xref: /aosp_15_r20/external/pdfium/third_party/bigint/BigUnsigned.hh (revision 3ac0a46f773bac49fa9476ec2b1cf3f8da5ec3a4)
1 // Copyright 2014 The PDFium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Original code by Matt McCutchen, see the LICENSE file.
6 
7 #ifndef BIGUNSIGNED_H
8 #define BIGUNSIGNED_H
9 
10 #include "NumberlikeArray.hh"
11 
12 /* A BigUnsigned object represents a nonnegative integer of size limited only by
13  * available memory.  BigUnsigneds support most mathematical operators and can
14  * be converted to and from most primitive integer types.
15  *
16  * The number is stored as a NumberlikeArray of unsigned longs as if it were
17  * written in base 256^sizeof(unsigned long).  The least significant block is
18  * first, and the length is such that the most significant block is nonzero. */
19 class BigUnsigned : protected NumberlikeArray<unsigned long> {
20 
21 public:
22 	// Enumeration for the result of a comparison.
23 	enum CmpRes { less = -1, equal = 0, greater = 1 };
24 
25 	// BigUnsigneds are built with a Blk type of unsigned long.
26 	typedef unsigned long Blk;
27 
28 	typedef NumberlikeArray<Blk>::Index Index;
29 	using NumberlikeArray<Blk>::N;
30 
31 protected:
32 	// Creates a BigUnsigned with a capacity; for internal use.
BigUnsigned(int,Index c)33 	BigUnsigned(int, Index c) : NumberlikeArray<Blk>(0, c) {}
34 
35 	// Decreases len to eliminate any leading zero blocks.
zapLeadingZeros()36 	void zapLeadingZeros() {
37 		while (len > 0 && blk[len - 1] == 0)
38 			len--;
39 	}
40 
41 public:
42 	// Constructs zero.
BigUnsigned()43 	BigUnsigned() : NumberlikeArray<Blk>() {}
44 
45 	// Copy constructor
BigUnsigned(const BigUnsigned & x)46 	BigUnsigned(const BigUnsigned &x) : NumberlikeArray<Blk>(x) {}
47 
48 	// Assignment operator
operator =(const BigUnsigned & x)49 	BigUnsigned& operator=(const BigUnsigned &x) {
50 		NumberlikeArray<Blk>::operator =(x);
51 		return *this;
52 	}
53 
54 	// Constructor that copies from a given array of blocks.
BigUnsigned(const Blk * b,Index blen)55 	BigUnsigned(const Blk *b, Index blen) : NumberlikeArray<Blk>(b, blen) {
56 		// Eliminate any leading zeros we may have been passed.
57 		zapLeadingZeros();
58 	}
59 
60 	// Destructor.  NumberlikeArray does the delete for us.
~BigUnsigned()61 	~BigUnsigned() {}
62 
63 	// Constructors from primitive integer types
64 	BigUnsigned(unsigned long  x);
65 	BigUnsigned(         long  x);
66 	BigUnsigned(unsigned int   x);
67 	BigUnsigned(         int   x);
68 	BigUnsigned(unsigned short x);
69 	BigUnsigned(         short x);
70 protected:
71 	// Helpers
72 	template <class X> void initFromPrimitive      (X x);
73 	template <class X> void initFromSignedPrimitive(X x);
74 public:
75 
76 	/* Converters to primitive integer types
77 	 * The implicit conversion operators caused trouble, so these are now
78 	 * named. */
79 	unsigned long  toUnsignedLong () const;
80 	long           toLong         () const;
81 	unsigned int   toUnsignedInt  () const;
82 	int            toInt          () const;
83 	unsigned short toUnsignedShort() const;
84 	short          toShort        () const;
85 protected:
86 	// Helpers
87 	template <class X> X convertToSignedPrimitive() const;
88 	template <class X> X convertToPrimitive      () const;
89 public:
90 
91 	// BIT/BLOCK ACCESSORS
92 
93 	// Expose these from NumberlikeArray directly.
94 	using NumberlikeArray<Blk>::getCapacity;
95 	using NumberlikeArray<Blk>::getLength;
96 
97 	/* Returns the requested block, or 0 if it is beyond the length (as if
98 	 * the number had 0s infinitely to the left). */
getBlock(Index i) const99 	Blk getBlock(Index i) const { return i >= len ? 0 : blk[i]; }
100 	/* Sets the requested block.  The number grows or shrinks as necessary. */
101 	void setBlock(Index i, Blk newBlock);
102 
103 	// The number is zero if and only if the canonical length is zero.
isZero() const104 	bool isZero() const { return NumberlikeArray<Blk>::isEmpty(); }
105 
106 	/* Returns the length of the number in bits, i.e., zero if the number
107 	 * is zero and otherwise one more than the largest value of bi for
108 	 * which getBit(bi) returns true. */
109 	Index bitLength() const;
110 	/* Get the state of bit bi, which has value 2^bi.  Bits beyond the
111 	 * number's length are considered to be 0. */
getBit(Index bi) const112 	bool getBit(Index bi) const {
113 		return (getBlock(bi / N) & (Blk(1) << (bi % N))) != 0;
114 	}
115 	/* Sets the state of bit bi to newBit.  The number grows or shrinks as
116 	 * necessary. */
117 	void setBit(Index bi, bool newBit);
118 
119 	// COMPARISONS
120 
121 	// Compares this to x like Perl's <=>
122 	CmpRes compareTo(const BigUnsigned &x) const;
123 
124 	// Ordinary comparison operators
operator ==(const BigUnsigned & x) const125 	bool operator ==(const BigUnsigned &x) const {
126 		return NumberlikeArray<Blk>::operator ==(x);
127 	}
operator !=(const BigUnsigned & x) const128 	bool operator !=(const BigUnsigned &x) const {
129 		return NumberlikeArray<Blk>::operator !=(x);
130 	}
operator <(const BigUnsigned & x) const131 	bool operator < (const BigUnsigned &x) const { return compareTo(x) == less   ; }
operator <=(const BigUnsigned & x) const132 	bool operator <=(const BigUnsigned &x) const { return compareTo(x) != greater; }
operator >=(const BigUnsigned & x) const133 	bool operator >=(const BigUnsigned &x) const { return compareTo(x) != less   ; }
operator >(const BigUnsigned & x) const134 	bool operator > (const BigUnsigned &x) const { return compareTo(x) == greater; }
135 
136 	/*
137 	 * BigUnsigned and BigInteger both provide three kinds of operators.
138 	 * Here ``big-integer'' refers to BigInteger or BigUnsigned.
139 	 *
140 	 * (1) Overloaded ``return-by-value'' operators:
141 	 *     +, -, *, /, %, unary -, &, |, ^, <<, >>.
142 	 * Big-integer code using these operators looks identical to code using
143 	 * the primitive integer types.  These operators take one or two
144 	 * big-integer inputs and return a big-integer result, which can then
145 	 * be assigned to a BigInteger variable or used in an expression.
146 	 * Example:
147 	 *     BigInteger a(1), b = 1;
148 	 *     BigInteger c = a + b;
149 	 *
150 	 * (2) Overloaded assignment operators:
151 	 *     +=, -=, *=, /=, %=, flipSign, &=, |=, ^=, <<=, >>=, ++, --.
152 	 * Again, these are used on big integers just like on ints.  They take
153 	 * one writable big integer that both provides an operand and receives a
154 	 * result.  Most also take a second read-only operand.
155 	 * Example:
156 	 *     BigInteger a(1), b(1);
157 	 *     a += b;
158 	 *
159 	 * (3) Copy-less operations: `add', `subtract', etc.
160 	 * These named methods take operands as arguments and store the result
161 	 * in the receiver (*this), avoiding unnecessary copies and allocations.
162 	 * `divideWithRemainder' is special: it both takes the dividend from and
163 	 * stores the remainder into the receiver, and it takes a separate
164 	 * object in which to store the quotient.  NOTE: If you are wondering
165 	 * why these don't return a value, you probably mean to use the
166 	 * overloaded return-by-value operators instead.
167 	 *
168 	 * Examples:
169 	 *     BigInteger a(43), b(7), c, d;
170 	 *
171 	 *     c = a + b;   // Now c == 50.
172 	 *     c.add(a, b); // Same effect but without the two copies.
173 	 *
174 	 *     c.divideWithRemainder(b, d);
175 	 *     // 50 / 7; now d == 7 (quotient) and c == 1 (remainder).
176 	 *
177 	 *     // ``Aliased'' calls now do the right thing using a temporary
178 	 *     // copy, but see note on `divideWithRemainder'.
179 	 *     a.add(a, b);
180 	 */
181 
182 	// COPY-LESS OPERATIONS
183 
184 	// These 8: Arguments are read-only operands, result is saved in *this.
185 	void add(const BigUnsigned &a, const BigUnsigned &b);
186 	void subtract(const BigUnsigned &a, const BigUnsigned &b);
187 	void multiply(const BigUnsigned &a, const BigUnsigned &b);
188 	void bitAnd(const BigUnsigned &a, const BigUnsigned &b);
189 	void bitOr(const BigUnsigned &a, const BigUnsigned &b);
190 	void bitXor(const BigUnsigned &a, const BigUnsigned &b);
191 	/* Negative shift amounts translate to opposite-direction shifts,
192 	 * except for -2^(8*sizeof(int)-1) which is unimplemented. */
193 	void bitShiftLeft(const BigUnsigned &a, int b);
194 	void bitShiftRight(const BigUnsigned &a, int b);
195 
196 	/* `a.divideWithRemainder(b, q)' is like `q = a / b, a %= b'.
197 	 * / and % use semantics similar to Knuth's, which differ from the
198 	 * primitive integer semantics under division by zero.  See the
199 	 * implementation in BigUnsigned.cc for details.
200 	 * `a.divideWithRemainder(b, a)' throws an exception: it doesn't make
201 	 * sense to write quotient and remainder into the same variable. */
202 	void divideWithRemainder(const BigUnsigned &b, BigUnsigned &q);
203 
204 	/* `divide' and `modulo' are no longer offered.  Use
205 	 * `divideWithRemainder' instead. */
206 
207 	// OVERLOADED RETURN-BY-VALUE OPERATORS
208 	BigUnsigned operator +(const BigUnsigned &x) const;
209 	BigUnsigned operator -(const BigUnsigned &x) const;
210 	BigUnsigned operator *(const BigUnsigned &x) const;
211 	BigUnsigned operator /(const BigUnsigned &x) const;
212 	BigUnsigned operator %(const BigUnsigned &x) const;
213 	/* OK, maybe unary minus could succeed in one case, but it really
214 	 * shouldn't be used, so it isn't provided. */
215 	BigUnsigned operator &(const BigUnsigned &x) const;
216 	BigUnsigned operator |(const BigUnsigned &x) const;
217 	BigUnsigned operator ^(const BigUnsigned &x) const;
218 	BigUnsigned operator <<(int b) const;
219 	BigUnsigned operator >>(int b) const;
220 
221 	// OVERLOADED ASSIGNMENT OPERATORS
222 	BigUnsigned& operator +=(const BigUnsigned &x);
223 	BigUnsigned& operator -=(const BigUnsigned &x);
224 	BigUnsigned& operator *=(const BigUnsigned &x);
225 	BigUnsigned& operator /=(const BigUnsigned &x);
226 	BigUnsigned& operator %=(const BigUnsigned &x);
227 	BigUnsigned& operator &=(const BigUnsigned &x);
228 	BigUnsigned& operator |=(const BigUnsigned &x);
229 	BigUnsigned& operator ^=(const BigUnsigned &x);
230 	BigUnsigned& operator <<=(int b);
231 	BigUnsigned& operator >>=(int b);
232 
233 	/* INCREMENT/DECREMENT OPERATORS
234 	 * To discourage messy coding, these do not return *this, so prefix
235 	 * and postfix behave the same. */
236 	BigUnsigned& operator ++(   );
237 	BigUnsigned operator ++(int);
238 	BigUnsigned& operator --(   );
239 	BigUnsigned operator --(int);
240 
241 	// Helper function that needs access to BigUnsigned internals
242 	friend Blk getShiftedBlock(const BigUnsigned &num, Index x,
243 			unsigned int y);
244 
245 	// See BigInteger.cc.
246 	template <class X>
247 	friend X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a);
248 };
249 
250 /* Implementing the return-by-value and assignment operators in terms of the
251  * copy-less operations.  The copy-less operations are responsible for making
252  * any necessary temporary copies to work around aliasing. */
253 
operator +(const BigUnsigned & x) const254 inline BigUnsigned BigUnsigned::operator +(const BigUnsigned &x) const {
255 	BigUnsigned ans;
256 	ans.add(*this, x);
257 	return ans;
258 }
operator -(const BigUnsigned & x) const259 inline BigUnsigned BigUnsigned::operator -(const BigUnsigned &x) const {
260 	BigUnsigned ans;
261 	ans.subtract(*this, x);
262 	return ans;
263 }
operator *(const BigUnsigned & x) const264 inline BigUnsigned BigUnsigned::operator *(const BigUnsigned &x) const {
265 	BigUnsigned ans;
266 	ans.multiply(*this, x);
267 	return ans;
268 }
operator /(const BigUnsigned & x) const269 inline BigUnsigned BigUnsigned::operator /(const BigUnsigned &x) const {
270 	if (x.isZero())
271         abort();
272 	BigUnsigned q, r;
273 	r = *this;
274 	r.divideWithRemainder(x, q);
275 	return q;
276 }
operator %(const BigUnsigned & x) const277 inline BigUnsigned BigUnsigned::operator %(const BigUnsigned &x) const {
278 	if (x.isZero())
279         abort();
280 	BigUnsigned q, r;
281 	r = *this;
282 	r.divideWithRemainder(x, q);
283 	return r;
284 }
operator &(const BigUnsigned & x) const285 inline BigUnsigned BigUnsigned::operator &(const BigUnsigned &x) const {
286 	BigUnsigned ans;
287 	ans.bitAnd(*this, x);
288 	return ans;
289 }
operator |(const BigUnsigned & x) const290 inline BigUnsigned BigUnsigned::operator |(const BigUnsigned &x) const {
291 	BigUnsigned ans;
292 	ans.bitOr(*this, x);
293 	return ans;
294 }
operator ^(const BigUnsigned & x) const295 inline BigUnsigned BigUnsigned::operator ^(const BigUnsigned &x) const {
296 	BigUnsigned ans;
297 	ans.bitXor(*this, x);
298 	return ans;
299 }
operator <<(int b) const300 inline BigUnsigned BigUnsigned::operator <<(int b) const {
301 	BigUnsigned ans;
302 	ans.bitShiftLeft(*this, b);
303 	return ans;
304 }
operator >>(int b) const305 inline BigUnsigned BigUnsigned::operator >>(int b) const {
306 	BigUnsigned ans;
307 	ans.bitShiftRight(*this, b);
308 	return ans;
309 }
310 
operator +=(const BigUnsigned & x)311 inline BigUnsigned& BigUnsigned::operator +=(const BigUnsigned &x) {
312 	add(*this, x);
313 	return *this;
314 }
operator -=(const BigUnsigned & x)315 inline BigUnsigned& BigUnsigned::operator -=(const BigUnsigned &x) {
316 	subtract(*this, x);
317 	return *this;
318 }
operator *=(const BigUnsigned & x)319 inline BigUnsigned& BigUnsigned::operator *=(const BigUnsigned &x) {
320 	multiply(*this, x);
321 	return *this;
322 }
operator /=(const BigUnsigned & x)323 inline BigUnsigned& BigUnsigned::operator /=(const BigUnsigned &x) {
324 	if (x.isZero())
325         abort();
326 	/* The following technique is slightly faster than copying *this first
327 	 * when x is large. */
328 	BigUnsigned q;
329 	divideWithRemainder(x, q);
330 	// *this contains the remainder, but we overwrite it with the quotient.
331 	*this = q;
332 	return *this;
333 }
operator %=(const BigUnsigned & x)334 inline BigUnsigned& BigUnsigned::operator %=(const BigUnsigned &x) {
335 	if (x.isZero())
336         abort();
337 	BigUnsigned q;
338 	// Mods *this by x.  Don't care about quotient left in q.
339 	divideWithRemainder(x, q);
340 	return *this;
341 }
operator &=(const BigUnsigned & x)342 inline BigUnsigned& BigUnsigned::operator &=(const BigUnsigned &x) {
343 	bitAnd(*this, x);
344 	return *this;
345 }
operator |=(const BigUnsigned & x)346 inline BigUnsigned& BigUnsigned::operator |=(const BigUnsigned &x) {
347 	bitOr(*this, x);
348 	return *this;
349 }
operator ^=(const BigUnsigned & x)350 inline BigUnsigned& BigUnsigned::operator ^=(const BigUnsigned &x) {
351 	bitXor(*this, x);
352 	return *this;
353 }
operator <<=(int b)354 inline BigUnsigned& BigUnsigned::operator <<=(int b) {
355 	bitShiftLeft(*this, b);
356 	return *this;
357 }
operator >>=(int b)358 inline BigUnsigned& BigUnsigned::operator >>=(int b) {
359 	bitShiftRight(*this, b);
360 	return *this;
361 }
362 
363 /* Templates for conversions of BigUnsigned to and from primitive integers.
364  * BigInteger.cc needs to instantiate convertToPrimitive, and the uses in
365  * BigUnsigned.cc didn't do the trick; I think g++ inlined convertToPrimitive
366  * instead of generating linkable instantiations.  So for consistency, I put
367  * all the templates here. */
368 
369 // CONSTRUCTION FROM PRIMITIVE INTEGERS
370 
371 /* Initialize this BigUnsigned from the given primitive integer.  The same
372  * pattern works for all primitive integer types, so I put it into a template to
373  * reduce code duplication.  (Don't worry: this is protected and we instantiate
374  * it only with primitive integer types.)  Type X could be signed, but x is
375  * known to be nonnegative. */
376 template <class X>
initFromPrimitive(X x)377 void BigUnsigned::initFromPrimitive(X x) {
378 	if (x == 0)
379 		; // NumberlikeArray already initialized us to zero.
380 	else {
381 		// Create a single block.  blk is NULL; no need to delete it.
382 		cap = 1;
383 		blk = new Blk[1];
384 		len = 1;
385 		blk[0] = Blk(x);
386 	}
387 }
388 
389 /* Ditto, but first check that x is nonnegative.  I could have put the check in
390  * initFromPrimitive and let the compiler optimize it out for unsigned-type
391  * instantiations, but I wanted to avoid the warning stupidly issued by g++ for
392  * a condition that is constant in *any* instantiation, even if not in all. */
393 template <class X>
initFromSignedPrimitive(X x)394 void BigUnsigned::initFromSignedPrimitive(X x) {
395 	if (x < 0)
396         abort();
397 	else
398 		initFromPrimitive(x);
399 }
400 
401 // CONVERSION TO PRIMITIVE INTEGERS
402 
403 /* Template with the same idea as initFromPrimitive.  This might be slightly
404  * slower than the previous version with the masks, but it's much shorter and
405  * clearer, which is the library's stated goal. */
406 template <class X>
convertToPrimitive() const407 X BigUnsigned::convertToPrimitive() const {
408 	if (len == 0)
409 		// The number is zero; return zero.
410 		return 0;
411 	else if (len == 1) {
412 		// The single block might fit in an X.  Try the conversion.
413 		X x = X(blk[0]);
414 		// Make sure the result accurately represents the block.
415 		if (Blk(x) == blk[0])
416 			// Successful conversion.
417 			return x;
418 		// Otherwise fall through.
419 	}
420     abort();
421 }
422 
423 /* Wrap the above in an x >= 0 test to make sure we got a nonnegative result,
424  * not a negative one that happened to convert back into the correct nonnegative
425  * one.  (E.g., catch incorrect conversion of 2^31 to the long -2^31.)  Again,
426  * separated to avoid a g++ warning. */
427 template <class X>
convertToSignedPrimitive() const428 X BigUnsigned::convertToSignedPrimitive() const {
429 	X x = convertToPrimitive<X>();
430 	if (x >= 0)
431 		return x;
432 	else
433         abort();
434 }
435 
436 #endif
437