1 //===-- MemoryProfileInfo.cpp - memory profile info ------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains utilities to analyze memory profile information.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/MemoryProfileInfo.h"
14 #include "llvm/Support/CommandLine.h"
15
16 using namespace llvm;
17 using namespace llvm::memprof;
18
19 #define DEBUG_TYPE "memory-profile-info"
20
21 // Upper bound on accesses per byte for marking an allocation cold.
22 cl::opt<float> MemProfAccessesPerByteColdThreshold(
23 "memprof-accesses-per-byte-cold-threshold", cl::init(10.0), cl::Hidden,
24 cl::desc("The threshold the accesses per byte must be under to consider "
25 "an allocation cold"));
26
27 // Lower bound on lifetime to mark an allocation cold (in addition to accesses
28 // per byte above). This is to avoid pessimizing short lived objects.
29 cl::opt<unsigned> MemProfMinLifetimeColdThreshold(
30 "memprof-min-lifetime-cold-threshold", cl::init(200), cl::Hidden,
31 cl::desc("The minimum lifetime (s) for an allocation to be considered "
32 "cold"));
33
getAllocType(uint64_t MaxAccessCount,uint64_t MinSize,uint64_t MinLifetime)34 AllocationType llvm::memprof::getAllocType(uint64_t MaxAccessCount,
35 uint64_t MinSize,
36 uint64_t MinLifetime) {
37 if (((float)MaxAccessCount) / MinSize < MemProfAccessesPerByteColdThreshold &&
38 // MinLifetime is expected to be in ms, so convert the threshold to ms.
39 MinLifetime >= MemProfMinLifetimeColdThreshold * 1000)
40 return AllocationType::Cold;
41 return AllocationType::NotCold;
42 }
43
buildCallstackMetadata(ArrayRef<uint64_t> CallStack,LLVMContext & Ctx)44 MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef<uint64_t> CallStack,
45 LLVMContext &Ctx) {
46 std::vector<Metadata *> StackVals;
47 for (auto Id : CallStack) {
48 auto *StackValMD =
49 ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id));
50 StackVals.push_back(StackValMD);
51 }
52 return MDNode::get(Ctx, StackVals);
53 }
54
getMIBStackNode(const MDNode * MIB)55 MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) {
56 assert(MIB->getNumOperands() == 2);
57 // The stack metadata is the first operand of each memprof MIB metadata.
58 return cast<MDNode>(MIB->getOperand(0));
59 }
60
getMIBAllocType(const MDNode * MIB)61 AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) {
62 assert(MIB->getNumOperands() == 2);
63 // The allocation type is currently the second operand of each memprof
64 // MIB metadata. This will need to change as we add additional allocation
65 // types that can be applied based on the allocation profile data.
66 auto *MDS = dyn_cast<MDString>(MIB->getOperand(1));
67 assert(MDS);
68 if (MDS->getString().equals("cold"))
69 return AllocationType::Cold;
70 return AllocationType::NotCold;
71 }
72
getAllocTypeAttributeString(AllocationType Type)73 static std::string getAllocTypeAttributeString(AllocationType Type) {
74 switch (Type) {
75 case AllocationType::NotCold:
76 return "notcold";
77 break;
78 case AllocationType::Cold:
79 return "cold";
80 break;
81 default:
82 assert(false && "Unexpected alloc type");
83 }
84 llvm_unreachable("invalid alloc type");
85 }
86
addAllocTypeAttribute(LLVMContext & Ctx,CallBase * CI,AllocationType AllocType)87 static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI,
88 AllocationType AllocType) {
89 auto AllocTypeString = getAllocTypeAttributeString(AllocType);
90 auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString);
91 CI->addFnAttr(A);
92 }
93
hasSingleAllocType(uint8_t AllocTypes)94 static bool hasSingleAllocType(uint8_t AllocTypes) {
95 const unsigned NumAllocTypes = llvm::popcount(AllocTypes);
96 assert(NumAllocTypes != 0);
97 return NumAllocTypes == 1;
98 }
99
addCallStack(AllocationType AllocType,ArrayRef<uint64_t> StackIds)100 void CallStackTrie::addCallStack(AllocationType AllocType,
101 ArrayRef<uint64_t> StackIds) {
102 bool First = true;
103 CallStackTrieNode *Curr = nullptr;
104 for (auto StackId : StackIds) {
105 // If this is the first stack frame, add or update alloc node.
106 if (First) {
107 First = false;
108 if (Alloc) {
109 assert(AllocStackId == StackId);
110 Alloc->AllocTypes |= static_cast<uint8_t>(AllocType);
111 } else {
112 AllocStackId = StackId;
113 Alloc = new CallStackTrieNode(AllocType);
114 }
115 Curr = Alloc;
116 continue;
117 }
118 // Update existing caller node if it exists.
119 auto Next = Curr->Callers.find(StackId);
120 if (Next != Curr->Callers.end()) {
121 Curr = Next->second;
122 Curr->AllocTypes |= static_cast<uint8_t>(AllocType);
123 continue;
124 }
125 // Otherwise add a new caller node.
126 auto *New = new CallStackTrieNode(AllocType);
127 Curr->Callers[StackId] = New;
128 Curr = New;
129 }
130 assert(Curr);
131 }
132
addCallStack(MDNode * MIB)133 void CallStackTrie::addCallStack(MDNode *MIB) {
134 MDNode *StackMD = getMIBStackNode(MIB);
135 assert(StackMD);
136 std::vector<uint64_t> CallStack;
137 CallStack.reserve(StackMD->getNumOperands());
138 for (const auto &MIBStackIter : StackMD->operands()) {
139 auto *StackId = mdconst::dyn_extract<ConstantInt>(MIBStackIter);
140 assert(StackId);
141 CallStack.push_back(StackId->getZExtValue());
142 }
143 addCallStack(getMIBAllocType(MIB), CallStack);
144 }
145
createMIBNode(LLVMContext & Ctx,std::vector<uint64_t> & MIBCallStack,AllocationType AllocType)146 static MDNode *createMIBNode(LLVMContext &Ctx,
147 std::vector<uint64_t> &MIBCallStack,
148 AllocationType AllocType) {
149 std::vector<Metadata *> MIBPayload(
150 {buildCallstackMetadata(MIBCallStack, Ctx)});
151 MIBPayload.push_back(
152 MDString::get(Ctx, getAllocTypeAttributeString(AllocType)));
153 return MDNode::get(Ctx, MIBPayload);
154 }
155
156 // Recursive helper to trim contexts and create metadata nodes.
157 // Caller should have pushed Node's loc to MIBCallStack. Doing this in the
158 // caller makes it simpler to handle the many early returns in this method.
buildMIBNodes(CallStackTrieNode * Node,LLVMContext & Ctx,std::vector<uint64_t> & MIBCallStack,std::vector<Metadata * > & MIBNodes,bool CalleeHasAmbiguousCallerContext)159 bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
160 std::vector<uint64_t> &MIBCallStack,
161 std::vector<Metadata *> &MIBNodes,
162 bool CalleeHasAmbiguousCallerContext) {
163 // Trim context below the first node in a prefix with a single alloc type.
164 // Add an MIB record for the current call stack prefix.
165 if (hasSingleAllocType(Node->AllocTypes)) {
166 MIBNodes.push_back(
167 createMIBNode(Ctx, MIBCallStack, (AllocationType)Node->AllocTypes));
168 return true;
169 }
170
171 // We don't have a single allocation for all the contexts sharing this prefix,
172 // so recursively descend into callers in trie.
173 if (!Node->Callers.empty()) {
174 bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1;
175 bool AddedMIBNodesForAllCallerContexts = true;
176 for (auto &Caller : Node->Callers) {
177 MIBCallStack.push_back(Caller.first);
178 AddedMIBNodesForAllCallerContexts &=
179 buildMIBNodes(Caller.second, Ctx, MIBCallStack, MIBNodes,
180 NodeHasAmbiguousCallerContext);
181 // Remove Caller.
182 MIBCallStack.pop_back();
183 }
184 if (AddedMIBNodesForAllCallerContexts)
185 return true;
186 // We expect that the callers should be forced to add MIBs to disambiguate
187 // the context in this case (see below).
188 assert(!NodeHasAmbiguousCallerContext);
189 }
190
191 // If we reached here, then this node does not have a single allocation type,
192 // and we didn't add metadata for a longer call stack prefix including any of
193 // Node's callers. That means we never hit a single allocation type along all
194 // call stacks with this prefix. This can happen due to recursion collapsing
195 // or the stack being deeper than tracked by the profiler runtime, leading to
196 // contexts with different allocation types being merged. In that case, we
197 // trim the context just below the deepest context split, which is this
198 // node if the callee has an ambiguous caller context (multiple callers),
199 // since the recursive calls above returned false. Conservatively give it
200 // non-cold allocation type.
201 if (!CalleeHasAmbiguousCallerContext)
202 return false;
203 MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold));
204 return true;
205 }
206
207 // Build and attach the minimal necessary MIB metadata. If the alloc has a
208 // single allocation type, add a function attribute instead. Returns true if
209 // memprof metadata attached, false if not (attribute added).
buildAndAttachMIBMetadata(CallBase * CI)210 bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) {
211 auto &Ctx = CI->getContext();
212 if (hasSingleAllocType(Alloc->AllocTypes)) {
213 addAllocTypeAttribute(Ctx, CI, (AllocationType)Alloc->AllocTypes);
214 return false;
215 }
216 std::vector<uint64_t> MIBCallStack;
217 MIBCallStack.push_back(AllocStackId);
218 std::vector<Metadata *> MIBNodes;
219 assert(!Alloc->Callers.empty() && "addCallStack has not been called yet");
220 buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes,
221 /*CalleeHasAmbiguousCallerContext=*/true);
222 assert(MIBCallStack.size() == 1 &&
223 "Should only be left with Alloc's location in stack");
224 CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes));
225 return true;
226 }
227
228 template <>
CallStackIterator(const MDNode * N,bool End)229 CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::CallStackIterator(
230 const MDNode *N, bool End)
231 : N(N) {
232 if (!N)
233 return;
234 Iter = End ? N->op_end() : N->op_begin();
235 }
236
237 template <>
238 uint64_t
operator *()239 CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::operator*() {
240 assert(Iter != N->op_end());
241 ConstantInt *StackIdCInt = mdconst::dyn_extract<ConstantInt>(*Iter);
242 assert(StackIdCInt);
243 return StackIdCInt->getZExtValue();
244 }
245