1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59
60 struct ib_ucq_object;
61
62 __printf(2, 3) __cold
63 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
64 __printf(2, 3) __cold
65 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
66 __printf(2, 3) __cold
67 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
68 __printf(2, 3) __cold
69 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
70 __printf(2, 3) __cold
71 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
72 __printf(2, 3) __cold
73 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
74 __printf(2, 3) __cold
75 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
76
77 #if defined(CONFIG_DYNAMIC_DEBUG) || \
78 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
79 #define ibdev_dbg(__dev, format, args...) \
80 dynamic_ibdev_dbg(__dev, format, ##args)
81 #else
82 __printf(2, 3) __cold
83 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)84 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
85 #endif
86
87 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
88 do { \
89 static DEFINE_RATELIMIT_STATE(_rs, \
90 DEFAULT_RATELIMIT_INTERVAL, \
91 DEFAULT_RATELIMIT_BURST); \
92 if (__ratelimit(&_rs)) \
93 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
94 } while (0)
95
96 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
97 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
98 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
99 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
100 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
101 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
102 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
103 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
104 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
105 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
106 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
107 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
108 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
109 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
110
111 #if defined(CONFIG_DYNAMIC_DEBUG) || \
112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
113 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
114 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
115 do { \
116 static DEFINE_RATELIMIT_STATE(_rs, \
117 DEFAULT_RATELIMIT_INTERVAL, \
118 DEFAULT_RATELIMIT_BURST); \
119 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
120 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
121 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
122 ##__VA_ARGS__); \
123 } while (0)
124 #else
125 __printf(2, 3) __cold
126 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)127 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
128 #endif
129
130 union ib_gid {
131 u8 raw[16];
132 struct {
133 __be64 subnet_prefix;
134 __be64 interface_id;
135 } global;
136 };
137
138 extern union ib_gid zgid;
139
140 enum ib_gid_type {
141 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
142 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
143 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
144 IB_GID_TYPE_SIZE
145 };
146
147 #define ROCE_V2_UDP_DPORT 4791
148 struct ib_gid_attr {
149 struct net_device __rcu *ndev;
150 struct ib_device *device;
151 union ib_gid gid;
152 enum ib_gid_type gid_type;
153 u16 index;
154 u32 port_num;
155 };
156
157 enum {
158 /* set the local administered indication */
159 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
160 };
161
162 enum rdma_transport_type {
163 RDMA_TRANSPORT_IB,
164 RDMA_TRANSPORT_IWARP,
165 RDMA_TRANSPORT_USNIC,
166 RDMA_TRANSPORT_USNIC_UDP,
167 RDMA_TRANSPORT_UNSPECIFIED,
168 };
169
170 enum rdma_protocol_type {
171 RDMA_PROTOCOL_IB,
172 RDMA_PROTOCOL_IBOE,
173 RDMA_PROTOCOL_IWARP,
174 RDMA_PROTOCOL_USNIC_UDP
175 };
176
177 __attribute_const__ enum rdma_transport_type
178 rdma_node_get_transport(unsigned int node_type);
179
180 enum rdma_network_type {
181 RDMA_NETWORK_IB,
182 RDMA_NETWORK_ROCE_V1,
183 RDMA_NETWORK_IPV4,
184 RDMA_NETWORK_IPV6
185 };
186
ib_network_to_gid_type(enum rdma_network_type network_type)187 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
188 {
189 if (network_type == RDMA_NETWORK_IPV4 ||
190 network_type == RDMA_NETWORK_IPV6)
191 return IB_GID_TYPE_ROCE_UDP_ENCAP;
192 else if (network_type == RDMA_NETWORK_ROCE_V1)
193 return IB_GID_TYPE_ROCE;
194 else
195 return IB_GID_TYPE_IB;
196 }
197
198 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)199 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
200 {
201 if (attr->gid_type == IB_GID_TYPE_IB)
202 return RDMA_NETWORK_IB;
203
204 if (attr->gid_type == IB_GID_TYPE_ROCE)
205 return RDMA_NETWORK_ROCE_V1;
206
207 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
208 return RDMA_NETWORK_IPV4;
209 else
210 return RDMA_NETWORK_IPV6;
211 }
212
213 enum rdma_link_layer {
214 IB_LINK_LAYER_UNSPECIFIED,
215 IB_LINK_LAYER_INFINIBAND,
216 IB_LINK_LAYER_ETHERNET,
217 };
218
219 enum ib_device_cap_flags {
220 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
221 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
222 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
223 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
224 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
225 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
226 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
227 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
228 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
229 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
230 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
231 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
232 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
233 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
234 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
235
236 /* Reserved, old SEND_W_INV = 1 << 16,*/
237 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
238 /*
239 * Devices should set IB_DEVICE_UD_IP_SUM if they support
240 * insertion of UDP and TCP checksum on outgoing UD IPoIB
241 * messages and can verify the validity of checksum for
242 * incoming messages. Setting this flag implies that the
243 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
244 */
245 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
246 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
247
248 /*
249 * This device supports the IB "base memory management extension",
250 * which includes support for fast registrations (IB_WR_REG_MR,
251 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
252 * also be set by any iWarp device which must support FRs to comply
253 * to the iWarp verbs spec. iWarp devices also support the
254 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
255 * stag.
256 */
257 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
258 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
259 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
260 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
261 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
262 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
263 IB_DEVICE_MANAGED_FLOW_STEERING =
264 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
265 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
266 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
267 /* The device supports padding incoming writes to cacheline. */
268 IB_DEVICE_PCI_WRITE_END_PADDING =
269 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
270 /* Placement type attributes */
271 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
272 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
273 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
274 };
275
276 enum ib_kernel_cap_flags {
277 /*
278 * This device supports a per-device lkey or stag that can be
279 * used without performing a memory registration for the local
280 * memory. Note that ULPs should never check this flag, but
281 * instead of use the local_dma_lkey flag in the ib_pd structure,
282 * which will always contain a usable lkey.
283 */
284 IBK_LOCAL_DMA_LKEY = 1 << 0,
285 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
286 IBK_INTEGRITY_HANDOVER = 1 << 1,
287 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
288 IBK_ON_DEMAND_PAGING = 1 << 2,
289 /* IB_MR_TYPE_SG_GAPS is supported */
290 IBK_SG_GAPS_REG = 1 << 3,
291 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
292 IBK_ALLOW_USER_UNREG = 1 << 4,
293
294 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
295 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
296 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
297 IBK_UD_TSO = 1 << 6,
298 /* iopib will use the device ops:
299 * get_vf_config
300 * get_vf_guid
301 * get_vf_stats
302 * set_vf_guid
303 * set_vf_link_state
304 */
305 IBK_VIRTUAL_FUNCTION = 1 << 7,
306 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
307 IBK_RDMA_NETDEV_OPA = 1 << 8,
308 };
309
310 enum ib_atomic_cap {
311 IB_ATOMIC_NONE,
312 IB_ATOMIC_HCA,
313 IB_ATOMIC_GLOB
314 };
315
316 enum ib_odp_general_cap_bits {
317 IB_ODP_SUPPORT = 1 << 0,
318 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
319 };
320
321 enum ib_odp_transport_cap_bits {
322 IB_ODP_SUPPORT_SEND = 1 << 0,
323 IB_ODP_SUPPORT_RECV = 1 << 1,
324 IB_ODP_SUPPORT_WRITE = 1 << 2,
325 IB_ODP_SUPPORT_READ = 1 << 3,
326 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
327 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
328 };
329
330 struct ib_odp_caps {
331 uint64_t general_caps;
332 struct {
333 uint32_t rc_odp_caps;
334 uint32_t uc_odp_caps;
335 uint32_t ud_odp_caps;
336 uint32_t xrc_odp_caps;
337 } per_transport_caps;
338 };
339
340 struct ib_rss_caps {
341 /* Corresponding bit will be set if qp type from
342 * 'enum ib_qp_type' is supported, e.g.
343 * supported_qpts |= 1 << IB_QPT_UD
344 */
345 u32 supported_qpts;
346 u32 max_rwq_indirection_tables;
347 u32 max_rwq_indirection_table_size;
348 };
349
350 enum ib_tm_cap_flags {
351 /* Support tag matching with rendezvous offload for RC transport */
352 IB_TM_CAP_RNDV_RC = 1 << 0,
353 };
354
355 struct ib_tm_caps {
356 /* Max size of RNDV header */
357 u32 max_rndv_hdr_size;
358 /* Max number of entries in tag matching list */
359 u32 max_num_tags;
360 /* From enum ib_tm_cap_flags */
361 u32 flags;
362 /* Max number of outstanding list operations */
363 u32 max_ops;
364 /* Max number of SGE in tag matching entry */
365 u32 max_sge;
366 };
367
368 struct ib_cq_init_attr {
369 unsigned int cqe;
370 u32 comp_vector;
371 u32 flags;
372 };
373
374 enum ib_cq_attr_mask {
375 IB_CQ_MODERATE = 1 << 0,
376 };
377
378 struct ib_cq_caps {
379 u16 max_cq_moderation_count;
380 u16 max_cq_moderation_period;
381 };
382
383 struct ib_dm_mr_attr {
384 u64 length;
385 u64 offset;
386 u32 access_flags;
387 };
388
389 struct ib_dm_alloc_attr {
390 u64 length;
391 u32 alignment;
392 u32 flags;
393 };
394
395 struct ib_device_attr {
396 u64 fw_ver;
397 __be64 sys_image_guid;
398 u64 max_mr_size;
399 u64 page_size_cap;
400 u32 vendor_id;
401 u32 vendor_part_id;
402 u32 hw_ver;
403 int max_qp;
404 int max_qp_wr;
405 u64 device_cap_flags;
406 u64 kernel_cap_flags;
407 int max_send_sge;
408 int max_recv_sge;
409 int max_sge_rd;
410 int max_cq;
411 int max_cqe;
412 int max_mr;
413 int max_pd;
414 int max_qp_rd_atom;
415 int max_ee_rd_atom;
416 int max_res_rd_atom;
417 int max_qp_init_rd_atom;
418 int max_ee_init_rd_atom;
419 enum ib_atomic_cap atomic_cap;
420 enum ib_atomic_cap masked_atomic_cap;
421 int max_ee;
422 int max_rdd;
423 int max_mw;
424 int max_raw_ipv6_qp;
425 int max_raw_ethy_qp;
426 int max_mcast_grp;
427 int max_mcast_qp_attach;
428 int max_total_mcast_qp_attach;
429 int max_ah;
430 int max_srq;
431 int max_srq_wr;
432 int max_srq_sge;
433 unsigned int max_fast_reg_page_list_len;
434 unsigned int max_pi_fast_reg_page_list_len;
435 u16 max_pkeys;
436 u8 local_ca_ack_delay;
437 int sig_prot_cap;
438 int sig_guard_cap;
439 struct ib_odp_caps odp_caps;
440 uint64_t timestamp_mask;
441 uint64_t hca_core_clock; /* in KHZ */
442 struct ib_rss_caps rss_caps;
443 u32 max_wq_type_rq;
444 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
445 struct ib_tm_caps tm_caps;
446 struct ib_cq_caps cq_caps;
447 u64 max_dm_size;
448 /* Max entries for sgl for optimized performance per READ */
449 u32 max_sgl_rd;
450 };
451
452 enum ib_mtu {
453 IB_MTU_256 = 1,
454 IB_MTU_512 = 2,
455 IB_MTU_1024 = 3,
456 IB_MTU_2048 = 4,
457 IB_MTU_4096 = 5
458 };
459
460 enum opa_mtu {
461 OPA_MTU_8192 = 6,
462 OPA_MTU_10240 = 7
463 };
464
ib_mtu_enum_to_int(enum ib_mtu mtu)465 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
466 {
467 switch (mtu) {
468 case IB_MTU_256: return 256;
469 case IB_MTU_512: return 512;
470 case IB_MTU_1024: return 1024;
471 case IB_MTU_2048: return 2048;
472 case IB_MTU_4096: return 4096;
473 default: return -1;
474 }
475 }
476
ib_mtu_int_to_enum(int mtu)477 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
478 {
479 if (mtu >= 4096)
480 return IB_MTU_4096;
481 else if (mtu >= 2048)
482 return IB_MTU_2048;
483 else if (mtu >= 1024)
484 return IB_MTU_1024;
485 else if (mtu >= 512)
486 return IB_MTU_512;
487 else
488 return IB_MTU_256;
489 }
490
opa_mtu_enum_to_int(enum opa_mtu mtu)491 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
492 {
493 switch (mtu) {
494 case OPA_MTU_8192:
495 return 8192;
496 case OPA_MTU_10240:
497 return 10240;
498 default:
499 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
500 }
501 }
502
opa_mtu_int_to_enum(int mtu)503 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
504 {
505 if (mtu >= 10240)
506 return OPA_MTU_10240;
507 else if (mtu >= 8192)
508 return OPA_MTU_8192;
509 else
510 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
511 }
512
513 enum ib_port_state {
514 IB_PORT_NOP = 0,
515 IB_PORT_DOWN = 1,
516 IB_PORT_INIT = 2,
517 IB_PORT_ARMED = 3,
518 IB_PORT_ACTIVE = 4,
519 IB_PORT_ACTIVE_DEFER = 5
520 };
521
522 enum ib_port_phys_state {
523 IB_PORT_PHYS_STATE_SLEEP = 1,
524 IB_PORT_PHYS_STATE_POLLING = 2,
525 IB_PORT_PHYS_STATE_DISABLED = 3,
526 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
527 IB_PORT_PHYS_STATE_LINK_UP = 5,
528 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
529 IB_PORT_PHYS_STATE_PHY_TEST = 7,
530 };
531
532 enum ib_port_width {
533 IB_WIDTH_1X = 1,
534 IB_WIDTH_2X = 16,
535 IB_WIDTH_4X = 2,
536 IB_WIDTH_8X = 4,
537 IB_WIDTH_12X = 8
538 };
539
ib_width_enum_to_int(enum ib_port_width width)540 static inline int ib_width_enum_to_int(enum ib_port_width width)
541 {
542 switch (width) {
543 case IB_WIDTH_1X: return 1;
544 case IB_WIDTH_2X: return 2;
545 case IB_WIDTH_4X: return 4;
546 case IB_WIDTH_8X: return 8;
547 case IB_WIDTH_12X: return 12;
548 default: return -1;
549 }
550 }
551
552 enum ib_port_speed {
553 IB_SPEED_SDR = 1,
554 IB_SPEED_DDR = 2,
555 IB_SPEED_QDR = 4,
556 IB_SPEED_FDR10 = 8,
557 IB_SPEED_FDR = 16,
558 IB_SPEED_EDR = 32,
559 IB_SPEED_HDR = 64,
560 IB_SPEED_NDR = 128,
561 IB_SPEED_XDR = 256,
562 };
563
564 enum ib_stat_flag {
565 IB_STAT_FLAG_OPTIONAL = 1 << 0,
566 };
567
568 /**
569 * struct rdma_stat_desc
570 * @name - The name of the counter
571 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
572 * @priv - Driver private information; Core code should not use
573 */
574 struct rdma_stat_desc {
575 const char *name;
576 unsigned int flags;
577 const void *priv;
578 };
579
580 /**
581 * struct rdma_hw_stats
582 * @lock - Mutex to protect parallel write access to lifespan and values
583 * of counters, which are 64bits and not guaranteed to be written
584 * atomicaly on 32bits systems.
585 * @timestamp - Used by the core code to track when the last update was
586 * @lifespan - Used by the core code to determine how old the counters
587 * should be before being updated again. Stored in jiffies, defaults
588 * to 10 milliseconds, drivers can override the default be specifying
589 * their own value during their allocation routine.
590 * @descs - Array of pointers to static descriptors used for the counters
591 * in directory.
592 * @is_disabled - A bitmap to indicate each counter is currently disabled
593 * or not.
594 * @num_counters - How many hardware counters there are. If name is
595 * shorter than this number, a kernel oops will result. Driver authors
596 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
597 * in their code to prevent this.
598 * @value - Array of u64 counters that are accessed by the sysfs code and
599 * filled in by the drivers get_stats routine
600 */
601 struct rdma_hw_stats {
602 struct mutex lock; /* Protect lifespan and values[] */
603 unsigned long timestamp;
604 unsigned long lifespan;
605 const struct rdma_stat_desc *descs;
606 unsigned long *is_disabled;
607 int num_counters;
608 u64 value[] __counted_by(num_counters);
609 };
610
611 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
612
613 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
614 const struct rdma_stat_desc *descs, int num_counters,
615 unsigned long lifespan);
616
617 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
618
619 /* Define bits for the various functionality this port needs to be supported by
620 * the core.
621 */
622 /* Management 0x00000FFF */
623 #define RDMA_CORE_CAP_IB_MAD 0x00000001
624 #define RDMA_CORE_CAP_IB_SMI 0x00000002
625 #define RDMA_CORE_CAP_IB_CM 0x00000004
626 #define RDMA_CORE_CAP_IW_CM 0x00000008
627 #define RDMA_CORE_CAP_IB_SA 0x00000010
628 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
629
630 /* Address format 0x000FF000 */
631 #define RDMA_CORE_CAP_AF_IB 0x00001000
632 #define RDMA_CORE_CAP_ETH_AH 0x00002000
633 #define RDMA_CORE_CAP_OPA_AH 0x00004000
634 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
635
636 /* Protocol 0xFFF00000 */
637 #define RDMA_CORE_CAP_PROT_IB 0x00100000
638 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
639 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
640 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
641 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
642 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
643
644 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
645 | RDMA_CORE_CAP_PROT_ROCE \
646 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
647
648 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
649 | RDMA_CORE_CAP_IB_MAD \
650 | RDMA_CORE_CAP_IB_SMI \
651 | RDMA_CORE_CAP_IB_CM \
652 | RDMA_CORE_CAP_IB_SA \
653 | RDMA_CORE_CAP_AF_IB)
654 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
655 | RDMA_CORE_CAP_IB_MAD \
656 | RDMA_CORE_CAP_IB_CM \
657 | RDMA_CORE_CAP_AF_IB \
658 | RDMA_CORE_CAP_ETH_AH)
659 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
660 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
661 | RDMA_CORE_CAP_IB_MAD \
662 | RDMA_CORE_CAP_IB_CM \
663 | RDMA_CORE_CAP_AF_IB \
664 | RDMA_CORE_CAP_ETH_AH)
665 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
666 | RDMA_CORE_CAP_IW_CM)
667 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
668 | RDMA_CORE_CAP_OPA_MAD)
669
670 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
671
672 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
673
674 struct ib_port_attr {
675 u64 subnet_prefix;
676 enum ib_port_state state;
677 enum ib_mtu max_mtu;
678 enum ib_mtu active_mtu;
679 u32 phys_mtu;
680 int gid_tbl_len;
681 unsigned int ip_gids:1;
682 /* This is the value from PortInfo CapabilityMask, defined by IBA */
683 u32 port_cap_flags;
684 u32 max_msg_sz;
685 u32 bad_pkey_cntr;
686 u32 qkey_viol_cntr;
687 u16 pkey_tbl_len;
688 u32 sm_lid;
689 u32 lid;
690 u8 lmc;
691 u8 max_vl_num;
692 u8 sm_sl;
693 u8 subnet_timeout;
694 u8 init_type_reply;
695 u8 active_width;
696 u16 active_speed;
697 u8 phys_state;
698 u16 port_cap_flags2;
699 };
700
701 enum ib_device_modify_flags {
702 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
703 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
704 };
705
706 #define IB_DEVICE_NODE_DESC_MAX 64
707
708 struct ib_device_modify {
709 u64 sys_image_guid;
710 char node_desc[IB_DEVICE_NODE_DESC_MAX];
711 };
712
713 enum ib_port_modify_flags {
714 IB_PORT_SHUTDOWN = 1,
715 IB_PORT_INIT_TYPE = (1<<2),
716 IB_PORT_RESET_QKEY_CNTR = (1<<3),
717 IB_PORT_OPA_MASK_CHG = (1<<4)
718 };
719
720 struct ib_port_modify {
721 u32 set_port_cap_mask;
722 u32 clr_port_cap_mask;
723 u8 init_type;
724 };
725
726 enum ib_event_type {
727 IB_EVENT_CQ_ERR,
728 IB_EVENT_QP_FATAL,
729 IB_EVENT_QP_REQ_ERR,
730 IB_EVENT_QP_ACCESS_ERR,
731 IB_EVENT_COMM_EST,
732 IB_EVENT_SQ_DRAINED,
733 IB_EVENT_PATH_MIG,
734 IB_EVENT_PATH_MIG_ERR,
735 IB_EVENT_DEVICE_FATAL,
736 IB_EVENT_PORT_ACTIVE,
737 IB_EVENT_PORT_ERR,
738 IB_EVENT_LID_CHANGE,
739 IB_EVENT_PKEY_CHANGE,
740 IB_EVENT_SM_CHANGE,
741 IB_EVENT_SRQ_ERR,
742 IB_EVENT_SRQ_LIMIT_REACHED,
743 IB_EVENT_QP_LAST_WQE_REACHED,
744 IB_EVENT_CLIENT_REREGISTER,
745 IB_EVENT_GID_CHANGE,
746 IB_EVENT_WQ_FATAL,
747 };
748
749 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
750
751 struct ib_event {
752 struct ib_device *device;
753 union {
754 struct ib_cq *cq;
755 struct ib_qp *qp;
756 struct ib_srq *srq;
757 struct ib_wq *wq;
758 u32 port_num;
759 } element;
760 enum ib_event_type event;
761 };
762
763 struct ib_event_handler {
764 struct ib_device *device;
765 void (*handler)(struct ib_event_handler *, struct ib_event *);
766 struct list_head list;
767 };
768
769 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
770 do { \
771 (_ptr)->device = _device; \
772 (_ptr)->handler = _handler; \
773 INIT_LIST_HEAD(&(_ptr)->list); \
774 } while (0)
775
776 struct ib_global_route {
777 const struct ib_gid_attr *sgid_attr;
778 union ib_gid dgid;
779 u32 flow_label;
780 u8 sgid_index;
781 u8 hop_limit;
782 u8 traffic_class;
783 };
784
785 struct ib_grh {
786 __be32 version_tclass_flow;
787 __be16 paylen;
788 u8 next_hdr;
789 u8 hop_limit;
790 union ib_gid sgid;
791 union ib_gid dgid;
792 };
793
794 union rdma_network_hdr {
795 struct ib_grh ibgrh;
796 struct {
797 /* The IB spec states that if it's IPv4, the header
798 * is located in the last 20 bytes of the header.
799 */
800 u8 reserved[20];
801 struct iphdr roce4grh;
802 };
803 };
804
805 #define IB_QPN_MASK 0xFFFFFF
806
807 enum {
808 IB_MULTICAST_QPN = 0xffffff
809 };
810
811 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
812 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
813
814 enum ib_ah_flags {
815 IB_AH_GRH = 1
816 };
817
818 enum ib_rate {
819 IB_RATE_PORT_CURRENT = 0,
820 IB_RATE_2_5_GBPS = 2,
821 IB_RATE_5_GBPS = 5,
822 IB_RATE_10_GBPS = 3,
823 IB_RATE_20_GBPS = 6,
824 IB_RATE_30_GBPS = 4,
825 IB_RATE_40_GBPS = 7,
826 IB_RATE_60_GBPS = 8,
827 IB_RATE_80_GBPS = 9,
828 IB_RATE_120_GBPS = 10,
829 IB_RATE_14_GBPS = 11,
830 IB_RATE_56_GBPS = 12,
831 IB_RATE_112_GBPS = 13,
832 IB_RATE_168_GBPS = 14,
833 IB_RATE_25_GBPS = 15,
834 IB_RATE_100_GBPS = 16,
835 IB_RATE_200_GBPS = 17,
836 IB_RATE_300_GBPS = 18,
837 IB_RATE_28_GBPS = 19,
838 IB_RATE_50_GBPS = 20,
839 IB_RATE_400_GBPS = 21,
840 IB_RATE_600_GBPS = 22,
841 IB_RATE_800_GBPS = 23,
842 };
843
844 /**
845 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
846 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
847 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
848 * @rate: rate to convert.
849 */
850 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
851
852 /**
853 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
854 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
855 * @rate: rate to convert.
856 */
857 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
858
859
860 /**
861 * enum ib_mr_type - memory region type
862 * @IB_MR_TYPE_MEM_REG: memory region that is used for
863 * normal registration
864 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
865 * register any arbitrary sg lists (without
866 * the normal mr constraints - see
867 * ib_map_mr_sg)
868 * @IB_MR_TYPE_DM: memory region that is used for device
869 * memory registration
870 * @IB_MR_TYPE_USER: memory region that is used for the user-space
871 * application
872 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
873 * without address translations (VA=PA)
874 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
875 * data integrity operations
876 */
877 enum ib_mr_type {
878 IB_MR_TYPE_MEM_REG,
879 IB_MR_TYPE_SG_GAPS,
880 IB_MR_TYPE_DM,
881 IB_MR_TYPE_USER,
882 IB_MR_TYPE_DMA,
883 IB_MR_TYPE_INTEGRITY,
884 };
885
886 enum ib_mr_status_check {
887 IB_MR_CHECK_SIG_STATUS = 1,
888 };
889
890 /**
891 * struct ib_mr_status - Memory region status container
892 *
893 * @fail_status: Bitmask of MR checks status. For each
894 * failed check a corresponding status bit is set.
895 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
896 * failure.
897 */
898 struct ib_mr_status {
899 u32 fail_status;
900 struct ib_sig_err sig_err;
901 };
902
903 /**
904 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
905 * enum.
906 * @mult: multiple to convert.
907 */
908 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
909
910 struct rdma_ah_init_attr {
911 struct rdma_ah_attr *ah_attr;
912 u32 flags;
913 struct net_device *xmit_slave;
914 };
915
916 enum rdma_ah_attr_type {
917 RDMA_AH_ATTR_TYPE_UNDEFINED,
918 RDMA_AH_ATTR_TYPE_IB,
919 RDMA_AH_ATTR_TYPE_ROCE,
920 RDMA_AH_ATTR_TYPE_OPA,
921 };
922
923 struct ib_ah_attr {
924 u16 dlid;
925 u8 src_path_bits;
926 };
927
928 struct roce_ah_attr {
929 u8 dmac[ETH_ALEN];
930 };
931
932 struct opa_ah_attr {
933 u32 dlid;
934 u8 src_path_bits;
935 bool make_grd;
936 };
937
938 struct rdma_ah_attr {
939 struct ib_global_route grh;
940 u8 sl;
941 u8 static_rate;
942 u32 port_num;
943 u8 ah_flags;
944 enum rdma_ah_attr_type type;
945 union {
946 struct ib_ah_attr ib;
947 struct roce_ah_attr roce;
948 struct opa_ah_attr opa;
949 };
950 };
951
952 enum ib_wc_status {
953 IB_WC_SUCCESS,
954 IB_WC_LOC_LEN_ERR,
955 IB_WC_LOC_QP_OP_ERR,
956 IB_WC_LOC_EEC_OP_ERR,
957 IB_WC_LOC_PROT_ERR,
958 IB_WC_WR_FLUSH_ERR,
959 IB_WC_MW_BIND_ERR,
960 IB_WC_BAD_RESP_ERR,
961 IB_WC_LOC_ACCESS_ERR,
962 IB_WC_REM_INV_REQ_ERR,
963 IB_WC_REM_ACCESS_ERR,
964 IB_WC_REM_OP_ERR,
965 IB_WC_RETRY_EXC_ERR,
966 IB_WC_RNR_RETRY_EXC_ERR,
967 IB_WC_LOC_RDD_VIOL_ERR,
968 IB_WC_REM_INV_RD_REQ_ERR,
969 IB_WC_REM_ABORT_ERR,
970 IB_WC_INV_EECN_ERR,
971 IB_WC_INV_EEC_STATE_ERR,
972 IB_WC_FATAL_ERR,
973 IB_WC_RESP_TIMEOUT_ERR,
974 IB_WC_GENERAL_ERR
975 };
976
977 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
978
979 enum ib_wc_opcode {
980 IB_WC_SEND = IB_UVERBS_WC_SEND,
981 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
982 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
983 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
984 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
985 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
986 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
987 IB_WC_LSO = IB_UVERBS_WC_TSO,
988 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
989 IB_WC_REG_MR,
990 IB_WC_MASKED_COMP_SWAP,
991 IB_WC_MASKED_FETCH_ADD,
992 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
993 /*
994 * Set value of IB_WC_RECV so consumers can test if a completion is a
995 * receive by testing (opcode & IB_WC_RECV).
996 */
997 IB_WC_RECV = 1 << 7,
998 IB_WC_RECV_RDMA_WITH_IMM
999 };
1000
1001 enum ib_wc_flags {
1002 IB_WC_GRH = 1,
1003 IB_WC_WITH_IMM = (1<<1),
1004 IB_WC_WITH_INVALIDATE = (1<<2),
1005 IB_WC_IP_CSUM_OK = (1<<3),
1006 IB_WC_WITH_SMAC = (1<<4),
1007 IB_WC_WITH_VLAN = (1<<5),
1008 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1009 };
1010
1011 struct ib_wc {
1012 union {
1013 u64 wr_id;
1014 struct ib_cqe *wr_cqe;
1015 };
1016 enum ib_wc_status status;
1017 enum ib_wc_opcode opcode;
1018 u32 vendor_err;
1019 u32 byte_len;
1020 struct ib_qp *qp;
1021 union {
1022 __be32 imm_data;
1023 u32 invalidate_rkey;
1024 } ex;
1025 u32 src_qp;
1026 u32 slid;
1027 int wc_flags;
1028 u16 pkey_index;
1029 u8 sl;
1030 u8 dlid_path_bits;
1031 u32 port_num; /* valid only for DR SMPs on switches */
1032 u8 smac[ETH_ALEN];
1033 u16 vlan_id;
1034 u8 network_hdr_type;
1035 };
1036
1037 enum ib_cq_notify_flags {
1038 IB_CQ_SOLICITED = 1 << 0,
1039 IB_CQ_NEXT_COMP = 1 << 1,
1040 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1041 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1042 };
1043
1044 enum ib_srq_type {
1045 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1046 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1047 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1048 };
1049
ib_srq_has_cq(enum ib_srq_type srq_type)1050 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1051 {
1052 return srq_type == IB_SRQT_XRC ||
1053 srq_type == IB_SRQT_TM;
1054 }
1055
1056 enum ib_srq_attr_mask {
1057 IB_SRQ_MAX_WR = 1 << 0,
1058 IB_SRQ_LIMIT = 1 << 1,
1059 };
1060
1061 struct ib_srq_attr {
1062 u32 max_wr;
1063 u32 max_sge;
1064 u32 srq_limit;
1065 };
1066
1067 struct ib_srq_init_attr {
1068 void (*event_handler)(struct ib_event *, void *);
1069 void *srq_context;
1070 struct ib_srq_attr attr;
1071 enum ib_srq_type srq_type;
1072
1073 struct {
1074 struct ib_cq *cq;
1075 union {
1076 struct {
1077 struct ib_xrcd *xrcd;
1078 } xrc;
1079
1080 struct {
1081 u32 max_num_tags;
1082 } tag_matching;
1083 };
1084 } ext;
1085 };
1086
1087 struct ib_qp_cap {
1088 u32 max_send_wr;
1089 u32 max_recv_wr;
1090 u32 max_send_sge;
1091 u32 max_recv_sge;
1092 u32 max_inline_data;
1093
1094 /*
1095 * Maximum number of rdma_rw_ctx structures in flight at a time.
1096 * ib_create_qp() will calculate the right amount of needed WRs
1097 * and MRs based on this.
1098 */
1099 u32 max_rdma_ctxs;
1100 };
1101
1102 enum ib_sig_type {
1103 IB_SIGNAL_ALL_WR,
1104 IB_SIGNAL_REQ_WR
1105 };
1106
1107 enum ib_qp_type {
1108 /*
1109 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1110 * here (and in that order) since the MAD layer uses them as
1111 * indices into a 2-entry table.
1112 */
1113 IB_QPT_SMI,
1114 IB_QPT_GSI,
1115
1116 IB_QPT_RC = IB_UVERBS_QPT_RC,
1117 IB_QPT_UC = IB_UVERBS_QPT_UC,
1118 IB_QPT_UD = IB_UVERBS_QPT_UD,
1119 IB_QPT_RAW_IPV6,
1120 IB_QPT_RAW_ETHERTYPE,
1121 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1122 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1123 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1124 IB_QPT_MAX,
1125 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1126 /* Reserve a range for qp types internal to the low level driver.
1127 * These qp types will not be visible at the IB core layer, so the
1128 * IB_QPT_MAX usages should not be affected in the core layer
1129 */
1130 IB_QPT_RESERVED1 = 0x1000,
1131 IB_QPT_RESERVED2,
1132 IB_QPT_RESERVED3,
1133 IB_QPT_RESERVED4,
1134 IB_QPT_RESERVED5,
1135 IB_QPT_RESERVED6,
1136 IB_QPT_RESERVED7,
1137 IB_QPT_RESERVED8,
1138 IB_QPT_RESERVED9,
1139 IB_QPT_RESERVED10,
1140 };
1141
1142 enum ib_qp_create_flags {
1143 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1144 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1145 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1146 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1147 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1148 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1149 IB_QP_CREATE_NETIF_QP = 1 << 5,
1150 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1151 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1152 IB_QP_CREATE_SCATTER_FCS =
1153 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1154 IB_QP_CREATE_CVLAN_STRIPPING =
1155 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1156 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1157 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1158 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1159 /* reserve bits 26-31 for low level drivers' internal use */
1160 IB_QP_CREATE_RESERVED_START = 1 << 26,
1161 IB_QP_CREATE_RESERVED_END = 1 << 31,
1162 };
1163
1164 /*
1165 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1166 * callback to destroy the passed in QP.
1167 */
1168
1169 struct ib_qp_init_attr {
1170 /* This callback occurs in workqueue context */
1171 void (*event_handler)(struct ib_event *, void *);
1172
1173 void *qp_context;
1174 struct ib_cq *send_cq;
1175 struct ib_cq *recv_cq;
1176 struct ib_srq *srq;
1177 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1178 struct ib_qp_cap cap;
1179 enum ib_sig_type sq_sig_type;
1180 enum ib_qp_type qp_type;
1181 u32 create_flags;
1182
1183 /*
1184 * Only needed for special QP types, or when using the RW API.
1185 */
1186 u32 port_num;
1187 struct ib_rwq_ind_table *rwq_ind_tbl;
1188 u32 source_qpn;
1189 };
1190
1191 struct ib_qp_open_attr {
1192 void (*event_handler)(struct ib_event *, void *);
1193 void *qp_context;
1194 u32 qp_num;
1195 enum ib_qp_type qp_type;
1196 };
1197
1198 enum ib_rnr_timeout {
1199 IB_RNR_TIMER_655_36 = 0,
1200 IB_RNR_TIMER_000_01 = 1,
1201 IB_RNR_TIMER_000_02 = 2,
1202 IB_RNR_TIMER_000_03 = 3,
1203 IB_RNR_TIMER_000_04 = 4,
1204 IB_RNR_TIMER_000_06 = 5,
1205 IB_RNR_TIMER_000_08 = 6,
1206 IB_RNR_TIMER_000_12 = 7,
1207 IB_RNR_TIMER_000_16 = 8,
1208 IB_RNR_TIMER_000_24 = 9,
1209 IB_RNR_TIMER_000_32 = 10,
1210 IB_RNR_TIMER_000_48 = 11,
1211 IB_RNR_TIMER_000_64 = 12,
1212 IB_RNR_TIMER_000_96 = 13,
1213 IB_RNR_TIMER_001_28 = 14,
1214 IB_RNR_TIMER_001_92 = 15,
1215 IB_RNR_TIMER_002_56 = 16,
1216 IB_RNR_TIMER_003_84 = 17,
1217 IB_RNR_TIMER_005_12 = 18,
1218 IB_RNR_TIMER_007_68 = 19,
1219 IB_RNR_TIMER_010_24 = 20,
1220 IB_RNR_TIMER_015_36 = 21,
1221 IB_RNR_TIMER_020_48 = 22,
1222 IB_RNR_TIMER_030_72 = 23,
1223 IB_RNR_TIMER_040_96 = 24,
1224 IB_RNR_TIMER_061_44 = 25,
1225 IB_RNR_TIMER_081_92 = 26,
1226 IB_RNR_TIMER_122_88 = 27,
1227 IB_RNR_TIMER_163_84 = 28,
1228 IB_RNR_TIMER_245_76 = 29,
1229 IB_RNR_TIMER_327_68 = 30,
1230 IB_RNR_TIMER_491_52 = 31
1231 };
1232
1233 enum ib_qp_attr_mask {
1234 IB_QP_STATE = 1,
1235 IB_QP_CUR_STATE = (1<<1),
1236 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1237 IB_QP_ACCESS_FLAGS = (1<<3),
1238 IB_QP_PKEY_INDEX = (1<<4),
1239 IB_QP_PORT = (1<<5),
1240 IB_QP_QKEY = (1<<6),
1241 IB_QP_AV = (1<<7),
1242 IB_QP_PATH_MTU = (1<<8),
1243 IB_QP_TIMEOUT = (1<<9),
1244 IB_QP_RETRY_CNT = (1<<10),
1245 IB_QP_RNR_RETRY = (1<<11),
1246 IB_QP_RQ_PSN = (1<<12),
1247 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1248 IB_QP_ALT_PATH = (1<<14),
1249 IB_QP_MIN_RNR_TIMER = (1<<15),
1250 IB_QP_SQ_PSN = (1<<16),
1251 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1252 IB_QP_PATH_MIG_STATE = (1<<18),
1253 IB_QP_CAP = (1<<19),
1254 IB_QP_DEST_QPN = (1<<20),
1255 IB_QP_RESERVED1 = (1<<21),
1256 IB_QP_RESERVED2 = (1<<22),
1257 IB_QP_RESERVED3 = (1<<23),
1258 IB_QP_RESERVED4 = (1<<24),
1259 IB_QP_RATE_LIMIT = (1<<25),
1260
1261 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1262 };
1263
1264 enum ib_qp_state {
1265 IB_QPS_RESET,
1266 IB_QPS_INIT,
1267 IB_QPS_RTR,
1268 IB_QPS_RTS,
1269 IB_QPS_SQD,
1270 IB_QPS_SQE,
1271 IB_QPS_ERR
1272 };
1273
1274 enum ib_mig_state {
1275 IB_MIG_MIGRATED,
1276 IB_MIG_REARM,
1277 IB_MIG_ARMED
1278 };
1279
1280 enum ib_mw_type {
1281 IB_MW_TYPE_1 = 1,
1282 IB_MW_TYPE_2 = 2
1283 };
1284
1285 struct ib_qp_attr {
1286 enum ib_qp_state qp_state;
1287 enum ib_qp_state cur_qp_state;
1288 enum ib_mtu path_mtu;
1289 enum ib_mig_state path_mig_state;
1290 u32 qkey;
1291 u32 rq_psn;
1292 u32 sq_psn;
1293 u32 dest_qp_num;
1294 int qp_access_flags;
1295 struct ib_qp_cap cap;
1296 struct rdma_ah_attr ah_attr;
1297 struct rdma_ah_attr alt_ah_attr;
1298 u16 pkey_index;
1299 u16 alt_pkey_index;
1300 u8 en_sqd_async_notify;
1301 u8 sq_draining;
1302 u8 max_rd_atomic;
1303 u8 max_dest_rd_atomic;
1304 u8 min_rnr_timer;
1305 u32 port_num;
1306 u8 timeout;
1307 u8 retry_cnt;
1308 u8 rnr_retry;
1309 u32 alt_port_num;
1310 u8 alt_timeout;
1311 u32 rate_limit;
1312 struct net_device *xmit_slave;
1313 };
1314
1315 enum ib_wr_opcode {
1316 /* These are shared with userspace */
1317 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1318 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1319 IB_WR_SEND = IB_UVERBS_WR_SEND,
1320 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1321 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1322 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1323 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1324 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1325 IB_WR_LSO = IB_UVERBS_WR_TSO,
1326 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1327 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1328 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1329 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1330 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1331 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1332 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1333 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1334 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1335
1336 /* These are kernel only and can not be issued by userspace */
1337 IB_WR_REG_MR = 0x20,
1338 IB_WR_REG_MR_INTEGRITY,
1339
1340 /* reserve values for low level drivers' internal use.
1341 * These values will not be used at all in the ib core layer.
1342 */
1343 IB_WR_RESERVED1 = 0xf0,
1344 IB_WR_RESERVED2,
1345 IB_WR_RESERVED3,
1346 IB_WR_RESERVED4,
1347 IB_WR_RESERVED5,
1348 IB_WR_RESERVED6,
1349 IB_WR_RESERVED7,
1350 IB_WR_RESERVED8,
1351 IB_WR_RESERVED9,
1352 IB_WR_RESERVED10,
1353 };
1354
1355 enum ib_send_flags {
1356 IB_SEND_FENCE = 1,
1357 IB_SEND_SIGNALED = (1<<1),
1358 IB_SEND_SOLICITED = (1<<2),
1359 IB_SEND_INLINE = (1<<3),
1360 IB_SEND_IP_CSUM = (1<<4),
1361
1362 /* reserve bits 26-31 for low level drivers' internal use */
1363 IB_SEND_RESERVED_START = (1 << 26),
1364 IB_SEND_RESERVED_END = (1 << 31),
1365 };
1366
1367 struct ib_sge {
1368 u64 addr;
1369 u32 length;
1370 u32 lkey;
1371 };
1372
1373 struct ib_cqe {
1374 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1375 };
1376
1377 struct ib_send_wr {
1378 struct ib_send_wr *next;
1379 union {
1380 u64 wr_id;
1381 struct ib_cqe *wr_cqe;
1382 };
1383 struct ib_sge *sg_list;
1384 int num_sge;
1385 enum ib_wr_opcode opcode;
1386 int send_flags;
1387 union {
1388 __be32 imm_data;
1389 u32 invalidate_rkey;
1390 } ex;
1391 };
1392
1393 struct ib_rdma_wr {
1394 struct ib_send_wr wr;
1395 u64 remote_addr;
1396 u32 rkey;
1397 };
1398
rdma_wr(const struct ib_send_wr * wr)1399 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1400 {
1401 return container_of(wr, struct ib_rdma_wr, wr);
1402 }
1403
1404 struct ib_atomic_wr {
1405 struct ib_send_wr wr;
1406 u64 remote_addr;
1407 u64 compare_add;
1408 u64 swap;
1409 u64 compare_add_mask;
1410 u64 swap_mask;
1411 u32 rkey;
1412 };
1413
atomic_wr(const struct ib_send_wr * wr)1414 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1415 {
1416 return container_of(wr, struct ib_atomic_wr, wr);
1417 }
1418
1419 struct ib_ud_wr {
1420 struct ib_send_wr wr;
1421 struct ib_ah *ah;
1422 void *header;
1423 int hlen;
1424 int mss;
1425 u32 remote_qpn;
1426 u32 remote_qkey;
1427 u16 pkey_index; /* valid for GSI only */
1428 u32 port_num; /* valid for DR SMPs on switch only */
1429 };
1430
ud_wr(const struct ib_send_wr * wr)1431 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1432 {
1433 return container_of(wr, struct ib_ud_wr, wr);
1434 }
1435
1436 struct ib_reg_wr {
1437 struct ib_send_wr wr;
1438 struct ib_mr *mr;
1439 u32 key;
1440 int access;
1441 };
1442
reg_wr(const struct ib_send_wr * wr)1443 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1444 {
1445 return container_of(wr, struct ib_reg_wr, wr);
1446 }
1447
1448 struct ib_recv_wr {
1449 struct ib_recv_wr *next;
1450 union {
1451 u64 wr_id;
1452 struct ib_cqe *wr_cqe;
1453 };
1454 struct ib_sge *sg_list;
1455 int num_sge;
1456 };
1457
1458 enum ib_access_flags {
1459 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1460 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1461 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1462 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1463 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1464 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1465 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1466 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1467 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1468 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1469 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1470
1471 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1472 IB_ACCESS_SUPPORTED =
1473 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1474 };
1475
1476 /*
1477 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1478 * are hidden here instead of a uapi header!
1479 */
1480 enum ib_mr_rereg_flags {
1481 IB_MR_REREG_TRANS = 1,
1482 IB_MR_REREG_PD = (1<<1),
1483 IB_MR_REREG_ACCESS = (1<<2),
1484 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1485 };
1486
1487 struct ib_umem;
1488
1489 enum rdma_remove_reason {
1490 /*
1491 * Userspace requested uobject deletion or initial try
1492 * to remove uobject via cleanup. Call could fail
1493 */
1494 RDMA_REMOVE_DESTROY,
1495 /* Context deletion. This call should delete the actual object itself */
1496 RDMA_REMOVE_CLOSE,
1497 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1498 RDMA_REMOVE_DRIVER_REMOVE,
1499 /* uobj is being cleaned-up before being committed */
1500 RDMA_REMOVE_ABORT,
1501 /* The driver failed to destroy the uobject and is being disconnected */
1502 RDMA_REMOVE_DRIVER_FAILURE,
1503 };
1504
1505 struct ib_rdmacg_object {
1506 #ifdef CONFIG_CGROUP_RDMA
1507 struct rdma_cgroup *cg; /* owner rdma cgroup */
1508 #endif
1509 };
1510
1511 struct ib_ucontext {
1512 struct ib_device *device;
1513 struct ib_uverbs_file *ufile;
1514
1515 struct ib_rdmacg_object cg_obj;
1516 /*
1517 * Implementation details of the RDMA core, don't use in drivers:
1518 */
1519 struct rdma_restrack_entry res;
1520 struct xarray mmap_xa;
1521 };
1522
1523 struct ib_uobject {
1524 u64 user_handle; /* handle given to us by userspace */
1525 /* ufile & ucontext owning this object */
1526 struct ib_uverbs_file *ufile;
1527 /* FIXME, save memory: ufile->context == context */
1528 struct ib_ucontext *context; /* associated user context */
1529 void *object; /* containing object */
1530 struct list_head list; /* link to context's list */
1531 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1532 int id; /* index into kernel idr */
1533 struct kref ref;
1534 atomic_t usecnt; /* protects exclusive access */
1535 struct rcu_head rcu; /* kfree_rcu() overhead */
1536
1537 const struct uverbs_api_object *uapi_object;
1538 };
1539
1540 struct ib_udata {
1541 const void __user *inbuf;
1542 void __user *outbuf;
1543 size_t inlen;
1544 size_t outlen;
1545 };
1546
1547 struct ib_pd {
1548 u32 local_dma_lkey;
1549 u32 flags;
1550 struct ib_device *device;
1551 struct ib_uobject *uobject;
1552 atomic_t usecnt; /* count all resources */
1553
1554 u32 unsafe_global_rkey;
1555
1556 /*
1557 * Implementation details of the RDMA core, don't use in drivers:
1558 */
1559 struct ib_mr *__internal_mr;
1560 struct rdma_restrack_entry res;
1561 };
1562
1563 struct ib_xrcd {
1564 struct ib_device *device;
1565 atomic_t usecnt; /* count all exposed resources */
1566 struct inode *inode;
1567 struct rw_semaphore tgt_qps_rwsem;
1568 struct xarray tgt_qps;
1569 };
1570
1571 struct ib_ah {
1572 struct ib_device *device;
1573 struct ib_pd *pd;
1574 struct ib_uobject *uobject;
1575 const struct ib_gid_attr *sgid_attr;
1576 enum rdma_ah_attr_type type;
1577 };
1578
1579 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1580
1581 enum ib_poll_context {
1582 IB_POLL_SOFTIRQ, /* poll from softirq context */
1583 IB_POLL_WORKQUEUE, /* poll from workqueue */
1584 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1585 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1586
1587 IB_POLL_DIRECT, /* caller context, no hw completions */
1588 };
1589
1590 struct ib_cq {
1591 struct ib_device *device;
1592 struct ib_ucq_object *uobject;
1593 ib_comp_handler comp_handler;
1594 void (*event_handler)(struct ib_event *, void *);
1595 void *cq_context;
1596 int cqe;
1597 unsigned int cqe_used;
1598 atomic_t usecnt; /* count number of work queues */
1599 enum ib_poll_context poll_ctx;
1600 struct ib_wc *wc;
1601 struct list_head pool_entry;
1602 union {
1603 struct irq_poll iop;
1604 struct work_struct work;
1605 };
1606 struct workqueue_struct *comp_wq;
1607 struct dim *dim;
1608
1609 /* updated only by trace points */
1610 ktime_t timestamp;
1611 u8 interrupt:1;
1612 u8 shared:1;
1613 unsigned int comp_vector;
1614
1615 /*
1616 * Implementation details of the RDMA core, don't use in drivers:
1617 */
1618 struct rdma_restrack_entry res;
1619 };
1620
1621 struct ib_srq {
1622 struct ib_device *device;
1623 struct ib_pd *pd;
1624 struct ib_usrq_object *uobject;
1625 void (*event_handler)(struct ib_event *, void *);
1626 void *srq_context;
1627 enum ib_srq_type srq_type;
1628 atomic_t usecnt;
1629
1630 struct {
1631 struct ib_cq *cq;
1632 union {
1633 struct {
1634 struct ib_xrcd *xrcd;
1635 u32 srq_num;
1636 } xrc;
1637 };
1638 } ext;
1639
1640 /*
1641 * Implementation details of the RDMA core, don't use in drivers:
1642 */
1643 struct rdma_restrack_entry res;
1644 };
1645
1646 enum ib_raw_packet_caps {
1647 /*
1648 * Strip cvlan from incoming packet and report it in the matching work
1649 * completion is supported.
1650 */
1651 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1652 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1653 /*
1654 * Scatter FCS field of an incoming packet to host memory is supported.
1655 */
1656 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1657 /* Checksum offloads are supported (for both send and receive). */
1658 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1659 /*
1660 * When a packet is received for an RQ with no receive WQEs, the
1661 * packet processing is delayed.
1662 */
1663 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1664 };
1665
1666 enum ib_wq_type {
1667 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1668 };
1669
1670 enum ib_wq_state {
1671 IB_WQS_RESET,
1672 IB_WQS_RDY,
1673 IB_WQS_ERR
1674 };
1675
1676 struct ib_wq {
1677 struct ib_device *device;
1678 struct ib_uwq_object *uobject;
1679 void *wq_context;
1680 void (*event_handler)(struct ib_event *, void *);
1681 struct ib_pd *pd;
1682 struct ib_cq *cq;
1683 u32 wq_num;
1684 enum ib_wq_state state;
1685 enum ib_wq_type wq_type;
1686 atomic_t usecnt;
1687 };
1688
1689 enum ib_wq_flags {
1690 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1691 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1692 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1693 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1694 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1695 };
1696
1697 struct ib_wq_init_attr {
1698 void *wq_context;
1699 enum ib_wq_type wq_type;
1700 u32 max_wr;
1701 u32 max_sge;
1702 struct ib_cq *cq;
1703 void (*event_handler)(struct ib_event *, void *);
1704 u32 create_flags; /* Use enum ib_wq_flags */
1705 };
1706
1707 enum ib_wq_attr_mask {
1708 IB_WQ_STATE = 1 << 0,
1709 IB_WQ_CUR_STATE = 1 << 1,
1710 IB_WQ_FLAGS = 1 << 2,
1711 };
1712
1713 struct ib_wq_attr {
1714 enum ib_wq_state wq_state;
1715 enum ib_wq_state curr_wq_state;
1716 u32 flags; /* Use enum ib_wq_flags */
1717 u32 flags_mask; /* Use enum ib_wq_flags */
1718 };
1719
1720 struct ib_rwq_ind_table {
1721 struct ib_device *device;
1722 struct ib_uobject *uobject;
1723 atomic_t usecnt;
1724 u32 ind_tbl_num;
1725 u32 log_ind_tbl_size;
1726 struct ib_wq **ind_tbl;
1727 };
1728
1729 struct ib_rwq_ind_table_init_attr {
1730 u32 log_ind_tbl_size;
1731 /* Each entry is a pointer to Receive Work Queue */
1732 struct ib_wq **ind_tbl;
1733 };
1734
1735 enum port_pkey_state {
1736 IB_PORT_PKEY_NOT_VALID = 0,
1737 IB_PORT_PKEY_VALID = 1,
1738 IB_PORT_PKEY_LISTED = 2,
1739 };
1740
1741 struct ib_qp_security;
1742
1743 struct ib_port_pkey {
1744 enum port_pkey_state state;
1745 u16 pkey_index;
1746 u32 port_num;
1747 struct list_head qp_list;
1748 struct list_head to_error_list;
1749 struct ib_qp_security *sec;
1750 };
1751
1752 struct ib_ports_pkeys {
1753 struct ib_port_pkey main;
1754 struct ib_port_pkey alt;
1755 };
1756
1757 struct ib_qp_security {
1758 struct ib_qp *qp;
1759 struct ib_device *dev;
1760 /* Hold this mutex when changing port and pkey settings. */
1761 struct mutex mutex;
1762 struct ib_ports_pkeys *ports_pkeys;
1763 /* A list of all open shared QP handles. Required to enforce security
1764 * properly for all users of a shared QP.
1765 */
1766 struct list_head shared_qp_list;
1767 void *security;
1768 bool destroying;
1769 atomic_t error_list_count;
1770 struct completion error_complete;
1771 int error_comps_pending;
1772 };
1773
1774 /*
1775 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1776 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1777 */
1778 struct ib_qp {
1779 struct ib_device *device;
1780 struct ib_pd *pd;
1781 struct ib_cq *send_cq;
1782 struct ib_cq *recv_cq;
1783 spinlock_t mr_lock;
1784 int mrs_used;
1785 struct list_head rdma_mrs;
1786 struct list_head sig_mrs;
1787 struct ib_srq *srq;
1788 struct completion srq_completion;
1789 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1790 struct list_head xrcd_list;
1791
1792 /* count times opened, mcast attaches, flow attaches */
1793 atomic_t usecnt;
1794 struct list_head open_list;
1795 struct ib_qp *real_qp;
1796 struct ib_uqp_object *uobject;
1797 void (*event_handler)(struct ib_event *, void *);
1798 void (*registered_event_handler)(struct ib_event *, void *);
1799 void *qp_context;
1800 /* sgid_attrs associated with the AV's */
1801 const struct ib_gid_attr *av_sgid_attr;
1802 const struct ib_gid_attr *alt_path_sgid_attr;
1803 u32 qp_num;
1804 u32 max_write_sge;
1805 u32 max_read_sge;
1806 enum ib_qp_type qp_type;
1807 struct ib_rwq_ind_table *rwq_ind_tbl;
1808 struct ib_qp_security *qp_sec;
1809 u32 port;
1810
1811 bool integrity_en;
1812 /*
1813 * Implementation details of the RDMA core, don't use in drivers:
1814 */
1815 struct rdma_restrack_entry res;
1816
1817 /* The counter the qp is bind to */
1818 struct rdma_counter *counter;
1819 };
1820
1821 struct ib_dm {
1822 struct ib_device *device;
1823 u32 length;
1824 u32 flags;
1825 struct ib_uobject *uobject;
1826 atomic_t usecnt;
1827 };
1828
1829 struct ib_mr {
1830 struct ib_device *device;
1831 struct ib_pd *pd;
1832 u32 lkey;
1833 u32 rkey;
1834 u64 iova;
1835 u64 length;
1836 unsigned int page_size;
1837 enum ib_mr_type type;
1838 bool need_inval;
1839 union {
1840 struct ib_uobject *uobject; /* user */
1841 struct list_head qp_entry; /* FR */
1842 };
1843
1844 struct ib_dm *dm;
1845 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1846 /*
1847 * Implementation details of the RDMA core, don't use in drivers:
1848 */
1849 struct rdma_restrack_entry res;
1850 };
1851
1852 struct ib_mw {
1853 struct ib_device *device;
1854 struct ib_pd *pd;
1855 struct ib_uobject *uobject;
1856 u32 rkey;
1857 enum ib_mw_type type;
1858 };
1859
1860 /* Supported steering options */
1861 enum ib_flow_attr_type {
1862 /* steering according to rule specifications */
1863 IB_FLOW_ATTR_NORMAL = 0x0,
1864 /* default unicast and multicast rule -
1865 * receive all Eth traffic which isn't steered to any QP
1866 */
1867 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1868 /* default multicast rule -
1869 * receive all Eth multicast traffic which isn't steered to any QP
1870 */
1871 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1872 /* sniffer rule - receive all port traffic */
1873 IB_FLOW_ATTR_SNIFFER = 0x3
1874 };
1875
1876 /* Supported steering header types */
1877 enum ib_flow_spec_type {
1878 /* L2 headers*/
1879 IB_FLOW_SPEC_ETH = 0x20,
1880 IB_FLOW_SPEC_IB = 0x22,
1881 /* L3 header*/
1882 IB_FLOW_SPEC_IPV4 = 0x30,
1883 IB_FLOW_SPEC_IPV6 = 0x31,
1884 IB_FLOW_SPEC_ESP = 0x34,
1885 /* L4 headers*/
1886 IB_FLOW_SPEC_TCP = 0x40,
1887 IB_FLOW_SPEC_UDP = 0x41,
1888 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1889 IB_FLOW_SPEC_GRE = 0x51,
1890 IB_FLOW_SPEC_MPLS = 0x60,
1891 IB_FLOW_SPEC_INNER = 0x100,
1892 /* Actions */
1893 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1894 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1895 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1896 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1897 };
1898 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1899 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1900
1901 enum ib_flow_flags {
1902 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1903 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1904 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1905 };
1906
1907 struct ib_flow_eth_filter {
1908 u8 dst_mac[6];
1909 u8 src_mac[6];
1910 __be16 ether_type;
1911 __be16 vlan_tag;
1912 };
1913
1914 struct ib_flow_spec_eth {
1915 u32 type;
1916 u16 size;
1917 struct ib_flow_eth_filter val;
1918 struct ib_flow_eth_filter mask;
1919 };
1920
1921 struct ib_flow_ib_filter {
1922 __be16 dlid;
1923 __u8 sl;
1924 };
1925
1926 struct ib_flow_spec_ib {
1927 u32 type;
1928 u16 size;
1929 struct ib_flow_ib_filter val;
1930 struct ib_flow_ib_filter mask;
1931 };
1932
1933 /* IPv4 header flags */
1934 enum ib_ipv4_flags {
1935 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1936 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1937 last have this flag set */
1938 };
1939
1940 struct ib_flow_ipv4_filter {
1941 __be32 src_ip;
1942 __be32 dst_ip;
1943 u8 proto;
1944 u8 tos;
1945 u8 ttl;
1946 u8 flags;
1947 };
1948
1949 struct ib_flow_spec_ipv4 {
1950 u32 type;
1951 u16 size;
1952 struct ib_flow_ipv4_filter val;
1953 struct ib_flow_ipv4_filter mask;
1954 };
1955
1956 struct ib_flow_ipv6_filter {
1957 u8 src_ip[16];
1958 u8 dst_ip[16];
1959 __be32 flow_label;
1960 u8 next_hdr;
1961 u8 traffic_class;
1962 u8 hop_limit;
1963 } __packed;
1964
1965 struct ib_flow_spec_ipv6 {
1966 u32 type;
1967 u16 size;
1968 struct ib_flow_ipv6_filter val;
1969 struct ib_flow_ipv6_filter mask;
1970 };
1971
1972 struct ib_flow_tcp_udp_filter {
1973 __be16 dst_port;
1974 __be16 src_port;
1975 };
1976
1977 struct ib_flow_spec_tcp_udp {
1978 u32 type;
1979 u16 size;
1980 struct ib_flow_tcp_udp_filter val;
1981 struct ib_flow_tcp_udp_filter mask;
1982 };
1983
1984 struct ib_flow_tunnel_filter {
1985 __be32 tunnel_id;
1986 };
1987
1988 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1989 * the tunnel_id from val has the vni value
1990 */
1991 struct ib_flow_spec_tunnel {
1992 u32 type;
1993 u16 size;
1994 struct ib_flow_tunnel_filter val;
1995 struct ib_flow_tunnel_filter mask;
1996 };
1997
1998 struct ib_flow_esp_filter {
1999 __be32 spi;
2000 __be32 seq;
2001 };
2002
2003 struct ib_flow_spec_esp {
2004 u32 type;
2005 u16 size;
2006 struct ib_flow_esp_filter val;
2007 struct ib_flow_esp_filter mask;
2008 };
2009
2010 struct ib_flow_gre_filter {
2011 __be16 c_ks_res0_ver;
2012 __be16 protocol;
2013 __be32 key;
2014 };
2015
2016 struct ib_flow_spec_gre {
2017 u32 type;
2018 u16 size;
2019 struct ib_flow_gre_filter val;
2020 struct ib_flow_gre_filter mask;
2021 };
2022
2023 struct ib_flow_mpls_filter {
2024 __be32 tag;
2025 };
2026
2027 struct ib_flow_spec_mpls {
2028 u32 type;
2029 u16 size;
2030 struct ib_flow_mpls_filter val;
2031 struct ib_flow_mpls_filter mask;
2032 };
2033
2034 struct ib_flow_spec_action_tag {
2035 enum ib_flow_spec_type type;
2036 u16 size;
2037 u32 tag_id;
2038 };
2039
2040 struct ib_flow_spec_action_drop {
2041 enum ib_flow_spec_type type;
2042 u16 size;
2043 };
2044
2045 struct ib_flow_spec_action_handle {
2046 enum ib_flow_spec_type type;
2047 u16 size;
2048 struct ib_flow_action *act;
2049 };
2050
2051 enum ib_counters_description {
2052 IB_COUNTER_PACKETS,
2053 IB_COUNTER_BYTES,
2054 };
2055
2056 struct ib_flow_spec_action_count {
2057 enum ib_flow_spec_type type;
2058 u16 size;
2059 struct ib_counters *counters;
2060 };
2061
2062 union ib_flow_spec {
2063 struct {
2064 u32 type;
2065 u16 size;
2066 };
2067 struct ib_flow_spec_eth eth;
2068 struct ib_flow_spec_ib ib;
2069 struct ib_flow_spec_ipv4 ipv4;
2070 struct ib_flow_spec_tcp_udp tcp_udp;
2071 struct ib_flow_spec_ipv6 ipv6;
2072 struct ib_flow_spec_tunnel tunnel;
2073 struct ib_flow_spec_esp esp;
2074 struct ib_flow_spec_gre gre;
2075 struct ib_flow_spec_mpls mpls;
2076 struct ib_flow_spec_action_tag flow_tag;
2077 struct ib_flow_spec_action_drop drop;
2078 struct ib_flow_spec_action_handle action;
2079 struct ib_flow_spec_action_count flow_count;
2080 };
2081
2082 struct ib_flow_attr {
2083 enum ib_flow_attr_type type;
2084 u16 size;
2085 u16 priority;
2086 u32 flags;
2087 u8 num_of_specs;
2088 u32 port;
2089 union ib_flow_spec flows[];
2090 };
2091
2092 struct ib_flow {
2093 struct ib_qp *qp;
2094 struct ib_device *device;
2095 struct ib_uobject *uobject;
2096 };
2097
2098 enum ib_flow_action_type {
2099 IB_FLOW_ACTION_UNSPECIFIED,
2100 IB_FLOW_ACTION_ESP = 1,
2101 };
2102
2103 struct ib_flow_action_attrs_esp_keymats {
2104 enum ib_uverbs_flow_action_esp_keymat protocol;
2105 union {
2106 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2107 } keymat;
2108 };
2109
2110 struct ib_flow_action_attrs_esp_replays {
2111 enum ib_uverbs_flow_action_esp_replay protocol;
2112 union {
2113 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2114 } replay;
2115 };
2116
2117 enum ib_flow_action_attrs_esp_flags {
2118 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2119 * This is done in order to share the same flags between user-space and
2120 * kernel and spare an unnecessary translation.
2121 */
2122
2123 /* Kernel flags */
2124 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2125 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2126 };
2127
2128 struct ib_flow_spec_list {
2129 struct ib_flow_spec_list *next;
2130 union ib_flow_spec spec;
2131 };
2132
2133 struct ib_flow_action_attrs_esp {
2134 struct ib_flow_action_attrs_esp_keymats *keymat;
2135 struct ib_flow_action_attrs_esp_replays *replay;
2136 struct ib_flow_spec_list *encap;
2137 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2138 * Value of 0 is a valid value.
2139 */
2140 u32 esn;
2141 u32 spi;
2142 u32 seq;
2143 u32 tfc_pad;
2144 /* Use enum ib_flow_action_attrs_esp_flags */
2145 u64 flags;
2146 u64 hard_limit_pkts;
2147 };
2148
2149 struct ib_flow_action {
2150 struct ib_device *device;
2151 struct ib_uobject *uobject;
2152 enum ib_flow_action_type type;
2153 atomic_t usecnt;
2154 };
2155
2156 struct ib_mad;
2157
2158 enum ib_process_mad_flags {
2159 IB_MAD_IGNORE_MKEY = 1,
2160 IB_MAD_IGNORE_BKEY = 2,
2161 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2162 };
2163
2164 enum ib_mad_result {
2165 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2166 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2167 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2168 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2169 };
2170
2171 struct ib_port_cache {
2172 u64 subnet_prefix;
2173 struct ib_pkey_cache *pkey;
2174 struct ib_gid_table *gid;
2175 u8 lmc;
2176 enum ib_port_state port_state;
2177 enum ib_port_state last_port_state;
2178 };
2179
2180 struct ib_port_immutable {
2181 int pkey_tbl_len;
2182 int gid_tbl_len;
2183 u32 core_cap_flags;
2184 u32 max_mad_size;
2185 };
2186
2187 struct ib_port_data {
2188 struct ib_device *ib_dev;
2189
2190 struct ib_port_immutable immutable;
2191
2192 spinlock_t pkey_list_lock;
2193
2194 spinlock_t netdev_lock;
2195
2196 struct list_head pkey_list;
2197
2198 struct ib_port_cache cache;
2199
2200 struct net_device __rcu *netdev;
2201 netdevice_tracker netdev_tracker;
2202 struct hlist_node ndev_hash_link;
2203 struct rdma_port_counter port_counter;
2204 struct ib_port *sysfs;
2205 };
2206
2207 /* rdma netdev type - specifies protocol type */
2208 enum rdma_netdev_t {
2209 RDMA_NETDEV_OPA_VNIC,
2210 RDMA_NETDEV_IPOIB,
2211 };
2212
2213 /**
2214 * struct rdma_netdev - rdma netdev
2215 * For cases where netstack interfacing is required.
2216 */
2217 struct rdma_netdev {
2218 void *clnt_priv;
2219 struct ib_device *hca;
2220 u32 port_num;
2221 int mtu;
2222
2223 /*
2224 * cleanup function must be specified.
2225 * FIXME: This is only used for OPA_VNIC and that usage should be
2226 * removed too.
2227 */
2228 void (*free_rdma_netdev)(struct net_device *netdev);
2229
2230 /* control functions */
2231 void (*set_id)(struct net_device *netdev, int id);
2232 /* send packet */
2233 int (*send)(struct net_device *dev, struct sk_buff *skb,
2234 struct ib_ah *address, u32 dqpn);
2235 /* multicast */
2236 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2237 union ib_gid *gid, u16 mlid,
2238 int set_qkey, u32 qkey);
2239 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2240 union ib_gid *gid, u16 mlid);
2241 /* timeout */
2242 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2243 };
2244
2245 struct rdma_netdev_alloc_params {
2246 size_t sizeof_priv;
2247 unsigned int txqs;
2248 unsigned int rxqs;
2249 void *param;
2250
2251 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2252 struct net_device *netdev, void *param);
2253 };
2254
2255 struct ib_odp_counters {
2256 atomic64_t faults;
2257 atomic64_t faults_handled;
2258 atomic64_t invalidations;
2259 atomic64_t invalidations_handled;
2260 atomic64_t prefetch;
2261 };
2262
2263 struct ib_counters {
2264 struct ib_device *device;
2265 struct ib_uobject *uobject;
2266 /* num of objects attached */
2267 atomic_t usecnt;
2268 };
2269
2270 struct ib_counters_read_attr {
2271 u64 *counters_buff;
2272 u32 ncounters;
2273 u32 flags; /* use enum ib_read_counters_flags */
2274 };
2275
2276 struct uverbs_attr_bundle;
2277 struct iw_cm_id;
2278 struct iw_cm_conn_param;
2279
2280 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2281 .size_##ib_struct = \
2282 (sizeof(struct drv_struct) + \
2283 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2284 BUILD_BUG_ON_ZERO( \
2285 !__same_type(((struct drv_struct *)NULL)->member, \
2286 struct ib_struct)))
2287
2288 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2289 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2290 gfp, false))
2291
2292 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2293 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2294 GFP_KERNEL, true))
2295
2296 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2297 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2298
2299 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2300
2301 struct rdma_user_mmap_entry {
2302 struct kref ref;
2303 struct ib_ucontext *ucontext;
2304 unsigned long start_pgoff;
2305 size_t npages;
2306 bool driver_removed;
2307 };
2308
2309 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2310 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2311 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2312 {
2313 return (u64)entry->start_pgoff << PAGE_SHIFT;
2314 }
2315
2316 /**
2317 * struct ib_device_ops - InfiniBand device operations
2318 * This structure defines all the InfiniBand device operations, providers will
2319 * need to define the supported operations, otherwise they will be set to null.
2320 */
2321 struct ib_device_ops {
2322 struct module *owner;
2323 enum rdma_driver_id driver_id;
2324 u32 uverbs_abi_ver;
2325 unsigned int uverbs_no_driver_id_binding:1;
2326
2327 /*
2328 * NOTE: New drivers should not make use of device_group; instead new
2329 * device parameter should be exposed via netlink command. This
2330 * mechanism exists only for existing drivers.
2331 */
2332 const struct attribute_group *device_group;
2333 const struct attribute_group **port_groups;
2334
2335 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2336 const struct ib_send_wr **bad_send_wr);
2337 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2338 const struct ib_recv_wr **bad_recv_wr);
2339 void (*drain_rq)(struct ib_qp *qp);
2340 void (*drain_sq)(struct ib_qp *qp);
2341 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2342 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2343 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2344 int (*post_srq_recv)(struct ib_srq *srq,
2345 const struct ib_recv_wr *recv_wr,
2346 const struct ib_recv_wr **bad_recv_wr);
2347 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2348 u32 port_num, const struct ib_wc *in_wc,
2349 const struct ib_grh *in_grh,
2350 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2351 size_t *out_mad_size, u16 *out_mad_pkey_index);
2352 int (*query_device)(struct ib_device *device,
2353 struct ib_device_attr *device_attr,
2354 struct ib_udata *udata);
2355 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2356 struct ib_device_modify *device_modify);
2357 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2358 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2359 int comp_vector);
2360 int (*query_port)(struct ib_device *device, u32 port_num,
2361 struct ib_port_attr *port_attr);
2362 int (*modify_port)(struct ib_device *device, u32 port_num,
2363 int port_modify_mask,
2364 struct ib_port_modify *port_modify);
2365 /**
2366 * The following mandatory functions are used only at device
2367 * registration. Keep functions such as these at the end of this
2368 * structure to avoid cache line misses when accessing struct ib_device
2369 * in fast paths.
2370 */
2371 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2372 struct ib_port_immutable *immutable);
2373 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2374 u32 port_num);
2375 /**
2376 * When calling get_netdev, the HW vendor's driver should return the
2377 * net device of device @device at port @port_num or NULL if such
2378 * a net device doesn't exist. The vendor driver should call dev_hold
2379 * on this net device. The HW vendor's device driver must guarantee
2380 * that this function returns NULL before the net device has finished
2381 * NETDEV_UNREGISTER state.
2382 */
2383 struct net_device *(*get_netdev)(struct ib_device *device,
2384 u32 port_num);
2385 /**
2386 * rdma netdev operation
2387 *
2388 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2389 * must return -EOPNOTSUPP if it doesn't support the specified type.
2390 */
2391 struct net_device *(*alloc_rdma_netdev)(
2392 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2393 const char *name, unsigned char name_assign_type,
2394 void (*setup)(struct net_device *));
2395
2396 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2397 enum rdma_netdev_t type,
2398 struct rdma_netdev_alloc_params *params);
2399 /**
2400 * query_gid should be return GID value for @device, when @port_num
2401 * link layer is either IB or iWarp. It is no-op if @port_num port
2402 * is RoCE link layer.
2403 */
2404 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2405 union ib_gid *gid);
2406 /**
2407 * When calling add_gid, the HW vendor's driver should add the gid
2408 * of device of port at gid index available at @attr. Meta-info of
2409 * that gid (for example, the network device related to this gid) is
2410 * available at @attr. @context allows the HW vendor driver to store
2411 * extra information together with a GID entry. The HW vendor driver may
2412 * allocate memory to contain this information and store it in @context
2413 * when a new GID entry is written to. Params are consistent until the
2414 * next call of add_gid or delete_gid. The function should return 0 on
2415 * success or error otherwise. The function could be called
2416 * concurrently for different ports. This function is only called when
2417 * roce_gid_table is used.
2418 */
2419 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2420 /**
2421 * When calling del_gid, the HW vendor's driver should delete the
2422 * gid of device @device at gid index gid_index of port port_num
2423 * available in @attr.
2424 * Upon the deletion of a GID entry, the HW vendor must free any
2425 * allocated memory. The caller will clear @context afterwards.
2426 * This function is only called when roce_gid_table is used.
2427 */
2428 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2429 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2430 u16 *pkey);
2431 int (*alloc_ucontext)(struct ib_ucontext *context,
2432 struct ib_udata *udata);
2433 void (*dealloc_ucontext)(struct ib_ucontext *context);
2434 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2435 /**
2436 * This will be called once refcount of an entry in mmap_xa reaches
2437 * zero. The type of the memory that was mapped may differ between
2438 * entries and is opaque to the rdma_user_mmap interface.
2439 * Therefore needs to be implemented by the driver in mmap_free.
2440 */
2441 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2442 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2443 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2444 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2445 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2446 struct ib_udata *udata);
2447 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2448 struct ib_udata *udata);
2449 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2450 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2451 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2452 int (*create_srq)(struct ib_srq *srq,
2453 struct ib_srq_init_attr *srq_init_attr,
2454 struct ib_udata *udata);
2455 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2456 enum ib_srq_attr_mask srq_attr_mask,
2457 struct ib_udata *udata);
2458 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2459 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2460 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2461 struct ib_udata *udata);
2462 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463 int qp_attr_mask, struct ib_udata *udata);
2464 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2465 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2466 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2467 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2468 struct uverbs_attr_bundle *attrs);
2469 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2470 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2471 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2472 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2473 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2474 u64 virt_addr, int mr_access_flags,
2475 struct ib_udata *udata);
2476 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2477 u64 length, u64 virt_addr, int fd,
2478 int mr_access_flags,
2479 struct uverbs_attr_bundle *attrs);
2480 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2481 u64 length, u64 virt_addr,
2482 int mr_access_flags, struct ib_pd *pd,
2483 struct ib_udata *udata);
2484 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2485 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2486 u32 max_num_sg);
2487 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2488 u32 max_num_data_sg,
2489 u32 max_num_meta_sg);
2490 int (*advise_mr)(struct ib_pd *pd,
2491 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2492 struct ib_sge *sg_list, u32 num_sge,
2493 struct uverbs_attr_bundle *attrs);
2494
2495 /*
2496 * Kernel users should universally support relaxed ordering (RO), as
2497 * they are designed to read data only after observing the CQE and use
2498 * the DMA API correctly.
2499 *
2500 * Some drivers implicitly enable RO if platform supports it.
2501 */
2502 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2503 unsigned int *sg_offset);
2504 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2505 struct ib_mr_status *mr_status);
2506 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2507 int (*dealloc_mw)(struct ib_mw *mw);
2508 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2509 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2510 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2511 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2512 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2513 struct ib_flow_attr *flow_attr,
2514 struct ib_udata *udata);
2515 int (*destroy_flow)(struct ib_flow *flow_id);
2516 int (*destroy_flow_action)(struct ib_flow_action *action);
2517 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2518 int state);
2519 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2520 struct ifla_vf_info *ivf);
2521 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2522 struct ifla_vf_stats *stats);
2523 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2524 struct ifla_vf_guid *node_guid,
2525 struct ifla_vf_guid *port_guid);
2526 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2527 int type);
2528 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2529 struct ib_wq_init_attr *init_attr,
2530 struct ib_udata *udata);
2531 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2532 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2533 u32 wq_attr_mask, struct ib_udata *udata);
2534 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2535 struct ib_rwq_ind_table_init_attr *init_attr,
2536 struct ib_udata *udata);
2537 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2538 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2539 struct ib_ucontext *context,
2540 struct ib_dm_alloc_attr *attr,
2541 struct uverbs_attr_bundle *attrs);
2542 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2543 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2544 struct ib_dm_mr_attr *attr,
2545 struct uverbs_attr_bundle *attrs);
2546 int (*create_counters)(struct ib_counters *counters,
2547 struct uverbs_attr_bundle *attrs);
2548 int (*destroy_counters)(struct ib_counters *counters);
2549 int (*read_counters)(struct ib_counters *counters,
2550 struct ib_counters_read_attr *counters_read_attr,
2551 struct uverbs_attr_bundle *attrs);
2552 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2553 int data_sg_nents, unsigned int *data_sg_offset,
2554 struct scatterlist *meta_sg, int meta_sg_nents,
2555 unsigned int *meta_sg_offset);
2556
2557 /**
2558 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2559 * fill in the driver initialized data. The struct is kfree()'ed by
2560 * the sysfs core when the device is removed. A lifespan of -1 in the
2561 * return struct tells the core to set a default lifespan.
2562 */
2563 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2564 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2565 u32 port_num);
2566 /**
2567 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2568 * @index - The index in the value array we wish to have updated, or
2569 * num_counters if we want all stats updated
2570 * Return codes -
2571 * < 0 - Error, no counters updated
2572 * index - Updated the single counter pointed to by index
2573 * num_counters - Updated all counters (will reset the timestamp
2574 * and prevent further calls for lifespan milliseconds)
2575 * Drivers are allowed to update all counters in leiu of just the
2576 * one given in index at their option
2577 */
2578 int (*get_hw_stats)(struct ib_device *device,
2579 struct rdma_hw_stats *stats, u32 port, int index);
2580
2581 /**
2582 * modify_hw_stat - Modify the counter configuration
2583 * @enable: true/false when enable/disable a counter
2584 * Return codes - 0 on success or error code otherwise.
2585 */
2586 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2587 unsigned int counter_index, bool enable);
2588 /**
2589 * Allows rdma drivers to add their own restrack attributes.
2590 */
2591 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2592 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2593 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2594 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2595 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2596 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2597 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2598 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2599 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2600
2601 /* Device lifecycle callbacks */
2602 /*
2603 * Called after the device becomes registered, before clients are
2604 * attached
2605 */
2606 int (*enable_driver)(struct ib_device *dev);
2607 /*
2608 * This is called as part of ib_dealloc_device().
2609 */
2610 void (*dealloc_driver)(struct ib_device *dev);
2611
2612 /* iWarp CM callbacks */
2613 void (*iw_add_ref)(struct ib_qp *qp);
2614 void (*iw_rem_ref)(struct ib_qp *qp);
2615 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2616 int (*iw_connect)(struct iw_cm_id *cm_id,
2617 struct iw_cm_conn_param *conn_param);
2618 int (*iw_accept)(struct iw_cm_id *cm_id,
2619 struct iw_cm_conn_param *conn_param);
2620 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2621 u8 pdata_len);
2622 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2623 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2624 /**
2625 * counter_bind_qp - Bind a QP to a counter.
2626 * @counter - The counter to be bound. If counter->id is zero then
2627 * the driver needs to allocate a new counter and set counter->id
2628 */
2629 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2630 /**
2631 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2632 * counter and bind it onto the default one
2633 */
2634 int (*counter_unbind_qp)(struct ib_qp *qp);
2635 /**
2636 * counter_dealloc -De-allocate the hw counter
2637 */
2638 int (*counter_dealloc)(struct rdma_counter *counter);
2639 /**
2640 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2641 * the driver initialized data.
2642 */
2643 struct rdma_hw_stats *(*counter_alloc_stats)(
2644 struct rdma_counter *counter);
2645 /**
2646 * counter_update_stats - Query the stats value of this counter
2647 */
2648 int (*counter_update_stats)(struct rdma_counter *counter);
2649
2650 /**
2651 * Allows rdma drivers to add their own restrack attributes
2652 * dumped via 'rdma stat' iproute2 command.
2653 */
2654 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2655
2656 /* query driver for its ucontext properties */
2657 int (*query_ucontext)(struct ib_ucontext *context,
2658 struct uverbs_attr_bundle *attrs);
2659
2660 /*
2661 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2662 * Everyone else relies on Linux memory management model.
2663 */
2664 int (*get_numa_node)(struct ib_device *dev);
2665
2666 /**
2667 * add_sub_dev - Add a sub IB device
2668 */
2669 struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2670 enum rdma_nl_dev_type type,
2671 const char *name);
2672
2673 /**
2674 * del_sub_dev - Delete a sub IB device
2675 */
2676 void (*del_sub_dev)(struct ib_device *sub_dev);
2677
2678 /**
2679 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside
2680 * the ufile.
2681 */
2682 void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile);
2683
2684 /**
2685 * report_port_event - Drivers need to implement this if they have
2686 * some private stuff to handle when link status changes.
2687 */
2688 void (*report_port_event)(struct ib_device *ibdev,
2689 struct net_device *ndev, unsigned long event);
2690
2691 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2692 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2693 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2694 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2695 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2696 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2697 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2698 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2699 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2700 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2701 };
2702
2703 struct ib_core_device {
2704 /* device must be the first element in structure until,
2705 * union of ib_core_device and device exists in ib_device.
2706 */
2707 struct device dev;
2708 possible_net_t rdma_net;
2709 struct kobject *ports_kobj;
2710 struct list_head port_list;
2711 struct ib_device *owner; /* reach back to owner ib_device */
2712 };
2713
2714 struct rdma_restrack_root;
2715 struct ib_device {
2716 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2717 struct device *dma_device;
2718 struct ib_device_ops ops;
2719 char name[IB_DEVICE_NAME_MAX];
2720 struct rcu_head rcu_head;
2721
2722 struct list_head event_handler_list;
2723 /* Protects event_handler_list */
2724 struct rw_semaphore event_handler_rwsem;
2725
2726 /* Protects QP's event_handler calls and open_qp list */
2727 spinlock_t qp_open_list_lock;
2728
2729 struct rw_semaphore client_data_rwsem;
2730 struct xarray client_data;
2731 struct mutex unregistration_lock;
2732
2733 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2734 rwlock_t cache_lock;
2735 /**
2736 * port_data is indexed by port number
2737 */
2738 struct ib_port_data *port_data;
2739
2740 int num_comp_vectors;
2741
2742 union {
2743 struct device dev;
2744 struct ib_core_device coredev;
2745 };
2746
2747 /* First group is for device attributes,
2748 * Second group is for driver provided attributes (optional).
2749 * Third group is for the hw_stats
2750 * It is a NULL terminated array.
2751 */
2752 const struct attribute_group *groups[4];
2753 u8 hw_stats_attr_index;
2754
2755 u64 uverbs_cmd_mask;
2756
2757 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2758 __be64 node_guid;
2759 u32 local_dma_lkey;
2760 u16 is_switch:1;
2761 /* Indicates kernel verbs support, should not be used in drivers */
2762 u16 kverbs_provider:1;
2763 /* CQ adaptive moderation (RDMA DIM) */
2764 u16 use_cq_dim:1;
2765 u8 node_type;
2766 u32 phys_port_cnt;
2767 struct ib_device_attr attrs;
2768 struct hw_stats_device_data *hw_stats_data;
2769
2770 #ifdef CONFIG_CGROUP_RDMA
2771 struct rdmacg_device cg_device;
2772 #endif
2773
2774 u32 index;
2775
2776 spinlock_t cq_pools_lock;
2777 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2778
2779 struct rdma_restrack_root *res;
2780
2781 const struct uapi_definition *driver_def;
2782
2783 /*
2784 * Positive refcount indicates that the device is currently
2785 * registered and cannot be unregistered.
2786 */
2787 refcount_t refcount;
2788 struct completion unreg_completion;
2789 struct work_struct unregistration_work;
2790
2791 const struct rdma_link_ops *link_ops;
2792
2793 /* Protects compat_devs xarray modifications */
2794 struct mutex compat_devs_mutex;
2795 /* Maintains compat devices for each net namespace */
2796 struct xarray compat_devs;
2797
2798 /* Used by iWarp CM */
2799 char iw_ifname[IFNAMSIZ];
2800 u32 iw_driver_flags;
2801 u32 lag_flags;
2802
2803 /* A parent device has a list of sub-devices */
2804 struct mutex subdev_lock;
2805 struct list_head subdev_list_head;
2806
2807 /* A sub device has a type and a parent */
2808 enum rdma_nl_dev_type type;
2809 struct ib_device *parent;
2810 struct list_head subdev_list;
2811
2812 enum rdma_nl_name_assign_type name_assign_type;
2813 };
2814
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2815 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2816 gfp_t gfp, bool is_numa_aware)
2817 {
2818 if (is_numa_aware && dev->ops.get_numa_node)
2819 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2820
2821 return kzalloc(size, gfp);
2822 }
2823
2824 struct ib_client_nl_info;
2825 struct ib_client {
2826 const char *name;
2827 int (*add)(struct ib_device *ibdev);
2828 void (*remove)(struct ib_device *, void *client_data);
2829 void (*rename)(struct ib_device *dev, void *client_data);
2830 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2831 struct ib_client_nl_info *res);
2832 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2833
2834 /* Returns the net_dev belonging to this ib_client and matching the
2835 * given parameters.
2836 * @dev: An RDMA device that the net_dev use for communication.
2837 * @port: A physical port number on the RDMA device.
2838 * @pkey: P_Key that the net_dev uses if applicable.
2839 * @gid: A GID that the net_dev uses to communicate.
2840 * @addr: An IP address the net_dev is configured with.
2841 * @client_data: The device's client data set by ib_set_client_data().
2842 *
2843 * An ib_client that implements a net_dev on top of RDMA devices
2844 * (such as IP over IB) should implement this callback, allowing the
2845 * rdma_cm module to find the right net_dev for a given request.
2846 *
2847 * The caller is responsible for calling dev_put on the returned
2848 * netdev. */
2849 struct net_device *(*get_net_dev_by_params)(
2850 struct ib_device *dev,
2851 u32 port,
2852 u16 pkey,
2853 const union ib_gid *gid,
2854 const struct sockaddr *addr,
2855 void *client_data);
2856
2857 refcount_t uses;
2858 struct completion uses_zero;
2859 u32 client_id;
2860
2861 /* kverbs are not required by the client */
2862 u8 no_kverbs_req:1;
2863 };
2864
2865 /*
2866 * IB block DMA iterator
2867 *
2868 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2869 * to a HW supported page size.
2870 */
2871 struct ib_block_iter {
2872 /* internal states */
2873 struct scatterlist *__sg; /* sg holding the current aligned block */
2874 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2875 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */
2876 unsigned int __sg_nents; /* number of SG entries */
2877 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2878 unsigned int __pg_bit; /* alignment of current block */
2879 };
2880
2881 struct ib_device *_ib_alloc_device(size_t size);
2882 #define ib_alloc_device(drv_struct, member) \
2883 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2884 BUILD_BUG_ON_ZERO(offsetof( \
2885 struct drv_struct, member))), \
2886 struct drv_struct, member)
2887
2888 void ib_dealloc_device(struct ib_device *device);
2889
2890 void ib_get_device_fw_str(struct ib_device *device, char *str);
2891
2892 int ib_register_device(struct ib_device *device, const char *name,
2893 struct device *dma_device);
2894 void ib_unregister_device(struct ib_device *device);
2895 void ib_unregister_driver(enum rdma_driver_id driver_id);
2896 void ib_unregister_device_and_put(struct ib_device *device);
2897 void ib_unregister_device_queued(struct ib_device *ib_dev);
2898
2899 int ib_register_client (struct ib_client *client);
2900 void ib_unregister_client(struct ib_client *client);
2901
2902 void __rdma_block_iter_start(struct ib_block_iter *biter,
2903 struct scatterlist *sglist,
2904 unsigned int nents,
2905 unsigned long pgsz);
2906 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2907
2908 /**
2909 * rdma_block_iter_dma_address - get the aligned dma address of the current
2910 * block held by the block iterator.
2911 * @biter: block iterator holding the memory block
2912 */
2913 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2914 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2915 {
2916 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2917 }
2918
2919 /**
2920 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2921 * @sglist: sglist to iterate over
2922 * @biter: block iterator holding the memory block
2923 * @nents: maximum number of sg entries to iterate over
2924 * @pgsz: best HW supported page size to use
2925 *
2926 * Callers may use rdma_block_iter_dma_address() to get each
2927 * blocks aligned DMA address.
2928 */
2929 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2930 for (__rdma_block_iter_start(biter, sglist, nents, \
2931 pgsz); \
2932 __rdma_block_iter_next(biter);)
2933
2934 /**
2935 * ib_get_client_data - Get IB client context
2936 * @device:Device to get context for
2937 * @client:Client to get context for
2938 *
2939 * ib_get_client_data() returns the client context data set with
2940 * ib_set_client_data(). This can only be called while the client is
2941 * registered to the device, once the ib_client remove() callback returns this
2942 * cannot be called.
2943 */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2944 static inline void *ib_get_client_data(struct ib_device *device,
2945 struct ib_client *client)
2946 {
2947 return xa_load(&device->client_data, client->client_id);
2948 }
2949 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2950 void *data);
2951 void ib_set_device_ops(struct ib_device *device,
2952 const struct ib_device_ops *ops);
2953
2954 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2955 unsigned long pfn, unsigned long size, pgprot_t prot,
2956 struct rdma_user_mmap_entry *entry);
2957 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2958 struct rdma_user_mmap_entry *entry,
2959 size_t length);
2960 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2961 struct rdma_user_mmap_entry *entry,
2962 size_t length, u32 min_pgoff,
2963 u32 max_pgoff);
2964
2965 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2966 void rdma_user_mmap_disassociate(struct ib_device *device);
2967 #else
rdma_user_mmap_disassociate(struct ib_device * device)2968 static inline void rdma_user_mmap_disassociate(struct ib_device *device)
2969 {
2970 }
2971 #endif
2972
2973 static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext * ucontext,struct rdma_user_mmap_entry * entry,size_t length,u32 pgoff)2974 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2975 struct rdma_user_mmap_entry *entry,
2976 size_t length, u32 pgoff)
2977 {
2978 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2979 pgoff);
2980 }
2981
2982 struct rdma_user_mmap_entry *
2983 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2984 unsigned long pgoff);
2985 struct rdma_user_mmap_entry *
2986 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2987 struct vm_area_struct *vma);
2988 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2989
2990 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2991
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2992 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2993 {
2994 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2995 }
2996
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2997 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2998 {
2999 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
3000 }
3001
ib_is_buffer_cleared(const void __user * p,size_t len)3002 static inline bool ib_is_buffer_cleared(const void __user *p,
3003 size_t len)
3004 {
3005 bool ret;
3006 u8 *buf;
3007
3008 if (len > USHRT_MAX)
3009 return false;
3010
3011 buf = memdup_user(p, len);
3012 if (IS_ERR(buf))
3013 return false;
3014
3015 ret = !memchr_inv(buf, 0, len);
3016 kfree(buf);
3017 return ret;
3018 }
3019
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)3020 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3021 size_t offset,
3022 size_t len)
3023 {
3024 return ib_is_buffer_cleared(udata->inbuf + offset, len);
3025 }
3026
3027 /**
3028 * ib_modify_qp_is_ok - Check that the supplied attribute mask
3029 * contains all required attributes and no attributes not allowed for
3030 * the given QP state transition.
3031 * @cur_state: Current QP state
3032 * @next_state: Next QP state
3033 * @type: QP type
3034 * @mask: Mask of supplied QP attributes
3035 *
3036 * This function is a helper function that a low-level driver's
3037 * modify_qp method can use to validate the consumer's input. It
3038 * checks that cur_state and next_state are valid QP states, that a
3039 * transition from cur_state to next_state is allowed by the IB spec,
3040 * and that the attribute mask supplied is allowed for the transition.
3041 */
3042 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3043 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3044
3045 void ib_register_event_handler(struct ib_event_handler *event_handler);
3046 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3047 void ib_dispatch_event(const struct ib_event *event);
3048
3049 int ib_query_port(struct ib_device *device,
3050 u32 port_num, struct ib_port_attr *port_attr);
3051
3052 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3053 u32 port_num);
3054
3055 /**
3056 * rdma_cap_ib_switch - Check if the device is IB switch
3057 * @device: Device to check
3058 *
3059 * Device driver is responsible for setting is_switch bit on
3060 * in ib_device structure at init time.
3061 *
3062 * Return: true if the device is IB switch.
3063 */
rdma_cap_ib_switch(const struct ib_device * device)3064 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3065 {
3066 return device->is_switch;
3067 }
3068
3069 /**
3070 * rdma_start_port - Return the first valid port number for the device
3071 * specified
3072 *
3073 * @device: Device to be checked
3074 *
3075 * Return start port number
3076 */
rdma_start_port(const struct ib_device * device)3077 static inline u32 rdma_start_port(const struct ib_device *device)
3078 {
3079 return rdma_cap_ib_switch(device) ? 0 : 1;
3080 }
3081
3082 /**
3083 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3084 * @device - The struct ib_device * to iterate over
3085 * @iter - The unsigned int to store the port number
3086 */
3087 #define rdma_for_each_port(device, iter) \
3088 for (iter = rdma_start_port(device + \
3089 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3090 iter))); \
3091 iter <= rdma_end_port(device); iter++)
3092
3093 /**
3094 * rdma_end_port - Return the last valid port number for the device
3095 * specified
3096 *
3097 * @device: Device to be checked
3098 *
3099 * Return last port number
3100 */
rdma_end_port(const struct ib_device * device)3101 static inline u32 rdma_end_port(const struct ib_device *device)
3102 {
3103 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3104 }
3105
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3106 static inline int rdma_is_port_valid(const struct ib_device *device,
3107 unsigned int port)
3108 {
3109 return (port >= rdma_start_port(device) &&
3110 port <= rdma_end_port(device));
3111 }
3112
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3113 static inline bool rdma_is_grh_required(const struct ib_device *device,
3114 u32 port_num)
3115 {
3116 return device->port_data[port_num].immutable.core_cap_flags &
3117 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3118 }
3119
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3120 static inline bool rdma_protocol_ib(const struct ib_device *device,
3121 u32 port_num)
3122 {
3123 return device->port_data[port_num].immutable.core_cap_flags &
3124 RDMA_CORE_CAP_PROT_IB;
3125 }
3126
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3127 static inline bool rdma_protocol_roce(const struct ib_device *device,
3128 u32 port_num)
3129 {
3130 return device->port_data[port_num].immutable.core_cap_flags &
3131 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3132 }
3133
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3134 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3135 u32 port_num)
3136 {
3137 return device->port_data[port_num].immutable.core_cap_flags &
3138 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3139 }
3140
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3141 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3142 u32 port_num)
3143 {
3144 return device->port_data[port_num].immutable.core_cap_flags &
3145 RDMA_CORE_CAP_PROT_ROCE;
3146 }
3147
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3148 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3149 u32 port_num)
3150 {
3151 return device->port_data[port_num].immutable.core_cap_flags &
3152 RDMA_CORE_CAP_PROT_IWARP;
3153 }
3154
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3155 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3156 u32 port_num)
3157 {
3158 return rdma_protocol_ib(device, port_num) ||
3159 rdma_protocol_roce(device, port_num);
3160 }
3161
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3162 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3163 u32 port_num)
3164 {
3165 return device->port_data[port_num].immutable.core_cap_flags &
3166 RDMA_CORE_CAP_PROT_RAW_PACKET;
3167 }
3168
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3169 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3170 u32 port_num)
3171 {
3172 return device->port_data[port_num].immutable.core_cap_flags &
3173 RDMA_CORE_CAP_PROT_USNIC;
3174 }
3175
3176 /**
3177 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3178 * Management Datagrams.
3179 * @device: Device to check
3180 * @port_num: Port number to check
3181 *
3182 * Management Datagrams (MAD) are a required part of the InfiniBand
3183 * specification and are supported on all InfiniBand devices. A slightly
3184 * extended version are also supported on OPA interfaces.
3185 *
3186 * Return: true if the port supports sending/receiving of MAD packets.
3187 */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3188 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3189 {
3190 return device->port_data[port_num].immutable.core_cap_flags &
3191 RDMA_CORE_CAP_IB_MAD;
3192 }
3193
3194 /**
3195 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3196 * Management Datagrams.
3197 * @device: Device to check
3198 * @port_num: Port number to check
3199 *
3200 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3201 * datagrams with their own versions. These OPA MADs share many but not all of
3202 * the characteristics of InfiniBand MADs.
3203 *
3204 * OPA MADs differ in the following ways:
3205 *
3206 * 1) MADs are variable size up to 2K
3207 * IBTA defined MADs remain fixed at 256 bytes
3208 * 2) OPA SMPs must carry valid PKeys
3209 * 3) OPA SMP packets are a different format
3210 *
3211 * Return: true if the port supports OPA MAD packet formats.
3212 */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3213 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3214 {
3215 return device->port_data[port_num].immutable.core_cap_flags &
3216 RDMA_CORE_CAP_OPA_MAD;
3217 }
3218
3219 /**
3220 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3221 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3222 * @device: Device to check
3223 * @port_num: Port number to check
3224 *
3225 * Each InfiniBand node is required to provide a Subnet Management Agent
3226 * that the subnet manager can access. Prior to the fabric being fully
3227 * configured by the subnet manager, the SMA is accessed via a well known
3228 * interface called the Subnet Management Interface (SMI). This interface
3229 * uses directed route packets to communicate with the SM to get around the
3230 * chicken and egg problem of the SM needing to know what's on the fabric
3231 * in order to configure the fabric, and needing to configure the fabric in
3232 * order to send packets to the devices on the fabric. These directed
3233 * route packets do not need the fabric fully configured in order to reach
3234 * their destination. The SMI is the only method allowed to send
3235 * directed route packets on an InfiniBand fabric.
3236 *
3237 * Return: true if the port provides an SMI.
3238 */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3239 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3240 {
3241 return device->port_data[port_num].immutable.core_cap_flags &
3242 RDMA_CORE_CAP_IB_SMI;
3243 }
3244
3245 /**
3246 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3247 * Communication Manager.
3248 * @device: Device to check
3249 * @port_num: Port number to check
3250 *
3251 * The InfiniBand Communication Manager is one of many pre-defined General
3252 * Service Agents (GSA) that are accessed via the General Service
3253 * Interface (GSI). It's role is to facilitate establishment of connections
3254 * between nodes as well as other management related tasks for established
3255 * connections.
3256 *
3257 * Return: true if the port supports an IB CM (this does not guarantee that
3258 * a CM is actually running however).
3259 */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3260 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3261 {
3262 return device->port_data[port_num].immutable.core_cap_flags &
3263 RDMA_CORE_CAP_IB_CM;
3264 }
3265
3266 /**
3267 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3268 * Communication Manager.
3269 * @device: Device to check
3270 * @port_num: Port number to check
3271 *
3272 * Similar to above, but specific to iWARP connections which have a different
3273 * managment protocol than InfiniBand.
3274 *
3275 * Return: true if the port supports an iWARP CM (this does not guarantee that
3276 * a CM is actually running however).
3277 */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3278 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3279 {
3280 return device->port_data[port_num].immutable.core_cap_flags &
3281 RDMA_CORE_CAP_IW_CM;
3282 }
3283
3284 /**
3285 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3286 * Subnet Administration.
3287 * @device: Device to check
3288 * @port_num: Port number to check
3289 *
3290 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3291 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3292 * fabrics, devices should resolve routes to other hosts by contacting the
3293 * SA to query the proper route.
3294 *
3295 * Return: true if the port should act as a client to the fabric Subnet
3296 * Administration interface. This does not imply that the SA service is
3297 * running locally.
3298 */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3299 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3300 {
3301 return device->port_data[port_num].immutable.core_cap_flags &
3302 RDMA_CORE_CAP_IB_SA;
3303 }
3304
3305 /**
3306 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3307 * Multicast.
3308 * @device: Device to check
3309 * @port_num: Port number to check
3310 *
3311 * InfiniBand multicast registration is more complex than normal IPv4 or
3312 * IPv6 multicast registration. Each Host Channel Adapter must register
3313 * with the Subnet Manager when it wishes to join a multicast group. It
3314 * should do so only once regardless of how many queue pairs it subscribes
3315 * to this group. And it should leave the group only after all queue pairs
3316 * attached to the group have been detached.
3317 *
3318 * Return: true if the port must undertake the additional adminstrative
3319 * overhead of registering/unregistering with the SM and tracking of the
3320 * total number of queue pairs attached to the multicast group.
3321 */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3322 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3323 u32 port_num)
3324 {
3325 return rdma_cap_ib_sa(device, port_num);
3326 }
3327
3328 /**
3329 * rdma_cap_af_ib - Check if the port of device has the capability
3330 * Native Infiniband Address.
3331 * @device: Device to check
3332 * @port_num: Port number to check
3333 *
3334 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3335 * GID. RoCE uses a different mechanism, but still generates a GID via
3336 * a prescribed mechanism and port specific data.
3337 *
3338 * Return: true if the port uses a GID address to identify devices on the
3339 * network.
3340 */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3341 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3342 {
3343 return device->port_data[port_num].immutable.core_cap_flags &
3344 RDMA_CORE_CAP_AF_IB;
3345 }
3346
3347 /**
3348 * rdma_cap_eth_ah - Check if the port of device has the capability
3349 * Ethernet Address Handle.
3350 * @device: Device to check
3351 * @port_num: Port number to check
3352 *
3353 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3354 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3355 * port. Normally, packet headers are generated by the sending host
3356 * adapter, but when sending connectionless datagrams, we must manually
3357 * inject the proper headers for the fabric we are communicating over.
3358 *
3359 * Return: true if we are running as a RoCE port and must force the
3360 * addition of a Global Route Header built from our Ethernet Address
3361 * Handle into our header list for connectionless packets.
3362 */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3363 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3364 {
3365 return device->port_data[port_num].immutable.core_cap_flags &
3366 RDMA_CORE_CAP_ETH_AH;
3367 }
3368
3369 /**
3370 * rdma_cap_opa_ah - Check if the port of device supports
3371 * OPA Address handles
3372 * @device: Device to check
3373 * @port_num: Port number to check
3374 *
3375 * Return: true if we are running on an OPA device which supports
3376 * the extended OPA addressing.
3377 */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3378 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3379 {
3380 return (device->port_data[port_num].immutable.core_cap_flags &
3381 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3382 }
3383
3384 /**
3385 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3386 *
3387 * @device: Device
3388 * @port_num: Port number
3389 *
3390 * This MAD size includes the MAD headers and MAD payload. No other headers
3391 * are included.
3392 *
3393 * Return the max MAD size required by the Port. Will return 0 if the port
3394 * does not support MADs
3395 */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3396 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3397 u32 port_num)
3398 {
3399 return device->port_data[port_num].immutable.max_mad_size;
3400 }
3401
3402 /**
3403 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3404 * @device: Device to check
3405 * @port_num: Port number to check
3406 *
3407 * RoCE GID table mechanism manages the various GIDs for a device.
3408 *
3409 * NOTE: if allocating the port's GID table has failed, this call will still
3410 * return true, but any RoCE GID table API will fail.
3411 *
3412 * Return: true if the port uses RoCE GID table mechanism in order to manage
3413 * its GIDs.
3414 */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3415 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3416 u32 port_num)
3417 {
3418 return rdma_protocol_roce(device, port_num) &&
3419 device->ops.add_gid && device->ops.del_gid;
3420 }
3421
3422 /*
3423 * Check if the device supports READ W/ INVALIDATE.
3424 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3425 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3426 {
3427 /*
3428 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3429 * has support for it yet.
3430 */
3431 return rdma_protocol_iwarp(dev, port_num);
3432 }
3433
3434 /**
3435 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3436 * @device: Device
3437 * @port_num: 1 based Port number
3438 *
3439 * Return true if port is an Intel OPA port , false if not
3440 */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3441 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3442 u32 port_num)
3443 {
3444 return (device->port_data[port_num].immutable.core_cap_flags &
3445 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3446 }
3447
3448 /**
3449 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3450 * @device: Device
3451 * @port_num: Port number
3452 * @mtu: enum value of MTU
3453 *
3454 * Return the MTU size supported by the port as an integer value. Will return
3455 * -1 if enum value of mtu is not supported.
3456 */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3457 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3458 int mtu)
3459 {
3460 if (rdma_core_cap_opa_port(device, port))
3461 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3462 else
3463 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3464 }
3465
3466 /**
3467 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3468 * @device: Device
3469 * @port_num: Port number
3470 * @attr: port attribute
3471 *
3472 * Return the MTU size supported by the port as an integer value.
3473 */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3474 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3475 struct ib_port_attr *attr)
3476 {
3477 if (rdma_core_cap_opa_port(device, port))
3478 return attr->phys_mtu;
3479 else
3480 return ib_mtu_enum_to_int(attr->max_mtu);
3481 }
3482
3483 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3484 int state);
3485 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3486 struct ifla_vf_info *info);
3487 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3488 struct ifla_vf_stats *stats);
3489 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3490 struct ifla_vf_guid *node_guid,
3491 struct ifla_vf_guid *port_guid);
3492 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3493 int type);
3494
3495 int ib_query_pkey(struct ib_device *device,
3496 u32 port_num, u16 index, u16 *pkey);
3497
3498 int ib_modify_device(struct ib_device *device,
3499 int device_modify_mask,
3500 struct ib_device_modify *device_modify);
3501
3502 int ib_modify_port(struct ib_device *device,
3503 u32 port_num, int port_modify_mask,
3504 struct ib_port_modify *port_modify);
3505
3506 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3507 u32 *port_num, u16 *index);
3508
3509 int ib_find_pkey(struct ib_device *device,
3510 u32 port_num, u16 pkey, u16 *index);
3511
3512 enum ib_pd_flags {
3513 /*
3514 * Create a memory registration for all memory in the system and place
3515 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3516 * ULPs to avoid the overhead of dynamic MRs.
3517 *
3518 * This flag is generally considered unsafe and must only be used in
3519 * extremly trusted environments. Every use of it will log a warning
3520 * in the kernel log.
3521 */
3522 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3523 };
3524
3525 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3526 const char *caller);
3527
3528 /**
3529 * ib_alloc_pd - Allocates an unused protection domain.
3530 * @device: The device on which to allocate the protection domain.
3531 * @flags: protection domain flags
3532 *
3533 * A protection domain object provides an association between QPs, shared
3534 * receive queues, address handles, memory regions, and memory windows.
3535 *
3536 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3537 * memory operations.
3538 */
3539 #define ib_alloc_pd(device, flags) \
3540 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3541
3542 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3543
3544 /**
3545 * ib_dealloc_pd - Deallocate kernel PD
3546 * @pd: The protection domain
3547 *
3548 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3549 */
ib_dealloc_pd(struct ib_pd * pd)3550 static inline void ib_dealloc_pd(struct ib_pd *pd)
3551 {
3552 int ret = ib_dealloc_pd_user(pd, NULL);
3553
3554 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3555 }
3556
3557 enum rdma_create_ah_flags {
3558 /* In a sleepable context */
3559 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3560 };
3561
3562 /**
3563 * rdma_create_ah - Creates an address handle for the given address vector.
3564 * @pd: The protection domain associated with the address handle.
3565 * @ah_attr: The attributes of the address vector.
3566 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3567 *
3568 * The address handle is used to reference a local or global destination
3569 * in all UD QP post sends.
3570 */
3571 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3572 u32 flags);
3573
3574 /**
3575 * rdma_create_user_ah - Creates an address handle for the given address vector.
3576 * It resolves destination mac address for ah attribute of RoCE type.
3577 * @pd: The protection domain associated with the address handle.
3578 * @ah_attr: The attributes of the address vector.
3579 * @udata: pointer to user's input output buffer information need by
3580 * provider driver.
3581 *
3582 * It returns 0 on success and returns appropriate error code on error.
3583 * The address handle is used to reference a local or global destination
3584 * in all UD QP post sends.
3585 */
3586 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3587 struct rdma_ah_attr *ah_attr,
3588 struct ib_udata *udata);
3589 /**
3590 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3591 * work completion.
3592 * @hdr: the L3 header to parse
3593 * @net_type: type of header to parse
3594 * @sgid: place to store source gid
3595 * @dgid: place to store destination gid
3596 */
3597 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3598 enum rdma_network_type net_type,
3599 union ib_gid *sgid, union ib_gid *dgid);
3600
3601 /**
3602 * ib_get_rdma_header_version - Get the header version
3603 * @hdr: the L3 header to parse
3604 */
3605 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3606
3607 /**
3608 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3609 * work completion.
3610 * @device: Device on which the received message arrived.
3611 * @port_num: Port on which the received message arrived.
3612 * @wc: Work completion associated with the received message.
3613 * @grh: References the received global route header. This parameter is
3614 * ignored unless the work completion indicates that the GRH is valid.
3615 * @ah_attr: Returned attributes that can be used when creating an address
3616 * handle for replying to the message.
3617 * When ib_init_ah_attr_from_wc() returns success,
3618 * (a) for IB link layer it optionally contains a reference to SGID attribute
3619 * when GRH is present for IB link layer.
3620 * (b) for RoCE link layer it contains a reference to SGID attribute.
3621 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3622 * attributes which are initialized using ib_init_ah_attr_from_wc().
3623 *
3624 */
3625 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3626 const struct ib_wc *wc, const struct ib_grh *grh,
3627 struct rdma_ah_attr *ah_attr);
3628
3629 /**
3630 * ib_create_ah_from_wc - Creates an address handle associated with the
3631 * sender of the specified work completion.
3632 * @pd: The protection domain associated with the address handle.
3633 * @wc: Work completion information associated with a received message.
3634 * @grh: References the received global route header. This parameter is
3635 * ignored unless the work completion indicates that the GRH is valid.
3636 * @port_num: The outbound port number to associate with the address.
3637 *
3638 * The address handle is used to reference a local or global destination
3639 * in all UD QP post sends.
3640 */
3641 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3642 const struct ib_grh *grh, u32 port_num);
3643
3644 /**
3645 * rdma_modify_ah - Modifies the address vector associated with an address
3646 * handle.
3647 * @ah: The address handle to modify.
3648 * @ah_attr: The new address vector attributes to associate with the
3649 * address handle.
3650 */
3651 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3652
3653 /**
3654 * rdma_query_ah - Queries the address vector associated with an address
3655 * handle.
3656 * @ah: The address handle to query.
3657 * @ah_attr: The address vector attributes associated with the address
3658 * handle.
3659 */
3660 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3661
3662 enum rdma_destroy_ah_flags {
3663 /* In a sleepable context */
3664 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3665 };
3666
3667 /**
3668 * rdma_destroy_ah_user - Destroys an address handle.
3669 * @ah: The address handle to destroy.
3670 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3671 * @udata: Valid user data or NULL for kernel objects
3672 */
3673 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3674
3675 /**
3676 * rdma_destroy_ah - Destroys an kernel address handle.
3677 * @ah: The address handle to destroy.
3678 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3679 *
3680 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3681 */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3682 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3683 {
3684 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3685
3686 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3687 }
3688
3689 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3690 struct ib_srq_init_attr *srq_init_attr,
3691 struct ib_usrq_object *uobject,
3692 struct ib_udata *udata);
3693 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3694 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3695 {
3696 if (!pd->device->ops.create_srq)
3697 return ERR_PTR(-EOPNOTSUPP);
3698
3699 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3700 }
3701
3702 /**
3703 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3704 * @srq: The SRQ to modify.
3705 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3706 * the current values of selected SRQ attributes are returned.
3707 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3708 * are being modified.
3709 *
3710 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3711 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3712 * the number of receives queued drops below the limit.
3713 */
3714 int ib_modify_srq(struct ib_srq *srq,
3715 struct ib_srq_attr *srq_attr,
3716 enum ib_srq_attr_mask srq_attr_mask);
3717
3718 /**
3719 * ib_query_srq - Returns the attribute list and current values for the
3720 * specified SRQ.
3721 * @srq: The SRQ to query.
3722 * @srq_attr: The attributes of the specified SRQ.
3723 */
3724 int ib_query_srq(struct ib_srq *srq,
3725 struct ib_srq_attr *srq_attr);
3726
3727 /**
3728 * ib_destroy_srq_user - Destroys the specified SRQ.
3729 * @srq: The SRQ to destroy.
3730 * @udata: Valid user data or NULL for kernel objects
3731 */
3732 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3733
3734 /**
3735 * ib_destroy_srq - Destroys the specified kernel SRQ.
3736 * @srq: The SRQ to destroy.
3737 *
3738 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3739 */
ib_destroy_srq(struct ib_srq * srq)3740 static inline void ib_destroy_srq(struct ib_srq *srq)
3741 {
3742 int ret = ib_destroy_srq_user(srq, NULL);
3743
3744 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3745 }
3746
3747 /**
3748 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3749 * @srq: The SRQ to post the work request on.
3750 * @recv_wr: A list of work requests to post on the receive queue.
3751 * @bad_recv_wr: On an immediate failure, this parameter will reference
3752 * the work request that failed to be posted on the QP.
3753 */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3754 static inline int ib_post_srq_recv(struct ib_srq *srq,
3755 const struct ib_recv_wr *recv_wr,
3756 const struct ib_recv_wr **bad_recv_wr)
3757 {
3758 const struct ib_recv_wr *dummy;
3759
3760 return srq->device->ops.post_srq_recv(srq, recv_wr,
3761 bad_recv_wr ? : &dummy);
3762 }
3763
3764 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3765 struct ib_qp_init_attr *qp_init_attr,
3766 const char *caller);
3767 /**
3768 * ib_create_qp - Creates a kernel QP associated with the specific protection
3769 * domain.
3770 * @pd: The protection domain associated with the QP.
3771 * @init_attr: A list of initial attributes required to create the
3772 * QP. If QP creation succeeds, then the attributes are updated to
3773 * the actual capabilities of the created QP.
3774 */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3775 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3776 struct ib_qp_init_attr *init_attr)
3777 {
3778 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3779 }
3780
3781 /**
3782 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3783 * @qp: The QP to modify.
3784 * @attr: On input, specifies the QP attributes to modify. On output,
3785 * the current values of selected QP attributes are returned.
3786 * @attr_mask: A bit-mask used to specify which attributes of the QP
3787 * are being modified.
3788 * @udata: pointer to user's input output buffer information
3789 * are being modified.
3790 * It returns 0 on success and returns appropriate error code on error.
3791 */
3792 int ib_modify_qp_with_udata(struct ib_qp *qp,
3793 struct ib_qp_attr *attr,
3794 int attr_mask,
3795 struct ib_udata *udata);
3796
3797 /**
3798 * ib_modify_qp - Modifies the attributes for the specified QP and then
3799 * transitions the QP to the given state.
3800 * @qp: The QP to modify.
3801 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3802 * the current values of selected QP attributes are returned.
3803 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3804 * are being modified.
3805 */
3806 int ib_modify_qp(struct ib_qp *qp,
3807 struct ib_qp_attr *qp_attr,
3808 int qp_attr_mask);
3809
3810 /**
3811 * ib_query_qp - Returns the attribute list and current values for the
3812 * specified QP.
3813 * @qp: The QP to query.
3814 * @qp_attr: The attributes of the specified QP.
3815 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3816 * @qp_init_attr: Additional attributes of the selected QP.
3817 *
3818 * The qp_attr_mask may be used to limit the query to gathering only the
3819 * selected attributes.
3820 */
3821 int ib_query_qp(struct ib_qp *qp,
3822 struct ib_qp_attr *qp_attr,
3823 int qp_attr_mask,
3824 struct ib_qp_init_attr *qp_init_attr);
3825
3826 /**
3827 * ib_destroy_qp - Destroys the specified QP.
3828 * @qp: The QP to destroy.
3829 * @udata: Valid udata or NULL for kernel objects
3830 */
3831 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3832
3833 /**
3834 * ib_destroy_qp - Destroys the specified kernel QP.
3835 * @qp: The QP to destroy.
3836 *
3837 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3838 */
ib_destroy_qp(struct ib_qp * qp)3839 static inline int ib_destroy_qp(struct ib_qp *qp)
3840 {
3841 return ib_destroy_qp_user(qp, NULL);
3842 }
3843
3844 /**
3845 * ib_open_qp - Obtain a reference to an existing sharable QP.
3846 * @xrcd - XRC domain
3847 * @qp_open_attr: Attributes identifying the QP to open.
3848 *
3849 * Returns a reference to a sharable QP.
3850 */
3851 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3852 struct ib_qp_open_attr *qp_open_attr);
3853
3854 /**
3855 * ib_close_qp - Release an external reference to a QP.
3856 * @qp: The QP handle to release
3857 *
3858 * The opened QP handle is released by the caller. The underlying
3859 * shared QP is not destroyed until all internal references are released.
3860 */
3861 int ib_close_qp(struct ib_qp *qp);
3862
3863 /**
3864 * ib_post_send - Posts a list of work requests to the send queue of
3865 * the specified QP.
3866 * @qp: The QP to post the work request on.
3867 * @send_wr: A list of work requests to post on the send queue.
3868 * @bad_send_wr: On an immediate failure, this parameter will reference
3869 * the work request that failed to be posted on the QP.
3870 *
3871 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3872 * error is returned, the QP state shall not be affected,
3873 * ib_post_send() will return an immediate error after queueing any
3874 * earlier work requests in the list.
3875 */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3876 static inline int ib_post_send(struct ib_qp *qp,
3877 const struct ib_send_wr *send_wr,
3878 const struct ib_send_wr **bad_send_wr)
3879 {
3880 const struct ib_send_wr *dummy;
3881
3882 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3883 }
3884
3885 /**
3886 * ib_post_recv - Posts a list of work requests to the receive queue of
3887 * the specified QP.
3888 * @qp: The QP to post the work request on.
3889 * @recv_wr: A list of work requests to post on the receive queue.
3890 * @bad_recv_wr: On an immediate failure, this parameter will reference
3891 * the work request that failed to be posted on the QP.
3892 */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3893 static inline int ib_post_recv(struct ib_qp *qp,
3894 const struct ib_recv_wr *recv_wr,
3895 const struct ib_recv_wr **bad_recv_wr)
3896 {
3897 const struct ib_recv_wr *dummy;
3898
3899 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3900 }
3901
3902 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3903 int comp_vector, enum ib_poll_context poll_ctx,
3904 const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3905 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3906 int nr_cqe, int comp_vector,
3907 enum ib_poll_context poll_ctx)
3908 {
3909 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3910 KBUILD_MODNAME);
3911 }
3912
3913 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3914 int nr_cqe, enum ib_poll_context poll_ctx,
3915 const char *caller);
3916
3917 /**
3918 * ib_alloc_cq_any: Allocate kernel CQ
3919 * @dev: The IB device
3920 * @private: Private data attached to the CQE
3921 * @nr_cqe: Number of CQEs in the CQ
3922 * @poll_ctx: Context used for polling the CQ
3923 */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3924 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3925 void *private, int nr_cqe,
3926 enum ib_poll_context poll_ctx)
3927 {
3928 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3929 KBUILD_MODNAME);
3930 }
3931
3932 void ib_free_cq(struct ib_cq *cq);
3933 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3934
3935 /**
3936 * ib_create_cq - Creates a CQ on the specified device.
3937 * @device: The device on which to create the CQ.
3938 * @comp_handler: A user-specified callback that is invoked when a
3939 * completion event occurs on the CQ.
3940 * @event_handler: A user-specified callback that is invoked when an
3941 * asynchronous event not associated with a completion occurs on the CQ.
3942 * @cq_context: Context associated with the CQ returned to the user via
3943 * the associated completion and event handlers.
3944 * @cq_attr: The attributes the CQ should be created upon.
3945 *
3946 * Users can examine the cq structure to determine the actual CQ size.
3947 */
3948 struct ib_cq *__ib_create_cq(struct ib_device *device,
3949 ib_comp_handler comp_handler,
3950 void (*event_handler)(struct ib_event *, void *),
3951 void *cq_context,
3952 const struct ib_cq_init_attr *cq_attr,
3953 const char *caller);
3954 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3955 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3956
3957 /**
3958 * ib_resize_cq - Modifies the capacity of the CQ.
3959 * @cq: The CQ to resize.
3960 * @cqe: The minimum size of the CQ.
3961 *
3962 * Users can examine the cq structure to determine the actual CQ size.
3963 */
3964 int ib_resize_cq(struct ib_cq *cq, int cqe);
3965
3966 /**
3967 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3968 * @cq: The CQ to modify.
3969 * @cq_count: number of CQEs that will trigger an event
3970 * @cq_period: max period of time in usec before triggering an event
3971 *
3972 */
3973 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3974
3975 /**
3976 * ib_destroy_cq_user - Destroys the specified CQ.
3977 * @cq: The CQ to destroy.
3978 * @udata: Valid user data or NULL for kernel objects
3979 */
3980 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3981
3982 /**
3983 * ib_destroy_cq - Destroys the specified kernel CQ.
3984 * @cq: The CQ to destroy.
3985 *
3986 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3987 */
ib_destroy_cq(struct ib_cq * cq)3988 static inline void ib_destroy_cq(struct ib_cq *cq)
3989 {
3990 int ret = ib_destroy_cq_user(cq, NULL);
3991
3992 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3993 }
3994
3995 /**
3996 * ib_poll_cq - poll a CQ for completion(s)
3997 * @cq:the CQ being polled
3998 * @num_entries:maximum number of completions to return
3999 * @wc:array of at least @num_entries &struct ib_wc where completions
4000 * will be returned
4001 *
4002 * Poll a CQ for (possibly multiple) completions. If the return value
4003 * is < 0, an error occurred. If the return value is >= 0, it is the
4004 * number of completions returned. If the return value is
4005 * non-negative and < num_entries, then the CQ was emptied.
4006 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)4007 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4008 struct ib_wc *wc)
4009 {
4010 return cq->device->ops.poll_cq(cq, num_entries, wc);
4011 }
4012
4013 /**
4014 * ib_req_notify_cq - Request completion notification on a CQ.
4015 * @cq: The CQ to generate an event for.
4016 * @flags:
4017 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4018 * to request an event on the next solicited event or next work
4019 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4020 * may also be |ed in to request a hint about missed events, as
4021 * described below.
4022 *
4023 * Return Value:
4024 * < 0 means an error occurred while requesting notification
4025 * == 0 means notification was requested successfully, and if
4026 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4027 * were missed and it is safe to wait for another event. In
4028 * this case is it guaranteed that any work completions added
4029 * to the CQ since the last CQ poll will trigger a completion
4030 * notification event.
4031 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4032 * in. It means that the consumer must poll the CQ again to
4033 * make sure it is empty to avoid missing an event because of a
4034 * race between requesting notification and an entry being
4035 * added to the CQ. This return value means it is possible
4036 * (but not guaranteed) that a work completion has been added
4037 * to the CQ since the last poll without triggering a
4038 * completion notification event.
4039 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)4040 static inline int ib_req_notify_cq(struct ib_cq *cq,
4041 enum ib_cq_notify_flags flags)
4042 {
4043 return cq->device->ops.req_notify_cq(cq, flags);
4044 }
4045
4046 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4047 int comp_vector_hint,
4048 enum ib_poll_context poll_ctx);
4049
4050 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4051
4052 /*
4053 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4054 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4055 * address into the dma address.
4056 */
ib_uses_virt_dma(struct ib_device * dev)4057 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4058 {
4059 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4060 }
4061
4062 /*
4063 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4064 */
ib_dma_pci_p2p_dma_supported(struct ib_device * dev)4065 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4066 {
4067 if (ib_uses_virt_dma(dev))
4068 return false;
4069
4070 return dma_pci_p2pdma_supported(dev->dma_device);
4071 }
4072
4073 /**
4074 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4075 * @dma_addr: The DMA address
4076 *
4077 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4078 * going through the dma_addr marshalling.
4079 */
ib_virt_dma_to_ptr(u64 dma_addr)4080 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4081 {
4082 /* virt_dma mode maps the kvs's directly into the dma addr */
4083 return (void *)(uintptr_t)dma_addr;
4084 }
4085
4086 /**
4087 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4088 * @dma_addr: The DMA address
4089 *
4090 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4091 * through the dma_addr marshalling.
4092 */
ib_virt_dma_to_page(u64 dma_addr)4093 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4094 {
4095 return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4096 }
4097
4098 /**
4099 * ib_dma_mapping_error - check a DMA addr for error
4100 * @dev: The device for which the dma_addr was created
4101 * @dma_addr: The DMA address to check
4102 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)4103 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4104 {
4105 if (ib_uses_virt_dma(dev))
4106 return 0;
4107 return dma_mapping_error(dev->dma_device, dma_addr);
4108 }
4109
4110 /**
4111 * ib_dma_map_single - Map a kernel virtual address to DMA address
4112 * @dev: The device for which the dma_addr is to be created
4113 * @cpu_addr: The kernel virtual address
4114 * @size: The size of the region in bytes
4115 * @direction: The direction of the DMA
4116 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4117 static inline u64 ib_dma_map_single(struct ib_device *dev,
4118 void *cpu_addr, size_t size,
4119 enum dma_data_direction direction)
4120 {
4121 if (ib_uses_virt_dma(dev))
4122 return (uintptr_t)cpu_addr;
4123 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4124 }
4125
4126 /**
4127 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4128 * @dev: The device for which the DMA address was created
4129 * @addr: The DMA address
4130 * @size: The size of the region in bytes
4131 * @direction: The direction of the DMA
4132 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4133 static inline void ib_dma_unmap_single(struct ib_device *dev,
4134 u64 addr, size_t size,
4135 enum dma_data_direction direction)
4136 {
4137 if (!ib_uses_virt_dma(dev))
4138 dma_unmap_single(dev->dma_device, addr, size, direction);
4139 }
4140
4141 /**
4142 * ib_dma_map_page - Map a physical page to DMA address
4143 * @dev: The device for which the dma_addr is to be created
4144 * @page: The page to be mapped
4145 * @offset: The offset within the page
4146 * @size: The size of the region in bytes
4147 * @direction: The direction of the DMA
4148 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4149 static inline u64 ib_dma_map_page(struct ib_device *dev,
4150 struct page *page,
4151 unsigned long offset,
4152 size_t size,
4153 enum dma_data_direction direction)
4154 {
4155 if (ib_uses_virt_dma(dev))
4156 return (uintptr_t)(page_address(page) + offset);
4157 return dma_map_page(dev->dma_device, page, offset, size, direction);
4158 }
4159
4160 /**
4161 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4162 * @dev: The device for which the DMA address was created
4163 * @addr: The DMA address
4164 * @size: The size of the region in bytes
4165 * @direction: The direction of the DMA
4166 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4167 static inline void ib_dma_unmap_page(struct ib_device *dev,
4168 u64 addr, size_t size,
4169 enum dma_data_direction direction)
4170 {
4171 if (!ib_uses_virt_dma(dev))
4172 dma_unmap_page(dev->dma_device, addr, size, direction);
4173 }
4174
4175 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4176 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4177 struct scatterlist *sg, int nents,
4178 enum dma_data_direction direction,
4179 unsigned long dma_attrs)
4180 {
4181 if (ib_uses_virt_dma(dev))
4182 return ib_dma_virt_map_sg(dev, sg, nents);
4183 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4184 dma_attrs);
4185 }
4186
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4187 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4188 struct scatterlist *sg, int nents,
4189 enum dma_data_direction direction,
4190 unsigned long dma_attrs)
4191 {
4192 if (!ib_uses_virt_dma(dev))
4193 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4194 dma_attrs);
4195 }
4196
4197 /**
4198 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4199 * @dev: The device for which the DMA addresses are to be created
4200 * @sg: The sg_table object describing the buffer
4201 * @direction: The direction of the DMA
4202 * @attrs: Optional DMA attributes for the map operation
4203 */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4204 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4205 struct sg_table *sgt,
4206 enum dma_data_direction direction,
4207 unsigned long dma_attrs)
4208 {
4209 int nents;
4210
4211 if (ib_uses_virt_dma(dev)) {
4212 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4213 if (!nents)
4214 return -EIO;
4215 sgt->nents = nents;
4216 return 0;
4217 }
4218 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4219 }
4220
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4221 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4222 struct sg_table *sgt,
4223 enum dma_data_direction direction,
4224 unsigned long dma_attrs)
4225 {
4226 if (!ib_uses_virt_dma(dev))
4227 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4228 }
4229
4230 /**
4231 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4232 * @dev: The device for which the DMA addresses are to be created
4233 * @sg: The array of scatter/gather entries
4234 * @nents: The number of scatter/gather entries
4235 * @direction: The direction of the DMA
4236 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4237 static inline int ib_dma_map_sg(struct ib_device *dev,
4238 struct scatterlist *sg, int nents,
4239 enum dma_data_direction direction)
4240 {
4241 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4242 }
4243
4244 /**
4245 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4246 * @dev: The device for which the DMA addresses were created
4247 * @sg: The array of scatter/gather entries
4248 * @nents: The number of scatter/gather entries
4249 * @direction: The direction of the DMA
4250 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4251 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4252 struct scatterlist *sg, int nents,
4253 enum dma_data_direction direction)
4254 {
4255 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4256 }
4257
4258 /**
4259 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4260 * @dev: The device to query
4261 *
4262 * The returned value represents a size in bytes.
4263 */
ib_dma_max_seg_size(struct ib_device * dev)4264 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4265 {
4266 if (ib_uses_virt_dma(dev))
4267 return UINT_MAX;
4268 return dma_get_max_seg_size(dev->dma_device);
4269 }
4270
4271 /**
4272 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4273 * @dev: The device for which the DMA address was created
4274 * @addr: The DMA address
4275 * @size: The size of the region in bytes
4276 * @dir: The direction of the DMA
4277 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4278 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4279 u64 addr,
4280 size_t size,
4281 enum dma_data_direction dir)
4282 {
4283 if (!ib_uses_virt_dma(dev))
4284 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4285 }
4286
4287 /**
4288 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4289 * @dev: The device for which the DMA address was created
4290 * @addr: The DMA address
4291 * @size: The size of the region in bytes
4292 * @dir: The direction of the DMA
4293 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4294 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4295 u64 addr,
4296 size_t size,
4297 enum dma_data_direction dir)
4298 {
4299 if (!ib_uses_virt_dma(dev))
4300 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4301 }
4302
4303 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4304 * space. This function should be called when 'current' is the owning MM.
4305 */
4306 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4307 u64 virt_addr, int mr_access_flags);
4308
4309 /* ib_advise_mr - give an advice about an address range in a memory region */
4310 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4311 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4312 /**
4313 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4314 * HCA translation table.
4315 * @mr: The memory region to deregister.
4316 * @udata: Valid user data or NULL for kernel object
4317 *
4318 * This function can fail, if the memory region has memory windows bound to it.
4319 */
4320 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4321
4322 /**
4323 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4324 * HCA translation table.
4325 * @mr: The memory region to deregister.
4326 *
4327 * This function can fail, if the memory region has memory windows bound to it.
4328 *
4329 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4330 */
ib_dereg_mr(struct ib_mr * mr)4331 static inline int ib_dereg_mr(struct ib_mr *mr)
4332 {
4333 return ib_dereg_mr_user(mr, NULL);
4334 }
4335
4336 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4337 u32 max_num_sg);
4338
4339 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4340 u32 max_num_data_sg,
4341 u32 max_num_meta_sg);
4342
4343 /**
4344 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4345 * R_Key and L_Key.
4346 * @mr - struct ib_mr pointer to be updated.
4347 * @newkey - new key to be used.
4348 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4349 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4350 {
4351 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4352 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4353 }
4354
4355 /**
4356 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4357 * for calculating a new rkey for type 2 memory windows.
4358 * @rkey - the rkey to increment.
4359 */
ib_inc_rkey(u32 rkey)4360 static inline u32 ib_inc_rkey(u32 rkey)
4361 {
4362 const u32 mask = 0x000000ff;
4363 return ((rkey + 1) & mask) | (rkey & ~mask);
4364 }
4365
4366 /**
4367 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4368 * @qp: QP to attach to the multicast group. The QP must be type
4369 * IB_QPT_UD.
4370 * @gid: Multicast group GID.
4371 * @lid: Multicast group LID in host byte order.
4372 *
4373 * In order to send and receive multicast packets, subnet
4374 * administration must have created the multicast group and configured
4375 * the fabric appropriately. The port associated with the specified
4376 * QP must also be a member of the multicast group.
4377 */
4378 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4379
4380 /**
4381 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4382 * @qp: QP to detach from the multicast group.
4383 * @gid: Multicast group GID.
4384 * @lid: Multicast group LID in host byte order.
4385 */
4386 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4387
4388 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4389 struct inode *inode, struct ib_udata *udata);
4390 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4391
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4392 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4393 unsigned int flags)
4394 {
4395 u64 device_cap = ib_dev->attrs.device_cap_flags;
4396
4397 /*
4398 * Local write permission is required if remote write or
4399 * remote atomic permission is also requested.
4400 */
4401 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4402 !(flags & IB_ACCESS_LOCAL_WRITE))
4403 return -EINVAL;
4404
4405 if (flags & ~IB_ACCESS_SUPPORTED)
4406 return -EINVAL;
4407
4408 if (flags & IB_ACCESS_ON_DEMAND &&
4409 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4410 return -EOPNOTSUPP;
4411
4412 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4413 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4414 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4415 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4416 return -EOPNOTSUPP;
4417
4418 return 0;
4419 }
4420
ib_access_writable(int access_flags)4421 static inline bool ib_access_writable(int access_flags)
4422 {
4423 /*
4424 * We have writable memory backing the MR if any of the following
4425 * access flags are set. "Local write" and "remote write" obviously
4426 * require write access. "Remote atomic" can do things like fetch and
4427 * add, which will modify memory, and "MW bind" can change permissions
4428 * by binding a window.
4429 */
4430 return access_flags &
4431 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4432 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4433 }
4434
4435 /**
4436 * ib_check_mr_status: lightweight check of MR status.
4437 * This routine may provide status checks on a selected
4438 * ib_mr. first use is for signature status check.
4439 *
4440 * @mr: A memory region.
4441 * @check_mask: Bitmask of which checks to perform from
4442 * ib_mr_status_check enumeration.
4443 * @mr_status: The container of relevant status checks.
4444 * failed checks will be indicated in the status bitmask
4445 * and the relevant info shall be in the error item.
4446 */
4447 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4448 struct ib_mr_status *mr_status);
4449
4450 /**
4451 * ib_device_try_get: Hold a registration lock
4452 * device: The device to lock
4453 *
4454 * A device under an active registration lock cannot become unregistered. It
4455 * is only possible to obtain a registration lock on a device that is fully
4456 * registered, otherwise this function returns false.
4457 *
4458 * The registration lock is only necessary for actions which require the
4459 * device to still be registered. Uses that only require the device pointer to
4460 * be valid should use get_device(&ibdev->dev) to hold the memory.
4461 *
4462 */
ib_device_try_get(struct ib_device * dev)4463 static inline bool ib_device_try_get(struct ib_device *dev)
4464 {
4465 return refcount_inc_not_zero(&dev->refcount);
4466 }
4467
4468 void ib_device_put(struct ib_device *device);
4469 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4470 enum rdma_driver_id driver_id);
4471 struct ib_device *ib_device_get_by_name(const char *name,
4472 enum rdma_driver_id driver_id);
4473 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4474 u16 pkey, const union ib_gid *gid,
4475 const struct sockaddr *addr);
4476 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4477 unsigned int port);
4478 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4479 u32 port);
4480 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
4481 u32 *port);
4482
ib_get_curr_port_state(struct net_device * net_dev)4483 static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev)
4484 {
4485 return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ?
4486 IB_PORT_ACTIVE : IB_PORT_DOWN;
4487 }
4488
4489 void ib_dispatch_port_state_event(struct ib_device *ibdev,
4490 struct net_device *ndev);
4491 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4492 struct ib_wq_init_attr *init_attr);
4493 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4494
4495 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4496 unsigned int *sg_offset, unsigned int page_size);
4497 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4498 int data_sg_nents, unsigned int *data_sg_offset,
4499 struct scatterlist *meta_sg, int meta_sg_nents,
4500 unsigned int *meta_sg_offset, unsigned int page_size);
4501
4502 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4503 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4504 unsigned int *sg_offset, unsigned int page_size)
4505 {
4506 int n;
4507
4508 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4509 mr->iova = 0;
4510
4511 return n;
4512 }
4513
4514 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4515 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4516
4517 void ib_drain_rq(struct ib_qp *qp);
4518 void ib_drain_sq(struct ib_qp *qp);
4519 void ib_drain_qp(struct ib_qp *qp);
4520
4521 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4522 u8 *width);
4523
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4524 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4525 {
4526 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4527 return attr->roce.dmac;
4528 return NULL;
4529 }
4530
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4531 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4532 {
4533 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4534 attr->ib.dlid = (u16)dlid;
4535 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4536 attr->opa.dlid = dlid;
4537 }
4538
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4539 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4540 {
4541 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4542 return attr->ib.dlid;
4543 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4544 return attr->opa.dlid;
4545 return 0;
4546 }
4547
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4548 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4549 {
4550 attr->sl = sl;
4551 }
4552
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4553 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4554 {
4555 return attr->sl;
4556 }
4557
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4558 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4559 u8 src_path_bits)
4560 {
4561 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4562 attr->ib.src_path_bits = src_path_bits;
4563 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4564 attr->opa.src_path_bits = src_path_bits;
4565 }
4566
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4567 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4568 {
4569 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4570 return attr->ib.src_path_bits;
4571 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4572 return attr->opa.src_path_bits;
4573 return 0;
4574 }
4575
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4576 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4577 bool make_grd)
4578 {
4579 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4580 attr->opa.make_grd = make_grd;
4581 }
4582
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4583 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4584 {
4585 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4586 return attr->opa.make_grd;
4587 return false;
4588 }
4589
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4590 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4591 {
4592 attr->port_num = port_num;
4593 }
4594
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4595 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4596 {
4597 return attr->port_num;
4598 }
4599
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4600 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4601 u8 static_rate)
4602 {
4603 attr->static_rate = static_rate;
4604 }
4605
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4606 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4607 {
4608 return attr->static_rate;
4609 }
4610
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4611 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4612 enum ib_ah_flags flag)
4613 {
4614 attr->ah_flags = flag;
4615 }
4616
4617 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4618 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4619 {
4620 return attr->ah_flags;
4621 }
4622
4623 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4624 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4625 {
4626 return &attr->grh;
4627 }
4628
4629 /*To retrieve and modify the grh */
4630 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4631 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4632 {
4633 return &attr->grh;
4634 }
4635
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4636 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4637 {
4638 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4639
4640 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4641 }
4642
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4643 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4644 __be64 prefix)
4645 {
4646 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4647
4648 grh->dgid.global.subnet_prefix = prefix;
4649 }
4650
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4651 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4652 __be64 if_id)
4653 {
4654 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4655
4656 grh->dgid.global.interface_id = if_id;
4657 }
4658
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4659 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4660 union ib_gid *dgid, u32 flow_label,
4661 u8 sgid_index, u8 hop_limit,
4662 u8 traffic_class)
4663 {
4664 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4665
4666 attr->ah_flags = IB_AH_GRH;
4667 if (dgid)
4668 grh->dgid = *dgid;
4669 grh->flow_label = flow_label;
4670 grh->sgid_index = sgid_index;
4671 grh->hop_limit = hop_limit;
4672 grh->traffic_class = traffic_class;
4673 grh->sgid_attr = NULL;
4674 }
4675
4676 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4677 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4678 u32 flow_label, u8 hop_limit, u8 traffic_class,
4679 const struct ib_gid_attr *sgid_attr);
4680 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4681 const struct rdma_ah_attr *src);
4682 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4683 const struct rdma_ah_attr *new);
4684 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4685
4686 /**
4687 * rdma_ah_find_type - Return address handle type.
4688 *
4689 * @dev: Device to be checked
4690 * @port_num: Port number
4691 */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4692 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4693 u32 port_num)
4694 {
4695 if (rdma_protocol_roce(dev, port_num))
4696 return RDMA_AH_ATTR_TYPE_ROCE;
4697 if (rdma_protocol_ib(dev, port_num)) {
4698 if (rdma_cap_opa_ah(dev, port_num))
4699 return RDMA_AH_ATTR_TYPE_OPA;
4700 return RDMA_AH_ATTR_TYPE_IB;
4701 }
4702 if (dev->type == RDMA_DEVICE_TYPE_SMI)
4703 return RDMA_AH_ATTR_TYPE_IB;
4704
4705 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4706 }
4707
4708 /**
4709 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4710 * In the current implementation the only way to
4711 * get the 32bit lid is from other sources for OPA.
4712 * For IB, lids will always be 16bits so cast the
4713 * value accordingly.
4714 *
4715 * @lid: A 32bit LID
4716 */
ib_lid_cpu16(u32 lid)4717 static inline u16 ib_lid_cpu16(u32 lid)
4718 {
4719 WARN_ON_ONCE(lid & 0xFFFF0000);
4720 return (u16)lid;
4721 }
4722
4723 /**
4724 * ib_lid_be16 - Return lid in 16bit BE encoding.
4725 *
4726 * @lid: A 32bit LID
4727 */
ib_lid_be16(u32 lid)4728 static inline __be16 ib_lid_be16(u32 lid)
4729 {
4730 WARN_ON_ONCE(lid & 0xFFFF0000);
4731 return cpu_to_be16((u16)lid);
4732 }
4733
4734 /**
4735 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4736 * vector
4737 * @device: the rdma device
4738 * @comp_vector: index of completion vector
4739 *
4740 * Returns NULL on failure, otherwise a corresponding cpu map of the
4741 * completion vector (returns all-cpus map if the device driver doesn't
4742 * implement get_vector_affinity).
4743 */
4744 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4745 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4746 {
4747 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4748 !device->ops.get_vector_affinity)
4749 return NULL;
4750
4751 return device->ops.get_vector_affinity(device, comp_vector);
4752
4753 }
4754
4755 /**
4756 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4757 * and add their gids, as needed, to the relevant RoCE devices.
4758 *
4759 * @device: the rdma device
4760 */
4761 void rdma_roce_rescan_device(struct ib_device *ibdev);
4762 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4763 void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4764 u32 port, struct net_device *ndev);
4765
4766 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4767
4768 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4769
4770 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4771 enum rdma_netdev_t type, const char *name,
4772 unsigned char name_assign_type,
4773 void (*setup)(struct net_device *));
4774
4775 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4776 enum rdma_netdev_t type, const char *name,
4777 unsigned char name_assign_type,
4778 void (*setup)(struct net_device *),
4779 struct net_device *netdev);
4780
4781 /**
4782 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4783 *
4784 * @device: device pointer for which ib_device pointer to retrieve
4785 *
4786 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4787 *
4788 */
rdma_device_to_ibdev(struct device * device)4789 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4790 {
4791 struct ib_core_device *coredev =
4792 container_of(device, struct ib_core_device, dev);
4793
4794 return coredev->owner;
4795 }
4796
4797 /**
4798 * ibdev_to_node - return the NUMA node for a given ib_device
4799 * @dev: device to get the NUMA node for.
4800 */
ibdev_to_node(struct ib_device * ibdev)4801 static inline int ibdev_to_node(struct ib_device *ibdev)
4802 {
4803 struct device *parent = ibdev->dev.parent;
4804
4805 if (!parent)
4806 return NUMA_NO_NODE;
4807 return dev_to_node(parent);
4808 }
4809
4810 /**
4811 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4812 * ib_device holder structure from device pointer.
4813 *
4814 * NOTE: New drivers should not make use of this API; This API is only for
4815 * existing drivers who have exposed sysfs entries using
4816 * ops->device_group.
4817 */
4818 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4819 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4820
4821 bool rdma_dev_access_netns(const struct ib_device *device,
4822 const struct net *net);
4823
4824 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4825 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4826 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4827
4828 /**
4829 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4830 * on the flow_label
4831 *
4832 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4833 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4834 * convention.
4835 */
rdma_flow_label_to_udp_sport(u32 fl)4836 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4837 {
4838 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4839
4840 fl_low ^= fl_high >> 14;
4841 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4842 }
4843
4844 /**
4845 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4846 * local and remote qpn values
4847 *
4848 * This function folded the multiplication results of two qpns, 24 bit each,
4849 * fields, and converts it to a 20 bit results.
4850 *
4851 * This function will create symmetric flow_label value based on the local
4852 * and remote qpn values. this will allow both the requester and responder
4853 * to calculate the same flow_label for a given connection.
4854 *
4855 * This helper function should be used by driver in case the upper layer
4856 * provide a zero flow_label value. This is to improve entropy of RDMA
4857 * traffic in the network.
4858 */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4859 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4860 {
4861 u64 v = (u64)lqpn * rqpn;
4862
4863 v ^= v >> 20;
4864 v ^= v >> 40;
4865
4866 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4867 }
4868
4869 /**
4870 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4871 * label. If flow label is not defined in GRH then
4872 * calculate it based on lqpn/rqpn.
4873 *
4874 * @fl: flow label from GRH
4875 * @lqpn: local qp number
4876 * @rqpn: remote qp number
4877 */
rdma_get_udp_sport(u32 fl,u32 lqpn,u32 rqpn)4878 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4879 {
4880 if (!fl)
4881 fl = rdma_calc_flow_label(lqpn, rqpn);
4882
4883 return rdma_flow_label_to_udp_sport(fl);
4884 }
4885
4886 const struct ib_port_immutable*
4887 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4888
4889 /** ib_add_sub_device - Add a sub IB device on an existing one
4890 *
4891 * @parent: The IB device that needs to add a sub device
4892 * @type: The type of the new sub device
4893 * @name: The name of the new sub device
4894 *
4895 *
4896 * Return 0 on success, an error code otherwise
4897 */
4898 int ib_add_sub_device(struct ib_device *parent,
4899 enum rdma_nl_dev_type type,
4900 const char *name);
4901
4902
4903 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4904 *
4905 * @sub: The sub device that is going to be deleted
4906 *
4907 * Return 0 on success, an error code otherwise
4908 */
4909 int ib_del_sub_device_and_put(struct ib_device *sub);
4910
ib_mark_name_assigned_by_user(struct ib_device * ibdev)4911 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
4912 {
4913 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
4914 }
4915
4916 #endif /* IB_VERBS_H */
4917