1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 **********************************************************************
5 * Copyright (c) 2003-2008, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * Author: Alan Liu
9 * Created: September 2 2003
10 * Since: ICU 2.8
11 **********************************************************************
12 */
13
14 #include "gregoimp.h"
15
16 #if !UCONFIG_NO_FORMATTING
17
18 #include "unicode/ucal.h"
19 #include "uresimp.h"
20 #include "cstring.h"
21 #include "uassert.h"
22
23 U_NAMESPACE_BEGIN
24
floorDivide(int32_t numerator,int32_t denominator)25 int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) {
26 return (numerator >= 0) ?
27 numerator / denominator : ((numerator + 1) / denominator) - 1;
28 }
29
floorDivideInt64(int64_t numerator,int64_t denominator)30 int64_t ClockMath::floorDivideInt64(int64_t numerator, int64_t denominator) {
31 return (numerator >= 0) ?
32 numerator / denominator : ((numerator + 1) / denominator) - 1;
33 }
34
floorDivide(int32_t numerator,int32_t denominator,int32_t * remainder)35 int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator,
36 int32_t* remainder) {
37 int64_t quotient = floorDivide(numerator, denominator);
38 if (remainder != nullptr) {
39 *remainder = numerator - (quotient * denominator);
40 }
41 return quotient;
42 }
43
floorDivide(double numerator,int32_t denominator,int32_t * remainder)44 double ClockMath::floorDivide(double numerator, int32_t denominator,
45 int32_t* remainder) {
46 // For an integer n and representable ⌊x/n⌋, ⌊RN(x/n)⌋=⌊x/n⌋, where RN is
47 // rounding to nearest.
48 double quotient = uprv_floor(numerator / denominator);
49 if (remainder != nullptr) {
50 // For doubles x and n, where n is an integer and ⌊x+n⌋ < 2³¹, the
51 // expression `(int32_t) (x + n)` evaluated with rounding to nearest
52 // differs from ⌊x+n⌋ if 0 < ⌈x⌉−x ≪ x+n, as `x + n` is rounded up to
53 // n+⌈x⌉ = ⌊x+n⌋ + 1. Rewriting it as ⌊x⌋+n makes the addition exact.
54 *remainder = (int32_t) (uprv_floor(numerator) - (quotient * denominator));
55 }
56 return quotient;
57 }
58
floorDivide(double dividend,double divisor,double * remainder)59 double ClockMath::floorDivide(double dividend, double divisor,
60 double* remainder) {
61 // Only designed to work for positive divisors
62 U_ASSERT(divisor > 0);
63 double quotient = floorDivide(dividend, divisor);
64 double r = dividend - (quotient * divisor);
65 // N.B. For certain large dividends, on certain platforms, there
66 // is a bug such that the quotient is off by one. If you doubt
67 // this to be true, set a breakpoint below and run cintltst.
68 if (r < 0 || r >= divisor) {
69 // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
70 // machine (too high by one). 4.1792057231752762e+024 /
71 // 86400000.0 is wrong the other way (too low).
72 double q = quotient;
73 quotient += (r < 0) ? -1 : +1;
74 if (q == quotient) {
75 // For quotients > ~2^53, we won't be able to add or
76 // subtract one, since the LSB of the mantissa will be >
77 // 2^0; that is, the exponent (base 2) will be larger than
78 // the length, in bits, of the mantissa. In that case, we
79 // can't give a correct answer, so we set the remainder to
80 // zero. This has the desired effect of making extreme
81 // values give back an approximate answer rather than
82 // crashing. For example, UDate values above a ~10^25
83 // might all have a time of midnight.
84 r = 0;
85 } else {
86 r = dividend - (quotient * divisor);
87 }
88 }
89 U_ASSERT(0 <= r && r < divisor);
90 if (remainder != nullptr) {
91 *remainder = r;
92 }
93 return quotient;
94 }
95
96 const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian
97 const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian
98
99 const int16_t Grego::DAYS_BEFORE[24] =
100 {0,31,59,90,120,151,181,212,243,273,304,334,
101 0,31,60,91,121,152,182,213,244,274,305,335};
102
103 const int8_t Grego::MONTH_LENGTH[24] =
104 {31,28,31,30,31,30,31,31,30,31,30,31,
105 31,29,31,30,31,30,31,31,30,31,30,31};
106
fieldsToDay(int32_t year,int32_t month,int32_t dom)107 int64_t Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) {
108
109 int64_t y = year - 1;
110
111 int64_t julian = 365LL * y +
112 ClockMath::floorDivideInt64(y, 4LL) + (JULIAN_1_CE - 3) + // Julian cal
113 ClockMath::floorDivideInt64(y, 400LL) -
114 ClockMath::floorDivideInt64(y, 100LL) + 2 + // => Gregorian cal
115 DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom
116
117 return julian - JULIAN_1970_CE; // JD => epoch day
118 }
119
dayToFields(int32_t day,int32_t & year,int32_t & month,int32_t & dom,int32_t & dow,int32_t & doy)120 void Grego::dayToFields(int32_t day, int32_t& year, int32_t& month,
121 int32_t& dom, int32_t& dow, int32_t& doy) {
122
123 // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
124 day += JULIAN_1970_CE - JULIAN_1_CE;
125
126 // Convert from the day number to the multiple radix
127 // representation. We use 400-year, 100-year, and 4-year cycles.
128 // For example, the 4-year cycle has 4 years + 1 leap day; giving
129 // 1461 == 365*4 + 1 days.
130 int32_t n400 = ClockMath::floorDivide(day, 146097, &doy); // 400-year cycle length
131 int32_t n100 = ClockMath::floorDivide(doy, 36524, &doy); // 100-year cycle length
132 int32_t n4 = ClockMath::floorDivide(doy, 1461, &doy); // 4-year cycle length
133 int32_t n1 = ClockMath::floorDivide(doy, 365, &doy);
134 year = 400*n400 + 100*n100 + 4*n4 + n1;
135 if (n100 == 4 || n1 == 4) {
136 doy = 365; // Dec 31 at end of 4- or 400-year cycle
137 } else {
138 ++year;
139 }
140
141 UBool isLeap = isLeapYear(year);
142
143 // Gregorian day zero is a Monday.
144 dow = (day + 1) % 7;
145 dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY;
146
147 // Common Julian/Gregorian calculation
148 int32_t correction = 0;
149 int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
150 if (doy >= march1) {
151 correction = isLeap ? 1 : 2;
152 }
153 month = (12 * (doy + correction) + 6) / 367; // zero-based month
154 dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM
155 doy++; // one-based doy
156 }
157
timeToFields(UDate time,int32_t & year,int32_t & month,int32_t & dom,int32_t & dow,int32_t & doy,int32_t & mid)158 void Grego::timeToFields(UDate time, int32_t& year, int32_t& month,
159 int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) {
160 double millisInDay;
161 double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, &millisInDay);
162 mid = (int32_t)millisInDay;
163 dayToFields(day, year, month, dom, dow, doy);
164 }
165
dayOfWeek(int32_t day)166 int32_t Grego::dayOfWeek(int32_t day) {
167 int32_t dow;
168 ClockMath::floorDivide(day + int{UCAL_THURSDAY}, 7, &dow);
169 return (dow == 0) ? UCAL_SATURDAY : dow;
170 }
171
dayOfWeekInMonth(int32_t year,int32_t month,int32_t dom)172 int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) {
173 int32_t weekInMonth = (dom + 6)/7;
174 if (weekInMonth == 4) {
175 if (dom + 7 > monthLength(year, month)) {
176 weekInMonth = -1;
177 }
178 } else if (weekInMonth == 5) {
179 weekInMonth = -1;
180 }
181 return weekInMonth;
182 }
183
184 U_NAMESPACE_END
185
186 #endif
187 //eof
188