutex {};
307 struct LibcppCondVar {};
308 #endif // !defined(_LIBCXXABI_HAS_NO_THREADS)
309 
310 /// InitByteGlobalMutex - Uses a global mutex and condition variable (common to
311 /// all static local variables) to manage reads and writes to the init byte.
312 template <class Mutex, class CondVar, Mutex& global_mutex, CondVar& global_cond,
313           uint32_t (*GetThreadID)() = PlatformThreadID>
314 struct InitByteGlobalMutex {
315 
InitByteGlobalMutexInitByteGlobalMutex316   explicit InitByteGlobalMutex(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
317       : init_byte_address(_init_byte_address), thread_id_address(_thread_id_address),
318         has_thread_id_support(_thread_id_address != nullptr && GetThreadID != nullptr) {}
319 
320 public:
321   /// The init byte portion of cxa_guard_acquire. Returns true if
322   /// initialization has already been completed.
acquireInitByteGlobalMutex323   bool acquire() {
324     LockGuard g("__cxa_guard_acquire");
325     // Check for possible recursive initialization.
326     if (has_thread_id_support && (*init_byte_address & PENDING_BIT)) {
327       if (*thread_id_address == current_thread_id.get())
328         ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization: do you have a function-local static variable whose initialization depends on that function?");
329     }
330 
331     // Wait until the pending bit is not set.
332     while (*init_byte_address & PENDING_BIT) {
333       *init_byte_address |= WAITING_BIT;
334       global_cond.wait(global_mutex);
335     }
336 
337     if (*init_byte_address == COMPLETE_BIT)
338       return true;
339 
340     if (has_thread_id_support)
341       *thread_id_address = current_thread_id.get();
342 
343     *init_byte_address = PENDING_BIT;
344     return false;
345   }
346 
347   /// The init byte portion of cxa_guard_release.
releaseInitByteGlobalMutex348   void release() {
349     bool has_waiting;
350     {
351       LockGuard g("__cxa_guard_release");
352       has_waiting = *init_byte_address & WAITING_BIT;
353       *init_byte_address = COMPLETE_BIT;
354     }
355     if (has_waiting) {
356       if (global_cond.broadcast()) {
357         ABORT_WITH_MESSAGE("%s failed to broadcast", "__cxa_guard_release");
358       }
359     }
360   }
361 
362   /// The init byte portion of cxa_guard_abort.
abortInitByteGlobalMutex363   void abort() {
364     bool has_waiting;
365     {
366       LockGuard g("__cxa_guard_abort");
367       if (has_thread_id_support)
368         *thread_id_address = 0;
369       has_waiting = *init_byte_address & WAITING_BIT;
370       *init_byte_address = UNSET;
371     }
372     if (has_waiting) {
373       if (global_cond.broadcast()) {
374         ABORT_WITH_MESSAGE("%s failed to broadcast", "__cxa_guard_abort");
375       }
376     }
377   }
378 
379 private:
380   /// The address of the byte used during initialization.
381   uint8_t* const init_byte_address;
382   /// An optional address storing an identifier for the thread performing initialization.
383   /// It's used to detect recursive initialization.
384   uint32_t* const thread_id_address;
385 
386   const bool has_thread_id_support;
387   LazyValue<uint32_t, GetThreadID> current_thread_id;
388 
389 private:
390   struct LockGuard {
391     LockGuard() = delete;
392     LockGuard(LockGuard const&) = delete;
393     LockGuard& operator=(LockGuard const&) = delete;
394 
LockGuardInitByteGlobalMutex::LockGuard395     explicit LockGuard(const char* calling_func) : calling_func_(calling_func) {
396       if (global_mutex.lock())
397         ABORT_WITH_MESSAGE("%s failed to acquire mutex", calling_func_);
398     }
399 
~LockGuardInitByteGlobalMutex::LockGuard400     ~LockGuard() {
401       if (global_mutex.unlock())
402         ABORT_WITH_MESSAGE("%s failed to release mutex", calling_func_);
403     }
404 
405   private:
406     const char* const calling_func_;
407   };
408 };
409 
410 //===----------------------------------------------------------------------===//
411 //                         Futex Implementation
412 //===----------------------------------------------------------------------===//
413 
414 #if defined(SYS_futex)
PlatformFutexWait(int * addr,int expect)415 void PlatformFutexWait(int* addr, int expect) {
416   constexpr int WAIT = 0;
417   syscall(SYS_futex, addr, WAIT, expect, 0);
418   __tsan_acquire(addr);
419 }
PlatformFutexWake(int * addr)420 void PlatformFutexWake(int* addr) {
421   constexpr int WAKE = 1;
422   __tsan_release(addr);
423   syscall(SYS_futex, addr, WAKE, INT_MAX);
424 }
425 #else
426 constexpr void (*PlatformFutexWait)(int*, int) = nullptr;
427 constexpr void (*PlatformFutexWake)(int*) = nullptr;
428 #endif
429 
PlatformSupportsFutex()430 constexpr bool PlatformSupportsFutex() { return +PlatformFutexWait != nullptr; }
431 
432 /// InitByteFutex - Uses a futex to manage reads and writes to the init byte.
433 template <void (*Wait)(int*, int) = PlatformFutexWait, void (*Wake)(int*) = PlatformFutexWake,
434           uint32_t (*GetThreadIDArg)() = PlatformThreadID>
435 struct InitByteFutex {
436 
InitByteFutexInitByteFutex437   explicit InitByteFutex(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
438       : init_byte(_init_byte_address),
439         has_thread_id_support(_thread_id_address != nullptr && GetThreadIDArg != nullptr),
440         thread_id(_thread_id_address),
441         base_address(reinterpret_cast<int*>(/*_init_byte_address & ~0x3*/ _init_byte_address - 1)) {}
442 
443 public:
444   /// The init byte portion of cxa_guard_acquire. Returns true if
445   /// initialization has already been completed.
acquireInitByteFutex446   bool acquire() {
447     while (true) {
448       uint8_t last_val = UNSET;
449       if (init_byte.compare_exchange(&last_val, PENDING_BIT, std::_AO_Acq_Rel, std::_AO_Acquire)) {
450         if (has_thread_id_support) {
451           thread_id.store(current_thread_id.get(), std::_AO_Relaxed);
452         }
453         return false;
454       }
455 
456       if (last_val == COMPLETE_BIT)
457         return true;
458 
459       if (last_val & PENDING_BIT) {
460 
461         // Check for recursive initialization
462         if (has_thread_id_support && thread_id.load(std::_AO_Relaxed) == current_thread_id.get()) {
463           ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization: do you have a function-local static variable whose initialization depends on that function?");
464         }
465 
466         if ((last_val & WAITING_BIT) == 0) {
467           // This compare exchange can fail for several reasons
468           // (1) another thread finished the whole thing before we got here
469           // (2) another thread set the waiting bit we were trying to thread
470           // (3) another thread had an exception and failed to finish
471           if (!init_byte.compare_exchange(&last_val, PENDING_BIT | WAITING_BIT, std::_AO_Acq_Rel, std::_AO_Release)) {
472             // (1) success, via someone else's work!
473             if (last_val == COMPLETE_BIT)
474               return true;
475 
476             // (3) someone else, bailed on doing the work, retry from the start!
477             if (last_val == UNSET)
478               continue;
479 
480             // (2) the waiting bit got set, so we are happy to keep waiting
481           }
482         }
483         wait_on_initialization();
484       }
485     }
486   }
487 
488   /// The init byte portion of cxa_guard_release.
releaseInitByteFutex489   void release() {
490     uint8_t old = init_byte.exchange(COMPLETE_BIT, std::_AO_Acq_Rel);
491     if (old & WAITING_BIT)
492       wake_all();
493   }
494 
495   /// The init byte portion of cxa_guard_abort.
abortInitByteFutex496   void abort() {
497     if (has_thread_id_support)
498       thread_id.store(0, std::_AO_Relaxed);
499 
500     uint8_t old = init_byte.exchange(UNSET, std::_AO_Acq_Rel);
501     if (old & WAITING_BIT)
502       wake_all();
503   }
504 
505 private:
506   /// Use the futex to wait on the current guard variable. Futex expects a
507   /// 32-bit 4-byte aligned address as the first argument, so we use the 4-byte
508   /// aligned address that encompasses the init byte (i.e. the address of the
509   /// raw guard object that was passed to __cxa_guard_acquire/release/abort).
wait_on_initializationInitByteFutex510   void wait_on_initialization() { Wait(base_address, expected_value_for_futex(PENDING_BIT | WAITING_BIT)); }
wake_allInitByteFutex511   void wake_all() { Wake(base_address); }
512 
513 private:
514   AtomicInt<uint8_t> init_byte;
515 
516   const bool has_thread_id_support;
517   // Unsafe to use unless has_thread_id_support
518   AtomicInt<uint32_t> thread_id;
519   LazyValue<uint32_t, GetThreadIDArg> current_thread_id;
520 
521   /// the 4-byte-aligned address that encompasses the init byte (i.e. the
522   /// address of the raw guard object).
523   int* const base_address;
524 
525   /// Create the expected integer value for futex `wait(int* addr, int expected)`.
526   /// We pass the base address as the first argument, So this function creates
527   /// an zero-initialized integer  with `b` copied at the correct offset.
expected_value_for_futexInitByteFutex528   static int expected_value_for_futex(uint8_t b) {
529     int dest_val = 0;
530     std::memcpy(reinterpret_cast<char*>(&dest_val) + 1, &b, 1);
531     return dest_val;
532   }
533 
534   static_assert(Wait != nullptr && Wake != nullptr, "");
535 };
536 
537 //===----------------------------------------------------------------------===//
538 //                          GuardObject
539 //===----------------------------------------------------------------------===//
540 
541 enum class AcquireResult {
542   INIT_IS_DONE,
543   INIT_IS_PENDING,
544 };
545 constexpr AcquireResult INIT_IS_DONE = AcquireResult::INIT_IS_DONE;
546 constexpr AcquireResult INIT_IS_PENDING = AcquireResult::INIT_IS_PENDING;
547 
548 /// Co-ordinates between GuardByte and InitByte.
549 template <class InitByteT>
550 struct GuardObject {
551   GuardObject() = delete;
552   GuardObject(GuardObject const&) = delete;
553   GuardObject& operator=(GuardObject const&) = delete;
554 
555 private:
556   GuardByte guard_byte;
557   InitByteT init_byte;
558 
559 public:
560   /// ARM Constructor
GuardObjectGuardObject561   explicit GuardObject(uint32_t* raw_guard_object)
562       : guard_byte(reinterpret_cast<uint8_t*>(raw_guard_object)),
563         init_byte(reinterpret_cast<uint8_t*>(raw_guard_object) + 1, nullptr) {}
564 
565   /// Itanium Constructor
GuardObjectGuardObject566   explicit GuardObject(uint64_t* raw_guard_object)
567       : guard_byte(reinterpret_cast<uint8_t*>(raw_guard_object)),
568         init_byte(reinterpret_cast<uint8_t*>(raw_guard_object) + 1, reinterpret_cast<uint32_t*>(raw_guard_object) + 1) {
569   }
570 
571   /// Implements __cxa_guard_acquire.
cxa_guard_acquireGuardObject572   AcquireResult cxa_guard_acquire() {
573     // Use short-circuit evaluation to avoid calling init_byte.acquire when
574     // guard_byte.acquire returns true. (i.e. don't call it when we know from
575     // the guard byte that initialization has already been completed)
576     if (guard_byte.acquire() || init_byte.acquire())
577       return INIT_IS_DONE;
578     return INIT_IS_PENDING;
579   }
580 
581   /// Implements __cxa_guard_release.
cxa_guard_releaseGuardObject582   void cxa_guard_release() {
583     // Update guard byte first, so if somebody is woken up by init_byte.release
584     // and comes all the way back around to __cxa_guard_acquire again, they see
585     // it as having completed initialization.
586     guard_byte.release();
587     init_byte.release();
588   }
589 
590   /// Implements __cxa_guard_abort.
cxa_guard_abortGuardObject591   void cxa_guard_abort() {
592     guard_byte.abort();
593     init_byte.abort();
594   }
595 };
596 
597 //===----------------------------------------------------------------------===//
598 //                          Convenience Classes
599 //===----------------------------------------------------------------------===//
600 
601 /// NoThreadsGuard - Manages initialization without performing any inter-thread
602 /// synchronization.
603 using NoThreadsGuard = GuardObject<InitByteNoThreads>;
604 
605 /// GlobalMutexGuard - Manages initialization using a global mutex and
606 /// condition variable.
607 template <class Mutex, class CondVar, Mutex& global_mutex, CondVar& global_cond,
608           uint32_t (*GetThreadID)() = PlatformThreadID>
609 using GlobalMutexGuard = GuardObject<InitByteGlobalMutex<Mutex, CondVar, global_mutex, global_cond, GetThreadID>>;
610 
611 /// FutexGuard - Manages initialization using atomics and the futex syscall for
612 /// waiting and waking.
613 template <void (*Wait)(int*, int) = PlatformFutexWait, void (*Wake)(int*) = PlatformFutexWake,
614           uint32_t (*GetThreadIDArg)() = PlatformThreadID>
615 using FutexGuard = GuardObject<InitByteFutex<Wait, Wake, GetThreadIDArg>>;
616 
617 //===----------------------------------------------------------------------===//
618 //
619 //===----------------------------------------------------------------------===//
620 
621 template <class T>
622 struct GlobalStatic {
623   static T instance;
624 };
625 template <class T>
626 _LIBCPP_CONSTINIT T GlobalStatic<T>::instance = {};
627 
628 enum class Implementation { NoThreads, GlobalMutex, Futex };
629 
630 template <Implementation Impl>
631 struct SelectImplementation;
632 
633 template <>
634 struct SelectImplementation<Implementation::NoThreads> {
635   using type = NoThreadsGuard;
636 };
637 
638 template <>
639 struct SelectImplementation<Implementation::GlobalMutex> {
640   using type = GlobalMutexGuard<LibcppMutex, LibcppCondVar, GlobalStatic<LibcppMutex>::instance,
641                                 GlobalStatic<LibcppCondVar>::instance, PlatformThreadID>;
642 };
643 
644 template <>
645 struct SelectImplementation<Implementation::Futex> {
646   using type = FutexGuard<PlatformFutexWait, PlatformFutexWake, PlatformThreadID>;
647 };
648 
649 // TODO(EricWF): We should prefer the futex implementation when available. But
650 // it should be done in a separate step from adding the implementation.
651 constexpr Implementation CurrentImplementation =
652 #if defined(_LIBCXXABI_HAS_NO_THREADS)
653     Implementation::NoThreads;
654 #elif defined(_LIBCXXABI_USE_FUTEX)
655     Implementation::Futex;
656 #else
657     Implementation::GlobalMutex;
658 #endif
659 
660 static_assert(CurrentImplementation != Implementation::Futex || PlatformSupportsFutex(),
661               "Futex selected but not supported");
662 
663 using SelectedImplementation = SelectImplementation<CurrentImplementation>::type;
664 
665 } // end namespace
666 } // end namespace __cxxabiv1
667 
668 #if defined(__clang__)
669 #  pragma clang diagnostic pop
670 #elif defined(__GNUC__)
671 #  pragma GCC diagnostic pop
672 #endif
673 
674 #endif // LIBCXXABI_SRC_INCLUDE_CXA_GUARD_IMPL_H
675