1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/falloc.h>
14 #include <linux/types.h>
15 #include <linux/compat.h>
16 #include <linux/uaccess.h>
17 #include <linux/mount.h>
18 #include <linux/pagevec.h>
19 #include <linux/uio.h>
20 #include <linux/uuid.h>
21 #include <linux/file.h>
22 #include <linux/nls.h>
23 #include <linux/sched/signal.h>
24 #include <linux/fileattr.h>
25 #include <linux/fadvise.h>
26 #include <linux/iomap.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37 
f2fs_filemap_fault(struct vm_fault * vmf)38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
39 {
40 	struct inode *inode = file_inode(vmf->vma->vm_file);
41 	vm_flags_t flags = vmf->vma->vm_flags;
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (ret & VM_FAULT_LOCKED)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
50 
51 	return ret;
52 }
53 
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct folio *folio = page_folio(vmf->page);
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = !f2fs_is_pinned_file(inode);
61 	int err = 0;
62 	vm_fault_t ret;
63 
64 	if (unlikely(IS_IMMUTABLE(inode)))
65 		return VM_FAULT_SIGBUS;
66 
67 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
68 		err = -EIO;
69 		goto out;
70 	}
71 
72 	if (unlikely(f2fs_cp_error(sbi))) {
73 		err = -EIO;
74 		goto out;
75 	}
76 
77 	if (!f2fs_is_checkpoint_ready(sbi)) {
78 		err = -ENOSPC;
79 		goto out;
80 	}
81 
82 	err = f2fs_convert_inline_inode(inode);
83 	if (err)
84 		goto out;
85 
86 #ifdef CONFIG_F2FS_FS_COMPRESSION
87 	if (f2fs_compressed_file(inode)) {
88 		int ret = f2fs_is_compressed_cluster(inode, folio->index);
89 
90 		if (ret < 0) {
91 			err = ret;
92 			goto out;
93 		} else if (ret) {
94 			need_alloc = false;
95 		}
96 	}
97 #endif
98 	/* should do out of any locked page */
99 	if (need_alloc)
100 		f2fs_balance_fs(sbi, true);
101 
102 	sb_start_pagefault(inode->i_sb);
103 
104 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
105 
106 	file_update_time(vmf->vma->vm_file);
107 	filemap_invalidate_lock_shared(inode->i_mapping);
108 	folio_lock(folio);
109 	if (unlikely(folio->mapping != inode->i_mapping ||
110 			folio_pos(folio) > i_size_read(inode) ||
111 			!folio_test_uptodate(folio))) {
112 		folio_unlock(folio);
113 		err = -EFAULT;
114 		goto out_sem;
115 	}
116 
117 	set_new_dnode(&dn, inode, NULL, NULL, 0);
118 	if (need_alloc) {
119 		/* block allocation */
120 		err = f2fs_get_block_locked(&dn, folio->index);
121 	} else {
122 		err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
123 		f2fs_put_dnode(&dn);
124 		if (f2fs_is_pinned_file(inode) &&
125 		    !__is_valid_data_blkaddr(dn.data_blkaddr))
126 			err = -EIO;
127 	}
128 
129 	if (err) {
130 		folio_unlock(folio);
131 		goto out_sem;
132 	}
133 
134 	f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true);
135 
136 	/* wait for GCed page writeback via META_MAPPING */
137 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138 
139 	/*
140 	 * check to see if the page is mapped already (no holes)
141 	 */
142 	if (folio_test_mappedtodisk(folio))
143 		goto out_sem;
144 
145 	/* page is wholly or partially inside EOF */
146 	if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
147 						i_size_read(inode)) {
148 		loff_t offset;
149 
150 		offset = i_size_read(inode) & ~PAGE_MASK;
151 		folio_zero_segment(folio, offset, folio_size(folio));
152 	}
153 	folio_mark_dirty(folio);
154 
155 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
156 	f2fs_update_time(sbi, REQ_TIME);
157 
158 out_sem:
159 	filemap_invalidate_unlock_shared(inode->i_mapping);
160 
161 	sb_end_pagefault(inode->i_sb);
162 out:
163 	ret = vmf_fs_error(err);
164 
165 	trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
166 	return ret;
167 }
168 
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 	.fault		= f2fs_filemap_fault,
171 	.map_pages	= filemap_map_pages,
172 	.page_mkwrite	= f2fs_vm_page_mkwrite,
173 };
174 
get_parent_ino(struct inode * inode,nid_t * pino)175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177 	struct dentry *dentry;
178 
179 	/*
180 	 * Make sure to get the non-deleted alias.  The alias associated with
181 	 * the open file descriptor being fsync()'ed may be deleted already.
182 	 */
183 	dentry = d_find_alias(inode);
184 	if (!dentry)
185 		return 0;
186 
187 	*pino = d_parent_ino(dentry);
188 	dput(dentry);
189 	return 1;
190 }
191 
need_do_checkpoint(struct inode * inode)192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
196 
197 	if (!S_ISREG(inode->i_mode))
198 		cp_reason = CP_NON_REGULAR;
199 	else if (f2fs_compressed_file(inode))
200 		cp_reason = CP_COMPRESSED;
201 	else if (inode->i_nlink != 1)
202 		cp_reason = CP_HARDLINK;
203 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 		cp_reason = CP_SB_NEED_CP;
205 	else if (file_wrong_pino(inode))
206 		cp_reason = CP_WRONG_PINO;
207 	else if (!f2fs_space_for_roll_forward(sbi))
208 		cp_reason = CP_NO_SPC_ROLL;
209 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 		cp_reason = CP_NODE_NEED_CP;
211 	else if (test_opt(sbi, FASTBOOT))
212 		cp_reason = CP_FASTBOOT_MODE;
213 	else if (F2FS_OPTION(sbi).active_logs == 2)
214 		cp_reason = CP_SPEC_LOG_NUM;
215 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218 							TRANS_DIR_INO))
219 		cp_reason = CP_RECOVER_DIR;
220 	else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
221 							XATTR_DIR_INO))
222 		cp_reason = CP_XATTR_DIR;
223 
224 	return cp_reason;
225 }
226 
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)227 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
228 {
229 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
230 	bool ret = false;
231 	/* But we need to avoid that there are some inode updates */
232 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
233 		ret = true;
234 	f2fs_put_page(i, 0);
235 	return ret;
236 }
237 
try_to_fix_pino(struct inode * inode)238 static void try_to_fix_pino(struct inode *inode)
239 {
240 	struct f2fs_inode_info *fi = F2FS_I(inode);
241 	nid_t pino;
242 
243 	f2fs_down_write(&fi->i_sem);
244 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
245 			get_parent_ino(inode, &pino)) {
246 		f2fs_i_pino_write(inode, pino);
247 		file_got_pino(inode);
248 	}
249 	f2fs_up_write(&fi->i_sem);
250 }
251 
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)252 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
253 						int datasync, bool atomic)
254 {
255 	struct inode *inode = file->f_mapping->host;
256 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257 	nid_t ino = inode->i_ino;
258 	int ret = 0;
259 	enum cp_reason_type cp_reason = 0;
260 	struct writeback_control wbc = {
261 		.sync_mode = WB_SYNC_ALL,
262 		.nr_to_write = LONG_MAX,
263 		.for_reclaim = 0,
264 	};
265 	unsigned int seq_id = 0;
266 
267 	if (unlikely(f2fs_readonly(inode->i_sb)))
268 		return 0;
269 
270 	trace_f2fs_sync_file_enter(inode);
271 
272 	if (S_ISDIR(inode->i_mode))
273 		goto go_write;
274 
275 	/* if fdatasync is triggered, let's do in-place-update */
276 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
277 		set_inode_flag(inode, FI_NEED_IPU);
278 	ret = file_write_and_wait_range(file, start, end);
279 	clear_inode_flag(inode, FI_NEED_IPU);
280 
281 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
282 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
283 		return ret;
284 	}
285 
286 	/* if the inode is dirty, let's recover all the time */
287 	if (!f2fs_skip_inode_update(inode, datasync)) {
288 		f2fs_write_inode(inode, NULL);
289 		goto go_write;
290 	}
291 
292 	/*
293 	 * if there is no written data, don't waste time to write recovery info.
294 	 */
295 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
296 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
297 
298 		/* it may call write_inode just prior to fsync */
299 		if (need_inode_page_update(sbi, ino))
300 			goto go_write;
301 
302 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
303 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
304 			goto flush_out;
305 		goto out;
306 	} else {
307 		/*
308 		 * for OPU case, during fsync(), node can be persisted before
309 		 * data when lower device doesn't support write barrier, result
310 		 * in data corruption after SPO.
311 		 * So for strict fsync mode, force to use atomic write semantics
312 		 * to keep write order in between data/node and last node to
313 		 * avoid potential data corruption.
314 		 */
315 		if (F2FS_OPTION(sbi).fsync_mode ==
316 				FSYNC_MODE_STRICT && !atomic)
317 			atomic = true;
318 	}
319 go_write:
320 	/*
321 	 * Both of fdatasync() and fsync() are able to be recovered from
322 	 * sudden-power-off.
323 	 */
324 	f2fs_down_read(&F2FS_I(inode)->i_sem);
325 	cp_reason = need_do_checkpoint(inode);
326 	f2fs_up_read(&F2FS_I(inode)->i_sem);
327 
328 	if (cp_reason) {
329 		/* all the dirty node pages should be flushed for POR */
330 		ret = f2fs_sync_fs(inode->i_sb, 1);
331 
332 		/*
333 		 * We've secured consistency through sync_fs. Following pino
334 		 * will be used only for fsynced inodes after checkpoint.
335 		 */
336 		try_to_fix_pino(inode);
337 		clear_inode_flag(inode, FI_APPEND_WRITE);
338 		clear_inode_flag(inode, FI_UPDATE_WRITE);
339 		goto out;
340 	}
341 sync_nodes:
342 	atomic_inc(&sbi->wb_sync_req[NODE]);
343 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
344 	atomic_dec(&sbi->wb_sync_req[NODE]);
345 	if (ret)
346 		goto out;
347 
348 	/* if cp_error was enabled, we should avoid infinite loop */
349 	if (unlikely(f2fs_cp_error(sbi))) {
350 		ret = -EIO;
351 		goto out;
352 	}
353 
354 	if (f2fs_need_inode_block_update(sbi, ino)) {
355 		f2fs_mark_inode_dirty_sync(inode, true);
356 		f2fs_write_inode(inode, NULL);
357 		goto sync_nodes;
358 	}
359 
360 	/*
361 	 * If it's atomic_write, it's just fine to keep write ordering. So
362 	 * here we don't need to wait for node write completion, since we use
363 	 * node chain which serializes node blocks. If one of node writes are
364 	 * reordered, we can see simply broken chain, resulting in stopping
365 	 * roll-forward recovery. It means we'll recover all or none node blocks
366 	 * given fsync mark.
367 	 */
368 	if (!atomic) {
369 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
370 		if (ret)
371 			goto out;
372 	}
373 
374 	/* once recovery info is written, don't need to tack this */
375 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
376 	clear_inode_flag(inode, FI_APPEND_WRITE);
377 flush_out:
378 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
379 		ret = f2fs_issue_flush(sbi, inode->i_ino);
380 	if (!ret) {
381 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
382 		clear_inode_flag(inode, FI_UPDATE_WRITE);
383 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
384 	}
385 	f2fs_update_time(sbi, REQ_TIME);
386 out:
387 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
388 	return ret;
389 }
390 
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)391 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
392 {
393 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
394 		return -EIO;
395 	return f2fs_do_sync_file(file, start, end, datasync, false);
396 }
397 
__found_offset(struct address_space * mapping,struct dnode_of_data * dn,pgoff_t index,int whence)398 static bool __found_offset(struct address_space *mapping,
399 		struct dnode_of_data *dn, pgoff_t index, int whence)
400 {
401 	block_t blkaddr = f2fs_data_blkaddr(dn);
402 	struct inode *inode = mapping->host;
403 	bool compressed_cluster = false;
404 
405 	if (f2fs_compressed_file(inode)) {
406 		block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
407 		    ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
408 
409 		compressed_cluster = first_blkaddr == COMPRESS_ADDR;
410 	}
411 
412 	switch (whence) {
413 	case SEEK_DATA:
414 		if (__is_valid_data_blkaddr(blkaddr))
415 			return true;
416 		if (blkaddr == NEW_ADDR &&
417 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
418 			return true;
419 		if (compressed_cluster)
420 			return true;
421 		break;
422 	case SEEK_HOLE:
423 		if (compressed_cluster)
424 			return false;
425 		if (blkaddr == NULL_ADDR)
426 			return true;
427 		break;
428 	}
429 	return false;
430 }
431 
f2fs_seek_block(struct file * file,loff_t offset,int whence)432 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
433 {
434 	struct inode *inode = file->f_mapping->host;
435 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
436 	struct dnode_of_data dn;
437 	pgoff_t pgofs, end_offset;
438 	loff_t data_ofs = offset;
439 	loff_t isize;
440 	int err = 0;
441 
442 	inode_lock_shared(inode);
443 
444 	isize = i_size_read(inode);
445 	if (offset >= isize)
446 		goto fail;
447 
448 	/* handle inline data case */
449 	if (f2fs_has_inline_data(inode)) {
450 		if (whence == SEEK_HOLE) {
451 			data_ofs = isize;
452 			goto found;
453 		} else if (whence == SEEK_DATA) {
454 			data_ofs = offset;
455 			goto found;
456 		}
457 	}
458 
459 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
460 
461 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
462 		set_new_dnode(&dn, inode, NULL, NULL, 0);
463 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
464 		if (err && err != -ENOENT) {
465 			goto fail;
466 		} else if (err == -ENOENT) {
467 			/* direct node does not exists */
468 			if (whence == SEEK_DATA) {
469 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
470 				continue;
471 			} else {
472 				goto found;
473 			}
474 		}
475 
476 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
477 
478 		/* find data/hole in dnode block */
479 		for (; dn.ofs_in_node < end_offset;
480 				dn.ofs_in_node++, pgofs++,
481 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
482 			block_t blkaddr;
483 
484 			blkaddr = f2fs_data_blkaddr(&dn);
485 
486 			if (__is_valid_data_blkaddr(blkaddr) &&
487 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
488 					blkaddr, DATA_GENERIC_ENHANCE)) {
489 				f2fs_put_dnode(&dn);
490 				goto fail;
491 			}
492 
493 			if (__found_offset(file->f_mapping, &dn,
494 							pgofs, whence)) {
495 				f2fs_put_dnode(&dn);
496 				goto found;
497 			}
498 		}
499 		f2fs_put_dnode(&dn);
500 	}
501 
502 	if (whence == SEEK_DATA)
503 		goto fail;
504 found:
505 	if (whence == SEEK_HOLE && data_ofs > isize)
506 		data_ofs = isize;
507 	inode_unlock_shared(inode);
508 	return vfs_setpos(file, data_ofs, maxbytes);
509 fail:
510 	inode_unlock_shared(inode);
511 	return -ENXIO;
512 }
513 
f2fs_llseek(struct file * file,loff_t offset,int whence)514 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
515 {
516 	struct inode *inode = file->f_mapping->host;
517 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
518 
519 	switch (whence) {
520 	case SEEK_SET:
521 	case SEEK_CUR:
522 	case SEEK_END:
523 		return generic_file_llseek_size(file, offset, whence,
524 						maxbytes, i_size_read(inode));
525 	case SEEK_DATA:
526 	case SEEK_HOLE:
527 		if (offset < 0)
528 			return -ENXIO;
529 		return f2fs_seek_block(file, offset, whence);
530 	}
531 
532 	return -EINVAL;
533 }
534 
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)535 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
536 {
537 	struct inode *inode = file_inode(file);
538 
539 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
540 		return -EIO;
541 
542 	if (!f2fs_is_compress_backend_ready(inode))
543 		return -EOPNOTSUPP;
544 
545 	file_accessed(file);
546 	vma->vm_ops = &f2fs_file_vm_ops;
547 
548 	f2fs_down_read(&F2FS_I(inode)->i_sem);
549 	set_inode_flag(inode, FI_MMAP_FILE);
550 	f2fs_up_read(&F2FS_I(inode)->i_sem);
551 
552 	return 0;
553 }
554 
finish_preallocate_blocks(struct inode * inode)555 static int finish_preallocate_blocks(struct inode *inode)
556 {
557 	int ret;
558 
559 	inode_lock(inode);
560 	if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
561 		inode_unlock(inode);
562 		return 0;
563 	}
564 
565 	if (!file_should_truncate(inode)) {
566 		set_inode_flag(inode, FI_OPENED_FILE);
567 		inode_unlock(inode);
568 		return 0;
569 	}
570 
571 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
572 	filemap_invalidate_lock(inode->i_mapping);
573 
574 	truncate_setsize(inode, i_size_read(inode));
575 	ret = f2fs_truncate(inode);
576 
577 	filemap_invalidate_unlock(inode->i_mapping);
578 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
579 
580 	if (!ret)
581 		set_inode_flag(inode, FI_OPENED_FILE);
582 
583 	inode_unlock(inode);
584 	if (ret)
585 		return ret;
586 
587 	file_dont_truncate(inode);
588 	return 0;
589 }
590 
f2fs_file_open(struct inode * inode,struct file * filp)591 static int f2fs_file_open(struct inode *inode, struct file *filp)
592 {
593 	int err = fscrypt_file_open(inode, filp);
594 
595 	if (err)
596 		return err;
597 
598 	if (!f2fs_is_compress_backend_ready(inode))
599 		return -EOPNOTSUPP;
600 
601 	err = fsverity_file_open(inode, filp);
602 	if (err)
603 		return err;
604 
605 	filp->f_mode |= FMODE_NOWAIT;
606 	filp->f_mode |= FMODE_CAN_ODIRECT;
607 
608 	err = dquot_file_open(inode, filp);
609 	if (err)
610 		return err;
611 
612 	return finish_preallocate_blocks(inode);
613 }
614 
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)615 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
616 {
617 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
618 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
619 	__le32 *addr;
620 	bool compressed_cluster = false;
621 	int cluster_index = 0, valid_blocks = 0;
622 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
623 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
624 	block_t blkstart;
625 	int blklen = 0;
626 
627 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
628 	blkstart = le32_to_cpu(*addr);
629 
630 	/* Assumption: truncation starts with cluster */
631 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
632 		block_t blkaddr = le32_to_cpu(*addr);
633 
634 		if (f2fs_compressed_file(dn->inode) &&
635 					!(cluster_index & (cluster_size - 1))) {
636 			if (compressed_cluster)
637 				f2fs_i_compr_blocks_update(dn->inode,
638 							valid_blocks, false);
639 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
640 			valid_blocks = 0;
641 		}
642 
643 		if (blkaddr == NULL_ADDR)
644 			goto next;
645 
646 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
647 
648 		if (__is_valid_data_blkaddr(blkaddr)) {
649 			if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
650 				goto next;
651 			if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
652 						DATA_GENERIC_ENHANCE))
653 				goto next;
654 			if (compressed_cluster)
655 				valid_blocks++;
656 		}
657 
658 		if (blkstart + blklen == blkaddr) {
659 			blklen++;
660 		} else {
661 			f2fs_invalidate_blocks(sbi, blkstart, blklen);
662 			blkstart = blkaddr;
663 			blklen = 1;
664 		}
665 
666 		if (!released || blkaddr != COMPRESS_ADDR)
667 			nr_free++;
668 
669 		continue;
670 
671 next:
672 		if (blklen)
673 			f2fs_invalidate_blocks(sbi, blkstart, blklen);
674 
675 		blkstart = le32_to_cpu(*(addr + 1));
676 		blklen = 0;
677 	}
678 
679 	if (blklen)
680 		f2fs_invalidate_blocks(sbi, blkstart, blklen);
681 
682 	if (compressed_cluster)
683 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
684 
685 	if (nr_free) {
686 		pgoff_t fofs;
687 		/*
688 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
689 		 * we will invalidate all blkaddr in the whole range.
690 		 */
691 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
692 							dn->inode) + ofs;
693 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
694 		f2fs_update_age_extent_cache_range(dn, fofs, len);
695 		dec_valid_block_count(sbi, dn->inode, nr_free);
696 	}
697 	dn->ofs_in_node = ofs;
698 
699 	f2fs_update_time(sbi, REQ_TIME);
700 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
701 					 dn->ofs_in_node, nr_free);
702 }
703 
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)704 static int truncate_partial_data_page(struct inode *inode, u64 from,
705 								bool cache_only)
706 {
707 	loff_t offset = from & (PAGE_SIZE - 1);
708 	pgoff_t index = from >> PAGE_SHIFT;
709 	struct address_space *mapping = inode->i_mapping;
710 	struct page *page;
711 
712 	if (!offset && !cache_only)
713 		return 0;
714 
715 	if (cache_only) {
716 		page = find_lock_page(mapping, index);
717 		if (page && PageUptodate(page))
718 			goto truncate_out;
719 		f2fs_put_page(page, 1);
720 		return 0;
721 	}
722 
723 	page = f2fs_get_lock_data_page(inode, index, true);
724 	if (IS_ERR(page))
725 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
726 truncate_out:
727 	f2fs_wait_on_page_writeback(page, DATA, true, true);
728 	zero_user(page, offset, PAGE_SIZE - offset);
729 
730 	/* An encrypted inode should have a key and truncate the last page. */
731 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
732 	if (!cache_only)
733 		set_page_dirty(page);
734 	f2fs_put_page(page, 1);
735 	return 0;
736 }
737 
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)738 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
739 {
740 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
741 	struct dnode_of_data dn;
742 	pgoff_t free_from;
743 	int count = 0, err = 0;
744 	struct page *ipage;
745 	bool truncate_page = false;
746 
747 	trace_f2fs_truncate_blocks_enter(inode, from);
748 
749 	if (IS_DEVICE_ALIASING(inode) && from) {
750 		err = -EINVAL;
751 		goto out_err;
752 	}
753 
754 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
755 
756 	if (free_from >= max_file_blocks(inode))
757 		goto free_partial;
758 
759 	if (lock)
760 		f2fs_lock_op(sbi);
761 
762 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
763 	if (IS_ERR(ipage)) {
764 		err = PTR_ERR(ipage);
765 		goto out;
766 	}
767 
768 	if (IS_DEVICE_ALIASING(inode)) {
769 		struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
770 		struct extent_info ei = et->largest;
771 
772 		f2fs_invalidate_blocks(sbi, ei.blk, ei.len);
773 
774 		dec_valid_block_count(sbi, inode, ei.len);
775 		f2fs_update_time(sbi, REQ_TIME);
776 
777 		f2fs_put_page(ipage, 1);
778 		goto out;
779 	}
780 
781 	if (f2fs_has_inline_data(inode)) {
782 		f2fs_truncate_inline_inode(inode, ipage, from);
783 		f2fs_put_page(ipage, 1);
784 		truncate_page = true;
785 		goto out;
786 	}
787 
788 	set_new_dnode(&dn, inode, ipage, NULL, 0);
789 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
790 	if (err) {
791 		if (err == -ENOENT)
792 			goto free_next;
793 		goto out;
794 	}
795 
796 	count = ADDRS_PER_PAGE(dn.node_page, inode);
797 
798 	count -= dn.ofs_in_node;
799 	f2fs_bug_on(sbi, count < 0);
800 
801 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
802 		f2fs_truncate_data_blocks_range(&dn, count);
803 		free_from += count;
804 	}
805 
806 	f2fs_put_dnode(&dn);
807 free_next:
808 	err = f2fs_truncate_inode_blocks(inode, free_from);
809 out:
810 	if (lock)
811 		f2fs_unlock_op(sbi);
812 free_partial:
813 	/* lastly zero out the first data page */
814 	if (!err)
815 		err = truncate_partial_data_page(inode, from, truncate_page);
816 out_err:
817 	trace_f2fs_truncate_blocks_exit(inode, err);
818 	return err;
819 }
820 
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)821 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
822 {
823 	u64 free_from = from;
824 	int err;
825 
826 #ifdef CONFIG_F2FS_FS_COMPRESSION
827 	/*
828 	 * for compressed file, only support cluster size
829 	 * aligned truncation.
830 	 */
831 	if (f2fs_compressed_file(inode))
832 		free_from = round_up(from,
833 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
834 #endif
835 
836 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
837 	if (err)
838 		return err;
839 
840 #ifdef CONFIG_F2FS_FS_COMPRESSION
841 	/*
842 	 * For compressed file, after release compress blocks, don't allow write
843 	 * direct, but we should allow write direct after truncate to zero.
844 	 */
845 	if (f2fs_compressed_file(inode) && !free_from
846 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
847 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
848 
849 	if (from != free_from) {
850 		err = f2fs_truncate_partial_cluster(inode, from, lock);
851 		if (err)
852 			return err;
853 	}
854 #endif
855 
856 	return 0;
857 }
858 
f2fs_truncate(struct inode * inode)859 int f2fs_truncate(struct inode *inode)
860 {
861 	int err;
862 
863 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
864 		return -EIO;
865 
866 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
867 				S_ISLNK(inode->i_mode)))
868 		return 0;
869 
870 	trace_f2fs_truncate(inode);
871 
872 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
873 		return -EIO;
874 
875 	err = f2fs_dquot_initialize(inode);
876 	if (err)
877 		return err;
878 
879 	/* we should check inline_data size */
880 	if (!f2fs_may_inline_data(inode)) {
881 		err = f2fs_convert_inline_inode(inode);
882 		if (err)
883 			return err;
884 	}
885 
886 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
887 	if (err)
888 		return err;
889 
890 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
891 	f2fs_mark_inode_dirty_sync(inode, false);
892 	return 0;
893 }
894 
f2fs_force_buffered_io(struct inode * inode,int rw)895 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
896 {
897 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
898 
899 	if (!fscrypt_dio_supported(inode))
900 		return true;
901 	if (fsverity_active(inode))
902 		return true;
903 	if (f2fs_compressed_file(inode))
904 		return true;
905 	/*
906 	 * only force direct read to use buffered IO, for direct write,
907 	 * it expects inline data conversion before committing IO.
908 	 */
909 	if (f2fs_has_inline_data(inode) && rw == READ)
910 		return true;
911 
912 	/* disallow direct IO if any of devices has unaligned blksize */
913 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
914 		return true;
915 	/*
916 	 * for blkzoned device, fallback direct IO to buffered IO, so
917 	 * all IOs can be serialized by log-structured write.
918 	 */
919 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
920 	    !f2fs_is_pinned_file(inode))
921 		return true;
922 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
923 		return true;
924 
925 	return false;
926 }
927 
f2fs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)928 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
929 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
930 {
931 	struct inode *inode = d_inode(path->dentry);
932 	struct f2fs_inode_info *fi = F2FS_I(inode);
933 	struct f2fs_inode *ri = NULL;
934 	unsigned int flags;
935 
936 	if (f2fs_has_extra_attr(inode) &&
937 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
938 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
939 		stat->result_mask |= STATX_BTIME;
940 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
941 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
942 	}
943 
944 	/*
945 	 * Return the DIO alignment restrictions if requested.  We only return
946 	 * this information when requested, since on encrypted files it might
947 	 * take a fair bit of work to get if the file wasn't opened recently.
948 	 *
949 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
950 	 * cannot represent that, so in that case we report no DIO support.
951 	 */
952 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
953 		unsigned int bsize = i_blocksize(inode);
954 
955 		stat->result_mask |= STATX_DIOALIGN;
956 		if (!f2fs_force_buffered_io(inode, WRITE)) {
957 			stat->dio_mem_align = bsize;
958 			stat->dio_offset_align = bsize;
959 		}
960 	}
961 
962 	flags = fi->i_flags;
963 	if (flags & F2FS_COMPR_FL)
964 		stat->attributes |= STATX_ATTR_COMPRESSED;
965 	if (flags & F2FS_APPEND_FL)
966 		stat->attributes |= STATX_ATTR_APPEND;
967 	if (IS_ENCRYPTED(inode))
968 		stat->attributes |= STATX_ATTR_ENCRYPTED;
969 	if (flags & F2FS_IMMUTABLE_FL)
970 		stat->attributes |= STATX_ATTR_IMMUTABLE;
971 	if (flags & F2FS_NODUMP_FL)
972 		stat->attributes |= STATX_ATTR_NODUMP;
973 	if (IS_VERITY(inode))
974 		stat->attributes |= STATX_ATTR_VERITY;
975 
976 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
977 				  STATX_ATTR_APPEND |
978 				  STATX_ATTR_ENCRYPTED |
979 				  STATX_ATTR_IMMUTABLE |
980 				  STATX_ATTR_NODUMP |
981 				  STATX_ATTR_VERITY);
982 
983 	generic_fillattr(idmap, request_mask, inode, stat);
984 
985 	/* we need to show initial sectors used for inline_data/dentries */
986 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
987 					f2fs_has_inline_dentry(inode))
988 		stat->blocks += (stat->size + 511) >> 9;
989 
990 	return 0;
991 }
992 
993 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct mnt_idmap * idmap,struct inode * inode,const struct iattr * attr)994 static void __setattr_copy(struct mnt_idmap *idmap,
995 			   struct inode *inode, const struct iattr *attr)
996 {
997 	unsigned int ia_valid = attr->ia_valid;
998 
999 	i_uid_update(idmap, attr, inode);
1000 	i_gid_update(idmap, attr, inode);
1001 	if (ia_valid & ATTR_ATIME)
1002 		inode_set_atime_to_ts(inode, attr->ia_atime);
1003 	if (ia_valid & ATTR_MTIME)
1004 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
1005 	if (ia_valid & ATTR_CTIME)
1006 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
1007 	if (ia_valid & ATTR_MODE) {
1008 		umode_t mode = attr->ia_mode;
1009 
1010 		if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
1011 			mode &= ~S_ISGID;
1012 		set_acl_inode(inode, mode);
1013 	}
1014 }
1015 #else
1016 #define __setattr_copy setattr_copy
1017 #endif
1018 
f2fs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1019 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1020 		 struct iattr *attr)
1021 {
1022 	struct inode *inode = d_inode(dentry);
1023 	struct f2fs_inode_info *fi = F2FS_I(inode);
1024 	int err;
1025 
1026 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1027 		return -EIO;
1028 
1029 	if (unlikely(IS_IMMUTABLE(inode)))
1030 		return -EPERM;
1031 
1032 	if (unlikely(IS_APPEND(inode) &&
1033 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
1034 				  ATTR_GID | ATTR_TIMES_SET))))
1035 		return -EPERM;
1036 
1037 	if ((attr->ia_valid & ATTR_SIZE)) {
1038 		if (!f2fs_is_compress_backend_ready(inode) ||
1039 				IS_DEVICE_ALIASING(inode))
1040 			return -EOPNOTSUPP;
1041 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1042 			!IS_ALIGNED(attr->ia_size,
1043 			F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1044 			return -EINVAL;
1045 	}
1046 
1047 	err = setattr_prepare(idmap, dentry, attr);
1048 	if (err)
1049 		return err;
1050 
1051 	err = fscrypt_prepare_setattr(dentry, attr);
1052 	if (err)
1053 		return err;
1054 
1055 	err = fsverity_prepare_setattr(dentry, attr);
1056 	if (err)
1057 		return err;
1058 
1059 	if (is_quota_modification(idmap, inode, attr)) {
1060 		err = f2fs_dquot_initialize(inode);
1061 		if (err)
1062 			return err;
1063 	}
1064 	if (i_uid_needs_update(idmap, attr, inode) ||
1065 	    i_gid_needs_update(idmap, attr, inode)) {
1066 		f2fs_lock_op(F2FS_I_SB(inode));
1067 		err = dquot_transfer(idmap, inode, attr);
1068 		if (err) {
1069 			set_sbi_flag(F2FS_I_SB(inode),
1070 					SBI_QUOTA_NEED_REPAIR);
1071 			f2fs_unlock_op(F2FS_I_SB(inode));
1072 			return err;
1073 		}
1074 		/*
1075 		 * update uid/gid under lock_op(), so that dquot and inode can
1076 		 * be updated atomically.
1077 		 */
1078 		i_uid_update(idmap, attr, inode);
1079 		i_gid_update(idmap, attr, inode);
1080 		f2fs_mark_inode_dirty_sync(inode, true);
1081 		f2fs_unlock_op(F2FS_I_SB(inode));
1082 	}
1083 
1084 	if (attr->ia_valid & ATTR_SIZE) {
1085 		loff_t old_size = i_size_read(inode);
1086 
1087 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1088 			/*
1089 			 * should convert inline inode before i_size_write to
1090 			 * keep smaller than inline_data size with inline flag.
1091 			 */
1092 			err = f2fs_convert_inline_inode(inode);
1093 			if (err)
1094 				return err;
1095 		}
1096 
1097 		/*
1098 		 * wait for inflight dio, blocks should be removed after
1099 		 * IO completion.
1100 		 */
1101 		if (attr->ia_size < old_size)
1102 			inode_dio_wait(inode);
1103 
1104 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1105 		filemap_invalidate_lock(inode->i_mapping);
1106 
1107 		truncate_setsize(inode, attr->ia_size);
1108 
1109 		if (attr->ia_size <= old_size)
1110 			err = f2fs_truncate(inode);
1111 		/*
1112 		 * do not trim all blocks after i_size if target size is
1113 		 * larger than i_size.
1114 		 */
1115 		filemap_invalidate_unlock(inode->i_mapping);
1116 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1117 		if (err)
1118 			return err;
1119 
1120 		spin_lock(&fi->i_size_lock);
1121 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1122 		fi->last_disk_size = i_size_read(inode);
1123 		spin_unlock(&fi->i_size_lock);
1124 	}
1125 
1126 	__setattr_copy(idmap, inode, attr);
1127 
1128 	if (attr->ia_valid & ATTR_MODE) {
1129 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1130 
1131 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1132 			if (!err)
1133 				inode->i_mode = fi->i_acl_mode;
1134 			clear_inode_flag(inode, FI_ACL_MODE);
1135 		}
1136 	}
1137 
1138 	/* file size may changed here */
1139 	f2fs_mark_inode_dirty_sync(inode, true);
1140 
1141 	/* inode change will produce dirty node pages flushed by checkpoint */
1142 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1143 
1144 	return err;
1145 }
1146 
1147 const struct inode_operations f2fs_file_inode_operations = {
1148 	.getattr	= f2fs_getattr,
1149 	.setattr	= f2fs_setattr,
1150 	.get_inode_acl	= f2fs_get_acl,
1151 	.set_acl	= f2fs_set_acl,
1152 	.listxattr	= f2fs_listxattr,
1153 	.fiemap		= f2fs_fiemap,
1154 	.fileattr_get	= f2fs_fileattr_get,
1155 	.fileattr_set	= f2fs_fileattr_set,
1156 };
1157 
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1158 static int fill_zero(struct inode *inode, pgoff_t index,
1159 					loff_t start, loff_t len)
1160 {
1161 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1162 	struct page *page;
1163 
1164 	if (!len)
1165 		return 0;
1166 
1167 	f2fs_balance_fs(sbi, true);
1168 
1169 	f2fs_lock_op(sbi);
1170 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1171 	f2fs_unlock_op(sbi);
1172 
1173 	if (IS_ERR(page))
1174 		return PTR_ERR(page);
1175 
1176 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1177 	zero_user(page, start, len);
1178 	set_page_dirty(page);
1179 	f2fs_put_page(page, 1);
1180 	return 0;
1181 }
1182 
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1183 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1184 {
1185 	int err;
1186 
1187 	while (pg_start < pg_end) {
1188 		struct dnode_of_data dn;
1189 		pgoff_t end_offset, count;
1190 
1191 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1192 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1193 		if (err) {
1194 			if (err == -ENOENT) {
1195 				pg_start = f2fs_get_next_page_offset(&dn,
1196 								pg_start);
1197 				continue;
1198 			}
1199 			return err;
1200 		}
1201 
1202 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1203 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1204 
1205 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1206 
1207 		f2fs_truncate_data_blocks_range(&dn, count);
1208 		f2fs_put_dnode(&dn);
1209 
1210 		pg_start += count;
1211 	}
1212 	return 0;
1213 }
1214 
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1215 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1216 {
1217 	pgoff_t pg_start, pg_end;
1218 	loff_t off_start, off_end;
1219 	int ret;
1220 
1221 	ret = f2fs_convert_inline_inode(inode);
1222 	if (ret)
1223 		return ret;
1224 
1225 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1226 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1227 
1228 	off_start = offset & (PAGE_SIZE - 1);
1229 	off_end = (offset + len) & (PAGE_SIZE - 1);
1230 
1231 	if (pg_start == pg_end) {
1232 		ret = fill_zero(inode, pg_start, off_start,
1233 						off_end - off_start);
1234 		if (ret)
1235 			return ret;
1236 	} else {
1237 		if (off_start) {
1238 			ret = fill_zero(inode, pg_start++, off_start,
1239 						PAGE_SIZE - off_start);
1240 			if (ret)
1241 				return ret;
1242 		}
1243 		if (off_end) {
1244 			ret = fill_zero(inode, pg_end, 0, off_end);
1245 			if (ret)
1246 				return ret;
1247 		}
1248 
1249 		if (pg_start < pg_end) {
1250 			loff_t blk_start, blk_end;
1251 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1252 
1253 			f2fs_balance_fs(sbi, true);
1254 
1255 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1256 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1257 
1258 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1259 			filemap_invalidate_lock(inode->i_mapping);
1260 
1261 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1262 
1263 			f2fs_lock_op(sbi);
1264 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1265 			f2fs_unlock_op(sbi);
1266 
1267 			filemap_invalidate_unlock(inode->i_mapping);
1268 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1269 		}
1270 	}
1271 
1272 	return ret;
1273 }
1274 
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1275 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1276 				int *do_replace, pgoff_t off, pgoff_t len)
1277 {
1278 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1279 	struct dnode_of_data dn;
1280 	int ret, done, i;
1281 
1282 next_dnode:
1283 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1284 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1285 	if (ret && ret != -ENOENT) {
1286 		return ret;
1287 	} else if (ret == -ENOENT) {
1288 		if (dn.max_level == 0)
1289 			return -ENOENT;
1290 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1291 						dn.ofs_in_node, len);
1292 		blkaddr += done;
1293 		do_replace += done;
1294 		goto next;
1295 	}
1296 
1297 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1298 							dn.ofs_in_node, len);
1299 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1300 		*blkaddr = f2fs_data_blkaddr(&dn);
1301 
1302 		if (__is_valid_data_blkaddr(*blkaddr) &&
1303 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1304 					DATA_GENERIC_ENHANCE)) {
1305 			f2fs_put_dnode(&dn);
1306 			return -EFSCORRUPTED;
1307 		}
1308 
1309 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1310 
1311 			if (f2fs_lfs_mode(sbi)) {
1312 				f2fs_put_dnode(&dn);
1313 				return -EOPNOTSUPP;
1314 			}
1315 
1316 			/* do not invalidate this block address */
1317 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1318 			*do_replace = 1;
1319 		}
1320 	}
1321 	f2fs_put_dnode(&dn);
1322 next:
1323 	len -= done;
1324 	off += done;
1325 	if (len)
1326 		goto next_dnode;
1327 	return 0;
1328 }
1329 
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1330 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1331 				int *do_replace, pgoff_t off, int len)
1332 {
1333 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1334 	struct dnode_of_data dn;
1335 	int ret, i;
1336 
1337 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1338 		if (*do_replace == 0)
1339 			continue;
1340 
1341 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1342 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1343 		if (ret) {
1344 			dec_valid_block_count(sbi, inode, 1);
1345 			f2fs_invalidate_blocks(sbi, *blkaddr, 1);
1346 		} else {
1347 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1348 		}
1349 		f2fs_put_dnode(&dn);
1350 	}
1351 	return 0;
1352 }
1353 
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1354 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1355 			block_t *blkaddr, int *do_replace,
1356 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1357 {
1358 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1359 	pgoff_t i = 0;
1360 	int ret;
1361 
1362 	while (i < len) {
1363 		if (blkaddr[i] == NULL_ADDR && !full) {
1364 			i++;
1365 			continue;
1366 		}
1367 
1368 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1369 			struct dnode_of_data dn;
1370 			struct node_info ni;
1371 			size_t new_size;
1372 			pgoff_t ilen;
1373 
1374 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1375 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1376 			if (ret)
1377 				return ret;
1378 
1379 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1380 			if (ret) {
1381 				f2fs_put_dnode(&dn);
1382 				return ret;
1383 			}
1384 
1385 			ilen = min((pgoff_t)
1386 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1387 						dn.ofs_in_node, len - i);
1388 			do {
1389 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1390 				f2fs_truncate_data_blocks_range(&dn, 1);
1391 
1392 				if (do_replace[i]) {
1393 					f2fs_i_blocks_write(src_inode,
1394 							1, false, false);
1395 					f2fs_i_blocks_write(dst_inode,
1396 							1, true, false);
1397 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1398 					blkaddr[i], ni.version, true, false);
1399 
1400 					do_replace[i] = 0;
1401 				}
1402 				dn.ofs_in_node++;
1403 				i++;
1404 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1405 				if (dst_inode->i_size < new_size)
1406 					f2fs_i_size_write(dst_inode, new_size);
1407 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1408 
1409 			f2fs_put_dnode(&dn);
1410 		} else {
1411 			struct page *psrc, *pdst;
1412 
1413 			psrc = f2fs_get_lock_data_page(src_inode,
1414 							src + i, true);
1415 			if (IS_ERR(psrc))
1416 				return PTR_ERR(psrc);
1417 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1418 								true);
1419 			if (IS_ERR(pdst)) {
1420 				f2fs_put_page(psrc, 1);
1421 				return PTR_ERR(pdst);
1422 			}
1423 
1424 			f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1425 
1426 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1427 			set_page_dirty(pdst);
1428 			set_page_private_gcing(pdst);
1429 			f2fs_put_page(pdst, 1);
1430 			f2fs_put_page(psrc, 1);
1431 
1432 			ret = f2fs_truncate_hole(src_inode,
1433 						src + i, src + i + 1);
1434 			if (ret)
1435 				return ret;
1436 			i++;
1437 		}
1438 	}
1439 	return 0;
1440 }
1441 
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1442 static int __exchange_data_block(struct inode *src_inode,
1443 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1444 			pgoff_t len, bool full)
1445 {
1446 	block_t *src_blkaddr;
1447 	int *do_replace;
1448 	pgoff_t olen;
1449 	int ret;
1450 
1451 	while (len) {
1452 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1453 
1454 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1455 					array_size(olen, sizeof(block_t)),
1456 					GFP_NOFS);
1457 		if (!src_blkaddr)
1458 			return -ENOMEM;
1459 
1460 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1461 					array_size(olen, sizeof(int)),
1462 					GFP_NOFS);
1463 		if (!do_replace) {
1464 			kvfree(src_blkaddr);
1465 			return -ENOMEM;
1466 		}
1467 
1468 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1469 					do_replace, src, olen);
1470 		if (ret)
1471 			goto roll_back;
1472 
1473 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1474 					do_replace, src, dst, olen, full);
1475 		if (ret)
1476 			goto roll_back;
1477 
1478 		src += olen;
1479 		dst += olen;
1480 		len -= olen;
1481 
1482 		kvfree(src_blkaddr);
1483 		kvfree(do_replace);
1484 	}
1485 	return 0;
1486 
1487 roll_back:
1488 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1489 	kvfree(src_blkaddr);
1490 	kvfree(do_replace);
1491 	return ret;
1492 }
1493 
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1494 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1495 {
1496 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1497 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1498 	pgoff_t start = offset >> PAGE_SHIFT;
1499 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1500 	int ret;
1501 
1502 	f2fs_balance_fs(sbi, true);
1503 
1504 	/* avoid gc operation during block exchange */
1505 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1506 	filemap_invalidate_lock(inode->i_mapping);
1507 
1508 	f2fs_lock_op(sbi);
1509 	f2fs_drop_extent_tree(inode);
1510 	truncate_pagecache(inode, offset);
1511 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1512 	f2fs_unlock_op(sbi);
1513 
1514 	filemap_invalidate_unlock(inode->i_mapping);
1515 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1516 	return ret;
1517 }
1518 
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1519 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1520 {
1521 	loff_t new_size;
1522 	int ret;
1523 
1524 	if (offset + len >= i_size_read(inode))
1525 		return -EINVAL;
1526 
1527 	/* collapse range should be aligned to block size of f2fs. */
1528 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1529 		return -EINVAL;
1530 
1531 	ret = f2fs_convert_inline_inode(inode);
1532 	if (ret)
1533 		return ret;
1534 
1535 	/* write out all dirty pages from offset */
1536 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1537 	if (ret)
1538 		return ret;
1539 
1540 	ret = f2fs_do_collapse(inode, offset, len);
1541 	if (ret)
1542 		return ret;
1543 
1544 	/* write out all moved pages, if possible */
1545 	filemap_invalidate_lock(inode->i_mapping);
1546 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1547 	truncate_pagecache(inode, offset);
1548 
1549 	new_size = i_size_read(inode) - len;
1550 	ret = f2fs_truncate_blocks(inode, new_size, true);
1551 	filemap_invalidate_unlock(inode->i_mapping);
1552 	if (!ret)
1553 		f2fs_i_size_write(inode, new_size);
1554 	return ret;
1555 }
1556 
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1557 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1558 								pgoff_t end)
1559 {
1560 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1561 	pgoff_t index = start;
1562 	unsigned int ofs_in_node = dn->ofs_in_node;
1563 	blkcnt_t count = 0;
1564 	int ret;
1565 
1566 	for (; index < end; index++, dn->ofs_in_node++) {
1567 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1568 			count++;
1569 	}
1570 
1571 	dn->ofs_in_node = ofs_in_node;
1572 	ret = f2fs_reserve_new_blocks(dn, count);
1573 	if (ret)
1574 		return ret;
1575 
1576 	dn->ofs_in_node = ofs_in_node;
1577 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1578 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1579 		/*
1580 		 * f2fs_reserve_new_blocks will not guarantee entire block
1581 		 * allocation.
1582 		 */
1583 		if (dn->data_blkaddr == NULL_ADDR) {
1584 			ret = -ENOSPC;
1585 			break;
1586 		}
1587 
1588 		if (dn->data_blkaddr == NEW_ADDR)
1589 			continue;
1590 
1591 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1592 					DATA_GENERIC_ENHANCE)) {
1593 			ret = -EFSCORRUPTED;
1594 			break;
1595 		}
1596 
1597 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr, 1);
1598 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1599 	}
1600 
1601 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1602 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1603 
1604 	return ret;
1605 }
1606 
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1607 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1608 								int mode)
1609 {
1610 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1611 	struct address_space *mapping = inode->i_mapping;
1612 	pgoff_t index, pg_start, pg_end;
1613 	loff_t new_size = i_size_read(inode);
1614 	loff_t off_start, off_end;
1615 	int ret = 0;
1616 
1617 	ret = inode_newsize_ok(inode, (len + offset));
1618 	if (ret)
1619 		return ret;
1620 
1621 	ret = f2fs_convert_inline_inode(inode);
1622 	if (ret)
1623 		return ret;
1624 
1625 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1626 	if (ret)
1627 		return ret;
1628 
1629 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1630 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1631 
1632 	off_start = offset & (PAGE_SIZE - 1);
1633 	off_end = (offset + len) & (PAGE_SIZE - 1);
1634 
1635 	if (pg_start == pg_end) {
1636 		ret = fill_zero(inode, pg_start, off_start,
1637 						off_end - off_start);
1638 		if (ret)
1639 			return ret;
1640 
1641 		new_size = max_t(loff_t, new_size, offset + len);
1642 	} else {
1643 		if (off_start) {
1644 			ret = fill_zero(inode, pg_start++, off_start,
1645 						PAGE_SIZE - off_start);
1646 			if (ret)
1647 				return ret;
1648 
1649 			new_size = max_t(loff_t, new_size,
1650 					(loff_t)pg_start << PAGE_SHIFT);
1651 		}
1652 
1653 		for (index = pg_start; index < pg_end;) {
1654 			struct dnode_of_data dn;
1655 			unsigned int end_offset;
1656 			pgoff_t end;
1657 
1658 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1659 			filemap_invalidate_lock(mapping);
1660 
1661 			truncate_pagecache_range(inode,
1662 				(loff_t)index << PAGE_SHIFT,
1663 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1664 
1665 			f2fs_lock_op(sbi);
1666 
1667 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1668 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1669 			if (ret) {
1670 				f2fs_unlock_op(sbi);
1671 				filemap_invalidate_unlock(mapping);
1672 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1673 				goto out;
1674 			}
1675 
1676 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1677 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1678 
1679 			ret = f2fs_do_zero_range(&dn, index, end);
1680 			f2fs_put_dnode(&dn);
1681 
1682 			f2fs_unlock_op(sbi);
1683 			filemap_invalidate_unlock(mapping);
1684 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1685 
1686 			f2fs_balance_fs(sbi, dn.node_changed);
1687 
1688 			if (ret)
1689 				goto out;
1690 
1691 			index = end;
1692 			new_size = max_t(loff_t, new_size,
1693 					(loff_t)index << PAGE_SHIFT);
1694 		}
1695 
1696 		if (off_end) {
1697 			ret = fill_zero(inode, pg_end, 0, off_end);
1698 			if (ret)
1699 				goto out;
1700 
1701 			new_size = max_t(loff_t, new_size, offset + len);
1702 		}
1703 	}
1704 
1705 out:
1706 	if (new_size > i_size_read(inode)) {
1707 		if (mode & FALLOC_FL_KEEP_SIZE)
1708 			file_set_keep_isize(inode);
1709 		else
1710 			f2fs_i_size_write(inode, new_size);
1711 	}
1712 	return ret;
1713 }
1714 
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1715 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1716 {
1717 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1718 	struct address_space *mapping = inode->i_mapping;
1719 	pgoff_t nr, pg_start, pg_end, delta, idx;
1720 	loff_t new_size;
1721 	int ret = 0;
1722 
1723 	new_size = i_size_read(inode) + len;
1724 	ret = inode_newsize_ok(inode, new_size);
1725 	if (ret)
1726 		return ret;
1727 
1728 	if (offset >= i_size_read(inode))
1729 		return -EINVAL;
1730 
1731 	/* insert range should be aligned to block size of f2fs. */
1732 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1733 		return -EINVAL;
1734 
1735 	ret = f2fs_convert_inline_inode(inode);
1736 	if (ret)
1737 		return ret;
1738 
1739 	f2fs_balance_fs(sbi, true);
1740 
1741 	filemap_invalidate_lock(mapping);
1742 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1743 	filemap_invalidate_unlock(mapping);
1744 	if (ret)
1745 		return ret;
1746 
1747 	/* write out all dirty pages from offset */
1748 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1749 	if (ret)
1750 		return ret;
1751 
1752 	pg_start = offset >> PAGE_SHIFT;
1753 	pg_end = (offset + len) >> PAGE_SHIFT;
1754 	delta = pg_end - pg_start;
1755 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1756 
1757 	/* avoid gc operation during block exchange */
1758 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1759 	filemap_invalidate_lock(mapping);
1760 	truncate_pagecache(inode, offset);
1761 
1762 	while (!ret && idx > pg_start) {
1763 		nr = idx - pg_start;
1764 		if (nr > delta)
1765 			nr = delta;
1766 		idx -= nr;
1767 
1768 		f2fs_lock_op(sbi);
1769 		f2fs_drop_extent_tree(inode);
1770 
1771 		ret = __exchange_data_block(inode, inode, idx,
1772 					idx + delta, nr, false);
1773 		f2fs_unlock_op(sbi);
1774 	}
1775 	filemap_invalidate_unlock(mapping);
1776 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1777 	if (ret)
1778 		return ret;
1779 
1780 	/* write out all moved pages, if possible */
1781 	filemap_invalidate_lock(mapping);
1782 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1783 	truncate_pagecache(inode, offset);
1784 	filemap_invalidate_unlock(mapping);
1785 
1786 	if (!ret)
1787 		f2fs_i_size_write(inode, new_size);
1788 	return ret;
1789 }
1790 
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1791 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1792 					loff_t len, int mode)
1793 {
1794 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1795 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1796 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1797 			.m_may_create = true };
1798 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1799 			.init_gc_type = FG_GC,
1800 			.should_migrate_blocks = false,
1801 			.err_gc_skipped = true,
1802 			.nr_free_secs = 0 };
1803 	pgoff_t pg_start, pg_end;
1804 	loff_t new_size;
1805 	loff_t off_end;
1806 	block_t expanded = 0;
1807 	int err;
1808 
1809 	err = inode_newsize_ok(inode, (len + offset));
1810 	if (err)
1811 		return err;
1812 
1813 	err = f2fs_convert_inline_inode(inode);
1814 	if (err)
1815 		return err;
1816 
1817 	f2fs_balance_fs(sbi, true);
1818 
1819 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1820 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1821 	off_end = (offset + len) & (PAGE_SIZE - 1);
1822 
1823 	map.m_lblk = pg_start;
1824 	map.m_len = pg_end - pg_start;
1825 	if (off_end)
1826 		map.m_len++;
1827 
1828 	if (!map.m_len)
1829 		return 0;
1830 
1831 	if (f2fs_is_pinned_file(inode)) {
1832 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1833 		block_t sec_len = roundup(map.m_len, sec_blks);
1834 
1835 		map.m_len = sec_blks;
1836 next_alloc:
1837 		f2fs_down_write(&sbi->pin_sem);
1838 
1839 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1840 			if (has_not_enough_free_secs(sbi, 0, 0)) {
1841 				f2fs_up_write(&sbi->pin_sem);
1842 				err = -ENOSPC;
1843 				f2fs_warn_ratelimited(sbi,
1844 					"ino:%lu, start:%lu, end:%lu, need to trigger GC to "
1845 					"reclaim enough free segment when checkpoint is enabled",
1846 					inode->i_ino, pg_start, pg_end);
1847 				goto out_err;
1848 			}
1849 		}
1850 
1851 		if (has_not_enough_free_secs(sbi, 0, f2fs_sb_has_blkzoned(sbi) ?
1852 			ZONED_PIN_SEC_REQUIRED_COUNT :
1853 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1854 			f2fs_down_write(&sbi->gc_lock);
1855 			stat_inc_gc_call_count(sbi, FOREGROUND);
1856 			err = f2fs_gc(sbi, &gc_control);
1857 			if (err && err != -ENODATA) {
1858 				f2fs_up_write(&sbi->pin_sem);
1859 				goto out_err;
1860 			}
1861 		}
1862 
1863 		err = f2fs_allocate_pinning_section(sbi);
1864 		if (err) {
1865 			f2fs_up_write(&sbi->pin_sem);
1866 			goto out_err;
1867 		}
1868 
1869 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1870 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1871 		file_dont_truncate(inode);
1872 
1873 		f2fs_up_write(&sbi->pin_sem);
1874 
1875 		expanded += map.m_len;
1876 		sec_len -= map.m_len;
1877 		map.m_lblk += map.m_len;
1878 		if (!err && sec_len)
1879 			goto next_alloc;
1880 
1881 		map.m_len = expanded;
1882 	} else {
1883 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1884 		expanded = map.m_len;
1885 	}
1886 out_err:
1887 	if (err) {
1888 		pgoff_t last_off;
1889 
1890 		if (!expanded)
1891 			return err;
1892 
1893 		last_off = pg_start + expanded - 1;
1894 
1895 		/* update new size to the failed position */
1896 		new_size = (last_off == pg_end) ? offset + len :
1897 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1898 	} else {
1899 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1900 	}
1901 
1902 	if (new_size > i_size_read(inode)) {
1903 		if (mode & FALLOC_FL_KEEP_SIZE)
1904 			file_set_keep_isize(inode);
1905 		else
1906 			f2fs_i_size_write(inode, new_size);
1907 	}
1908 
1909 	return err;
1910 }
1911 
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1912 static long f2fs_fallocate(struct file *file, int mode,
1913 				loff_t offset, loff_t len)
1914 {
1915 	struct inode *inode = file_inode(file);
1916 	long ret = 0;
1917 
1918 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1919 		return -EIO;
1920 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1921 		return -ENOSPC;
1922 	if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
1923 		return -EOPNOTSUPP;
1924 
1925 	/* f2fs only support ->fallocate for regular file */
1926 	if (!S_ISREG(inode->i_mode))
1927 		return -EINVAL;
1928 
1929 	if (IS_ENCRYPTED(inode) &&
1930 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1931 		return -EOPNOTSUPP;
1932 
1933 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1934 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1935 			FALLOC_FL_INSERT_RANGE))
1936 		return -EOPNOTSUPP;
1937 
1938 	inode_lock(inode);
1939 
1940 	/*
1941 	 * Pinned file should not support partial truncation since the block
1942 	 * can be used by applications.
1943 	 */
1944 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1945 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1946 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1947 		ret = -EOPNOTSUPP;
1948 		goto out;
1949 	}
1950 
1951 	ret = file_modified(file);
1952 	if (ret)
1953 		goto out;
1954 
1955 	/*
1956 	 * wait for inflight dio, blocks should be removed after IO
1957 	 * completion.
1958 	 */
1959 	inode_dio_wait(inode);
1960 
1961 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1962 		if (offset >= inode->i_size)
1963 			goto out;
1964 
1965 		ret = f2fs_punch_hole(inode, offset, len);
1966 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1967 		ret = f2fs_collapse_range(inode, offset, len);
1968 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1969 		ret = f2fs_zero_range(inode, offset, len, mode);
1970 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1971 		ret = f2fs_insert_range(inode, offset, len);
1972 	} else {
1973 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1974 	}
1975 
1976 	if (!ret) {
1977 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1978 		f2fs_mark_inode_dirty_sync(inode, false);
1979 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1980 	}
1981 
1982 out:
1983 	inode_unlock(inode);
1984 
1985 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1986 	return ret;
1987 }
1988 
f2fs_release_file(struct inode * inode,struct file * filp)1989 static int f2fs_release_file(struct inode *inode, struct file *filp)
1990 {
1991 	/*
1992 	 * f2fs_release_file is called at every close calls. So we should
1993 	 * not drop any inmemory pages by close called by other process.
1994 	 */
1995 	if (!(filp->f_mode & FMODE_WRITE) ||
1996 			atomic_read(&inode->i_writecount) != 1)
1997 		return 0;
1998 
1999 	inode_lock(inode);
2000 	f2fs_abort_atomic_write(inode, true);
2001 	inode_unlock(inode);
2002 
2003 	return 0;
2004 }
2005 
f2fs_file_flush(struct file * file,fl_owner_t id)2006 static int f2fs_file_flush(struct file *file, fl_owner_t id)
2007 {
2008 	struct inode *inode = file_inode(file);
2009 
2010 	/*
2011 	 * If the process doing a transaction is crashed, we should do
2012 	 * roll-back. Otherwise, other reader/write can see corrupted database
2013 	 * until all the writers close its file. Since this should be done
2014 	 * before dropping file lock, it needs to do in ->flush.
2015 	 */
2016 	if (F2FS_I(inode)->atomic_write_task == current &&
2017 				(current->flags & PF_EXITING)) {
2018 		inode_lock(inode);
2019 		f2fs_abort_atomic_write(inode, true);
2020 		inode_unlock(inode);
2021 	}
2022 
2023 	return 0;
2024 }
2025 
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)2026 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
2027 {
2028 	struct f2fs_inode_info *fi = F2FS_I(inode);
2029 	u32 masked_flags = fi->i_flags & mask;
2030 
2031 	/* mask can be shrunk by flags_valid selector */
2032 	iflags &= mask;
2033 
2034 	/* Is it quota file? Do not allow user to mess with it */
2035 	if (IS_NOQUOTA(inode))
2036 		return -EPERM;
2037 
2038 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2039 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2040 			return -EOPNOTSUPP;
2041 		if (!f2fs_empty_dir(inode))
2042 			return -ENOTEMPTY;
2043 	}
2044 
2045 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2046 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2047 			return -EOPNOTSUPP;
2048 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2049 			return -EINVAL;
2050 	}
2051 
2052 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2053 		if (masked_flags & F2FS_COMPR_FL) {
2054 			if (!f2fs_disable_compressed_file(inode))
2055 				return -EINVAL;
2056 		} else {
2057 			/* try to convert inline_data to support compression */
2058 			int err = f2fs_convert_inline_inode(inode);
2059 			if (err)
2060 				return err;
2061 
2062 			f2fs_down_write(&fi->i_sem);
2063 			if (!f2fs_may_compress(inode) ||
2064 					(S_ISREG(inode->i_mode) &&
2065 					F2FS_HAS_BLOCKS(inode))) {
2066 				f2fs_up_write(&fi->i_sem);
2067 				return -EINVAL;
2068 			}
2069 			err = set_compress_context(inode);
2070 			f2fs_up_write(&fi->i_sem);
2071 
2072 			if (err)
2073 				return err;
2074 		}
2075 	}
2076 
2077 	fi->i_flags = iflags | (fi->i_flags & ~mask);
2078 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2079 					(fi->i_flags & F2FS_NOCOMP_FL));
2080 
2081 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
2082 		set_inode_flag(inode, FI_PROJ_INHERIT);
2083 	else
2084 		clear_inode_flag(inode, FI_PROJ_INHERIT);
2085 
2086 	inode_set_ctime_current(inode);
2087 	f2fs_set_inode_flags(inode);
2088 	f2fs_mark_inode_dirty_sync(inode, true);
2089 	return 0;
2090 }
2091 
2092 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2093 
2094 /*
2095  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2096  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2097  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2098  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2099  *
2100  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2101  * FS_IOC_FSSETXATTR is done by the VFS.
2102  */
2103 
2104 static const struct {
2105 	u32 iflag;
2106 	u32 fsflag;
2107 } f2fs_fsflags_map[] = {
2108 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2109 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2110 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2111 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2112 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2113 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2114 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2115 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2116 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2117 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2118 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2119 };
2120 
2121 #define F2FS_GETTABLE_FS_FL (		\
2122 		FS_COMPR_FL |		\
2123 		FS_SYNC_FL |		\
2124 		FS_IMMUTABLE_FL |	\
2125 		FS_APPEND_FL |		\
2126 		FS_NODUMP_FL |		\
2127 		FS_NOATIME_FL |		\
2128 		FS_NOCOMP_FL |		\
2129 		FS_INDEX_FL |		\
2130 		FS_DIRSYNC_FL |		\
2131 		FS_PROJINHERIT_FL |	\
2132 		FS_ENCRYPT_FL |		\
2133 		FS_INLINE_DATA_FL |	\
2134 		FS_NOCOW_FL |		\
2135 		FS_VERITY_FL |		\
2136 		FS_CASEFOLD_FL)
2137 
2138 #define F2FS_SETTABLE_FS_FL (		\
2139 		FS_COMPR_FL |		\
2140 		FS_SYNC_FL |		\
2141 		FS_IMMUTABLE_FL |	\
2142 		FS_APPEND_FL |		\
2143 		FS_NODUMP_FL |		\
2144 		FS_NOATIME_FL |		\
2145 		FS_NOCOMP_FL |		\
2146 		FS_DIRSYNC_FL |		\
2147 		FS_PROJINHERIT_FL |	\
2148 		FS_CASEFOLD_FL)
2149 
2150 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2151 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2152 {
2153 	u32 fsflags = 0;
2154 	int i;
2155 
2156 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2157 		if (iflags & f2fs_fsflags_map[i].iflag)
2158 			fsflags |= f2fs_fsflags_map[i].fsflag;
2159 
2160 	return fsflags;
2161 }
2162 
2163 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2164 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2165 {
2166 	u32 iflags = 0;
2167 	int i;
2168 
2169 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2170 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2171 			iflags |= f2fs_fsflags_map[i].iflag;
2172 
2173 	return iflags;
2174 }
2175 
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2176 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2177 {
2178 	struct inode *inode = file_inode(filp);
2179 
2180 	return put_user(inode->i_generation, (int __user *)arg);
2181 }
2182 
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2183 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2184 {
2185 	struct inode *inode = file_inode(filp);
2186 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2187 	struct f2fs_inode_info *fi = F2FS_I(inode);
2188 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2189 	loff_t isize;
2190 	int ret;
2191 
2192 	if (!(filp->f_mode & FMODE_WRITE))
2193 		return -EBADF;
2194 
2195 	if (!inode_owner_or_capable(idmap, inode))
2196 		return -EACCES;
2197 
2198 	if (!S_ISREG(inode->i_mode))
2199 		return -EINVAL;
2200 
2201 	if (filp->f_flags & O_DIRECT)
2202 		return -EINVAL;
2203 
2204 	ret = mnt_want_write_file(filp);
2205 	if (ret)
2206 		return ret;
2207 
2208 	inode_lock(inode);
2209 
2210 	if (!f2fs_disable_compressed_file(inode) ||
2211 			f2fs_is_pinned_file(inode)) {
2212 		ret = -EINVAL;
2213 		goto out;
2214 	}
2215 
2216 	if (f2fs_is_atomic_file(inode))
2217 		goto out;
2218 
2219 	ret = f2fs_convert_inline_inode(inode);
2220 	if (ret)
2221 		goto out;
2222 
2223 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2224 	f2fs_down_write(&fi->i_gc_rwsem[READ]);
2225 
2226 	/*
2227 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2228 	 * f2fs_is_atomic_file.
2229 	 */
2230 	if (get_dirty_pages(inode))
2231 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2232 			  inode->i_ino, get_dirty_pages(inode));
2233 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2234 	if (ret)
2235 		goto out_unlock;
2236 
2237 	/* Check if the inode already has a COW inode */
2238 	if (fi->cow_inode == NULL) {
2239 		/* Create a COW inode for atomic write */
2240 		struct dentry *dentry = file_dentry(filp);
2241 		struct inode *dir = d_inode(dentry->d_parent);
2242 
2243 		ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2244 		if (ret)
2245 			goto out_unlock;
2246 
2247 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2248 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2249 
2250 		/* Set the COW inode's atomic_inode to the atomic inode */
2251 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2252 	} else {
2253 		/* Reuse the already created COW inode */
2254 		f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2255 
2256 		invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2257 
2258 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2259 		if (ret)
2260 			goto out_unlock;
2261 	}
2262 
2263 	f2fs_write_inode(inode, NULL);
2264 
2265 	stat_inc_atomic_inode(inode);
2266 
2267 	set_inode_flag(inode, FI_ATOMIC_FILE);
2268 
2269 	isize = i_size_read(inode);
2270 	fi->original_i_size = isize;
2271 	if (truncate) {
2272 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2273 		truncate_inode_pages_final(inode->i_mapping);
2274 		f2fs_i_size_write(inode, 0);
2275 		isize = 0;
2276 	}
2277 	f2fs_i_size_write(fi->cow_inode, isize);
2278 
2279 out_unlock:
2280 	f2fs_up_write(&fi->i_gc_rwsem[READ]);
2281 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2282 	if (ret)
2283 		goto out;
2284 
2285 	f2fs_update_time(sbi, REQ_TIME);
2286 	fi->atomic_write_task = current;
2287 	stat_update_max_atomic_write(inode);
2288 	fi->atomic_write_cnt = 0;
2289 out:
2290 	inode_unlock(inode);
2291 	mnt_drop_write_file(filp);
2292 	return ret;
2293 }
2294 
f2fs_ioc_commit_atomic_write(struct file * filp)2295 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2296 {
2297 	struct inode *inode = file_inode(filp);
2298 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2299 	int ret;
2300 
2301 	if (!(filp->f_mode & FMODE_WRITE))
2302 		return -EBADF;
2303 
2304 	if (!inode_owner_or_capable(idmap, inode))
2305 		return -EACCES;
2306 
2307 	ret = mnt_want_write_file(filp);
2308 	if (ret)
2309 		return ret;
2310 
2311 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2312 
2313 	inode_lock(inode);
2314 
2315 	if (f2fs_is_atomic_file(inode)) {
2316 		ret = f2fs_commit_atomic_write(inode);
2317 		if (!ret)
2318 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2319 
2320 		f2fs_abort_atomic_write(inode, ret);
2321 	} else {
2322 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2323 	}
2324 
2325 	inode_unlock(inode);
2326 	mnt_drop_write_file(filp);
2327 	return ret;
2328 }
2329 
f2fs_ioc_abort_atomic_write(struct file * filp)2330 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2331 {
2332 	struct inode *inode = file_inode(filp);
2333 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2334 	int ret;
2335 
2336 	if (!(filp->f_mode & FMODE_WRITE))
2337 		return -EBADF;
2338 
2339 	if (!inode_owner_or_capable(idmap, inode))
2340 		return -EACCES;
2341 
2342 	ret = mnt_want_write_file(filp);
2343 	if (ret)
2344 		return ret;
2345 
2346 	inode_lock(inode);
2347 
2348 	f2fs_abort_atomic_write(inode, true);
2349 
2350 	inode_unlock(inode);
2351 
2352 	mnt_drop_write_file(filp);
2353 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2354 	return ret;
2355 }
2356 
f2fs_do_shutdown(struct f2fs_sb_info * sbi,unsigned int flag,bool readonly,bool need_lock)2357 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2358 						bool readonly, bool need_lock)
2359 {
2360 	struct super_block *sb = sbi->sb;
2361 	int ret = 0;
2362 
2363 	switch (flag) {
2364 	case F2FS_GOING_DOWN_FULLSYNC:
2365 		ret = bdev_freeze(sb->s_bdev);
2366 		if (ret)
2367 			goto out;
2368 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2369 		bdev_thaw(sb->s_bdev);
2370 		break;
2371 	case F2FS_GOING_DOWN_METASYNC:
2372 		/* do checkpoint only */
2373 		ret = f2fs_sync_fs(sb, 1);
2374 		if (ret) {
2375 			if (ret == -EIO)
2376 				ret = 0;
2377 			goto out;
2378 		}
2379 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2380 		break;
2381 	case F2FS_GOING_DOWN_NOSYNC:
2382 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2383 		break;
2384 	case F2FS_GOING_DOWN_METAFLUSH:
2385 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2386 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2387 		break;
2388 	case F2FS_GOING_DOWN_NEED_FSCK:
2389 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2390 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2391 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2392 		/* do checkpoint only */
2393 		ret = f2fs_sync_fs(sb, 1);
2394 		if (ret == -EIO)
2395 			ret = 0;
2396 		goto out;
2397 	default:
2398 		ret = -EINVAL;
2399 		goto out;
2400 	}
2401 
2402 	if (readonly)
2403 		goto out;
2404 
2405 	/*
2406 	 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2407 	 * paths.
2408 	 */
2409 	if (need_lock)
2410 		down_write(&sbi->sb->s_umount);
2411 
2412 	f2fs_stop_gc_thread(sbi);
2413 	f2fs_stop_discard_thread(sbi);
2414 
2415 	f2fs_drop_discard_cmd(sbi);
2416 	clear_opt(sbi, DISCARD);
2417 
2418 	if (need_lock)
2419 		up_write(&sbi->sb->s_umount);
2420 
2421 	f2fs_update_time(sbi, REQ_TIME);
2422 out:
2423 
2424 	trace_f2fs_shutdown(sbi, flag, ret);
2425 
2426 	return ret;
2427 }
2428 
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2429 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2430 {
2431 	struct inode *inode = file_inode(filp);
2432 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2433 	__u32 in;
2434 	int ret;
2435 	bool need_drop = false, readonly = false;
2436 
2437 	if (!capable(CAP_SYS_ADMIN))
2438 		return -EPERM;
2439 
2440 	if (get_user(in, (__u32 __user *)arg))
2441 		return -EFAULT;
2442 
2443 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2444 		ret = mnt_want_write_file(filp);
2445 		if (ret) {
2446 			if (ret != -EROFS)
2447 				return ret;
2448 
2449 			/* fallback to nosync shutdown for readonly fs */
2450 			in = F2FS_GOING_DOWN_NOSYNC;
2451 			readonly = true;
2452 		} else {
2453 			need_drop = true;
2454 		}
2455 	}
2456 
2457 	ret = f2fs_do_shutdown(sbi, in, readonly, true);
2458 
2459 	if (need_drop)
2460 		mnt_drop_write_file(filp);
2461 
2462 	return ret;
2463 }
2464 
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2465 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2466 {
2467 	struct inode *inode = file_inode(filp);
2468 	struct super_block *sb = inode->i_sb;
2469 	struct fstrim_range range;
2470 	int ret;
2471 
2472 	if (!capable(CAP_SYS_ADMIN))
2473 		return -EPERM;
2474 
2475 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2476 		return -EOPNOTSUPP;
2477 
2478 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2479 				sizeof(range)))
2480 		return -EFAULT;
2481 
2482 	ret = mnt_want_write_file(filp);
2483 	if (ret)
2484 		return ret;
2485 
2486 	range.minlen = max((unsigned int)range.minlen,
2487 			   bdev_discard_granularity(sb->s_bdev));
2488 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2489 	mnt_drop_write_file(filp);
2490 	if (ret < 0)
2491 		return ret;
2492 
2493 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2494 				sizeof(range)))
2495 		return -EFAULT;
2496 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2497 	return 0;
2498 }
2499 
uuid_is_nonzero(__u8 u[16])2500 static bool uuid_is_nonzero(__u8 u[16])
2501 {
2502 	int i;
2503 
2504 	for (i = 0; i < 16; i++)
2505 		if (u[i])
2506 			return true;
2507 	return false;
2508 }
2509 
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2510 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2511 {
2512 	struct inode *inode = file_inode(filp);
2513 	int ret;
2514 
2515 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2516 		return -EOPNOTSUPP;
2517 
2518 	ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2519 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2520 	return ret;
2521 }
2522 
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2523 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2524 {
2525 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2526 		return -EOPNOTSUPP;
2527 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2528 }
2529 
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2530 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2531 {
2532 	struct inode *inode = file_inode(filp);
2533 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2534 	u8 encrypt_pw_salt[16];
2535 	int err;
2536 
2537 	if (!f2fs_sb_has_encrypt(sbi))
2538 		return -EOPNOTSUPP;
2539 
2540 	err = mnt_want_write_file(filp);
2541 	if (err)
2542 		return err;
2543 
2544 	f2fs_down_write(&sbi->sb_lock);
2545 
2546 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2547 		goto got_it;
2548 
2549 	/* update superblock with uuid */
2550 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2551 
2552 	err = f2fs_commit_super(sbi, false);
2553 	if (err) {
2554 		/* undo new data */
2555 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2556 		goto out_err;
2557 	}
2558 got_it:
2559 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2560 out_err:
2561 	f2fs_up_write(&sbi->sb_lock);
2562 	mnt_drop_write_file(filp);
2563 
2564 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2565 		err = -EFAULT;
2566 
2567 	return err;
2568 }
2569 
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2570 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2571 					     unsigned long arg)
2572 {
2573 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2574 		return -EOPNOTSUPP;
2575 
2576 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2577 }
2578 
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2579 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2580 {
2581 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2582 		return -EOPNOTSUPP;
2583 
2584 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2585 }
2586 
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2587 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2588 {
2589 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2590 		return -EOPNOTSUPP;
2591 
2592 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2593 }
2594 
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2595 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2596 						    unsigned long arg)
2597 {
2598 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2599 		return -EOPNOTSUPP;
2600 
2601 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2602 }
2603 
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2604 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2605 					      unsigned long arg)
2606 {
2607 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2608 		return -EOPNOTSUPP;
2609 
2610 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2611 }
2612 
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2613 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2614 {
2615 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2616 		return -EOPNOTSUPP;
2617 
2618 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2619 }
2620 
f2fs_ioc_gc(struct file * filp,unsigned long arg)2621 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2622 {
2623 	struct inode *inode = file_inode(filp);
2624 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2625 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2626 			.no_bg_gc = false,
2627 			.should_migrate_blocks = false,
2628 			.nr_free_secs = 0 };
2629 	__u32 sync;
2630 	int ret;
2631 
2632 	if (!capable(CAP_SYS_ADMIN))
2633 		return -EPERM;
2634 
2635 	if (get_user(sync, (__u32 __user *)arg))
2636 		return -EFAULT;
2637 
2638 	if (f2fs_readonly(sbi->sb))
2639 		return -EROFS;
2640 
2641 	ret = mnt_want_write_file(filp);
2642 	if (ret)
2643 		return ret;
2644 
2645 	if (!sync) {
2646 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2647 			ret = -EBUSY;
2648 			goto out;
2649 		}
2650 	} else {
2651 		f2fs_down_write(&sbi->gc_lock);
2652 	}
2653 
2654 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2655 	gc_control.err_gc_skipped = sync;
2656 	stat_inc_gc_call_count(sbi, FOREGROUND);
2657 	ret = f2fs_gc(sbi, &gc_control);
2658 out:
2659 	mnt_drop_write_file(filp);
2660 	return ret;
2661 }
2662 
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2663 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2664 {
2665 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2666 	struct f2fs_gc_control gc_control = {
2667 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2668 			.no_bg_gc = false,
2669 			.should_migrate_blocks = false,
2670 			.err_gc_skipped = range->sync,
2671 			.nr_free_secs = 0 };
2672 	u64 end;
2673 	int ret;
2674 
2675 	if (!capable(CAP_SYS_ADMIN))
2676 		return -EPERM;
2677 	if (f2fs_readonly(sbi->sb))
2678 		return -EROFS;
2679 
2680 	end = range->start + range->len;
2681 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2682 					end >= MAX_BLKADDR(sbi))
2683 		return -EINVAL;
2684 
2685 	ret = mnt_want_write_file(filp);
2686 	if (ret)
2687 		return ret;
2688 
2689 do_more:
2690 	if (!range->sync) {
2691 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2692 			ret = -EBUSY;
2693 			goto out;
2694 		}
2695 	} else {
2696 		f2fs_down_write(&sbi->gc_lock);
2697 	}
2698 
2699 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2700 	stat_inc_gc_call_count(sbi, FOREGROUND);
2701 	ret = f2fs_gc(sbi, &gc_control);
2702 	if (ret) {
2703 		if (ret == -EBUSY)
2704 			ret = -EAGAIN;
2705 		goto out;
2706 	}
2707 	range->start += CAP_BLKS_PER_SEC(sbi);
2708 	if (range->start <= end)
2709 		goto do_more;
2710 out:
2711 	mnt_drop_write_file(filp);
2712 	return ret;
2713 }
2714 
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2715 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2716 {
2717 	struct f2fs_gc_range range;
2718 
2719 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2720 							sizeof(range)))
2721 		return -EFAULT;
2722 	return __f2fs_ioc_gc_range(filp, &range);
2723 }
2724 
f2fs_ioc_write_checkpoint(struct file * filp)2725 static int f2fs_ioc_write_checkpoint(struct file *filp)
2726 {
2727 	struct inode *inode = file_inode(filp);
2728 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2729 	int ret;
2730 
2731 	if (!capable(CAP_SYS_ADMIN))
2732 		return -EPERM;
2733 
2734 	if (f2fs_readonly(sbi->sb))
2735 		return -EROFS;
2736 
2737 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2738 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2739 		return -EINVAL;
2740 	}
2741 
2742 	ret = mnt_want_write_file(filp);
2743 	if (ret)
2744 		return ret;
2745 
2746 	ret = f2fs_sync_fs(sbi->sb, 1);
2747 
2748 	mnt_drop_write_file(filp);
2749 	return ret;
2750 }
2751 
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2752 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2753 					struct file *filp,
2754 					struct f2fs_defragment *range)
2755 {
2756 	struct inode *inode = file_inode(filp);
2757 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2758 					.m_seg_type = NO_CHECK_TYPE,
2759 					.m_may_create = false };
2760 	struct extent_info ei = {};
2761 	pgoff_t pg_start, pg_end, next_pgofs;
2762 	unsigned int total = 0, sec_num;
2763 	block_t blk_end = 0;
2764 	bool fragmented = false;
2765 	int err;
2766 
2767 	f2fs_balance_fs(sbi, true);
2768 
2769 	inode_lock(inode);
2770 	pg_start = range->start >> PAGE_SHIFT;
2771 	pg_end = min_t(pgoff_t,
2772 				(range->start + range->len) >> PAGE_SHIFT,
2773 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2774 
2775 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2776 		f2fs_is_atomic_file(inode)) {
2777 		err = -EINVAL;
2778 		goto unlock_out;
2779 	}
2780 
2781 	/* if in-place-update policy is enabled, don't waste time here */
2782 	set_inode_flag(inode, FI_OPU_WRITE);
2783 	if (f2fs_should_update_inplace(inode, NULL)) {
2784 		err = -EINVAL;
2785 		goto out;
2786 	}
2787 
2788 	/* writeback all dirty pages in the range */
2789 	err = filemap_write_and_wait_range(inode->i_mapping,
2790 						pg_start << PAGE_SHIFT,
2791 						(pg_end << PAGE_SHIFT) - 1);
2792 	if (err)
2793 		goto out;
2794 
2795 	/*
2796 	 * lookup mapping info in extent cache, skip defragmenting if physical
2797 	 * block addresses are continuous.
2798 	 */
2799 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2800 		if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2801 			goto out;
2802 	}
2803 
2804 	map.m_lblk = pg_start;
2805 	map.m_next_pgofs = &next_pgofs;
2806 
2807 	/*
2808 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2809 	 * physical block addresses are continuous even if there are hole(s)
2810 	 * in logical blocks.
2811 	 */
2812 	while (map.m_lblk < pg_end) {
2813 		map.m_len = pg_end - map.m_lblk;
2814 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2815 		if (err)
2816 			goto out;
2817 
2818 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2819 			map.m_lblk = next_pgofs;
2820 			continue;
2821 		}
2822 
2823 		if (blk_end && blk_end != map.m_pblk)
2824 			fragmented = true;
2825 
2826 		/* record total count of block that we're going to move */
2827 		total += map.m_len;
2828 
2829 		blk_end = map.m_pblk + map.m_len;
2830 
2831 		map.m_lblk += map.m_len;
2832 	}
2833 
2834 	if (!fragmented) {
2835 		total = 0;
2836 		goto out;
2837 	}
2838 
2839 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2840 
2841 	/*
2842 	 * make sure there are enough free section for LFS allocation, this can
2843 	 * avoid defragment running in SSR mode when free section are allocated
2844 	 * intensively
2845 	 */
2846 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2847 		err = -EAGAIN;
2848 		goto out;
2849 	}
2850 
2851 	map.m_lblk = pg_start;
2852 	map.m_len = pg_end - pg_start;
2853 	total = 0;
2854 
2855 	while (map.m_lblk < pg_end) {
2856 		pgoff_t idx;
2857 		int cnt = 0;
2858 
2859 do_map:
2860 		map.m_len = pg_end - map.m_lblk;
2861 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2862 		if (err)
2863 			goto clear_out;
2864 
2865 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2866 			map.m_lblk = next_pgofs;
2867 			goto check;
2868 		}
2869 
2870 		set_inode_flag(inode, FI_SKIP_WRITES);
2871 
2872 		idx = map.m_lblk;
2873 		while (idx < map.m_lblk + map.m_len &&
2874 						cnt < BLKS_PER_SEG(sbi)) {
2875 			struct page *page;
2876 
2877 			page = f2fs_get_lock_data_page(inode, idx, true);
2878 			if (IS_ERR(page)) {
2879 				err = PTR_ERR(page);
2880 				goto clear_out;
2881 			}
2882 
2883 			f2fs_wait_on_page_writeback(page, DATA, true, true);
2884 
2885 			set_page_dirty(page);
2886 			set_page_private_gcing(page);
2887 			f2fs_put_page(page, 1);
2888 
2889 			idx++;
2890 			cnt++;
2891 			total++;
2892 		}
2893 
2894 		map.m_lblk = idx;
2895 check:
2896 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2897 			goto do_map;
2898 
2899 		clear_inode_flag(inode, FI_SKIP_WRITES);
2900 
2901 		err = filemap_fdatawrite(inode->i_mapping);
2902 		if (err)
2903 			goto out;
2904 	}
2905 clear_out:
2906 	clear_inode_flag(inode, FI_SKIP_WRITES);
2907 out:
2908 	clear_inode_flag(inode, FI_OPU_WRITE);
2909 unlock_out:
2910 	inode_unlock(inode);
2911 	if (!err)
2912 		range->len = (u64)total << PAGE_SHIFT;
2913 	return err;
2914 }
2915 
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2916 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2917 {
2918 	struct inode *inode = file_inode(filp);
2919 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2920 	struct f2fs_defragment range;
2921 	int err;
2922 
2923 	if (!capable(CAP_SYS_ADMIN))
2924 		return -EPERM;
2925 
2926 	if (!S_ISREG(inode->i_mode))
2927 		return -EINVAL;
2928 
2929 	if (f2fs_readonly(sbi->sb))
2930 		return -EROFS;
2931 
2932 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2933 							sizeof(range)))
2934 		return -EFAULT;
2935 
2936 	/* verify alignment of offset & size */
2937 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2938 		return -EINVAL;
2939 
2940 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2941 					max_file_blocks(inode)))
2942 		return -EINVAL;
2943 
2944 	err = mnt_want_write_file(filp);
2945 	if (err)
2946 		return err;
2947 
2948 	err = f2fs_defragment_range(sbi, filp, &range);
2949 	mnt_drop_write_file(filp);
2950 
2951 	if (range.len)
2952 		f2fs_update_time(sbi, REQ_TIME);
2953 	if (err < 0)
2954 		return err;
2955 
2956 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2957 							sizeof(range)))
2958 		return -EFAULT;
2959 
2960 	return 0;
2961 }
2962 
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2963 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2964 			struct file *file_out, loff_t pos_out, size_t len)
2965 {
2966 	struct inode *src = file_inode(file_in);
2967 	struct inode *dst = file_inode(file_out);
2968 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2969 	size_t olen = len, dst_max_i_size = 0;
2970 	size_t dst_osize;
2971 	int ret;
2972 
2973 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2974 				src->i_sb != dst->i_sb)
2975 		return -EXDEV;
2976 
2977 	if (unlikely(f2fs_readonly(src->i_sb)))
2978 		return -EROFS;
2979 
2980 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2981 		return -EINVAL;
2982 
2983 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2984 		return -EOPNOTSUPP;
2985 
2986 	if (pos_out < 0 || pos_in < 0)
2987 		return -EINVAL;
2988 
2989 	if (src == dst) {
2990 		if (pos_in == pos_out)
2991 			return 0;
2992 		if (pos_out > pos_in && pos_out < pos_in + len)
2993 			return -EINVAL;
2994 	}
2995 
2996 	inode_lock(src);
2997 	if (src != dst) {
2998 		ret = -EBUSY;
2999 		if (!inode_trylock(dst))
3000 			goto out;
3001 	}
3002 
3003 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
3004 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
3005 		ret = -EOPNOTSUPP;
3006 		goto out_unlock;
3007 	}
3008 
3009 	if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
3010 		ret = -EINVAL;
3011 		goto out_unlock;
3012 	}
3013 
3014 	ret = -EINVAL;
3015 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
3016 		goto out_unlock;
3017 	if (len == 0)
3018 		olen = len = src->i_size - pos_in;
3019 	if (pos_in + len == src->i_size)
3020 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
3021 	if (len == 0) {
3022 		ret = 0;
3023 		goto out_unlock;
3024 	}
3025 
3026 	dst_osize = dst->i_size;
3027 	if (pos_out + olen > dst->i_size)
3028 		dst_max_i_size = pos_out + olen;
3029 
3030 	/* verify the end result is block aligned */
3031 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
3032 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
3033 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
3034 		goto out_unlock;
3035 
3036 	ret = f2fs_convert_inline_inode(src);
3037 	if (ret)
3038 		goto out_unlock;
3039 
3040 	ret = f2fs_convert_inline_inode(dst);
3041 	if (ret)
3042 		goto out_unlock;
3043 
3044 	/* write out all dirty pages from offset */
3045 	ret = filemap_write_and_wait_range(src->i_mapping,
3046 					pos_in, pos_in + len);
3047 	if (ret)
3048 		goto out_unlock;
3049 
3050 	ret = filemap_write_and_wait_range(dst->i_mapping,
3051 					pos_out, pos_out + len);
3052 	if (ret)
3053 		goto out_unlock;
3054 
3055 	f2fs_balance_fs(sbi, true);
3056 
3057 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3058 	if (src != dst) {
3059 		ret = -EBUSY;
3060 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3061 			goto out_src;
3062 	}
3063 
3064 	f2fs_lock_op(sbi);
3065 	ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3066 				F2FS_BYTES_TO_BLK(pos_out),
3067 				F2FS_BYTES_TO_BLK(len), false);
3068 
3069 	if (!ret) {
3070 		if (dst_max_i_size)
3071 			f2fs_i_size_write(dst, dst_max_i_size);
3072 		else if (dst_osize != dst->i_size)
3073 			f2fs_i_size_write(dst, dst_osize);
3074 	}
3075 	f2fs_unlock_op(sbi);
3076 
3077 	if (src != dst)
3078 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3079 out_src:
3080 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3081 	if (ret)
3082 		goto out_unlock;
3083 
3084 	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3085 	f2fs_mark_inode_dirty_sync(src, false);
3086 	if (src != dst) {
3087 		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3088 		f2fs_mark_inode_dirty_sync(dst, false);
3089 	}
3090 	f2fs_update_time(sbi, REQ_TIME);
3091 
3092 out_unlock:
3093 	if (src != dst)
3094 		inode_unlock(dst);
3095 out:
3096 	inode_unlock(src);
3097 	return ret;
3098 }
3099 
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)3100 static int __f2fs_ioc_move_range(struct file *filp,
3101 				struct f2fs_move_range *range)
3102 {
3103 	int err;
3104 
3105 	if (!(filp->f_mode & FMODE_READ) ||
3106 			!(filp->f_mode & FMODE_WRITE))
3107 		return -EBADF;
3108 
3109 	CLASS(fd, dst)(range->dst_fd);
3110 	if (fd_empty(dst))
3111 		return -EBADF;
3112 
3113 	if (!(fd_file(dst)->f_mode & FMODE_WRITE))
3114 		return -EBADF;
3115 
3116 	err = mnt_want_write_file(filp);
3117 	if (err)
3118 		return err;
3119 
3120 	err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3121 					range->pos_out, range->len);
3122 
3123 	mnt_drop_write_file(filp);
3124 	return err;
3125 }
3126 
f2fs_ioc_move_range(struct file * filp,unsigned long arg)3127 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3128 {
3129 	struct f2fs_move_range range;
3130 
3131 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3132 							sizeof(range)))
3133 		return -EFAULT;
3134 	return __f2fs_ioc_move_range(filp, &range);
3135 }
3136 
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)3137 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3138 {
3139 	struct inode *inode = file_inode(filp);
3140 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3141 	struct sit_info *sm = SIT_I(sbi);
3142 	unsigned int start_segno = 0, end_segno = 0;
3143 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3144 	struct f2fs_flush_device range;
3145 	struct f2fs_gc_control gc_control = {
3146 			.init_gc_type = FG_GC,
3147 			.should_migrate_blocks = true,
3148 			.err_gc_skipped = true,
3149 			.nr_free_secs = 0 };
3150 	int ret;
3151 
3152 	if (!capable(CAP_SYS_ADMIN))
3153 		return -EPERM;
3154 
3155 	if (f2fs_readonly(sbi->sb))
3156 		return -EROFS;
3157 
3158 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3159 		return -EINVAL;
3160 
3161 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3162 							sizeof(range)))
3163 		return -EFAULT;
3164 
3165 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3166 			__is_large_section(sbi)) {
3167 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3168 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3169 		return -EINVAL;
3170 	}
3171 
3172 	ret = mnt_want_write_file(filp);
3173 	if (ret)
3174 		return ret;
3175 
3176 	if (range.dev_num != 0)
3177 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3178 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3179 
3180 	start_segno = sm->last_victim[FLUSH_DEVICE];
3181 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3182 		start_segno = dev_start_segno;
3183 	end_segno = min(start_segno + range.segments, dev_end_segno);
3184 
3185 	while (start_segno < end_segno) {
3186 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3187 			ret = -EBUSY;
3188 			goto out;
3189 		}
3190 		sm->last_victim[GC_CB] = end_segno + 1;
3191 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3192 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3193 
3194 		gc_control.victim_segno = start_segno;
3195 		stat_inc_gc_call_count(sbi, FOREGROUND);
3196 		ret = f2fs_gc(sbi, &gc_control);
3197 		if (ret == -EAGAIN)
3198 			ret = 0;
3199 		else if (ret < 0)
3200 			break;
3201 		start_segno++;
3202 	}
3203 out:
3204 	mnt_drop_write_file(filp);
3205 	return ret;
3206 }
3207 
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3208 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3209 {
3210 	struct inode *inode = file_inode(filp);
3211 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3212 
3213 	/* Must validate to set it with SQLite behavior in Android. */
3214 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3215 
3216 	return put_user(sb_feature, (u32 __user *)arg);
3217 }
3218 
3219 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3220 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3221 {
3222 	struct dquot *transfer_to[MAXQUOTAS] = {};
3223 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3224 	struct super_block *sb = sbi->sb;
3225 	int err;
3226 
3227 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3228 	if (IS_ERR(transfer_to[PRJQUOTA]))
3229 		return PTR_ERR(transfer_to[PRJQUOTA]);
3230 
3231 	err = __dquot_transfer(inode, transfer_to);
3232 	if (err)
3233 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3234 	dqput(transfer_to[PRJQUOTA]);
3235 	return err;
3236 }
3237 
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3238 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3239 {
3240 	struct f2fs_inode_info *fi = F2FS_I(inode);
3241 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3242 	struct f2fs_inode *ri = NULL;
3243 	kprojid_t kprojid;
3244 	int err;
3245 
3246 	if (!f2fs_sb_has_project_quota(sbi)) {
3247 		if (projid != F2FS_DEF_PROJID)
3248 			return -EOPNOTSUPP;
3249 		else
3250 			return 0;
3251 	}
3252 
3253 	if (!f2fs_has_extra_attr(inode))
3254 		return -EOPNOTSUPP;
3255 
3256 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3257 
3258 	if (projid_eq(kprojid, fi->i_projid))
3259 		return 0;
3260 
3261 	err = -EPERM;
3262 	/* Is it quota file? Do not allow user to mess with it */
3263 	if (IS_NOQUOTA(inode))
3264 		return err;
3265 
3266 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3267 		return -EOVERFLOW;
3268 
3269 	err = f2fs_dquot_initialize(inode);
3270 	if (err)
3271 		return err;
3272 
3273 	f2fs_lock_op(sbi);
3274 	err = f2fs_transfer_project_quota(inode, kprojid);
3275 	if (err)
3276 		goto out_unlock;
3277 
3278 	fi->i_projid = kprojid;
3279 	inode_set_ctime_current(inode);
3280 	f2fs_mark_inode_dirty_sync(inode, true);
3281 out_unlock:
3282 	f2fs_unlock_op(sbi);
3283 	return err;
3284 }
3285 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3286 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3287 {
3288 	return 0;
3289 }
3290 
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3291 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3292 {
3293 	if (projid != F2FS_DEF_PROJID)
3294 		return -EOPNOTSUPP;
3295 	return 0;
3296 }
3297 #endif
3298 
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3299 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3300 {
3301 	struct inode *inode = d_inode(dentry);
3302 	struct f2fs_inode_info *fi = F2FS_I(inode);
3303 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3304 
3305 	if (IS_ENCRYPTED(inode))
3306 		fsflags |= FS_ENCRYPT_FL;
3307 	if (IS_VERITY(inode))
3308 		fsflags |= FS_VERITY_FL;
3309 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3310 		fsflags |= FS_INLINE_DATA_FL;
3311 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3312 		fsflags |= FS_NOCOW_FL;
3313 
3314 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3315 
3316 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3317 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3318 
3319 	return 0;
3320 }
3321 
f2fs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3322 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3323 		      struct dentry *dentry, struct fileattr *fa)
3324 {
3325 	struct inode *inode = d_inode(dentry);
3326 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3327 	u32 iflags;
3328 	int err;
3329 
3330 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3331 		return -EIO;
3332 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3333 		return -ENOSPC;
3334 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3335 		return -EOPNOTSUPP;
3336 	fsflags &= F2FS_SETTABLE_FS_FL;
3337 	if (!fa->flags_valid)
3338 		mask &= FS_COMMON_FL;
3339 
3340 	iflags = f2fs_fsflags_to_iflags(fsflags);
3341 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3342 		return -EOPNOTSUPP;
3343 
3344 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3345 	if (!err)
3346 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3347 
3348 	return err;
3349 }
3350 
f2fs_pin_file_control(struct inode * inode,bool inc)3351 int f2fs_pin_file_control(struct inode *inode, bool inc)
3352 {
3353 	struct f2fs_inode_info *fi = F2FS_I(inode);
3354 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3355 
3356 	if (IS_DEVICE_ALIASING(inode))
3357 		return -EINVAL;
3358 
3359 	if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3360 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3361 			  __func__, inode->i_ino, fi->i_gc_failures);
3362 		clear_inode_flag(inode, FI_PIN_FILE);
3363 		return -EAGAIN;
3364 	}
3365 
3366 	/* Use i_gc_failures for normal file as a risk signal. */
3367 	if (inc)
3368 		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3369 
3370 	return 0;
3371 }
3372 
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3373 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3374 {
3375 	struct inode *inode = file_inode(filp);
3376 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3377 	__u32 pin;
3378 	int ret = 0;
3379 
3380 	if (get_user(pin, (__u32 __user *)arg))
3381 		return -EFAULT;
3382 
3383 	if (!S_ISREG(inode->i_mode))
3384 		return -EINVAL;
3385 
3386 	if (f2fs_readonly(sbi->sb))
3387 		return -EROFS;
3388 
3389 	if (!pin && IS_DEVICE_ALIASING(inode))
3390 		return -EOPNOTSUPP;
3391 
3392 	ret = mnt_want_write_file(filp);
3393 	if (ret)
3394 		return ret;
3395 
3396 	inode_lock(inode);
3397 
3398 	if (f2fs_is_atomic_file(inode)) {
3399 		ret = -EINVAL;
3400 		goto out;
3401 	}
3402 
3403 	if (!pin) {
3404 		clear_inode_flag(inode, FI_PIN_FILE);
3405 		f2fs_i_gc_failures_write(inode, 0);
3406 		goto done;
3407 	} else if (f2fs_is_pinned_file(inode)) {
3408 		goto done;
3409 	}
3410 
3411 	if (F2FS_HAS_BLOCKS(inode)) {
3412 		ret = -EFBIG;
3413 		goto out;
3414 	}
3415 
3416 	/* Let's allow file pinning on zoned device. */
3417 	if (!f2fs_sb_has_blkzoned(sbi) &&
3418 	    f2fs_should_update_outplace(inode, NULL)) {
3419 		ret = -EINVAL;
3420 		goto out;
3421 	}
3422 
3423 	if (f2fs_pin_file_control(inode, false)) {
3424 		ret = -EAGAIN;
3425 		goto out;
3426 	}
3427 
3428 	ret = f2fs_convert_inline_inode(inode);
3429 	if (ret)
3430 		goto out;
3431 
3432 	if (!f2fs_disable_compressed_file(inode)) {
3433 		ret = -EOPNOTSUPP;
3434 		goto out;
3435 	}
3436 
3437 	set_inode_flag(inode, FI_PIN_FILE);
3438 	ret = F2FS_I(inode)->i_gc_failures;
3439 done:
3440 	f2fs_update_time(sbi, REQ_TIME);
3441 out:
3442 	inode_unlock(inode);
3443 	mnt_drop_write_file(filp);
3444 	return ret;
3445 }
3446 
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3447 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3448 {
3449 	struct inode *inode = file_inode(filp);
3450 	__u32 pin = 0;
3451 
3452 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3453 		pin = F2FS_I(inode)->i_gc_failures;
3454 	return put_user(pin, (u32 __user *)arg);
3455 }
3456 
f2fs_ioc_get_dev_alias_file(struct file * filp,unsigned long arg)3457 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
3458 {
3459 	return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
3460 			(u32 __user *)arg);
3461 }
3462 
f2fs_precache_extents(struct inode * inode)3463 int f2fs_precache_extents(struct inode *inode)
3464 {
3465 	struct f2fs_inode_info *fi = F2FS_I(inode);
3466 	struct f2fs_map_blocks map;
3467 	pgoff_t m_next_extent;
3468 	loff_t end;
3469 	int err;
3470 
3471 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3472 		return -EOPNOTSUPP;
3473 
3474 	map.m_lblk = 0;
3475 	map.m_pblk = 0;
3476 	map.m_next_pgofs = NULL;
3477 	map.m_next_extent = &m_next_extent;
3478 	map.m_seg_type = NO_CHECK_TYPE;
3479 	map.m_may_create = false;
3480 	end = F2FS_BLK_ALIGN(i_size_read(inode));
3481 
3482 	while (map.m_lblk < end) {
3483 		map.m_len = end - map.m_lblk;
3484 
3485 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3486 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3487 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3488 		if (err || !map.m_len)
3489 			return err;
3490 
3491 		map.m_lblk = m_next_extent;
3492 	}
3493 
3494 	return 0;
3495 }
3496 
f2fs_ioc_precache_extents(struct file * filp)3497 static int f2fs_ioc_precache_extents(struct file *filp)
3498 {
3499 	return f2fs_precache_extents(file_inode(filp));
3500 }
3501 
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3502 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3503 {
3504 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3505 	__u64 block_count;
3506 
3507 	if (!capable(CAP_SYS_ADMIN))
3508 		return -EPERM;
3509 
3510 	if (f2fs_readonly(sbi->sb))
3511 		return -EROFS;
3512 
3513 	if (copy_from_user(&block_count, (void __user *)arg,
3514 			   sizeof(block_count)))
3515 		return -EFAULT;
3516 
3517 	return f2fs_resize_fs(filp, block_count);
3518 }
3519 
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3520 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3521 {
3522 	struct inode *inode = file_inode(filp);
3523 
3524 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3525 
3526 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3527 		f2fs_warn(F2FS_I_SB(inode),
3528 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3529 			  inode->i_ino);
3530 		return -EOPNOTSUPP;
3531 	}
3532 
3533 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3534 }
3535 
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3536 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3537 {
3538 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3539 		return -EOPNOTSUPP;
3540 
3541 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3542 }
3543 
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3544 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3545 {
3546 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3547 		return -EOPNOTSUPP;
3548 
3549 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3550 }
3551 
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3552 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3553 {
3554 	struct inode *inode = file_inode(filp);
3555 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3556 	char *vbuf;
3557 	int count;
3558 	int err = 0;
3559 
3560 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3561 	if (!vbuf)
3562 		return -ENOMEM;
3563 
3564 	f2fs_down_read(&sbi->sb_lock);
3565 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3566 			ARRAY_SIZE(sbi->raw_super->volume_name),
3567 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3568 	f2fs_up_read(&sbi->sb_lock);
3569 
3570 	if (copy_to_user((char __user *)arg, vbuf,
3571 				min(FSLABEL_MAX, count)))
3572 		err = -EFAULT;
3573 
3574 	kfree(vbuf);
3575 	return err;
3576 }
3577 
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3578 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3579 {
3580 	struct inode *inode = file_inode(filp);
3581 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3582 	char *vbuf;
3583 	int err = 0;
3584 
3585 	if (!capable(CAP_SYS_ADMIN))
3586 		return -EPERM;
3587 
3588 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3589 	if (IS_ERR(vbuf))
3590 		return PTR_ERR(vbuf);
3591 
3592 	err = mnt_want_write_file(filp);
3593 	if (err)
3594 		goto out;
3595 
3596 	f2fs_down_write(&sbi->sb_lock);
3597 
3598 	memset(sbi->raw_super->volume_name, 0,
3599 			sizeof(sbi->raw_super->volume_name));
3600 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3601 			sbi->raw_super->volume_name,
3602 			ARRAY_SIZE(sbi->raw_super->volume_name));
3603 
3604 	err = f2fs_commit_super(sbi, false);
3605 
3606 	f2fs_up_write(&sbi->sb_lock);
3607 
3608 	mnt_drop_write_file(filp);
3609 out:
3610 	kfree(vbuf);
3611 	return err;
3612 }
3613 
f2fs_get_compress_blocks(struct inode * inode,__u64 * blocks)3614 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3615 {
3616 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3617 		return -EOPNOTSUPP;
3618 
3619 	if (!f2fs_compressed_file(inode))
3620 		return -EINVAL;
3621 
3622 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3623 
3624 	return 0;
3625 }
3626 
f2fs_ioc_get_compress_blocks(struct file * filp,unsigned long arg)3627 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3628 {
3629 	struct inode *inode = file_inode(filp);
3630 	__u64 blocks;
3631 	int ret;
3632 
3633 	ret = f2fs_get_compress_blocks(inode, &blocks);
3634 	if (ret < 0)
3635 		return ret;
3636 
3637 	return put_user(blocks, (u64 __user *)arg);
3638 }
3639 
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3640 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3641 {
3642 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3643 	unsigned int released_blocks = 0;
3644 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3645 	block_t blkaddr;
3646 	int i;
3647 
3648 	for (i = 0; i < count; i++) {
3649 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3650 						dn->ofs_in_node + i);
3651 
3652 		if (!__is_valid_data_blkaddr(blkaddr))
3653 			continue;
3654 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3655 					DATA_GENERIC_ENHANCE)))
3656 			return -EFSCORRUPTED;
3657 	}
3658 
3659 	while (count) {
3660 		int compr_blocks = 0;
3661 
3662 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3663 			blkaddr = f2fs_data_blkaddr(dn);
3664 
3665 			if (i == 0) {
3666 				if (blkaddr == COMPRESS_ADDR)
3667 					continue;
3668 				dn->ofs_in_node += cluster_size;
3669 				goto next;
3670 			}
3671 
3672 			if (__is_valid_data_blkaddr(blkaddr))
3673 				compr_blocks++;
3674 
3675 			if (blkaddr != NEW_ADDR)
3676 				continue;
3677 
3678 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3679 		}
3680 
3681 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3682 		dec_valid_block_count(sbi, dn->inode,
3683 					cluster_size - compr_blocks);
3684 
3685 		released_blocks += cluster_size - compr_blocks;
3686 next:
3687 		count -= cluster_size;
3688 	}
3689 
3690 	return released_blocks;
3691 }
3692 
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3693 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3694 {
3695 	struct inode *inode = file_inode(filp);
3696 	struct f2fs_inode_info *fi = F2FS_I(inode);
3697 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3698 	pgoff_t page_idx = 0, last_idx;
3699 	unsigned int released_blocks = 0;
3700 	int ret;
3701 	int writecount;
3702 
3703 	if (!f2fs_sb_has_compression(sbi))
3704 		return -EOPNOTSUPP;
3705 
3706 	if (f2fs_readonly(sbi->sb))
3707 		return -EROFS;
3708 
3709 	ret = mnt_want_write_file(filp);
3710 	if (ret)
3711 		return ret;
3712 
3713 	f2fs_balance_fs(sbi, true);
3714 
3715 	inode_lock(inode);
3716 
3717 	writecount = atomic_read(&inode->i_writecount);
3718 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3719 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3720 		ret = -EBUSY;
3721 		goto out;
3722 	}
3723 
3724 	if (!f2fs_compressed_file(inode) ||
3725 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3726 		ret = -EINVAL;
3727 		goto out;
3728 	}
3729 
3730 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3731 	if (ret)
3732 		goto out;
3733 
3734 	if (!atomic_read(&fi->i_compr_blocks)) {
3735 		ret = -EPERM;
3736 		goto out;
3737 	}
3738 
3739 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3740 	inode_set_ctime_current(inode);
3741 	f2fs_mark_inode_dirty_sync(inode, true);
3742 
3743 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3744 	filemap_invalidate_lock(inode->i_mapping);
3745 
3746 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3747 
3748 	while (page_idx < last_idx) {
3749 		struct dnode_of_data dn;
3750 		pgoff_t end_offset, count;
3751 
3752 		f2fs_lock_op(sbi);
3753 
3754 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3755 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3756 		if (ret) {
3757 			f2fs_unlock_op(sbi);
3758 			if (ret == -ENOENT) {
3759 				page_idx = f2fs_get_next_page_offset(&dn,
3760 								page_idx);
3761 				ret = 0;
3762 				continue;
3763 			}
3764 			break;
3765 		}
3766 
3767 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3768 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3769 		count = round_up(count, fi->i_cluster_size);
3770 
3771 		ret = release_compress_blocks(&dn, count);
3772 
3773 		f2fs_put_dnode(&dn);
3774 
3775 		f2fs_unlock_op(sbi);
3776 
3777 		if (ret < 0)
3778 			break;
3779 
3780 		page_idx += count;
3781 		released_blocks += ret;
3782 	}
3783 
3784 	filemap_invalidate_unlock(inode->i_mapping);
3785 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3786 out:
3787 	if (released_blocks)
3788 		f2fs_update_time(sbi, REQ_TIME);
3789 	inode_unlock(inode);
3790 
3791 	mnt_drop_write_file(filp);
3792 
3793 	if (ret >= 0) {
3794 		ret = put_user(released_blocks, (u64 __user *)arg);
3795 	} else if (released_blocks &&
3796 			atomic_read(&fi->i_compr_blocks)) {
3797 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3798 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3799 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3800 			"run fsck to fix.",
3801 			__func__, inode->i_ino, inode->i_blocks,
3802 			released_blocks,
3803 			atomic_read(&fi->i_compr_blocks));
3804 	}
3805 
3806 	return ret;
3807 }
3808 
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3809 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3810 		unsigned int *reserved_blocks)
3811 {
3812 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3813 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3814 	block_t blkaddr;
3815 	int i;
3816 
3817 	for (i = 0; i < count; i++) {
3818 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3819 						dn->ofs_in_node + i);
3820 
3821 		if (!__is_valid_data_blkaddr(blkaddr))
3822 			continue;
3823 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3824 					DATA_GENERIC_ENHANCE)))
3825 			return -EFSCORRUPTED;
3826 	}
3827 
3828 	while (count) {
3829 		int compr_blocks = 0;
3830 		blkcnt_t reserved = 0;
3831 		blkcnt_t to_reserved;
3832 		int ret;
3833 
3834 		for (i = 0; i < cluster_size; i++) {
3835 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3836 						dn->ofs_in_node + i);
3837 
3838 			if (i == 0) {
3839 				if (blkaddr != COMPRESS_ADDR) {
3840 					dn->ofs_in_node += cluster_size;
3841 					goto next;
3842 				}
3843 				continue;
3844 			}
3845 
3846 			/*
3847 			 * compressed cluster was not released due to it
3848 			 * fails in release_compress_blocks(), so NEW_ADDR
3849 			 * is a possible case.
3850 			 */
3851 			if (blkaddr == NEW_ADDR) {
3852 				reserved++;
3853 				continue;
3854 			}
3855 			if (__is_valid_data_blkaddr(blkaddr)) {
3856 				compr_blocks++;
3857 				continue;
3858 			}
3859 		}
3860 
3861 		to_reserved = cluster_size - compr_blocks - reserved;
3862 
3863 		/* for the case all blocks in cluster were reserved */
3864 		if (reserved && to_reserved == 1) {
3865 			dn->ofs_in_node += cluster_size;
3866 			goto next;
3867 		}
3868 
3869 		ret = inc_valid_block_count(sbi, dn->inode,
3870 						&to_reserved, false);
3871 		if (unlikely(ret))
3872 			return ret;
3873 
3874 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3875 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3876 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3877 		}
3878 
3879 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3880 
3881 		*reserved_blocks += to_reserved;
3882 next:
3883 		count -= cluster_size;
3884 	}
3885 
3886 	return 0;
3887 }
3888 
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3889 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3890 {
3891 	struct inode *inode = file_inode(filp);
3892 	struct f2fs_inode_info *fi = F2FS_I(inode);
3893 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3894 	pgoff_t page_idx = 0, last_idx;
3895 	unsigned int reserved_blocks = 0;
3896 	int ret;
3897 
3898 	if (!f2fs_sb_has_compression(sbi))
3899 		return -EOPNOTSUPP;
3900 
3901 	if (f2fs_readonly(sbi->sb))
3902 		return -EROFS;
3903 
3904 	ret = mnt_want_write_file(filp);
3905 	if (ret)
3906 		return ret;
3907 
3908 	f2fs_balance_fs(sbi, true);
3909 
3910 	inode_lock(inode);
3911 
3912 	if (!f2fs_compressed_file(inode) ||
3913 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3914 		ret = -EINVAL;
3915 		goto unlock_inode;
3916 	}
3917 
3918 	if (atomic_read(&fi->i_compr_blocks))
3919 		goto unlock_inode;
3920 
3921 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3922 	filemap_invalidate_lock(inode->i_mapping);
3923 
3924 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3925 
3926 	while (page_idx < last_idx) {
3927 		struct dnode_of_data dn;
3928 		pgoff_t end_offset, count;
3929 
3930 		f2fs_lock_op(sbi);
3931 
3932 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3933 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3934 		if (ret) {
3935 			f2fs_unlock_op(sbi);
3936 			if (ret == -ENOENT) {
3937 				page_idx = f2fs_get_next_page_offset(&dn,
3938 								page_idx);
3939 				ret = 0;
3940 				continue;
3941 			}
3942 			break;
3943 		}
3944 
3945 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3946 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3947 		count = round_up(count, fi->i_cluster_size);
3948 
3949 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3950 
3951 		f2fs_put_dnode(&dn);
3952 
3953 		f2fs_unlock_op(sbi);
3954 
3955 		if (ret < 0)
3956 			break;
3957 
3958 		page_idx += count;
3959 	}
3960 
3961 	filemap_invalidate_unlock(inode->i_mapping);
3962 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3963 
3964 	if (!ret) {
3965 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3966 		inode_set_ctime_current(inode);
3967 		f2fs_mark_inode_dirty_sync(inode, true);
3968 	}
3969 unlock_inode:
3970 	if (reserved_blocks)
3971 		f2fs_update_time(sbi, REQ_TIME);
3972 	inode_unlock(inode);
3973 	mnt_drop_write_file(filp);
3974 
3975 	if (!ret) {
3976 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3977 	} else if (reserved_blocks &&
3978 			atomic_read(&fi->i_compr_blocks)) {
3979 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3980 		f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3981 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3982 			"run fsck to fix.",
3983 			__func__, inode->i_ino, inode->i_blocks,
3984 			reserved_blocks,
3985 			atomic_read(&fi->i_compr_blocks));
3986 	}
3987 
3988 	return ret;
3989 }
3990 
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3991 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3992 		pgoff_t off, block_t block, block_t len, u32 flags)
3993 {
3994 	sector_t sector = SECTOR_FROM_BLOCK(block);
3995 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3996 	int ret = 0;
3997 
3998 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3999 		if (bdev_max_secure_erase_sectors(bdev))
4000 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
4001 					GFP_NOFS);
4002 		else
4003 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
4004 					GFP_NOFS);
4005 	}
4006 
4007 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
4008 		if (IS_ENCRYPTED(inode))
4009 			ret = fscrypt_zeroout_range(inode, off, block, len);
4010 		else
4011 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
4012 					GFP_NOFS, 0);
4013 	}
4014 
4015 	return ret;
4016 }
4017 
f2fs_sec_trim_file(struct file * filp,unsigned long arg)4018 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
4019 {
4020 	struct inode *inode = file_inode(filp);
4021 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4022 	struct address_space *mapping = inode->i_mapping;
4023 	struct block_device *prev_bdev = NULL;
4024 	struct f2fs_sectrim_range range;
4025 	pgoff_t index, pg_end, prev_index = 0;
4026 	block_t prev_block = 0, len = 0;
4027 	loff_t end_addr;
4028 	bool to_end = false;
4029 	int ret = 0;
4030 
4031 	if (!(filp->f_mode & FMODE_WRITE))
4032 		return -EBADF;
4033 
4034 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
4035 				sizeof(range)))
4036 		return -EFAULT;
4037 
4038 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
4039 			!S_ISREG(inode->i_mode))
4040 		return -EINVAL;
4041 
4042 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
4043 			!f2fs_hw_support_discard(sbi)) ||
4044 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
4045 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
4046 		return -EOPNOTSUPP;
4047 
4048 	ret = mnt_want_write_file(filp);
4049 	if (ret)
4050 		return ret;
4051 	inode_lock(inode);
4052 
4053 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4054 			range.start >= inode->i_size) {
4055 		ret = -EINVAL;
4056 		goto err;
4057 	}
4058 
4059 	if (range.len == 0)
4060 		goto err;
4061 
4062 	if (inode->i_size - range.start > range.len) {
4063 		end_addr = range.start + range.len;
4064 	} else {
4065 		end_addr = range.len == (u64)-1 ?
4066 			sbi->sb->s_maxbytes : inode->i_size;
4067 		to_end = true;
4068 	}
4069 
4070 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4071 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4072 		ret = -EINVAL;
4073 		goto err;
4074 	}
4075 
4076 	index = F2FS_BYTES_TO_BLK(range.start);
4077 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4078 
4079 	ret = f2fs_convert_inline_inode(inode);
4080 	if (ret)
4081 		goto err;
4082 
4083 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4084 	filemap_invalidate_lock(mapping);
4085 
4086 	ret = filemap_write_and_wait_range(mapping, range.start,
4087 			to_end ? LLONG_MAX : end_addr - 1);
4088 	if (ret)
4089 		goto out;
4090 
4091 	truncate_inode_pages_range(mapping, range.start,
4092 			to_end ? -1 : end_addr - 1);
4093 
4094 	while (index < pg_end) {
4095 		struct dnode_of_data dn;
4096 		pgoff_t end_offset, count;
4097 		int i;
4098 
4099 		set_new_dnode(&dn, inode, NULL, NULL, 0);
4100 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4101 		if (ret) {
4102 			if (ret == -ENOENT) {
4103 				index = f2fs_get_next_page_offset(&dn, index);
4104 				continue;
4105 			}
4106 			goto out;
4107 		}
4108 
4109 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4110 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
4111 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4112 			struct block_device *cur_bdev;
4113 			block_t blkaddr = f2fs_data_blkaddr(&dn);
4114 
4115 			if (!__is_valid_data_blkaddr(blkaddr))
4116 				continue;
4117 
4118 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4119 						DATA_GENERIC_ENHANCE)) {
4120 				ret = -EFSCORRUPTED;
4121 				f2fs_put_dnode(&dn);
4122 				goto out;
4123 			}
4124 
4125 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4126 			if (f2fs_is_multi_device(sbi)) {
4127 				int di = f2fs_target_device_index(sbi, blkaddr);
4128 
4129 				blkaddr -= FDEV(di).start_blk;
4130 			}
4131 
4132 			if (len) {
4133 				if (prev_bdev == cur_bdev &&
4134 						index == prev_index + len &&
4135 						blkaddr == prev_block + len) {
4136 					len++;
4137 				} else {
4138 					ret = f2fs_secure_erase(prev_bdev,
4139 						inode, prev_index, prev_block,
4140 						len, range.flags);
4141 					if (ret) {
4142 						f2fs_put_dnode(&dn);
4143 						goto out;
4144 					}
4145 
4146 					len = 0;
4147 				}
4148 			}
4149 
4150 			if (!len) {
4151 				prev_bdev = cur_bdev;
4152 				prev_index = index;
4153 				prev_block = blkaddr;
4154 				len = 1;
4155 			}
4156 		}
4157 
4158 		f2fs_put_dnode(&dn);
4159 
4160 		if (fatal_signal_pending(current)) {
4161 			ret = -EINTR;
4162 			goto out;
4163 		}
4164 		cond_resched();
4165 	}
4166 
4167 	if (len)
4168 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4169 				prev_block, len, range.flags);
4170 	f2fs_update_time(sbi, REQ_TIME);
4171 out:
4172 	filemap_invalidate_unlock(mapping);
4173 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4174 err:
4175 	inode_unlock(inode);
4176 	mnt_drop_write_file(filp);
4177 
4178 	return ret;
4179 }
4180 
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)4181 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4182 {
4183 	struct inode *inode = file_inode(filp);
4184 	struct f2fs_comp_option option;
4185 
4186 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4187 		return -EOPNOTSUPP;
4188 
4189 	inode_lock_shared(inode);
4190 
4191 	if (!f2fs_compressed_file(inode)) {
4192 		inode_unlock_shared(inode);
4193 		return -ENODATA;
4194 	}
4195 
4196 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4197 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4198 
4199 	inode_unlock_shared(inode);
4200 
4201 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4202 				sizeof(option)))
4203 		return -EFAULT;
4204 
4205 	return 0;
4206 }
4207 
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)4208 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4209 {
4210 	struct inode *inode = file_inode(filp);
4211 	struct f2fs_inode_info *fi = F2FS_I(inode);
4212 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4213 	struct f2fs_comp_option option;
4214 	int ret = 0;
4215 
4216 	if (!f2fs_sb_has_compression(sbi))
4217 		return -EOPNOTSUPP;
4218 
4219 	if (!(filp->f_mode & FMODE_WRITE))
4220 		return -EBADF;
4221 
4222 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4223 				sizeof(option)))
4224 		return -EFAULT;
4225 
4226 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4227 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4228 		option.algorithm >= COMPRESS_MAX)
4229 		return -EINVAL;
4230 
4231 	ret = mnt_want_write_file(filp);
4232 	if (ret)
4233 		return ret;
4234 	inode_lock(inode);
4235 
4236 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4237 	if (!f2fs_compressed_file(inode)) {
4238 		ret = -EINVAL;
4239 		goto out;
4240 	}
4241 
4242 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4243 		ret = -EBUSY;
4244 		goto out;
4245 	}
4246 
4247 	if (F2FS_HAS_BLOCKS(inode)) {
4248 		ret = -EFBIG;
4249 		goto out;
4250 	}
4251 
4252 	fi->i_compress_algorithm = option.algorithm;
4253 	fi->i_log_cluster_size = option.log_cluster_size;
4254 	fi->i_cluster_size = BIT(option.log_cluster_size);
4255 	/* Set default level */
4256 	if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4257 		fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4258 	else
4259 		fi->i_compress_level = 0;
4260 	/* Adjust mount option level */
4261 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4262 	    F2FS_OPTION(sbi).compress_level)
4263 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4264 	f2fs_mark_inode_dirty_sync(inode, true);
4265 
4266 	if (!f2fs_is_compress_backend_ready(inode))
4267 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4268 			"but current kernel doesn't support this algorithm.");
4269 out:
4270 	f2fs_up_write(&fi->i_sem);
4271 	inode_unlock(inode);
4272 	mnt_drop_write_file(filp);
4273 
4274 	return ret;
4275 }
4276 
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4277 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4278 {
4279 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4280 	struct address_space *mapping = inode->i_mapping;
4281 	struct page *page;
4282 	pgoff_t redirty_idx = page_idx;
4283 	int i, page_len = 0, ret = 0;
4284 
4285 	page_cache_ra_unbounded(&ractl, len, 0);
4286 
4287 	for (i = 0; i < len; i++, page_idx++) {
4288 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4289 		if (IS_ERR(page)) {
4290 			ret = PTR_ERR(page);
4291 			break;
4292 		}
4293 		page_len++;
4294 	}
4295 
4296 	for (i = 0; i < page_len; i++, redirty_idx++) {
4297 		page = find_lock_page(mapping, redirty_idx);
4298 
4299 		/* It will never fail, when page has pinned above */
4300 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4301 
4302 		f2fs_wait_on_page_writeback(page, DATA, true, true);
4303 
4304 		set_page_dirty(page);
4305 		set_page_private_gcing(page);
4306 		f2fs_put_page(page, 1);
4307 		f2fs_put_page(page, 0);
4308 	}
4309 
4310 	return ret;
4311 }
4312 
f2fs_ioc_decompress_file(struct file * filp)4313 static int f2fs_ioc_decompress_file(struct file *filp)
4314 {
4315 	struct inode *inode = file_inode(filp);
4316 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4317 	struct f2fs_inode_info *fi = F2FS_I(inode);
4318 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4319 	int ret;
4320 
4321 	if (!f2fs_sb_has_compression(sbi) ||
4322 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4323 		return -EOPNOTSUPP;
4324 
4325 	if (!(filp->f_mode & FMODE_WRITE))
4326 		return -EBADF;
4327 
4328 	f2fs_balance_fs(sbi, true);
4329 
4330 	ret = mnt_want_write_file(filp);
4331 	if (ret)
4332 		return ret;
4333 	inode_lock(inode);
4334 
4335 	if (!f2fs_is_compress_backend_ready(inode)) {
4336 		ret = -EOPNOTSUPP;
4337 		goto out;
4338 	}
4339 
4340 	if (!f2fs_compressed_file(inode) ||
4341 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4342 		ret = -EINVAL;
4343 		goto out;
4344 	}
4345 
4346 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4347 	if (ret)
4348 		goto out;
4349 
4350 	if (!atomic_read(&fi->i_compr_blocks))
4351 		goto out;
4352 
4353 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4354 	last_idx >>= fi->i_log_cluster_size;
4355 
4356 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4357 		page_idx = cluster_idx << fi->i_log_cluster_size;
4358 
4359 		if (!f2fs_is_compressed_cluster(inode, page_idx))
4360 			continue;
4361 
4362 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4363 		if (ret < 0)
4364 			break;
4365 
4366 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4367 			ret = filemap_fdatawrite(inode->i_mapping);
4368 			if (ret < 0)
4369 				break;
4370 		}
4371 
4372 		cond_resched();
4373 		if (fatal_signal_pending(current)) {
4374 			ret = -EINTR;
4375 			break;
4376 		}
4377 	}
4378 
4379 	if (!ret)
4380 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4381 							LLONG_MAX);
4382 
4383 	if (ret)
4384 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4385 			  __func__, ret);
4386 	f2fs_update_time(sbi, REQ_TIME);
4387 out:
4388 	inode_unlock(inode);
4389 	mnt_drop_write_file(filp);
4390 
4391 	return ret;
4392 }
4393 
f2fs_ioc_compress_file(struct file * filp)4394 static int f2fs_ioc_compress_file(struct file *filp)
4395 {
4396 	struct inode *inode = file_inode(filp);
4397 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4398 	struct f2fs_inode_info *fi = F2FS_I(inode);
4399 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4400 	int ret;
4401 
4402 	if (!f2fs_sb_has_compression(sbi) ||
4403 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4404 		return -EOPNOTSUPP;
4405 
4406 	if (!(filp->f_mode & FMODE_WRITE))
4407 		return -EBADF;
4408 
4409 	f2fs_balance_fs(sbi, true);
4410 
4411 	ret = mnt_want_write_file(filp);
4412 	if (ret)
4413 		return ret;
4414 	inode_lock(inode);
4415 
4416 	if (!f2fs_is_compress_backend_ready(inode)) {
4417 		ret = -EOPNOTSUPP;
4418 		goto out;
4419 	}
4420 
4421 	if (!f2fs_compressed_file(inode) ||
4422 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4423 		ret = -EINVAL;
4424 		goto out;
4425 	}
4426 
4427 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4428 	if (ret)
4429 		goto out;
4430 
4431 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4432 
4433 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4434 	last_idx >>= fi->i_log_cluster_size;
4435 
4436 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4437 		page_idx = cluster_idx << fi->i_log_cluster_size;
4438 
4439 		if (f2fs_is_sparse_cluster(inode, page_idx))
4440 			continue;
4441 
4442 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4443 		if (ret < 0)
4444 			break;
4445 
4446 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4447 			ret = filemap_fdatawrite(inode->i_mapping);
4448 			if (ret < 0)
4449 				break;
4450 		}
4451 
4452 		cond_resched();
4453 		if (fatal_signal_pending(current)) {
4454 			ret = -EINTR;
4455 			break;
4456 		}
4457 	}
4458 
4459 	if (!ret)
4460 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4461 							LLONG_MAX);
4462 
4463 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4464 
4465 	if (ret)
4466 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4467 			  __func__, ret);
4468 	f2fs_update_time(sbi, REQ_TIME);
4469 out:
4470 	inode_unlock(inode);
4471 	mnt_drop_write_file(filp);
4472 
4473 	return ret;
4474 }
4475 
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4476 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4477 {
4478 	switch (cmd) {
4479 	case FS_IOC_GETVERSION:
4480 		return f2fs_ioc_getversion(filp, arg);
4481 	case F2FS_IOC_START_ATOMIC_WRITE:
4482 		return f2fs_ioc_start_atomic_write(filp, false);
4483 	case F2FS_IOC_START_ATOMIC_REPLACE:
4484 		return f2fs_ioc_start_atomic_write(filp, true);
4485 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4486 		return f2fs_ioc_commit_atomic_write(filp);
4487 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4488 		return f2fs_ioc_abort_atomic_write(filp);
4489 	case F2FS_IOC_START_VOLATILE_WRITE:
4490 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4491 		return -EOPNOTSUPP;
4492 	case F2FS_IOC_SHUTDOWN:
4493 		return f2fs_ioc_shutdown(filp, arg);
4494 	case FITRIM:
4495 		return f2fs_ioc_fitrim(filp, arg);
4496 	case FS_IOC_SET_ENCRYPTION_POLICY:
4497 		return f2fs_ioc_set_encryption_policy(filp, arg);
4498 	case FS_IOC_GET_ENCRYPTION_POLICY:
4499 		return f2fs_ioc_get_encryption_policy(filp, arg);
4500 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4501 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4502 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4503 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4504 	case FS_IOC_ADD_ENCRYPTION_KEY:
4505 		return f2fs_ioc_add_encryption_key(filp, arg);
4506 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4507 		return f2fs_ioc_remove_encryption_key(filp, arg);
4508 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4509 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4510 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4511 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4512 	case FS_IOC_GET_ENCRYPTION_NONCE:
4513 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4514 	case F2FS_IOC_GARBAGE_COLLECT:
4515 		return f2fs_ioc_gc(filp, arg);
4516 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4517 		return f2fs_ioc_gc_range(filp, arg);
4518 	case F2FS_IOC_WRITE_CHECKPOINT:
4519 		return f2fs_ioc_write_checkpoint(filp);
4520 	case F2FS_IOC_DEFRAGMENT:
4521 		return f2fs_ioc_defragment(filp, arg);
4522 	case F2FS_IOC_MOVE_RANGE:
4523 		return f2fs_ioc_move_range(filp, arg);
4524 	case F2FS_IOC_FLUSH_DEVICE:
4525 		return f2fs_ioc_flush_device(filp, arg);
4526 	case F2FS_IOC_GET_FEATURES:
4527 		return f2fs_ioc_get_features(filp, arg);
4528 	case F2FS_IOC_GET_PIN_FILE:
4529 		return f2fs_ioc_get_pin_file(filp, arg);
4530 	case F2FS_IOC_SET_PIN_FILE:
4531 		return f2fs_ioc_set_pin_file(filp, arg);
4532 	case F2FS_IOC_PRECACHE_EXTENTS:
4533 		return f2fs_ioc_precache_extents(filp);
4534 	case F2FS_IOC_RESIZE_FS:
4535 		return f2fs_ioc_resize_fs(filp, arg);
4536 	case FS_IOC_ENABLE_VERITY:
4537 		return f2fs_ioc_enable_verity(filp, arg);
4538 	case FS_IOC_MEASURE_VERITY:
4539 		return f2fs_ioc_measure_verity(filp, arg);
4540 	case FS_IOC_READ_VERITY_METADATA:
4541 		return f2fs_ioc_read_verity_metadata(filp, arg);
4542 	case FS_IOC_GETFSLABEL:
4543 		return f2fs_ioc_getfslabel(filp, arg);
4544 	case FS_IOC_SETFSLABEL:
4545 		return f2fs_ioc_setfslabel(filp, arg);
4546 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4547 		return f2fs_ioc_get_compress_blocks(filp, arg);
4548 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4549 		return f2fs_release_compress_blocks(filp, arg);
4550 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4551 		return f2fs_reserve_compress_blocks(filp, arg);
4552 	case F2FS_IOC_SEC_TRIM_FILE:
4553 		return f2fs_sec_trim_file(filp, arg);
4554 	case F2FS_IOC_GET_COMPRESS_OPTION:
4555 		return f2fs_ioc_get_compress_option(filp, arg);
4556 	case F2FS_IOC_SET_COMPRESS_OPTION:
4557 		return f2fs_ioc_set_compress_option(filp, arg);
4558 	case F2FS_IOC_DECOMPRESS_FILE:
4559 		return f2fs_ioc_decompress_file(filp);
4560 	case F2FS_IOC_COMPRESS_FILE:
4561 		return f2fs_ioc_compress_file(filp);
4562 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
4563 		return f2fs_ioc_get_dev_alias_file(filp, arg);
4564 	default:
4565 		return -ENOTTY;
4566 	}
4567 }
4568 
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4569 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4570 {
4571 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4572 		return -EIO;
4573 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4574 		return -ENOSPC;
4575 
4576 	return __f2fs_ioctl(filp, cmd, arg);
4577 }
4578 
4579 /*
4580  * Return %true if the given read or write request should use direct I/O, or
4581  * %false if it should use buffered I/O.
4582  */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4583 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4584 				struct iov_iter *iter)
4585 {
4586 	unsigned int align;
4587 
4588 	if (!(iocb->ki_flags & IOCB_DIRECT))
4589 		return false;
4590 
4591 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4592 		return false;
4593 
4594 	/*
4595 	 * Direct I/O not aligned to the disk's logical_block_size will be
4596 	 * attempted, but will fail with -EINVAL.
4597 	 *
4598 	 * f2fs additionally requires that direct I/O be aligned to the
4599 	 * filesystem block size, which is often a stricter requirement.
4600 	 * However, f2fs traditionally falls back to buffered I/O on requests
4601 	 * that are logical_block_size-aligned but not fs-block aligned.
4602 	 *
4603 	 * The below logic implements this behavior.
4604 	 */
4605 	align = iocb->ki_pos | iov_iter_alignment(iter);
4606 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4607 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4608 		return false;
4609 
4610 	return true;
4611 }
4612 
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4613 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4614 				unsigned int flags)
4615 {
4616 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4617 
4618 	dec_page_count(sbi, F2FS_DIO_READ);
4619 	if (error)
4620 		return error;
4621 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4622 	return 0;
4623 }
4624 
4625 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4626 	.end_io = f2fs_dio_read_end_io,
4627 };
4628 
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4629 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4630 {
4631 	struct file *file = iocb->ki_filp;
4632 	struct inode *inode = file_inode(file);
4633 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4634 	struct f2fs_inode_info *fi = F2FS_I(inode);
4635 	const loff_t pos = iocb->ki_pos;
4636 	const size_t count = iov_iter_count(to);
4637 	struct iomap_dio *dio;
4638 	ssize_t ret;
4639 
4640 	if (count == 0)
4641 		return 0; /* skip atime update */
4642 
4643 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4644 
4645 	if (iocb->ki_flags & IOCB_NOWAIT) {
4646 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4647 			ret = -EAGAIN;
4648 			goto out;
4649 		}
4650 	} else {
4651 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4652 	}
4653 
4654 	/* dio is not compatible w/ atomic file */
4655 	if (f2fs_is_atomic_file(inode)) {
4656 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4657 		ret = -EOPNOTSUPP;
4658 		goto out;
4659 	}
4660 
4661 	/*
4662 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4663 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4664 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4665 	 */
4666 	inc_page_count(sbi, F2FS_DIO_READ);
4667 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4668 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4669 	if (IS_ERR_OR_NULL(dio)) {
4670 		ret = PTR_ERR_OR_ZERO(dio);
4671 		if (ret != -EIOCBQUEUED)
4672 			dec_page_count(sbi, F2FS_DIO_READ);
4673 	} else {
4674 		ret = iomap_dio_complete(dio);
4675 	}
4676 
4677 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4678 
4679 	file_accessed(file);
4680 out:
4681 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4682 	return ret;
4683 }
4684 
f2fs_trace_rw_file_path(struct file * file,loff_t pos,size_t count,int rw)4685 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4686 				    int rw)
4687 {
4688 	struct inode *inode = file_inode(file);
4689 	char *buf, *path;
4690 
4691 	buf = f2fs_getname(F2FS_I_SB(inode));
4692 	if (!buf)
4693 		return;
4694 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4695 	if (IS_ERR(path))
4696 		goto free_buf;
4697 	if (rw == WRITE)
4698 		trace_f2fs_datawrite_start(inode, pos, count,
4699 				current->pid, path, current->comm);
4700 	else
4701 		trace_f2fs_dataread_start(inode, pos, count,
4702 				current->pid, path, current->comm);
4703 free_buf:
4704 	f2fs_putname(buf);
4705 }
4706 
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4707 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4708 {
4709 	struct inode *inode = file_inode(iocb->ki_filp);
4710 	const loff_t pos = iocb->ki_pos;
4711 	ssize_t ret;
4712 
4713 	if (!f2fs_is_compress_backend_ready(inode))
4714 		return -EOPNOTSUPP;
4715 
4716 	if (trace_f2fs_dataread_start_enabled())
4717 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4718 					iov_iter_count(to), READ);
4719 
4720 	/* In LFS mode, if there is inflight dio, wait for its completion */
4721 	if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
4722 	    get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE))
4723 		inode_dio_wait(inode);
4724 
4725 	if (f2fs_should_use_dio(inode, iocb, to)) {
4726 		ret = f2fs_dio_read_iter(iocb, to);
4727 	} else {
4728 		ret = filemap_read(iocb, to, 0);
4729 		if (ret > 0)
4730 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4731 						APP_BUFFERED_READ_IO, ret);
4732 	}
4733 	if (trace_f2fs_dataread_end_enabled())
4734 		trace_f2fs_dataread_end(inode, pos, ret);
4735 	return ret;
4736 }
4737 
f2fs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)4738 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4739 				     struct pipe_inode_info *pipe,
4740 				     size_t len, unsigned int flags)
4741 {
4742 	struct inode *inode = file_inode(in);
4743 	const loff_t pos = *ppos;
4744 	ssize_t ret;
4745 
4746 	if (!f2fs_is_compress_backend_ready(inode))
4747 		return -EOPNOTSUPP;
4748 
4749 	if (trace_f2fs_dataread_start_enabled())
4750 		f2fs_trace_rw_file_path(in, pos, len, READ);
4751 
4752 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4753 	if (ret > 0)
4754 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4755 				   APP_BUFFERED_READ_IO, ret);
4756 
4757 	if (trace_f2fs_dataread_end_enabled())
4758 		trace_f2fs_dataread_end(inode, pos, ret);
4759 	return ret;
4760 }
4761 
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4762 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4763 {
4764 	struct file *file = iocb->ki_filp;
4765 	struct inode *inode = file_inode(file);
4766 	ssize_t count;
4767 	int err;
4768 
4769 	if (IS_IMMUTABLE(inode))
4770 		return -EPERM;
4771 
4772 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4773 		return -EPERM;
4774 
4775 	count = generic_write_checks(iocb, from);
4776 	if (count <= 0)
4777 		return count;
4778 
4779 	err = file_modified(file);
4780 	if (err)
4781 		return err;
4782 	return count;
4783 }
4784 
4785 /*
4786  * Preallocate blocks for a write request, if it is possible and helpful to do
4787  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4788  * blocks were preallocated, or a negative errno value if something went
4789  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4790  * requested blocks (not just some of them) have been allocated.
4791  */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4792 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4793 				   bool dio)
4794 {
4795 	struct inode *inode = file_inode(iocb->ki_filp);
4796 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4797 	const loff_t pos = iocb->ki_pos;
4798 	const size_t count = iov_iter_count(iter);
4799 	struct f2fs_map_blocks map = {};
4800 	int flag;
4801 	int ret;
4802 
4803 	/* If it will be an out-of-place direct write, don't bother. */
4804 	if (dio && f2fs_lfs_mode(sbi))
4805 		return 0;
4806 	/*
4807 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4808 	 * buffered IO, if DIO meets any holes.
4809 	 */
4810 	if (dio && i_size_read(inode) &&
4811 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4812 		return 0;
4813 
4814 	/* No-wait I/O can't allocate blocks. */
4815 	if (iocb->ki_flags & IOCB_NOWAIT)
4816 		return 0;
4817 
4818 	/* If it will be a short write, don't bother. */
4819 	if (fault_in_iov_iter_readable(iter, count))
4820 		return 0;
4821 
4822 	if (f2fs_has_inline_data(inode)) {
4823 		/* If the data will fit inline, don't bother. */
4824 		if (pos + count <= MAX_INLINE_DATA(inode))
4825 			return 0;
4826 		ret = f2fs_convert_inline_inode(inode);
4827 		if (ret)
4828 			return ret;
4829 	}
4830 
4831 	/* Do not preallocate blocks that will be written partially in 4KB. */
4832 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4833 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4834 	if (map.m_len > map.m_lblk)
4835 		map.m_len -= map.m_lblk;
4836 	else
4837 		return 0;
4838 
4839 	if (!IS_DEVICE_ALIASING(inode))
4840 		map.m_may_create = true;
4841 	if (dio) {
4842 		map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4843 						inode->i_write_hint);
4844 		flag = F2FS_GET_BLOCK_PRE_DIO;
4845 	} else {
4846 		map.m_seg_type = NO_CHECK_TYPE;
4847 		flag = F2FS_GET_BLOCK_PRE_AIO;
4848 	}
4849 
4850 	ret = f2fs_map_blocks(inode, &map, flag);
4851 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4852 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4853 		return ret;
4854 	if (ret == 0)
4855 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4856 	return map.m_len;
4857 }
4858 
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4859 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4860 					struct iov_iter *from)
4861 {
4862 	struct file *file = iocb->ki_filp;
4863 	struct inode *inode = file_inode(file);
4864 	ssize_t ret;
4865 
4866 	if (iocb->ki_flags & IOCB_NOWAIT)
4867 		return -EOPNOTSUPP;
4868 
4869 	ret = generic_perform_write(iocb, from);
4870 
4871 	if (ret > 0) {
4872 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4873 						APP_BUFFERED_IO, ret);
4874 	}
4875 	return ret;
4876 }
4877 
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4878 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4879 				 unsigned int flags)
4880 {
4881 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4882 
4883 	dec_page_count(sbi, F2FS_DIO_WRITE);
4884 	if (error)
4885 		return error;
4886 	f2fs_update_time(sbi, REQ_TIME);
4887 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4888 	return 0;
4889 }
4890 
f2fs_dio_write_submit_io(const struct iomap_iter * iter,struct bio * bio,loff_t file_offset)4891 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4892 					struct bio *bio, loff_t file_offset)
4893 {
4894 	struct inode *inode = iter->inode;
4895 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4896 	enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4897 	enum temp_type temp = f2fs_get_segment_temp(sbi, type);
4898 
4899 	bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4900 	submit_bio(bio);
4901 }
4902 
4903 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4904 	.end_io		= f2fs_dio_write_end_io,
4905 	.submit_io	= f2fs_dio_write_submit_io,
4906 };
4907 
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)4908 static void f2fs_flush_buffered_write(struct address_space *mapping,
4909 				      loff_t start_pos, loff_t end_pos)
4910 {
4911 	int ret;
4912 
4913 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4914 	if (ret < 0)
4915 		return;
4916 	invalidate_mapping_pages(mapping,
4917 				 start_pos >> PAGE_SHIFT,
4918 				 end_pos >> PAGE_SHIFT);
4919 }
4920 
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4921 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4922 				   bool *may_need_sync)
4923 {
4924 	struct file *file = iocb->ki_filp;
4925 	struct inode *inode = file_inode(file);
4926 	struct f2fs_inode_info *fi = F2FS_I(inode);
4927 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4928 	const bool do_opu = f2fs_lfs_mode(sbi);
4929 	const loff_t pos = iocb->ki_pos;
4930 	const ssize_t count = iov_iter_count(from);
4931 	unsigned int dio_flags;
4932 	struct iomap_dio *dio;
4933 	ssize_t ret;
4934 
4935 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4936 
4937 	if (iocb->ki_flags & IOCB_NOWAIT) {
4938 		/* f2fs_convert_inline_inode() and block allocation can block */
4939 		if (f2fs_has_inline_data(inode) ||
4940 		    !f2fs_overwrite_io(inode, pos, count)) {
4941 			ret = -EAGAIN;
4942 			goto out;
4943 		}
4944 
4945 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4946 			ret = -EAGAIN;
4947 			goto out;
4948 		}
4949 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4950 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4951 			ret = -EAGAIN;
4952 			goto out;
4953 		}
4954 	} else {
4955 		ret = f2fs_convert_inline_inode(inode);
4956 		if (ret)
4957 			goto out;
4958 
4959 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4960 		if (do_opu)
4961 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4962 	}
4963 
4964 	/*
4965 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4966 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4967 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4968 	 */
4969 	inc_page_count(sbi, F2FS_DIO_WRITE);
4970 	dio_flags = 0;
4971 	if (pos + count > inode->i_size)
4972 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4973 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4974 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4975 	if (IS_ERR_OR_NULL(dio)) {
4976 		ret = PTR_ERR_OR_ZERO(dio);
4977 		if (ret == -ENOTBLK)
4978 			ret = 0;
4979 		if (ret != -EIOCBQUEUED)
4980 			dec_page_count(sbi, F2FS_DIO_WRITE);
4981 	} else {
4982 		ret = iomap_dio_complete(dio);
4983 	}
4984 
4985 	if (do_opu)
4986 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4987 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4988 
4989 	if (ret < 0)
4990 		goto out;
4991 	if (pos + ret > inode->i_size)
4992 		f2fs_i_size_write(inode, pos + ret);
4993 	if (!do_opu)
4994 		set_inode_flag(inode, FI_UPDATE_WRITE);
4995 
4996 	if (iov_iter_count(from)) {
4997 		ssize_t ret2;
4998 		loff_t bufio_start_pos = iocb->ki_pos;
4999 
5000 		/*
5001 		 * The direct write was partial, so we need to fall back to a
5002 		 * buffered write for the remainder.
5003 		 */
5004 
5005 		ret2 = f2fs_buffered_write_iter(iocb, from);
5006 		if (iov_iter_count(from))
5007 			f2fs_write_failed(inode, iocb->ki_pos);
5008 		if (ret2 < 0)
5009 			goto out;
5010 
5011 		/*
5012 		 * Ensure that the pagecache pages are written to disk and
5013 		 * invalidated to preserve the expected O_DIRECT semantics.
5014 		 */
5015 		if (ret2 > 0) {
5016 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
5017 
5018 			ret += ret2;
5019 
5020 			f2fs_flush_buffered_write(file->f_mapping,
5021 						  bufio_start_pos,
5022 						  bufio_end_pos);
5023 		}
5024 	} else {
5025 		/* iomap_dio_rw() already handled the generic_write_sync(). */
5026 		*may_need_sync = false;
5027 	}
5028 out:
5029 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
5030 	return ret;
5031 }
5032 
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)5033 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
5034 {
5035 	struct inode *inode = file_inode(iocb->ki_filp);
5036 	const loff_t orig_pos = iocb->ki_pos;
5037 	const size_t orig_count = iov_iter_count(from);
5038 	loff_t target_size;
5039 	bool dio;
5040 	bool may_need_sync = true;
5041 	int preallocated;
5042 	const loff_t pos = iocb->ki_pos;
5043 	const ssize_t count = iov_iter_count(from);
5044 	ssize_t ret;
5045 
5046 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
5047 		ret = -EIO;
5048 		goto out;
5049 	}
5050 
5051 	if (!f2fs_is_compress_backend_ready(inode)) {
5052 		ret = -EOPNOTSUPP;
5053 		goto out;
5054 	}
5055 
5056 	if (iocb->ki_flags & IOCB_NOWAIT) {
5057 		if (!inode_trylock(inode)) {
5058 			ret = -EAGAIN;
5059 			goto out;
5060 		}
5061 	} else {
5062 		inode_lock(inode);
5063 	}
5064 
5065 	if (f2fs_is_pinned_file(inode) &&
5066 	    !f2fs_overwrite_io(inode, pos, count)) {
5067 		ret = -EIO;
5068 		goto out_unlock;
5069 	}
5070 
5071 	ret = f2fs_write_checks(iocb, from);
5072 	if (ret <= 0)
5073 		goto out_unlock;
5074 
5075 	/* Determine whether we will do a direct write or a buffered write. */
5076 	dio = f2fs_should_use_dio(inode, iocb, from);
5077 
5078 	/* dio is not compatible w/ atomic write */
5079 	if (dio && f2fs_is_atomic_file(inode)) {
5080 		ret = -EOPNOTSUPP;
5081 		goto out_unlock;
5082 	}
5083 
5084 	/* Possibly preallocate the blocks for the write. */
5085 	target_size = iocb->ki_pos + iov_iter_count(from);
5086 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5087 	if (preallocated < 0) {
5088 		ret = preallocated;
5089 	} else {
5090 		if (trace_f2fs_datawrite_start_enabled())
5091 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5092 						orig_count, WRITE);
5093 
5094 		/* Do the actual write. */
5095 		ret = dio ?
5096 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5097 			f2fs_buffered_write_iter(iocb, from);
5098 
5099 		if (trace_f2fs_datawrite_end_enabled())
5100 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
5101 	}
5102 
5103 	/* Don't leave any preallocated blocks around past i_size. */
5104 	if (preallocated && i_size_read(inode) < target_size) {
5105 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5106 		filemap_invalidate_lock(inode->i_mapping);
5107 		if (!f2fs_truncate(inode))
5108 			file_dont_truncate(inode);
5109 		filemap_invalidate_unlock(inode->i_mapping);
5110 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5111 	} else {
5112 		file_dont_truncate(inode);
5113 	}
5114 
5115 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5116 out_unlock:
5117 	inode_unlock(inode);
5118 out:
5119 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5120 
5121 	if (ret > 0 && may_need_sync)
5122 		ret = generic_write_sync(iocb, ret);
5123 
5124 	/* If buffered IO was forced, flush and drop the data from
5125 	 * the page cache to preserve O_DIRECT semantics
5126 	 */
5127 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5128 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5129 					  orig_pos,
5130 					  orig_pos + ret - 1);
5131 
5132 	return ret;
5133 }
5134 
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)5135 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5136 		int advice)
5137 {
5138 	struct address_space *mapping;
5139 	struct backing_dev_info *bdi;
5140 	struct inode *inode = file_inode(filp);
5141 	int err;
5142 
5143 	if (advice == POSIX_FADV_SEQUENTIAL) {
5144 		if (S_ISFIFO(inode->i_mode))
5145 			return -ESPIPE;
5146 
5147 		mapping = filp->f_mapping;
5148 		if (!mapping || len < 0)
5149 			return -EINVAL;
5150 
5151 		bdi = inode_to_bdi(mapping->host);
5152 		filp->f_ra.ra_pages = bdi->ra_pages *
5153 			F2FS_I_SB(inode)->seq_file_ra_mul;
5154 		spin_lock(&filp->f_lock);
5155 		filp->f_mode &= ~FMODE_RANDOM;
5156 		spin_unlock(&filp->f_lock);
5157 		return 0;
5158 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5159 		/* Load extent cache at the first readahead. */
5160 		f2fs_precache_extents(inode);
5161 	}
5162 
5163 	err = generic_fadvise(filp, offset, len, advice);
5164 	if (!err && advice == POSIX_FADV_DONTNEED &&
5165 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5166 		f2fs_compressed_file(inode))
5167 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5168 
5169 	return err;
5170 }
5171 
5172 #ifdef CONFIG_COMPAT
5173 struct compat_f2fs_gc_range {
5174 	u32 sync;
5175 	compat_u64 start;
5176 	compat_u64 len;
5177 };
5178 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
5179 						struct compat_f2fs_gc_range)
5180 
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)5181 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5182 {
5183 	struct compat_f2fs_gc_range __user *urange;
5184 	struct f2fs_gc_range range;
5185 	int err;
5186 
5187 	urange = compat_ptr(arg);
5188 	err = get_user(range.sync, &urange->sync);
5189 	err |= get_user(range.start, &urange->start);
5190 	err |= get_user(range.len, &urange->len);
5191 	if (err)
5192 		return -EFAULT;
5193 
5194 	return __f2fs_ioc_gc_range(file, &range);
5195 }
5196 
5197 struct compat_f2fs_move_range {
5198 	u32 dst_fd;
5199 	compat_u64 pos_in;
5200 	compat_u64 pos_out;
5201 	compat_u64 len;
5202 };
5203 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5204 					struct compat_f2fs_move_range)
5205 
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)5206 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5207 {
5208 	struct compat_f2fs_move_range __user *urange;
5209 	struct f2fs_move_range range;
5210 	int err;
5211 
5212 	urange = compat_ptr(arg);
5213 	err = get_user(range.dst_fd, &urange->dst_fd);
5214 	err |= get_user(range.pos_in, &urange->pos_in);
5215 	err |= get_user(range.pos_out, &urange->pos_out);
5216 	err |= get_user(range.len, &urange->len);
5217 	if (err)
5218 		return -EFAULT;
5219 
5220 	return __f2fs_ioc_move_range(file, &range);
5221 }
5222 
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5223 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5224 {
5225 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5226 		return -EIO;
5227 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5228 		return -ENOSPC;
5229 
5230 	switch (cmd) {
5231 	case FS_IOC32_GETVERSION:
5232 		cmd = FS_IOC_GETVERSION;
5233 		break;
5234 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5235 		return f2fs_compat_ioc_gc_range(file, arg);
5236 	case F2FS_IOC32_MOVE_RANGE:
5237 		return f2fs_compat_ioc_move_range(file, arg);
5238 	case F2FS_IOC_START_ATOMIC_WRITE:
5239 	case F2FS_IOC_START_ATOMIC_REPLACE:
5240 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5241 	case F2FS_IOC_START_VOLATILE_WRITE:
5242 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5243 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5244 	case F2FS_IOC_SHUTDOWN:
5245 	case FITRIM:
5246 	case FS_IOC_SET_ENCRYPTION_POLICY:
5247 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5248 	case FS_IOC_GET_ENCRYPTION_POLICY:
5249 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5250 	case FS_IOC_ADD_ENCRYPTION_KEY:
5251 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5252 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5253 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5254 	case FS_IOC_GET_ENCRYPTION_NONCE:
5255 	case F2FS_IOC_GARBAGE_COLLECT:
5256 	case F2FS_IOC_WRITE_CHECKPOINT:
5257 	case F2FS_IOC_DEFRAGMENT:
5258 	case F2FS_IOC_FLUSH_DEVICE:
5259 	case F2FS_IOC_GET_FEATURES:
5260 	case F2FS_IOC_GET_PIN_FILE:
5261 	case F2FS_IOC_SET_PIN_FILE:
5262 	case F2FS_IOC_PRECACHE_EXTENTS:
5263 	case F2FS_IOC_RESIZE_FS:
5264 	case FS_IOC_ENABLE_VERITY:
5265 	case FS_IOC_MEASURE_VERITY:
5266 	case FS_IOC_READ_VERITY_METADATA:
5267 	case FS_IOC_GETFSLABEL:
5268 	case FS_IOC_SETFSLABEL:
5269 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5270 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5271 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5272 	case F2FS_IOC_SEC_TRIM_FILE:
5273 	case F2FS_IOC_GET_COMPRESS_OPTION:
5274 	case F2FS_IOC_SET_COMPRESS_OPTION:
5275 	case F2FS_IOC_DECOMPRESS_FILE:
5276 	case F2FS_IOC_COMPRESS_FILE:
5277 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
5278 		break;
5279 	default:
5280 		return -ENOIOCTLCMD;
5281 	}
5282 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5283 }
5284 #endif
5285 
5286 const struct file_operations f2fs_file_operations = {
5287 	.llseek		= f2fs_llseek,
5288 	.read_iter	= f2fs_file_read_iter,
5289 	.write_iter	= f2fs_file_write_iter,
5290 	.iopoll		= iocb_bio_iopoll,
5291 	.open		= f2fs_file_open,
5292 	.release	= f2fs_release_file,
5293 	.mmap		= f2fs_file_mmap,
5294 	.flush		= f2fs_file_flush,
5295 	.fsync		= f2fs_sync_file,
5296 	.fallocate	= f2fs_fallocate,
5297 	.unlocked_ioctl	= f2fs_ioctl,
5298 #ifdef CONFIG_COMPAT
5299 	.compat_ioctl	= f2fs_compat_ioctl,
5300 #endif
5301 	.splice_read	= f2fs_file_splice_read,
5302 	.splice_write	= iter_file_splice_write,
5303 	.fadvise	= f2fs_file_fadvise,
5304 	.fop_flags	= FOP_BUFFER_RASYNC,
5305 };
5306