1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card ([email protected])
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller ([email protected]), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98
99 /*
100 * Lock ordering
101 *
102 * page fault path:
103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104 * -> page lock -> i_data_sem (rw)
105 *
106 * buffered write path:
107 * sb_start_write -> i_mutex -> mmap_lock
108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
109 * i_data_sem (rw)
110 *
111 * truncate:
112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * page lock
114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115 * i_data_sem (rw)
116 *
117 * direct IO:
118 * sb_start_write -> i_mutex -> mmap_lock
119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120 *
121 * writepages:
122 * transaction start -> page lock(s) -> i_data_sem (rw)
123 */
124
125 static const struct fs_context_operations ext4_context_ops = {
126 .parse_param = ext4_parse_param,
127 .get_tree = ext4_get_tree,
128 .reconfigure = ext4_reconfigure,
129 .free = ext4_fc_free,
130 };
131
132
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext2",
137 .init_fs_context = ext4_init_fs_context,
138 .parameters = ext4_param_specs,
139 .kill_sb = ext4_kill_sb,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148
149
150 static struct file_system_type ext3_fs_type = {
151 .owner = THIS_MODULE,
152 .name = "ext3",
153 .init_fs_context = ext4_init_fs_context,
154 .parameters = ext4_param_specs,
155 .kill_sb = ext4_kill_sb,
156 .fs_flags = FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161
162
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 bh_end_io_t *end_io, bool simu_fail)
165 {
166 if (simu_fail) {
167 clear_buffer_uptodate(bh);
168 unlock_buffer(bh);
169 return;
170 }
171
172 /*
173 * buffer's verified bit is no longer valid after reading from
174 * disk again due to write out error, clear it to make sure we
175 * recheck the buffer contents.
176 */
177 clear_buffer_verified(bh);
178
179 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
180 get_bh(bh);
181 submit_bh(REQ_OP_READ | op_flags, bh);
182 }
183
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)184 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
185 bh_end_io_t *end_io, bool simu_fail)
186 {
187 BUG_ON(!buffer_locked(bh));
188
189 if (ext4_buffer_uptodate(bh)) {
190 unlock_buffer(bh);
191 return;
192 }
193 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
194 }
195
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)196 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
197 bh_end_io_t *end_io, bool simu_fail)
198 {
199 BUG_ON(!buffer_locked(bh));
200
201 if (ext4_buffer_uptodate(bh)) {
202 unlock_buffer(bh);
203 return 0;
204 }
205
206 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
207
208 wait_on_buffer(bh);
209 if (buffer_uptodate(bh))
210 return 0;
211 return -EIO;
212 }
213
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)214 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
215 {
216 lock_buffer(bh);
217 if (!wait) {
218 ext4_read_bh_nowait(bh, op_flags, NULL, false);
219 return 0;
220 }
221 return ext4_read_bh(bh, op_flags, NULL, false);
222 }
223
224 /*
225 * This works like __bread_gfp() except it uses ERR_PTR for error
226 * returns. Currently with sb_bread it's impossible to distinguish
227 * between ENOMEM and EIO situations (since both result in a NULL
228 * return.
229 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)230 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
231 sector_t block,
232 blk_opf_t op_flags, gfp_t gfp)
233 {
234 struct buffer_head *bh;
235 int ret;
236
237 bh = sb_getblk_gfp(sb, block, gfp);
238 if (bh == NULL)
239 return ERR_PTR(-ENOMEM);
240 if (ext4_buffer_uptodate(bh))
241 return bh;
242
243 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
244 if (ret) {
245 put_bh(bh);
246 return ERR_PTR(ret);
247 }
248 return bh;
249 }
250
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)251 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
252 blk_opf_t op_flags)
253 {
254 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
255 ~__GFP_FS) | __GFP_MOVABLE;
256
257 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
258 }
259
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)260 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
261 sector_t block)
262 {
263 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
264 ~__GFP_FS);
265
266 return __ext4_sb_bread_gfp(sb, block, 0, gfp);
267 }
268
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)269 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
270 {
271 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
272 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
273
274 if (likely(bh)) {
275 if (trylock_buffer(bh))
276 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
277 brelse(bh);
278 }
279 }
280
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)281 static int ext4_verify_csum_type(struct super_block *sb,
282 struct ext4_super_block *es)
283 {
284 if (!ext4_has_feature_metadata_csum(sb))
285 return 1;
286
287 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
288 }
289
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)290 __le32 ext4_superblock_csum(struct super_block *sb,
291 struct ext4_super_block *es)
292 {
293 struct ext4_sb_info *sbi = EXT4_SB(sb);
294 int offset = offsetof(struct ext4_super_block, s_checksum);
295 __u32 csum;
296
297 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
298
299 return cpu_to_le32(csum);
300 }
301
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)302 static int ext4_superblock_csum_verify(struct super_block *sb,
303 struct ext4_super_block *es)
304 {
305 if (!ext4_has_metadata_csum(sb))
306 return 1;
307
308 return es->s_checksum == ext4_superblock_csum(sb, es);
309 }
310
ext4_superblock_csum_set(struct super_block * sb)311 void ext4_superblock_csum_set(struct super_block *sb)
312 {
313 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
314
315 if (!ext4_has_metadata_csum(sb))
316 return;
317
318 es->s_checksum = ext4_superblock_csum(sb, es);
319 }
320
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)321 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
322 struct ext4_group_desc *bg)
323 {
324 return le32_to_cpu(bg->bg_block_bitmap_lo) |
325 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
326 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
327 }
328
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)329 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
330 struct ext4_group_desc *bg)
331 {
332 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
333 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
334 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
335 }
336
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)337 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
338 struct ext4_group_desc *bg)
339 {
340 return le32_to_cpu(bg->bg_inode_table_lo) |
341 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
342 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
343 }
344
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)345 __u32 ext4_free_group_clusters(struct super_block *sb,
346 struct ext4_group_desc *bg)
347 {
348 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
349 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
350 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
351 }
352
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)353 __u32 ext4_free_inodes_count(struct super_block *sb,
354 struct ext4_group_desc *bg)
355 {
356 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
357 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
358 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
359 }
360
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)361 __u32 ext4_used_dirs_count(struct super_block *sb,
362 struct ext4_group_desc *bg)
363 {
364 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
365 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
366 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
367 }
368
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)369 __u32 ext4_itable_unused_count(struct super_block *sb,
370 struct ext4_group_desc *bg)
371 {
372 return le16_to_cpu(bg->bg_itable_unused_lo) |
373 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
374 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
375 }
376
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)377 void ext4_block_bitmap_set(struct super_block *sb,
378 struct ext4_group_desc *bg, ext4_fsblk_t blk)
379 {
380 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
381 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
382 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
383 }
384
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)385 void ext4_inode_bitmap_set(struct super_block *sb,
386 struct ext4_group_desc *bg, ext4_fsblk_t blk)
387 {
388 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
389 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
390 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
391 }
392
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)393 void ext4_inode_table_set(struct super_block *sb,
394 struct ext4_group_desc *bg, ext4_fsblk_t blk)
395 {
396 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
397 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
398 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
399 }
400
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)401 void ext4_free_group_clusters_set(struct super_block *sb,
402 struct ext4_group_desc *bg, __u32 count)
403 {
404 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
405 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
406 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
407 }
408
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)409 void ext4_free_inodes_set(struct super_block *sb,
410 struct ext4_group_desc *bg, __u32 count)
411 {
412 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
413 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
414 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
415 }
416
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)417 void ext4_used_dirs_set(struct super_block *sb,
418 struct ext4_group_desc *bg, __u32 count)
419 {
420 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
421 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
422 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
423 }
424
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)425 void ext4_itable_unused_set(struct super_block *sb,
426 struct ext4_group_desc *bg, __u32 count)
427 {
428 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
429 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
430 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
431 }
432
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)433 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
434 {
435 now = clamp_val(now, 0, (1ull << 40) - 1);
436
437 *lo = cpu_to_le32(lower_32_bits(now));
438 *hi = upper_32_bits(now);
439 }
440
__ext4_get_tstamp(__le32 * lo,__u8 * hi)441 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
442 {
443 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
444 }
445 #define ext4_update_tstamp(es, tstamp) \
446 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
447 ktime_get_real_seconds())
448 #define ext4_get_tstamp(es, tstamp) \
449 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
450
451 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
452 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
453
454 /*
455 * The ext4_maybe_update_superblock() function checks and updates the
456 * superblock if needed.
457 *
458 * This function is designed to update the on-disk superblock only under
459 * certain conditions to prevent excessive disk writes and unnecessary
460 * waking of the disk from sleep. The superblock will be updated if:
461 * 1. More than an hour has passed since the last superblock update, and
462 * 2. More than 16MB have been written since the last superblock update.
463 *
464 * @sb: The superblock
465 */
ext4_maybe_update_superblock(struct super_block * sb)466 static void ext4_maybe_update_superblock(struct super_block *sb)
467 {
468 struct ext4_sb_info *sbi = EXT4_SB(sb);
469 struct ext4_super_block *es = sbi->s_es;
470 journal_t *journal = sbi->s_journal;
471 time64_t now;
472 __u64 last_update;
473 __u64 lifetime_write_kbytes;
474 __u64 diff_size;
475
476 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
477 !journal || (journal->j_flags & JBD2_UNMOUNT))
478 return;
479
480 now = ktime_get_real_seconds();
481 last_update = ext4_get_tstamp(es, s_wtime);
482
483 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
484 return;
485
486 lifetime_write_kbytes = sbi->s_kbytes_written +
487 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
488 sbi->s_sectors_written_start) >> 1);
489
490 /* Get the number of kilobytes not written to disk to account
491 * for statistics and compare with a multiple of 16 MB. This
492 * is used to determine when the next superblock commit should
493 * occur (i.e. not more often than once per 16MB if there was
494 * less written in an hour).
495 */
496 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
497
498 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
499 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
500 }
501
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)502 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
503 {
504 struct super_block *sb = journal->j_private;
505 struct ext4_sb_info *sbi = EXT4_SB(sb);
506 int error = is_journal_aborted(journal);
507 struct ext4_journal_cb_entry *jce;
508
509 BUG_ON(txn->t_state == T_FINISHED);
510
511 ext4_process_freed_data(sb, txn->t_tid);
512 ext4_maybe_update_superblock(sb);
513
514 spin_lock(&sbi->s_md_lock);
515 while (!list_empty(&txn->t_private_list)) {
516 jce = list_entry(txn->t_private_list.next,
517 struct ext4_journal_cb_entry, jce_list);
518 list_del_init(&jce->jce_list);
519 spin_unlock(&sbi->s_md_lock);
520 jce->jce_func(sb, jce, error);
521 spin_lock(&sbi->s_md_lock);
522 }
523 spin_unlock(&sbi->s_md_lock);
524 }
525
526 /*
527 * This writepage callback for write_cache_pages()
528 * takes care of a few cases after page cleaning.
529 *
530 * write_cache_pages() already checks for dirty pages
531 * and calls clear_page_dirty_for_io(), which we want,
532 * to write protect the pages.
533 *
534 * However, we may have to redirty a page (see below.)
535 */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)536 static int ext4_journalled_writepage_callback(struct folio *folio,
537 struct writeback_control *wbc,
538 void *data)
539 {
540 transaction_t *transaction = (transaction_t *) data;
541 struct buffer_head *bh, *head;
542 struct journal_head *jh;
543
544 bh = head = folio_buffers(folio);
545 do {
546 /*
547 * We have to redirty a page in these cases:
548 * 1) If buffer is dirty, it means the page was dirty because it
549 * contains a buffer that needs checkpointing. So the dirty bit
550 * needs to be preserved so that checkpointing writes the buffer
551 * properly.
552 * 2) If buffer is not part of the committing transaction
553 * (we may have just accidentally come across this buffer because
554 * inode range tracking is not exact) or if the currently running
555 * transaction already contains this buffer as well, dirty bit
556 * needs to be preserved so that the buffer gets writeprotected
557 * properly on running transaction's commit.
558 */
559 jh = bh2jh(bh);
560 if (buffer_dirty(bh) ||
561 (jh && (jh->b_transaction != transaction ||
562 jh->b_next_transaction))) {
563 folio_redirty_for_writepage(wbc, folio);
564 goto out;
565 }
566 } while ((bh = bh->b_this_page) != head);
567
568 out:
569 return AOP_WRITEPAGE_ACTIVATE;
570 }
571
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)572 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
573 {
574 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
575 struct writeback_control wbc = {
576 .sync_mode = WB_SYNC_ALL,
577 .nr_to_write = LONG_MAX,
578 .range_start = jinode->i_dirty_start,
579 .range_end = jinode->i_dirty_end,
580 };
581
582 return write_cache_pages(mapping, &wbc,
583 ext4_journalled_writepage_callback,
584 jinode->i_transaction);
585 }
586
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)587 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
588 {
589 int ret;
590
591 if (ext4_should_journal_data(jinode->i_vfs_inode))
592 ret = ext4_journalled_submit_inode_data_buffers(jinode);
593 else
594 ret = ext4_normal_submit_inode_data_buffers(jinode);
595 return ret;
596 }
597
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)598 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
599 {
600 int ret = 0;
601
602 if (!ext4_should_journal_data(jinode->i_vfs_inode))
603 ret = jbd2_journal_finish_inode_data_buffers(jinode);
604
605 return ret;
606 }
607
system_going_down(void)608 static bool system_going_down(void)
609 {
610 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
611 || system_state == SYSTEM_RESTART;
612 }
613
614 struct ext4_err_translation {
615 int code;
616 int errno;
617 };
618
619 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
620
621 static struct ext4_err_translation err_translation[] = {
622 EXT4_ERR_TRANSLATE(EIO),
623 EXT4_ERR_TRANSLATE(ENOMEM),
624 EXT4_ERR_TRANSLATE(EFSBADCRC),
625 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
626 EXT4_ERR_TRANSLATE(ENOSPC),
627 EXT4_ERR_TRANSLATE(ENOKEY),
628 EXT4_ERR_TRANSLATE(EROFS),
629 EXT4_ERR_TRANSLATE(EFBIG),
630 EXT4_ERR_TRANSLATE(EEXIST),
631 EXT4_ERR_TRANSLATE(ERANGE),
632 EXT4_ERR_TRANSLATE(EOVERFLOW),
633 EXT4_ERR_TRANSLATE(EBUSY),
634 EXT4_ERR_TRANSLATE(ENOTDIR),
635 EXT4_ERR_TRANSLATE(ENOTEMPTY),
636 EXT4_ERR_TRANSLATE(ESHUTDOWN),
637 EXT4_ERR_TRANSLATE(EFAULT),
638 };
639
ext4_errno_to_code(int errno)640 static int ext4_errno_to_code(int errno)
641 {
642 int i;
643
644 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
645 if (err_translation[i].errno == errno)
646 return err_translation[i].code;
647 return EXT4_ERR_UNKNOWN;
648 }
649
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)650 static void save_error_info(struct super_block *sb, int error,
651 __u32 ino, __u64 block,
652 const char *func, unsigned int line)
653 {
654 struct ext4_sb_info *sbi = EXT4_SB(sb);
655
656 /* We default to EFSCORRUPTED error... */
657 if (error == 0)
658 error = EFSCORRUPTED;
659
660 spin_lock(&sbi->s_error_lock);
661 sbi->s_add_error_count++;
662 sbi->s_last_error_code = error;
663 sbi->s_last_error_line = line;
664 sbi->s_last_error_ino = ino;
665 sbi->s_last_error_block = block;
666 sbi->s_last_error_func = func;
667 sbi->s_last_error_time = ktime_get_real_seconds();
668 if (!sbi->s_first_error_time) {
669 sbi->s_first_error_code = error;
670 sbi->s_first_error_line = line;
671 sbi->s_first_error_ino = ino;
672 sbi->s_first_error_block = block;
673 sbi->s_first_error_func = func;
674 sbi->s_first_error_time = sbi->s_last_error_time;
675 }
676 spin_unlock(&sbi->s_error_lock);
677 }
678
679 /* Deal with the reporting of failure conditions on a filesystem such as
680 * inconsistencies detected or read IO failures.
681 *
682 * On ext2, we can store the error state of the filesystem in the
683 * superblock. That is not possible on ext4, because we may have other
684 * write ordering constraints on the superblock which prevent us from
685 * writing it out straight away; and given that the journal is about to
686 * be aborted, we can't rely on the current, or future, transactions to
687 * write out the superblock safely.
688 *
689 * We'll just use the jbd2_journal_abort() error code to record an error in
690 * the journal instead. On recovery, the journal will complain about
691 * that error until we've noted it down and cleared it.
692 *
693 * If force_ro is set, we unconditionally force the filesystem into an
694 * ABORT|READONLY state, unless the error response on the fs has been set to
695 * panic in which case we take the easy way out and panic immediately. This is
696 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
697 * at a critical moment in log management.
698 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)699 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
700 __u32 ino, __u64 block,
701 const char *func, unsigned int line)
702 {
703 journal_t *journal = EXT4_SB(sb)->s_journal;
704 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
705
706 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
707 if (test_opt(sb, WARN_ON_ERROR))
708 WARN_ON_ONCE(1);
709
710 if (!continue_fs && !ext4_emergency_ro(sb) && journal)
711 jbd2_journal_abort(journal, -EIO);
712
713 if (!bdev_read_only(sb->s_bdev)) {
714 save_error_info(sb, error, ino, block, func, line);
715 /*
716 * In case the fs should keep running, we need to writeout
717 * superblock through the journal. Due to lock ordering
718 * constraints, it may not be safe to do it right here so we
719 * defer superblock flushing to a workqueue. We just need to be
720 * careful when the journal is already shutting down. If we get
721 * here in that case, just update the sb directly as the last
722 * transaction won't commit anyway.
723 */
724 if (continue_fs && journal &&
725 !ext4_test_mount_flag(sb, EXT4_MF_JOURNAL_DESTROY))
726 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
727 else
728 ext4_commit_super(sb);
729 }
730
731 /*
732 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
733 * could panic during 'reboot -f' as the underlying device got already
734 * disabled.
735 */
736 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
737 panic("EXT4-fs (device %s): panic forced after error\n",
738 sb->s_id);
739 }
740
741 if (ext4_emergency_ro(sb) || continue_fs)
742 return;
743
744 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
745 /*
746 * We don't set SB_RDONLY because that requires sb->s_umount
747 * semaphore and setting it without proper remount procedure is
748 * confusing code such as freeze_super() leading to deadlocks
749 * and other problems.
750 */
751 set_bit(EXT4_FLAGS_EMERGENCY_RO, &EXT4_SB(sb)->s_ext4_flags);
752 }
753
update_super_work(struct work_struct * work)754 static void update_super_work(struct work_struct *work)
755 {
756 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
757 s_sb_upd_work);
758 journal_t *journal = sbi->s_journal;
759 handle_t *handle;
760
761 /*
762 * If the journal is still running, we have to write out superblock
763 * through the journal to avoid collisions of other journalled sb
764 * updates.
765 *
766 * We use directly jbd2 functions here to avoid recursing back into
767 * ext4 error handling code during handling of previous errors.
768 */
769 if (!sb_rdonly(sbi->s_sb) && journal) {
770 struct buffer_head *sbh = sbi->s_sbh;
771 bool call_notify_err = false;
772
773 handle = jbd2_journal_start(journal, 1);
774 if (IS_ERR(handle))
775 goto write_directly;
776 if (jbd2_journal_get_write_access(handle, sbh)) {
777 jbd2_journal_stop(handle);
778 goto write_directly;
779 }
780
781 if (sbi->s_add_error_count > 0)
782 call_notify_err = true;
783
784 ext4_update_super(sbi->s_sb);
785 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
786 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
787 "superblock detected");
788 clear_buffer_write_io_error(sbh);
789 set_buffer_uptodate(sbh);
790 }
791
792 if (jbd2_journal_dirty_metadata(handle, sbh)) {
793 jbd2_journal_stop(handle);
794 goto write_directly;
795 }
796 jbd2_journal_stop(handle);
797
798 if (call_notify_err)
799 ext4_notify_error_sysfs(sbi);
800
801 return;
802 }
803 write_directly:
804 /*
805 * Write through journal failed. Write sb directly to get error info
806 * out and hope for the best.
807 */
808 ext4_commit_super(sbi->s_sb);
809 ext4_notify_error_sysfs(sbi);
810 }
811
812 #define ext4_error_ratelimit(sb) \
813 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
814 "EXT4-fs error")
815
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)816 void __ext4_error(struct super_block *sb, const char *function,
817 unsigned int line, bool force_ro, int error, __u64 block,
818 const char *fmt, ...)
819 {
820 struct va_format vaf;
821 va_list args;
822
823 if (unlikely(ext4_forced_shutdown(sb)))
824 return;
825
826 trace_ext4_error(sb, function, line);
827 if (ext4_error_ratelimit(sb)) {
828 va_start(args, fmt);
829 vaf.fmt = fmt;
830 vaf.va = &args;
831 printk(KERN_CRIT
832 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
833 sb->s_id, function, line, current->comm, &vaf);
834 va_end(args);
835 }
836 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
837
838 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
839 }
840
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)841 void __ext4_error_inode(struct inode *inode, const char *function,
842 unsigned int line, ext4_fsblk_t block, int error,
843 const char *fmt, ...)
844 {
845 va_list args;
846 struct va_format vaf;
847
848 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
849 return;
850
851 trace_ext4_error(inode->i_sb, function, line);
852 if (ext4_error_ratelimit(inode->i_sb)) {
853 va_start(args, fmt);
854 vaf.fmt = fmt;
855 vaf.va = &args;
856 if (block)
857 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
858 "inode #%lu: block %llu: comm %s: %pV\n",
859 inode->i_sb->s_id, function, line, inode->i_ino,
860 block, current->comm, &vaf);
861 else
862 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
863 "inode #%lu: comm %s: %pV\n",
864 inode->i_sb->s_id, function, line, inode->i_ino,
865 current->comm, &vaf);
866 va_end(args);
867 }
868 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
869
870 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
871 function, line);
872 }
873
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)874 void __ext4_error_file(struct file *file, const char *function,
875 unsigned int line, ext4_fsblk_t block,
876 const char *fmt, ...)
877 {
878 va_list args;
879 struct va_format vaf;
880 struct inode *inode = file_inode(file);
881 char pathname[80], *path;
882
883 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
884 return;
885
886 trace_ext4_error(inode->i_sb, function, line);
887 if (ext4_error_ratelimit(inode->i_sb)) {
888 path = file_path(file, pathname, sizeof(pathname));
889 if (IS_ERR(path))
890 path = "(unknown)";
891 va_start(args, fmt);
892 vaf.fmt = fmt;
893 vaf.va = &args;
894 if (block)
895 printk(KERN_CRIT
896 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
897 "block %llu: comm %s: path %s: %pV\n",
898 inode->i_sb->s_id, function, line, inode->i_ino,
899 block, current->comm, path, &vaf);
900 else
901 printk(KERN_CRIT
902 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
903 "comm %s: path %s: %pV\n",
904 inode->i_sb->s_id, function, line, inode->i_ino,
905 current->comm, path, &vaf);
906 va_end(args);
907 }
908 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
909
910 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
911 function, line);
912 }
913
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])914 const char *ext4_decode_error(struct super_block *sb, int errno,
915 char nbuf[16])
916 {
917 char *errstr = NULL;
918
919 switch (errno) {
920 case -EFSCORRUPTED:
921 errstr = "Corrupt filesystem";
922 break;
923 case -EFSBADCRC:
924 errstr = "Filesystem failed CRC";
925 break;
926 case -EIO:
927 errstr = "IO failure";
928 break;
929 case -ENOMEM:
930 errstr = "Out of memory";
931 break;
932 case -EROFS:
933 if (!sb || (EXT4_SB(sb)->s_journal &&
934 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
935 errstr = "Journal has aborted";
936 else
937 errstr = "Readonly filesystem";
938 break;
939 default:
940 /* If the caller passed in an extra buffer for unknown
941 * errors, textualise them now. Else we just return
942 * NULL. */
943 if (nbuf) {
944 /* Check for truncated error codes... */
945 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
946 errstr = nbuf;
947 }
948 break;
949 }
950
951 return errstr;
952 }
953
954 /* __ext4_std_error decodes expected errors from journaling functions
955 * automatically and invokes the appropriate error response. */
956
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)957 void __ext4_std_error(struct super_block *sb, const char *function,
958 unsigned int line, int errno)
959 {
960 char nbuf[16];
961 const char *errstr;
962
963 if (unlikely(ext4_forced_shutdown(sb)))
964 return;
965
966 /* Special case: if the error is EROFS, and we're not already
967 * inside a transaction, then there's really no point in logging
968 * an error. */
969 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
970 return;
971
972 if (ext4_error_ratelimit(sb)) {
973 errstr = ext4_decode_error(sb, errno, nbuf);
974 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
975 sb->s_id, function, line, errstr);
976 }
977 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
978
979 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
980 }
981
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)982 void __ext4_msg(struct super_block *sb,
983 const char *prefix, const char *fmt, ...)
984 {
985 struct va_format vaf;
986 va_list args;
987
988 if (sb) {
989 atomic_inc(&EXT4_SB(sb)->s_msg_count);
990 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
991 "EXT4-fs"))
992 return;
993 }
994
995 va_start(args, fmt);
996 vaf.fmt = fmt;
997 vaf.va = &args;
998 if (sb)
999 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1000 else
1001 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1002 va_end(args);
1003 }
1004
ext4_warning_ratelimit(struct super_block * sb)1005 static int ext4_warning_ratelimit(struct super_block *sb)
1006 {
1007 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1008 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1009 "EXT4-fs warning");
1010 }
1011
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1012 void __ext4_warning(struct super_block *sb, const char *function,
1013 unsigned int line, const char *fmt, ...)
1014 {
1015 struct va_format vaf;
1016 va_list args;
1017
1018 if (!ext4_warning_ratelimit(sb))
1019 return;
1020
1021 va_start(args, fmt);
1022 vaf.fmt = fmt;
1023 vaf.va = &args;
1024 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1025 sb->s_id, function, line, &vaf);
1026 va_end(args);
1027 }
1028
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1029 void __ext4_warning_inode(const struct inode *inode, const char *function,
1030 unsigned int line, const char *fmt, ...)
1031 {
1032 struct va_format vaf;
1033 va_list args;
1034
1035 if (!ext4_warning_ratelimit(inode->i_sb))
1036 return;
1037
1038 va_start(args, fmt);
1039 vaf.fmt = fmt;
1040 vaf.va = &args;
1041 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1042 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1043 function, line, inode->i_ino, current->comm, &vaf);
1044 va_end(args);
1045 }
1046
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1047 void __ext4_grp_locked_error(const char *function, unsigned int line,
1048 struct super_block *sb, ext4_group_t grp,
1049 unsigned long ino, ext4_fsblk_t block,
1050 const char *fmt, ...)
1051 __releases(bitlock)
1052 __acquires(bitlock)
1053 {
1054 struct va_format vaf;
1055 va_list args;
1056
1057 if (unlikely(ext4_forced_shutdown(sb)))
1058 return;
1059
1060 trace_ext4_error(sb, function, line);
1061 if (ext4_error_ratelimit(sb)) {
1062 va_start(args, fmt);
1063 vaf.fmt = fmt;
1064 vaf.va = &args;
1065 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1066 sb->s_id, function, line, grp);
1067 if (ino)
1068 printk(KERN_CONT "inode %lu: ", ino);
1069 if (block)
1070 printk(KERN_CONT "block %llu:",
1071 (unsigned long long) block);
1072 printk(KERN_CONT "%pV\n", &vaf);
1073 va_end(args);
1074 }
1075
1076 if (test_opt(sb, ERRORS_CONT)) {
1077 if (test_opt(sb, WARN_ON_ERROR))
1078 WARN_ON_ONCE(1);
1079 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1080 if (!bdev_read_only(sb->s_bdev)) {
1081 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1082 line);
1083 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1084 }
1085 return;
1086 }
1087 ext4_unlock_group(sb, grp);
1088 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1089 /*
1090 * We only get here in the ERRORS_RO case; relocking the group
1091 * may be dangerous, but nothing bad will happen since the
1092 * filesystem will have already been marked read/only and the
1093 * journal has been aborted. We return 1 as a hint to callers
1094 * who might what to use the return value from
1095 * ext4_grp_locked_error() to distinguish between the
1096 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1097 * aggressively from the ext4 function in question, with a
1098 * more appropriate error code.
1099 */
1100 ext4_lock_group(sb, grp);
1101 return;
1102 }
1103
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1104 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1105 ext4_group_t group,
1106 unsigned int flags)
1107 {
1108 struct ext4_sb_info *sbi = EXT4_SB(sb);
1109 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1110 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1111 int ret;
1112
1113 if (!grp || !gdp)
1114 return;
1115 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1116 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1117 &grp->bb_state);
1118 if (!ret)
1119 percpu_counter_sub(&sbi->s_freeclusters_counter,
1120 grp->bb_free);
1121 }
1122
1123 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1124 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1125 &grp->bb_state);
1126 if (!ret && gdp) {
1127 int count;
1128
1129 count = ext4_free_inodes_count(sb, gdp);
1130 percpu_counter_sub(&sbi->s_freeinodes_counter,
1131 count);
1132 }
1133 }
1134 }
1135
ext4_update_dynamic_rev(struct super_block * sb)1136 void ext4_update_dynamic_rev(struct super_block *sb)
1137 {
1138 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1139
1140 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1141 return;
1142
1143 ext4_warning(sb,
1144 "updating to rev %d because of new feature flag, "
1145 "running e2fsck is recommended",
1146 EXT4_DYNAMIC_REV);
1147
1148 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1149 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1150 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1151 /* leave es->s_feature_*compat flags alone */
1152 /* es->s_uuid will be set by e2fsck if empty */
1153
1154 /*
1155 * The rest of the superblock fields should be zero, and if not it
1156 * means they are likely already in use, so leave them alone. We
1157 * can leave it up to e2fsck to clean up any inconsistencies there.
1158 */
1159 }
1160
orphan_list_entry(struct list_head * l)1161 static inline struct inode *orphan_list_entry(struct list_head *l)
1162 {
1163 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1164 }
1165
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1166 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1167 {
1168 struct list_head *l;
1169
1170 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1171 le32_to_cpu(sbi->s_es->s_last_orphan));
1172
1173 printk(KERN_ERR "sb_info orphan list:\n");
1174 list_for_each(l, &sbi->s_orphan) {
1175 struct inode *inode = orphan_list_entry(l);
1176 printk(KERN_ERR " "
1177 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1178 inode->i_sb->s_id, inode->i_ino, inode,
1179 inode->i_mode, inode->i_nlink,
1180 NEXT_ORPHAN(inode));
1181 }
1182 }
1183
1184 #ifdef CONFIG_QUOTA
1185 static int ext4_quota_off(struct super_block *sb, int type);
1186
ext4_quotas_off(struct super_block * sb,int type)1187 static inline void ext4_quotas_off(struct super_block *sb, int type)
1188 {
1189 BUG_ON(type > EXT4_MAXQUOTAS);
1190
1191 /* Use our quota_off function to clear inode flags etc. */
1192 for (type--; type >= 0; type--)
1193 ext4_quota_off(sb, type);
1194 }
1195
1196 /*
1197 * This is a helper function which is used in the mount/remount
1198 * codepaths (which holds s_umount) to fetch the quota file name.
1199 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1200 static inline char *get_qf_name(struct super_block *sb,
1201 struct ext4_sb_info *sbi,
1202 int type)
1203 {
1204 return rcu_dereference_protected(sbi->s_qf_names[type],
1205 lockdep_is_held(&sb->s_umount));
1206 }
1207 #else
ext4_quotas_off(struct super_block * sb,int type)1208 static inline void ext4_quotas_off(struct super_block *sb, int type)
1209 {
1210 }
1211 #endif
1212
ext4_percpu_param_init(struct ext4_sb_info * sbi)1213 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1214 {
1215 ext4_fsblk_t block;
1216 int err;
1217
1218 block = ext4_count_free_clusters(sbi->s_sb);
1219 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1220 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1221 GFP_KERNEL);
1222 if (!err) {
1223 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1224 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1225 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1226 GFP_KERNEL);
1227 }
1228 if (!err)
1229 err = percpu_counter_init(&sbi->s_dirs_counter,
1230 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1231 if (!err)
1232 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1233 GFP_KERNEL);
1234 if (!err)
1235 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1236 GFP_KERNEL);
1237 if (!err)
1238 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1239
1240 if (err)
1241 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1242
1243 return err;
1244 }
1245
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1246 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1247 {
1248 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1249 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1250 percpu_counter_destroy(&sbi->s_dirs_counter);
1251 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1252 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1253 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1254 }
1255
ext4_group_desc_free(struct ext4_sb_info * sbi)1256 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1257 {
1258 struct buffer_head **group_desc;
1259 int i;
1260
1261 rcu_read_lock();
1262 group_desc = rcu_dereference(sbi->s_group_desc);
1263 for (i = 0; i < sbi->s_gdb_count; i++)
1264 brelse(group_desc[i]);
1265 kvfree(group_desc);
1266 rcu_read_unlock();
1267 }
1268
ext4_flex_groups_free(struct ext4_sb_info * sbi)1269 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1270 {
1271 struct flex_groups **flex_groups;
1272 int i;
1273
1274 rcu_read_lock();
1275 flex_groups = rcu_dereference(sbi->s_flex_groups);
1276 if (flex_groups) {
1277 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1278 kvfree(flex_groups[i]);
1279 kvfree(flex_groups);
1280 }
1281 rcu_read_unlock();
1282 }
1283
ext4_put_super(struct super_block * sb)1284 static void ext4_put_super(struct super_block *sb)
1285 {
1286 struct ext4_sb_info *sbi = EXT4_SB(sb);
1287 struct ext4_super_block *es = sbi->s_es;
1288 int aborted = 0;
1289 int err;
1290
1291 /*
1292 * Unregister sysfs before destroying jbd2 journal.
1293 * Since we could still access attr_journal_task attribute via sysfs
1294 * path which could have sbi->s_journal->j_task as NULL
1295 * Unregister sysfs before flush sbi->s_sb_upd_work.
1296 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1297 * read metadata verify failed then will queue error work.
1298 * update_super_work will call start_this_handle may trigger
1299 * BUG_ON.
1300 */
1301 ext4_unregister_sysfs(sb);
1302
1303 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1304 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1305 &sb->s_uuid);
1306
1307 ext4_unregister_li_request(sb);
1308 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1309
1310 destroy_workqueue(sbi->rsv_conversion_wq);
1311 ext4_release_orphan_info(sb);
1312
1313 if (sbi->s_journal) {
1314 aborted = is_journal_aborted(sbi->s_journal);
1315 err = ext4_journal_destroy(sbi, sbi->s_journal);
1316 if ((err < 0) && !aborted) {
1317 ext4_abort(sb, -err, "Couldn't clean up the journal");
1318 }
1319 } else
1320 flush_work(&sbi->s_sb_upd_work);
1321
1322 ext4_es_unregister_shrinker(sbi);
1323 timer_shutdown_sync(&sbi->s_err_report);
1324 ext4_release_system_zone(sb);
1325 ext4_mb_release(sb);
1326 ext4_ext_release(sb);
1327
1328 if (!sb_rdonly(sb) && !aborted) {
1329 ext4_clear_feature_journal_needs_recovery(sb);
1330 ext4_clear_feature_orphan_present(sb);
1331 es->s_state = cpu_to_le16(sbi->s_mount_state);
1332 }
1333 if (!sb_rdonly(sb))
1334 ext4_commit_super(sb);
1335
1336 ext4_group_desc_free(sbi);
1337 ext4_flex_groups_free(sbi);
1338
1339 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1340 percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1341 ext4_percpu_param_destroy(sbi);
1342 #ifdef CONFIG_QUOTA
1343 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1344 kfree(get_qf_name(sb, sbi, i));
1345 #endif
1346
1347 /* Debugging code just in case the in-memory inode orphan list
1348 * isn't empty. The on-disk one can be non-empty if we've
1349 * detected an error and taken the fs readonly, but the
1350 * in-memory list had better be clean by this point. */
1351 if (!list_empty(&sbi->s_orphan))
1352 dump_orphan_list(sb, sbi);
1353 ASSERT(list_empty(&sbi->s_orphan));
1354
1355 sync_blockdev(sb->s_bdev);
1356 invalidate_bdev(sb->s_bdev);
1357 if (sbi->s_journal_bdev_file) {
1358 /*
1359 * Invalidate the journal device's buffers. We don't want them
1360 * floating about in memory - the physical journal device may
1361 * hotswapped, and it breaks the `ro-after' testing code.
1362 */
1363 sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1364 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1365 }
1366
1367 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1368 sbi->s_ea_inode_cache = NULL;
1369
1370 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1371 sbi->s_ea_block_cache = NULL;
1372
1373 ext4_stop_mmpd(sbi);
1374
1375 brelse(sbi->s_sbh);
1376 sb->s_fs_info = NULL;
1377 /*
1378 * Now that we are completely done shutting down the
1379 * superblock, we need to actually destroy the kobject.
1380 */
1381 kobject_put(&sbi->s_kobj);
1382 wait_for_completion(&sbi->s_kobj_unregister);
1383 kfree(sbi->s_blockgroup_lock);
1384 fs_put_dax(sbi->s_daxdev, NULL);
1385 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1386 #if IS_ENABLED(CONFIG_UNICODE)
1387 utf8_unload(sb->s_encoding);
1388 #endif
1389 kfree(sbi);
1390 }
1391
1392 static struct kmem_cache *ext4_inode_cachep;
1393
1394 /*
1395 * Called inside transaction, so use GFP_NOFS
1396 */
ext4_alloc_inode(struct super_block * sb)1397 static struct inode *ext4_alloc_inode(struct super_block *sb)
1398 {
1399 struct ext4_inode_info *ei;
1400
1401 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1402 if (!ei)
1403 return NULL;
1404
1405 inode_set_iversion(&ei->vfs_inode, 1);
1406 ei->i_flags = 0;
1407 spin_lock_init(&ei->i_raw_lock);
1408 ei->i_prealloc_node = RB_ROOT;
1409 atomic_set(&ei->i_prealloc_active, 0);
1410 rwlock_init(&ei->i_prealloc_lock);
1411 ext4_es_init_tree(&ei->i_es_tree);
1412 rwlock_init(&ei->i_es_lock);
1413 INIT_LIST_HEAD(&ei->i_es_list);
1414 ei->i_es_all_nr = 0;
1415 ei->i_es_shk_nr = 0;
1416 ei->i_es_shrink_lblk = 0;
1417 ei->i_reserved_data_blocks = 0;
1418 spin_lock_init(&(ei->i_block_reservation_lock));
1419 ext4_init_pending_tree(&ei->i_pending_tree);
1420 #ifdef CONFIG_QUOTA
1421 ei->i_reserved_quota = 0;
1422 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1423 #endif
1424 ei->jinode = NULL;
1425 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1426 spin_lock_init(&ei->i_completed_io_lock);
1427 ei->i_sync_tid = 0;
1428 ei->i_datasync_tid = 0;
1429 atomic_set(&ei->i_unwritten, 0);
1430 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1431 ext4_fc_init_inode(&ei->vfs_inode);
1432 mutex_init(&ei->i_fc_lock);
1433 return &ei->vfs_inode;
1434 }
1435
ext4_drop_inode(struct inode * inode)1436 static int ext4_drop_inode(struct inode *inode)
1437 {
1438 int drop = generic_drop_inode(inode);
1439
1440 if (!drop)
1441 drop = fscrypt_drop_inode(inode);
1442
1443 trace_ext4_drop_inode(inode, drop);
1444 return drop;
1445 }
1446
ext4_free_in_core_inode(struct inode * inode)1447 static void ext4_free_in_core_inode(struct inode *inode)
1448 {
1449 fscrypt_free_inode(inode);
1450 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1451 pr_warn("%s: inode %ld still in fc list",
1452 __func__, inode->i_ino);
1453 }
1454 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1455 }
1456
ext4_destroy_inode(struct inode * inode)1457 static void ext4_destroy_inode(struct inode *inode)
1458 {
1459 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1460 ext4_msg(inode->i_sb, KERN_ERR,
1461 "Inode %lu (%p): orphan list check failed!",
1462 inode->i_ino, EXT4_I(inode));
1463 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1464 EXT4_I(inode), sizeof(struct ext4_inode_info),
1465 true);
1466 dump_stack();
1467 }
1468
1469 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1470 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1471 ext4_msg(inode->i_sb, KERN_ERR,
1472 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1473 inode->i_ino, EXT4_I(inode),
1474 EXT4_I(inode)->i_reserved_data_blocks);
1475 }
1476
ext4_shutdown(struct super_block * sb)1477 static void ext4_shutdown(struct super_block *sb)
1478 {
1479 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1480 }
1481
init_once(void * foo)1482 static void init_once(void *foo)
1483 {
1484 struct ext4_inode_info *ei = foo;
1485
1486 INIT_LIST_HEAD(&ei->i_orphan);
1487 init_rwsem(&ei->xattr_sem);
1488 init_rwsem(&ei->i_data_sem);
1489 inode_init_once(&ei->vfs_inode);
1490 ext4_fc_init_inode(&ei->vfs_inode);
1491 }
1492
init_inodecache(void)1493 static int __init init_inodecache(void)
1494 {
1495 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1496 sizeof(struct ext4_inode_info), 0,
1497 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1498 offsetof(struct ext4_inode_info, i_data),
1499 sizeof_field(struct ext4_inode_info, i_data),
1500 init_once);
1501 if (ext4_inode_cachep == NULL)
1502 return -ENOMEM;
1503 return 0;
1504 }
1505
destroy_inodecache(void)1506 static void destroy_inodecache(void)
1507 {
1508 /*
1509 * Make sure all delayed rcu free inodes are flushed before we
1510 * destroy cache.
1511 */
1512 rcu_barrier();
1513 kmem_cache_destroy(ext4_inode_cachep);
1514 }
1515
ext4_clear_inode(struct inode * inode)1516 void ext4_clear_inode(struct inode *inode)
1517 {
1518 ext4_fc_del(inode);
1519 invalidate_inode_buffers(inode);
1520 clear_inode(inode);
1521 ext4_discard_preallocations(inode);
1522 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1523 dquot_drop(inode);
1524 if (EXT4_I(inode)->jinode) {
1525 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1526 EXT4_I(inode)->jinode);
1527 jbd2_free_inode(EXT4_I(inode)->jinode);
1528 EXT4_I(inode)->jinode = NULL;
1529 }
1530 fscrypt_put_encryption_info(inode);
1531 fsverity_cleanup_inode(inode);
1532 }
1533
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1534 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1535 u64 ino, u32 generation)
1536 {
1537 struct inode *inode;
1538
1539 /*
1540 * Currently we don't know the generation for parent directory, so
1541 * a generation of 0 means "accept any"
1542 */
1543 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1544 if (IS_ERR(inode))
1545 return ERR_CAST(inode);
1546 if (generation && inode->i_generation != generation) {
1547 iput(inode);
1548 return ERR_PTR(-ESTALE);
1549 }
1550
1551 return inode;
1552 }
1553
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1554 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1555 int fh_len, int fh_type)
1556 {
1557 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1558 ext4_nfs_get_inode);
1559 }
1560
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1561 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1562 int fh_len, int fh_type)
1563 {
1564 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1565 ext4_nfs_get_inode);
1566 }
1567
ext4_nfs_commit_metadata(struct inode * inode)1568 static int ext4_nfs_commit_metadata(struct inode *inode)
1569 {
1570 struct writeback_control wbc = {
1571 .sync_mode = WB_SYNC_ALL
1572 };
1573
1574 trace_ext4_nfs_commit_metadata(inode);
1575 return ext4_write_inode(inode, &wbc);
1576 }
1577
1578 #ifdef CONFIG_QUOTA
1579 static const char * const quotatypes[] = INITQFNAMES;
1580 #define QTYPE2NAME(t) (quotatypes[t])
1581
1582 static int ext4_write_dquot(struct dquot *dquot);
1583 static int ext4_acquire_dquot(struct dquot *dquot);
1584 static int ext4_release_dquot(struct dquot *dquot);
1585 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1586 static int ext4_write_info(struct super_block *sb, int type);
1587 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1588 const struct path *path);
1589 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1590 size_t len, loff_t off);
1591 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1592 const char *data, size_t len, loff_t off);
1593 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1594 unsigned int flags);
1595
ext4_get_dquots(struct inode * inode)1596 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1597 {
1598 return EXT4_I(inode)->i_dquot;
1599 }
1600
1601 static const struct dquot_operations ext4_quota_operations = {
1602 .get_reserved_space = ext4_get_reserved_space,
1603 .write_dquot = ext4_write_dquot,
1604 .acquire_dquot = ext4_acquire_dquot,
1605 .release_dquot = ext4_release_dquot,
1606 .mark_dirty = ext4_mark_dquot_dirty,
1607 .write_info = ext4_write_info,
1608 .alloc_dquot = dquot_alloc,
1609 .destroy_dquot = dquot_destroy,
1610 .get_projid = ext4_get_projid,
1611 .get_inode_usage = ext4_get_inode_usage,
1612 .get_next_id = dquot_get_next_id,
1613 };
1614
1615 static const struct quotactl_ops ext4_qctl_operations = {
1616 .quota_on = ext4_quota_on,
1617 .quota_off = ext4_quota_off,
1618 .quota_sync = dquot_quota_sync,
1619 .get_state = dquot_get_state,
1620 .set_info = dquot_set_dqinfo,
1621 .get_dqblk = dquot_get_dqblk,
1622 .set_dqblk = dquot_set_dqblk,
1623 .get_nextdqblk = dquot_get_next_dqblk,
1624 };
1625 #endif
1626
1627 static const struct super_operations ext4_sops = {
1628 .alloc_inode = ext4_alloc_inode,
1629 .free_inode = ext4_free_in_core_inode,
1630 .destroy_inode = ext4_destroy_inode,
1631 .write_inode = ext4_write_inode,
1632 .dirty_inode = ext4_dirty_inode,
1633 .drop_inode = ext4_drop_inode,
1634 .evict_inode = ext4_evict_inode,
1635 .put_super = ext4_put_super,
1636 .sync_fs = ext4_sync_fs,
1637 .freeze_fs = ext4_freeze,
1638 .unfreeze_fs = ext4_unfreeze,
1639 .statfs = ext4_statfs,
1640 .show_options = ext4_show_options,
1641 .shutdown = ext4_shutdown,
1642 #ifdef CONFIG_QUOTA
1643 .quota_read = ext4_quota_read,
1644 .quota_write = ext4_quota_write,
1645 .get_dquots = ext4_get_dquots,
1646 #endif
1647 };
1648
1649 static const struct export_operations ext4_export_ops = {
1650 .encode_fh = generic_encode_ino32_fh,
1651 .fh_to_dentry = ext4_fh_to_dentry,
1652 .fh_to_parent = ext4_fh_to_parent,
1653 .get_parent = ext4_get_parent,
1654 .commit_metadata = ext4_nfs_commit_metadata,
1655 };
1656
1657 enum {
1658 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1659 Opt_resgid, Opt_resuid, Opt_sb,
1660 Opt_nouid32, Opt_debug, Opt_removed,
1661 Opt_user_xattr, Opt_acl,
1662 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1663 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1664 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1665 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1666 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1667 Opt_inlinecrypt,
1668 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1669 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1670 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1671 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1672 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1673 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1674 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1675 Opt_inode_readahead_blks, Opt_journal_ioprio,
1676 Opt_dioread_nolock, Opt_dioread_lock,
1677 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1678 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1679 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1680 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1681 #ifdef CONFIG_EXT4_DEBUG
1682 Opt_fc_debug_max_replay, Opt_fc_debug_force
1683 #endif
1684 };
1685
1686 static const struct constant_table ext4_param_errors[] = {
1687 {"continue", EXT4_MOUNT_ERRORS_CONT},
1688 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1689 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1690 {}
1691 };
1692
1693 static const struct constant_table ext4_param_data[] = {
1694 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1695 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1696 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1697 {}
1698 };
1699
1700 static const struct constant_table ext4_param_data_err[] = {
1701 {"abort", Opt_data_err_abort},
1702 {"ignore", Opt_data_err_ignore},
1703 {}
1704 };
1705
1706 static const struct constant_table ext4_param_jqfmt[] = {
1707 {"vfsold", QFMT_VFS_OLD},
1708 {"vfsv0", QFMT_VFS_V0},
1709 {"vfsv1", QFMT_VFS_V1},
1710 {}
1711 };
1712
1713 static const struct constant_table ext4_param_dax[] = {
1714 {"always", Opt_dax_always},
1715 {"inode", Opt_dax_inode},
1716 {"never", Opt_dax_never},
1717 {}
1718 };
1719
1720 /*
1721 * Mount option specification
1722 * We don't use fsparam_flag_no because of the way we set the
1723 * options and the way we show them in _ext4_show_options(). To
1724 * keep the changes to a minimum, let's keep the negative options
1725 * separate for now.
1726 */
1727 static const struct fs_parameter_spec ext4_param_specs[] = {
1728 fsparam_flag ("bsddf", Opt_bsd_df),
1729 fsparam_flag ("minixdf", Opt_minix_df),
1730 fsparam_flag ("grpid", Opt_grpid),
1731 fsparam_flag ("bsdgroups", Opt_grpid),
1732 fsparam_flag ("nogrpid", Opt_nogrpid),
1733 fsparam_flag ("sysvgroups", Opt_nogrpid),
1734 fsparam_gid ("resgid", Opt_resgid),
1735 fsparam_uid ("resuid", Opt_resuid),
1736 fsparam_u32 ("sb", Opt_sb),
1737 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1738 fsparam_flag ("nouid32", Opt_nouid32),
1739 fsparam_flag ("debug", Opt_debug),
1740 fsparam_flag ("oldalloc", Opt_removed),
1741 fsparam_flag ("orlov", Opt_removed),
1742 fsparam_flag ("user_xattr", Opt_user_xattr),
1743 fsparam_flag ("acl", Opt_acl),
1744 fsparam_flag ("norecovery", Opt_noload),
1745 fsparam_flag ("noload", Opt_noload),
1746 fsparam_flag ("bh", Opt_removed),
1747 fsparam_flag ("nobh", Opt_removed),
1748 fsparam_u32 ("commit", Opt_commit),
1749 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1750 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1751 fsparam_u32 ("journal_dev", Opt_journal_dev),
1752 fsparam_bdev ("journal_path", Opt_journal_path),
1753 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1754 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1755 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1756 fsparam_flag ("abort", Opt_abort),
1757 fsparam_enum ("data", Opt_data, ext4_param_data),
1758 fsparam_enum ("data_err", Opt_data_err,
1759 ext4_param_data_err),
1760 fsparam_string_empty
1761 ("usrjquota", Opt_usrjquota),
1762 fsparam_string_empty
1763 ("grpjquota", Opt_grpjquota),
1764 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1765 fsparam_flag ("grpquota", Opt_grpquota),
1766 fsparam_flag ("quota", Opt_quota),
1767 fsparam_flag ("noquota", Opt_noquota),
1768 fsparam_flag ("usrquota", Opt_usrquota),
1769 fsparam_flag ("prjquota", Opt_prjquota),
1770 fsparam_flag ("barrier", Opt_barrier),
1771 fsparam_u32 ("barrier", Opt_barrier),
1772 fsparam_flag ("nobarrier", Opt_nobarrier),
1773 fsparam_flag ("i_version", Opt_removed),
1774 fsparam_flag ("dax", Opt_dax),
1775 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1776 fsparam_u32 ("stripe", Opt_stripe),
1777 fsparam_flag ("delalloc", Opt_delalloc),
1778 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1779 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1780 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1781 fsparam_u32 ("debug_want_extra_isize",
1782 Opt_debug_want_extra_isize),
1783 fsparam_flag ("mblk_io_submit", Opt_removed),
1784 fsparam_flag ("nomblk_io_submit", Opt_removed),
1785 fsparam_flag ("block_validity", Opt_block_validity),
1786 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1787 fsparam_u32 ("inode_readahead_blks",
1788 Opt_inode_readahead_blks),
1789 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1790 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1791 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1792 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1793 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1794 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1795 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1796 fsparam_flag ("discard", Opt_discard),
1797 fsparam_flag ("nodiscard", Opt_nodiscard),
1798 fsparam_u32 ("init_itable", Opt_init_itable),
1799 fsparam_flag ("init_itable", Opt_init_itable),
1800 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1801 #ifdef CONFIG_EXT4_DEBUG
1802 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1803 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1804 #endif
1805 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1806 fsparam_flag ("test_dummy_encryption",
1807 Opt_test_dummy_encryption),
1808 fsparam_string ("test_dummy_encryption",
1809 Opt_test_dummy_encryption),
1810 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1811 fsparam_flag ("nombcache", Opt_nombcache),
1812 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1813 fsparam_flag ("prefetch_block_bitmaps",
1814 Opt_removed),
1815 fsparam_flag ("no_prefetch_block_bitmaps",
1816 Opt_no_prefetch_block_bitmaps),
1817 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1818 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1819 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1820 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1821 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1822 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1823 {}
1824 };
1825
1826 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1827
1828 #define MOPT_SET 0x0001
1829 #define MOPT_CLEAR 0x0002
1830 #define MOPT_NOSUPPORT 0x0004
1831 #define MOPT_EXPLICIT 0x0008
1832 #ifdef CONFIG_QUOTA
1833 #define MOPT_Q 0
1834 #define MOPT_QFMT 0x0010
1835 #else
1836 #define MOPT_Q MOPT_NOSUPPORT
1837 #define MOPT_QFMT MOPT_NOSUPPORT
1838 #endif
1839 #define MOPT_NO_EXT2 0x0020
1840 #define MOPT_NO_EXT3 0x0040
1841 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1842 #define MOPT_SKIP 0x0080
1843 #define MOPT_2 0x0100
1844
1845 static const struct mount_opts {
1846 int token;
1847 int mount_opt;
1848 int flags;
1849 } ext4_mount_opts[] = {
1850 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1851 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1852 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1853 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1854 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1855 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1856 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1857 MOPT_EXT4_ONLY | MOPT_SET},
1858 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1859 MOPT_EXT4_ONLY | MOPT_CLEAR},
1860 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1861 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1862 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1863 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1864 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1865 MOPT_EXT4_ONLY | MOPT_CLEAR},
1866 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1867 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1868 {Opt_commit, 0, MOPT_NO_EXT2},
1869 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1870 MOPT_EXT4_ONLY | MOPT_CLEAR},
1871 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1872 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1873 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1874 EXT4_MOUNT_JOURNAL_CHECKSUM),
1875 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1876 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1877 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1878 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1879 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1880 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1881 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1882 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1883 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1884 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1885 {Opt_journal_path, 0, MOPT_NO_EXT2},
1886 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1887 {Opt_data, 0, MOPT_NO_EXT2},
1888 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1889 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1890 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1891 #else
1892 {Opt_acl, 0, MOPT_NOSUPPORT},
1893 #endif
1894 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1895 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1896 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1897 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1898 MOPT_SET | MOPT_Q},
1899 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1900 MOPT_SET | MOPT_Q},
1901 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1902 MOPT_SET | MOPT_Q},
1903 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1904 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1905 MOPT_CLEAR | MOPT_Q},
1906 {Opt_usrjquota, 0, MOPT_Q},
1907 {Opt_grpjquota, 0, MOPT_Q},
1908 {Opt_jqfmt, 0, MOPT_QFMT},
1909 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1910 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1911 MOPT_SET},
1912 #ifdef CONFIG_EXT4_DEBUG
1913 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1914 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1915 #endif
1916 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1917 {Opt_err, 0, 0}
1918 };
1919
1920 #if IS_ENABLED(CONFIG_UNICODE)
1921 static const struct ext4_sb_encodings {
1922 __u16 magic;
1923 char *name;
1924 unsigned int version;
1925 } ext4_sb_encoding_map[] = {
1926 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1927 };
1928
1929 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1930 ext4_sb_read_encoding(const struct ext4_super_block *es)
1931 {
1932 __u16 magic = le16_to_cpu(es->s_encoding);
1933 int i;
1934
1935 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1936 if (magic == ext4_sb_encoding_map[i].magic)
1937 return &ext4_sb_encoding_map[i];
1938
1939 return NULL;
1940 }
1941 #endif
1942
1943 #define EXT4_SPEC_JQUOTA (1 << 0)
1944 #define EXT4_SPEC_JQFMT (1 << 1)
1945 #define EXT4_SPEC_DATAJ (1 << 2)
1946 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1947 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1948 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1949 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1950 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1951 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1952 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1953 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1954 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1955 #define EXT4_SPEC_s_stripe (1 << 13)
1956 #define EXT4_SPEC_s_resuid (1 << 14)
1957 #define EXT4_SPEC_s_resgid (1 << 15)
1958 #define EXT4_SPEC_s_commit_interval (1 << 16)
1959 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1960 #define EXT4_SPEC_s_sb_block (1 << 18)
1961 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1962
1963 struct ext4_fs_context {
1964 char *s_qf_names[EXT4_MAXQUOTAS];
1965 struct fscrypt_dummy_policy dummy_enc_policy;
1966 int s_jquota_fmt; /* Format of quota to use */
1967 #ifdef CONFIG_EXT4_DEBUG
1968 int s_fc_debug_max_replay;
1969 #endif
1970 unsigned short qname_spec;
1971 unsigned long vals_s_flags; /* Bits to set in s_flags */
1972 unsigned long mask_s_flags; /* Bits changed in s_flags */
1973 unsigned long journal_devnum;
1974 unsigned long s_commit_interval;
1975 unsigned long s_stripe;
1976 unsigned int s_inode_readahead_blks;
1977 unsigned int s_want_extra_isize;
1978 unsigned int s_li_wait_mult;
1979 unsigned int s_max_dir_size_kb;
1980 unsigned int journal_ioprio;
1981 unsigned int vals_s_mount_opt;
1982 unsigned int mask_s_mount_opt;
1983 unsigned int vals_s_mount_opt2;
1984 unsigned int mask_s_mount_opt2;
1985 unsigned int opt_flags; /* MOPT flags */
1986 unsigned int spec;
1987 u32 s_max_batch_time;
1988 u32 s_min_batch_time;
1989 kuid_t s_resuid;
1990 kgid_t s_resgid;
1991 ext4_fsblk_t s_sb_block;
1992 };
1993
ext4_fc_free(struct fs_context * fc)1994 static void ext4_fc_free(struct fs_context *fc)
1995 {
1996 struct ext4_fs_context *ctx = fc->fs_private;
1997 int i;
1998
1999 if (!ctx)
2000 return;
2001
2002 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2003 kfree(ctx->s_qf_names[i]);
2004
2005 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2006 kfree(ctx);
2007 }
2008
ext4_init_fs_context(struct fs_context * fc)2009 int ext4_init_fs_context(struct fs_context *fc)
2010 {
2011 struct ext4_fs_context *ctx;
2012
2013 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2014 if (!ctx)
2015 return -ENOMEM;
2016
2017 fc->fs_private = ctx;
2018 fc->ops = &ext4_context_ops;
2019
2020 return 0;
2021 }
2022
2023 #ifdef CONFIG_QUOTA
2024 /*
2025 * Note the name of the specified quota file.
2026 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2027 static int note_qf_name(struct fs_context *fc, int qtype,
2028 struct fs_parameter *param)
2029 {
2030 struct ext4_fs_context *ctx = fc->fs_private;
2031 char *qname;
2032
2033 if (param->size < 1) {
2034 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2035 return -EINVAL;
2036 }
2037 if (strchr(param->string, '/')) {
2038 ext4_msg(NULL, KERN_ERR,
2039 "quotafile must be on filesystem root");
2040 return -EINVAL;
2041 }
2042 if (ctx->s_qf_names[qtype]) {
2043 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2044 ext4_msg(NULL, KERN_ERR,
2045 "%s quota file already specified",
2046 QTYPE2NAME(qtype));
2047 return -EINVAL;
2048 }
2049 return 0;
2050 }
2051
2052 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2053 if (!qname) {
2054 ext4_msg(NULL, KERN_ERR,
2055 "Not enough memory for storing quotafile name");
2056 return -ENOMEM;
2057 }
2058 ctx->s_qf_names[qtype] = qname;
2059 ctx->qname_spec |= 1 << qtype;
2060 ctx->spec |= EXT4_SPEC_JQUOTA;
2061 return 0;
2062 }
2063
2064 /*
2065 * Clear the name of the specified quota file.
2066 */
unnote_qf_name(struct fs_context * fc,int qtype)2067 static int unnote_qf_name(struct fs_context *fc, int qtype)
2068 {
2069 struct ext4_fs_context *ctx = fc->fs_private;
2070
2071 kfree(ctx->s_qf_names[qtype]);
2072
2073 ctx->s_qf_names[qtype] = NULL;
2074 ctx->qname_spec |= 1 << qtype;
2075 ctx->spec |= EXT4_SPEC_JQUOTA;
2076 return 0;
2077 }
2078 #endif
2079
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2080 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2081 struct ext4_fs_context *ctx)
2082 {
2083 int err;
2084
2085 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2086 ext4_msg(NULL, KERN_WARNING,
2087 "test_dummy_encryption option not supported");
2088 return -EINVAL;
2089 }
2090 err = fscrypt_parse_test_dummy_encryption(param,
2091 &ctx->dummy_enc_policy);
2092 if (err == -EINVAL) {
2093 ext4_msg(NULL, KERN_WARNING,
2094 "Value of option \"%s\" is unrecognized", param->key);
2095 } else if (err == -EEXIST) {
2096 ext4_msg(NULL, KERN_WARNING,
2097 "Conflicting test_dummy_encryption options");
2098 return -EINVAL;
2099 }
2100 return err;
2101 }
2102
2103 #define EXT4_SET_CTX(name) \
2104 static inline __maybe_unused \
2105 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2106 { \
2107 ctx->mask_s_##name |= flag; \
2108 ctx->vals_s_##name |= flag; \
2109 }
2110
2111 #define EXT4_CLEAR_CTX(name) \
2112 static inline __maybe_unused \
2113 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2114 { \
2115 ctx->mask_s_##name |= flag; \
2116 ctx->vals_s_##name &= ~flag; \
2117 }
2118
2119 #define EXT4_TEST_CTX(name) \
2120 static inline unsigned long \
2121 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2122 { \
2123 return (ctx->vals_s_##name & flag); \
2124 }
2125
2126 EXT4_SET_CTX(flags); /* set only */
2127 EXT4_SET_CTX(mount_opt);
2128 EXT4_CLEAR_CTX(mount_opt);
2129 EXT4_TEST_CTX(mount_opt);
2130 EXT4_SET_CTX(mount_opt2);
2131 EXT4_CLEAR_CTX(mount_opt2);
2132 EXT4_TEST_CTX(mount_opt2);
2133
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2134 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2135 {
2136 struct ext4_fs_context *ctx = fc->fs_private;
2137 struct fs_parse_result result;
2138 const struct mount_opts *m;
2139 int is_remount;
2140 int token;
2141
2142 token = fs_parse(fc, ext4_param_specs, param, &result);
2143 if (token < 0)
2144 return token;
2145 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2146
2147 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2148 if (token == m->token)
2149 break;
2150
2151 ctx->opt_flags |= m->flags;
2152
2153 if (m->flags & MOPT_EXPLICIT) {
2154 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2155 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2156 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2157 ctx_set_mount_opt2(ctx,
2158 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2159 } else
2160 return -EINVAL;
2161 }
2162
2163 if (m->flags & MOPT_NOSUPPORT) {
2164 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2165 param->key);
2166 return 0;
2167 }
2168
2169 switch (token) {
2170 #ifdef CONFIG_QUOTA
2171 case Opt_usrjquota:
2172 if (!*param->string)
2173 return unnote_qf_name(fc, USRQUOTA);
2174 else
2175 return note_qf_name(fc, USRQUOTA, param);
2176 case Opt_grpjquota:
2177 if (!*param->string)
2178 return unnote_qf_name(fc, GRPQUOTA);
2179 else
2180 return note_qf_name(fc, GRPQUOTA, param);
2181 #endif
2182 case Opt_sb:
2183 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2184 ext4_msg(NULL, KERN_WARNING,
2185 "Ignoring %s option on remount", param->key);
2186 } else {
2187 ctx->s_sb_block = result.uint_32;
2188 ctx->spec |= EXT4_SPEC_s_sb_block;
2189 }
2190 return 0;
2191 case Opt_removed:
2192 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2193 param->key);
2194 return 0;
2195 case Opt_inlinecrypt:
2196 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2197 ctx_set_flags(ctx, SB_INLINECRYPT);
2198 #else
2199 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2200 #endif
2201 return 0;
2202 case Opt_errors:
2203 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2204 ctx_set_mount_opt(ctx, result.uint_32);
2205 return 0;
2206 #ifdef CONFIG_QUOTA
2207 case Opt_jqfmt:
2208 ctx->s_jquota_fmt = result.uint_32;
2209 ctx->spec |= EXT4_SPEC_JQFMT;
2210 return 0;
2211 #endif
2212 case Opt_data:
2213 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2214 ctx_set_mount_opt(ctx, result.uint_32);
2215 ctx->spec |= EXT4_SPEC_DATAJ;
2216 return 0;
2217 case Opt_commit:
2218 if (result.uint_32 == 0)
2219 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2220 else if (result.uint_32 > INT_MAX / HZ) {
2221 ext4_msg(NULL, KERN_ERR,
2222 "Invalid commit interval %d, "
2223 "must be smaller than %d",
2224 result.uint_32, INT_MAX / HZ);
2225 return -EINVAL;
2226 }
2227 ctx->s_commit_interval = HZ * result.uint_32;
2228 ctx->spec |= EXT4_SPEC_s_commit_interval;
2229 return 0;
2230 case Opt_debug_want_extra_isize:
2231 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2232 ext4_msg(NULL, KERN_ERR,
2233 "Invalid want_extra_isize %d", result.uint_32);
2234 return -EINVAL;
2235 }
2236 ctx->s_want_extra_isize = result.uint_32;
2237 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2238 return 0;
2239 case Opt_max_batch_time:
2240 ctx->s_max_batch_time = result.uint_32;
2241 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2242 return 0;
2243 case Opt_min_batch_time:
2244 ctx->s_min_batch_time = result.uint_32;
2245 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2246 return 0;
2247 case Opt_inode_readahead_blks:
2248 if (result.uint_32 &&
2249 (result.uint_32 > (1 << 30) ||
2250 !is_power_of_2(result.uint_32))) {
2251 ext4_msg(NULL, KERN_ERR,
2252 "EXT4-fs: inode_readahead_blks must be "
2253 "0 or a power of 2 smaller than 2^31");
2254 return -EINVAL;
2255 }
2256 ctx->s_inode_readahead_blks = result.uint_32;
2257 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2258 return 0;
2259 case Opt_init_itable:
2260 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2261 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2262 if (param->type == fs_value_is_string)
2263 ctx->s_li_wait_mult = result.uint_32;
2264 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2265 return 0;
2266 case Opt_max_dir_size_kb:
2267 ctx->s_max_dir_size_kb = result.uint_32;
2268 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2269 return 0;
2270 #ifdef CONFIG_EXT4_DEBUG
2271 case Opt_fc_debug_max_replay:
2272 ctx->s_fc_debug_max_replay = result.uint_32;
2273 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2274 return 0;
2275 #endif
2276 case Opt_stripe:
2277 ctx->s_stripe = result.uint_32;
2278 ctx->spec |= EXT4_SPEC_s_stripe;
2279 return 0;
2280 case Opt_resuid:
2281 ctx->s_resuid = result.uid;
2282 ctx->spec |= EXT4_SPEC_s_resuid;
2283 return 0;
2284 case Opt_resgid:
2285 ctx->s_resgid = result.gid;
2286 ctx->spec |= EXT4_SPEC_s_resgid;
2287 return 0;
2288 case Opt_journal_dev:
2289 if (is_remount) {
2290 ext4_msg(NULL, KERN_ERR,
2291 "Cannot specify journal on remount");
2292 return -EINVAL;
2293 }
2294 ctx->journal_devnum = result.uint_32;
2295 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2296 return 0;
2297 case Opt_journal_path:
2298 {
2299 struct inode *journal_inode;
2300 struct path path;
2301 int error;
2302
2303 if (is_remount) {
2304 ext4_msg(NULL, KERN_ERR,
2305 "Cannot specify journal on remount");
2306 return -EINVAL;
2307 }
2308
2309 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2310 if (error) {
2311 ext4_msg(NULL, KERN_ERR, "error: could not find "
2312 "journal device path");
2313 return -EINVAL;
2314 }
2315
2316 journal_inode = d_inode(path.dentry);
2317 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2318 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2319 path_put(&path);
2320 return 0;
2321 }
2322 case Opt_journal_ioprio:
2323 if (result.uint_32 > 7) {
2324 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2325 " (must be 0-7)");
2326 return -EINVAL;
2327 }
2328 ctx->journal_ioprio =
2329 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2330 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2331 return 0;
2332 case Opt_test_dummy_encryption:
2333 return ext4_parse_test_dummy_encryption(param, ctx);
2334 case Opt_dax:
2335 case Opt_dax_type:
2336 #ifdef CONFIG_FS_DAX
2337 {
2338 int type = (token == Opt_dax) ?
2339 Opt_dax : result.uint_32;
2340
2341 switch (type) {
2342 case Opt_dax:
2343 case Opt_dax_always:
2344 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2345 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2346 break;
2347 case Opt_dax_never:
2348 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2349 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2350 break;
2351 case Opt_dax_inode:
2352 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2353 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2354 /* Strictly for printing options */
2355 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2356 break;
2357 }
2358 return 0;
2359 }
2360 #else
2361 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2362 return -EINVAL;
2363 #endif
2364 case Opt_data_err:
2365 if (result.uint_32 == Opt_data_err_abort)
2366 ctx_set_mount_opt(ctx, m->mount_opt);
2367 else if (result.uint_32 == Opt_data_err_ignore)
2368 ctx_clear_mount_opt(ctx, m->mount_opt);
2369 return 0;
2370 case Opt_mb_optimize_scan:
2371 if (result.int_32 == 1) {
2372 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2373 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2374 } else if (result.int_32 == 0) {
2375 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2376 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2377 } else {
2378 ext4_msg(NULL, KERN_WARNING,
2379 "mb_optimize_scan should be set to 0 or 1.");
2380 return -EINVAL;
2381 }
2382 return 0;
2383 }
2384
2385 /*
2386 * At this point we should only be getting options requiring MOPT_SET,
2387 * or MOPT_CLEAR. Anything else is a bug
2388 */
2389 if (m->token == Opt_err) {
2390 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2391 param->key);
2392 WARN_ON(1);
2393 return -EINVAL;
2394 }
2395
2396 else {
2397 unsigned int set = 0;
2398
2399 if ((param->type == fs_value_is_flag) ||
2400 result.uint_32 > 0)
2401 set = 1;
2402
2403 if (m->flags & MOPT_CLEAR)
2404 set = !set;
2405 else if (unlikely(!(m->flags & MOPT_SET))) {
2406 ext4_msg(NULL, KERN_WARNING,
2407 "buggy handling of option %s",
2408 param->key);
2409 WARN_ON(1);
2410 return -EINVAL;
2411 }
2412 if (m->flags & MOPT_2) {
2413 if (set != 0)
2414 ctx_set_mount_opt2(ctx, m->mount_opt);
2415 else
2416 ctx_clear_mount_opt2(ctx, m->mount_opt);
2417 } else {
2418 if (set != 0)
2419 ctx_set_mount_opt(ctx, m->mount_opt);
2420 else
2421 ctx_clear_mount_opt(ctx, m->mount_opt);
2422 }
2423 }
2424
2425 return 0;
2426 }
2427
parse_options(struct fs_context * fc,char * options)2428 static int parse_options(struct fs_context *fc, char *options)
2429 {
2430 struct fs_parameter param;
2431 int ret;
2432 char *key;
2433
2434 if (!options)
2435 return 0;
2436
2437 while ((key = strsep(&options, ",")) != NULL) {
2438 if (*key) {
2439 size_t v_len = 0;
2440 char *value = strchr(key, '=');
2441
2442 param.type = fs_value_is_flag;
2443 param.string = NULL;
2444
2445 if (value) {
2446 if (value == key)
2447 continue;
2448
2449 *value++ = 0;
2450 v_len = strlen(value);
2451 param.string = kmemdup_nul(value, v_len,
2452 GFP_KERNEL);
2453 if (!param.string)
2454 return -ENOMEM;
2455 param.type = fs_value_is_string;
2456 }
2457
2458 param.key = key;
2459 param.size = v_len;
2460
2461 ret = ext4_parse_param(fc, ¶m);
2462 kfree(param.string);
2463 if (ret < 0)
2464 return ret;
2465 }
2466 }
2467
2468 ret = ext4_validate_options(fc);
2469 if (ret < 0)
2470 return ret;
2471
2472 return 0;
2473 }
2474
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2475 static int parse_apply_sb_mount_options(struct super_block *sb,
2476 struct ext4_fs_context *m_ctx)
2477 {
2478 struct ext4_sb_info *sbi = EXT4_SB(sb);
2479 char *s_mount_opts = NULL;
2480 struct ext4_fs_context *s_ctx = NULL;
2481 struct fs_context *fc = NULL;
2482 int ret = -ENOMEM;
2483
2484 if (!sbi->s_es->s_mount_opts[0])
2485 return 0;
2486
2487 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2488 sizeof(sbi->s_es->s_mount_opts),
2489 GFP_KERNEL);
2490 if (!s_mount_opts)
2491 return ret;
2492
2493 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2494 if (!fc)
2495 goto out_free;
2496
2497 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2498 if (!s_ctx)
2499 goto out_free;
2500
2501 fc->fs_private = s_ctx;
2502 fc->s_fs_info = sbi;
2503
2504 ret = parse_options(fc, s_mount_opts);
2505 if (ret < 0)
2506 goto parse_failed;
2507
2508 ret = ext4_check_opt_consistency(fc, sb);
2509 if (ret < 0) {
2510 parse_failed:
2511 ext4_msg(sb, KERN_WARNING,
2512 "failed to parse options in superblock: %s",
2513 s_mount_opts);
2514 ret = 0;
2515 goto out_free;
2516 }
2517
2518 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2519 m_ctx->journal_devnum = s_ctx->journal_devnum;
2520 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2521 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2522
2523 ext4_apply_options(fc, sb);
2524 ret = 0;
2525
2526 out_free:
2527 if (fc) {
2528 ext4_fc_free(fc);
2529 kfree(fc);
2530 }
2531 kfree(s_mount_opts);
2532 return ret;
2533 }
2534
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2535 static void ext4_apply_quota_options(struct fs_context *fc,
2536 struct super_block *sb)
2537 {
2538 #ifdef CONFIG_QUOTA
2539 bool quota_feature = ext4_has_feature_quota(sb);
2540 struct ext4_fs_context *ctx = fc->fs_private;
2541 struct ext4_sb_info *sbi = EXT4_SB(sb);
2542 char *qname;
2543 int i;
2544
2545 if (quota_feature)
2546 return;
2547
2548 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2549 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2550 if (!(ctx->qname_spec & (1 << i)))
2551 continue;
2552
2553 qname = ctx->s_qf_names[i]; /* May be NULL */
2554 if (qname)
2555 set_opt(sb, QUOTA);
2556 ctx->s_qf_names[i] = NULL;
2557 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2558 lockdep_is_held(&sb->s_umount));
2559 if (qname)
2560 kfree_rcu_mightsleep(qname);
2561 }
2562 }
2563
2564 if (ctx->spec & EXT4_SPEC_JQFMT)
2565 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2566 #endif
2567 }
2568
2569 /*
2570 * Check quota settings consistency.
2571 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2572 static int ext4_check_quota_consistency(struct fs_context *fc,
2573 struct super_block *sb)
2574 {
2575 #ifdef CONFIG_QUOTA
2576 struct ext4_fs_context *ctx = fc->fs_private;
2577 struct ext4_sb_info *sbi = EXT4_SB(sb);
2578 bool quota_feature = ext4_has_feature_quota(sb);
2579 bool quota_loaded = sb_any_quota_loaded(sb);
2580 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2581 int quota_flags, i;
2582
2583 /*
2584 * We do the test below only for project quotas. 'usrquota' and
2585 * 'grpquota' mount options are allowed even without quota feature
2586 * to support legacy quotas in quota files.
2587 */
2588 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2589 !ext4_has_feature_project(sb)) {
2590 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2591 "Cannot enable project quota enforcement.");
2592 return -EINVAL;
2593 }
2594
2595 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2596 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2597 if (quota_loaded &&
2598 ctx->mask_s_mount_opt & quota_flags &&
2599 !ctx_test_mount_opt(ctx, quota_flags))
2600 goto err_quota_change;
2601
2602 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2603
2604 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2605 if (!(ctx->qname_spec & (1 << i)))
2606 continue;
2607
2608 if (quota_loaded &&
2609 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2610 goto err_jquota_change;
2611
2612 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2613 strcmp(get_qf_name(sb, sbi, i),
2614 ctx->s_qf_names[i]) != 0)
2615 goto err_jquota_specified;
2616 }
2617
2618 if (quota_feature) {
2619 ext4_msg(NULL, KERN_INFO,
2620 "Journaled quota options ignored when "
2621 "QUOTA feature is enabled");
2622 return 0;
2623 }
2624 }
2625
2626 if (ctx->spec & EXT4_SPEC_JQFMT) {
2627 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2628 goto err_jquota_change;
2629 if (quota_feature) {
2630 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2631 "ignored when QUOTA feature is enabled");
2632 return 0;
2633 }
2634 }
2635
2636 /* Make sure we don't mix old and new quota format */
2637 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2638 ctx->s_qf_names[USRQUOTA]);
2639 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2640 ctx->s_qf_names[GRPQUOTA]);
2641
2642 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2643 test_opt(sb, USRQUOTA));
2644
2645 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2646 test_opt(sb, GRPQUOTA));
2647
2648 if (usr_qf_name) {
2649 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2650 usrquota = false;
2651 }
2652 if (grp_qf_name) {
2653 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2654 grpquota = false;
2655 }
2656
2657 if (usr_qf_name || grp_qf_name) {
2658 if (usrquota || grpquota) {
2659 ext4_msg(NULL, KERN_ERR, "old and new quota "
2660 "format mixing");
2661 return -EINVAL;
2662 }
2663
2664 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2665 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2666 "not specified");
2667 return -EINVAL;
2668 }
2669 }
2670
2671 return 0;
2672
2673 err_quota_change:
2674 ext4_msg(NULL, KERN_ERR,
2675 "Cannot change quota options when quota turned on");
2676 return -EINVAL;
2677 err_jquota_change:
2678 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2679 "options when quota turned on");
2680 return -EINVAL;
2681 err_jquota_specified:
2682 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2683 QTYPE2NAME(i));
2684 return -EINVAL;
2685 #else
2686 return 0;
2687 #endif
2688 }
2689
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2690 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2691 struct super_block *sb)
2692 {
2693 const struct ext4_fs_context *ctx = fc->fs_private;
2694 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2695
2696 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2697 return 0;
2698
2699 if (!ext4_has_feature_encrypt(sb)) {
2700 ext4_msg(NULL, KERN_WARNING,
2701 "test_dummy_encryption requires encrypt feature");
2702 return -EINVAL;
2703 }
2704 /*
2705 * This mount option is just for testing, and it's not worthwhile to
2706 * implement the extra complexity (e.g. RCU protection) that would be
2707 * needed to allow it to be set or changed during remount. We do allow
2708 * it to be specified during remount, but only if there is no change.
2709 */
2710 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2711 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2712 &ctx->dummy_enc_policy))
2713 return 0;
2714 ext4_msg(NULL, KERN_WARNING,
2715 "Can't set or change test_dummy_encryption on remount");
2716 return -EINVAL;
2717 }
2718 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2719 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2720 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2721 &ctx->dummy_enc_policy))
2722 return 0;
2723 ext4_msg(NULL, KERN_WARNING,
2724 "Conflicting test_dummy_encryption options");
2725 return -EINVAL;
2726 }
2727 return 0;
2728 }
2729
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2730 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2731 struct super_block *sb)
2732 {
2733 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2734 /* if already set, it was already verified to be the same */
2735 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2736 return;
2737 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2738 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2739 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2740 }
2741
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2742 static int ext4_check_opt_consistency(struct fs_context *fc,
2743 struct super_block *sb)
2744 {
2745 struct ext4_fs_context *ctx = fc->fs_private;
2746 struct ext4_sb_info *sbi = fc->s_fs_info;
2747 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2748 int err;
2749
2750 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2751 ext4_msg(NULL, KERN_ERR,
2752 "Mount option(s) incompatible with ext2");
2753 return -EINVAL;
2754 }
2755 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2756 ext4_msg(NULL, KERN_ERR,
2757 "Mount option(s) incompatible with ext3");
2758 return -EINVAL;
2759 }
2760
2761 if (ctx->s_want_extra_isize >
2762 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2763 ext4_msg(NULL, KERN_ERR,
2764 "Invalid want_extra_isize %d",
2765 ctx->s_want_extra_isize);
2766 return -EINVAL;
2767 }
2768
2769 err = ext4_check_test_dummy_encryption(fc, sb);
2770 if (err)
2771 return err;
2772
2773 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2774 if (!sbi->s_journal) {
2775 ext4_msg(NULL, KERN_WARNING,
2776 "Remounting file system with no journal "
2777 "so ignoring journalled data option");
2778 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2779 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2780 test_opt(sb, DATA_FLAGS)) {
2781 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2782 "on remount");
2783 return -EINVAL;
2784 }
2785 }
2786
2787 if (is_remount) {
2788 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2789 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2790 ext4_msg(NULL, KERN_ERR, "can't mount with "
2791 "both data=journal and dax");
2792 return -EINVAL;
2793 }
2794
2795 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2796 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2797 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2798 fail_dax_change_remount:
2799 ext4_msg(NULL, KERN_ERR, "can't change "
2800 "dax mount option while remounting");
2801 return -EINVAL;
2802 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2803 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2804 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2805 goto fail_dax_change_remount;
2806 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2807 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2808 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2809 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2810 goto fail_dax_change_remount;
2811 }
2812 }
2813
2814 return ext4_check_quota_consistency(fc, sb);
2815 }
2816
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2817 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2818 {
2819 struct ext4_fs_context *ctx = fc->fs_private;
2820 struct ext4_sb_info *sbi = fc->s_fs_info;
2821
2822 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2823 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2824 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2825 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2826 sb->s_flags &= ~ctx->mask_s_flags;
2827 sb->s_flags |= ctx->vals_s_flags;
2828
2829 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2830 APPLY(s_commit_interval);
2831 APPLY(s_stripe);
2832 APPLY(s_max_batch_time);
2833 APPLY(s_min_batch_time);
2834 APPLY(s_want_extra_isize);
2835 APPLY(s_inode_readahead_blks);
2836 APPLY(s_max_dir_size_kb);
2837 APPLY(s_li_wait_mult);
2838 APPLY(s_resgid);
2839 APPLY(s_resuid);
2840
2841 #ifdef CONFIG_EXT4_DEBUG
2842 APPLY(s_fc_debug_max_replay);
2843 #endif
2844
2845 ext4_apply_quota_options(fc, sb);
2846 ext4_apply_test_dummy_encryption(ctx, sb);
2847 }
2848
2849
ext4_validate_options(struct fs_context * fc)2850 static int ext4_validate_options(struct fs_context *fc)
2851 {
2852 #ifdef CONFIG_QUOTA
2853 struct ext4_fs_context *ctx = fc->fs_private;
2854 char *usr_qf_name, *grp_qf_name;
2855
2856 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2857 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2858
2859 if (usr_qf_name || grp_qf_name) {
2860 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2861 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2862
2863 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2864 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2865
2866 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2867 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2868 ext4_msg(NULL, KERN_ERR, "old and new quota "
2869 "format mixing");
2870 return -EINVAL;
2871 }
2872 }
2873 #endif
2874 return 1;
2875 }
2876
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2877 static inline void ext4_show_quota_options(struct seq_file *seq,
2878 struct super_block *sb)
2879 {
2880 #if defined(CONFIG_QUOTA)
2881 struct ext4_sb_info *sbi = EXT4_SB(sb);
2882 char *usr_qf_name, *grp_qf_name;
2883
2884 if (sbi->s_jquota_fmt) {
2885 char *fmtname = "";
2886
2887 switch (sbi->s_jquota_fmt) {
2888 case QFMT_VFS_OLD:
2889 fmtname = "vfsold";
2890 break;
2891 case QFMT_VFS_V0:
2892 fmtname = "vfsv0";
2893 break;
2894 case QFMT_VFS_V1:
2895 fmtname = "vfsv1";
2896 break;
2897 }
2898 seq_printf(seq, ",jqfmt=%s", fmtname);
2899 }
2900
2901 rcu_read_lock();
2902 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2903 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2904 if (usr_qf_name)
2905 seq_show_option(seq, "usrjquota", usr_qf_name);
2906 if (grp_qf_name)
2907 seq_show_option(seq, "grpjquota", grp_qf_name);
2908 rcu_read_unlock();
2909 #endif
2910 }
2911
token2str(int token)2912 static const char *token2str(int token)
2913 {
2914 const struct fs_parameter_spec *spec;
2915
2916 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2917 if (spec->opt == token && !spec->type)
2918 break;
2919 return spec->name;
2920 }
2921
2922 /*
2923 * Show an option if
2924 * - it's set to a non-default value OR
2925 * - if the per-sb default is different from the global default
2926 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2927 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2928 int nodefs)
2929 {
2930 struct ext4_sb_info *sbi = EXT4_SB(sb);
2931 struct ext4_super_block *es = sbi->s_es;
2932 int def_errors;
2933 const struct mount_opts *m;
2934 char sep = nodefs ? '\n' : ',';
2935
2936 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2937 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2938
2939 if (sbi->s_sb_block != 1)
2940 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2941
2942 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2943 int want_set = m->flags & MOPT_SET;
2944 int opt_2 = m->flags & MOPT_2;
2945 unsigned int mount_opt, def_mount_opt;
2946
2947 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2948 m->flags & MOPT_SKIP)
2949 continue;
2950
2951 if (opt_2) {
2952 mount_opt = sbi->s_mount_opt2;
2953 def_mount_opt = sbi->s_def_mount_opt2;
2954 } else {
2955 mount_opt = sbi->s_mount_opt;
2956 def_mount_opt = sbi->s_def_mount_opt;
2957 }
2958 /* skip if same as the default */
2959 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2960 continue;
2961 /* select Opt_noFoo vs Opt_Foo */
2962 if ((want_set &&
2963 (mount_opt & m->mount_opt) != m->mount_opt) ||
2964 (!want_set && (mount_opt & m->mount_opt)))
2965 continue;
2966 SEQ_OPTS_PRINT("%s", token2str(m->token));
2967 }
2968
2969 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2970 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2971 SEQ_OPTS_PRINT("resuid=%u",
2972 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2973 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2974 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2975 SEQ_OPTS_PRINT("resgid=%u",
2976 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2977 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2978 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2979 SEQ_OPTS_PUTS("errors=remount-ro");
2980 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2981 SEQ_OPTS_PUTS("errors=continue");
2982 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2983 SEQ_OPTS_PUTS("errors=panic");
2984 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2985 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2986 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2987 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2988 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2989 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2990 if (nodefs || sbi->s_stripe)
2991 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2992 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2993 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2994 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2995 SEQ_OPTS_PUTS("data=journal");
2996 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2997 SEQ_OPTS_PUTS("data=ordered");
2998 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2999 SEQ_OPTS_PUTS("data=writeback");
3000 }
3001 if (nodefs ||
3002 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3003 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3004 sbi->s_inode_readahead_blks);
3005
3006 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3007 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3008 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3009 if (nodefs || sbi->s_max_dir_size_kb)
3010 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3011 if (test_opt(sb, DATA_ERR_ABORT))
3012 SEQ_OPTS_PUTS("data_err=abort");
3013
3014 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3015
3016 if (sb->s_flags & SB_INLINECRYPT)
3017 SEQ_OPTS_PUTS("inlinecrypt");
3018
3019 if (test_opt(sb, DAX_ALWAYS)) {
3020 if (IS_EXT2_SB(sb))
3021 SEQ_OPTS_PUTS("dax");
3022 else
3023 SEQ_OPTS_PUTS("dax=always");
3024 } else if (test_opt2(sb, DAX_NEVER)) {
3025 SEQ_OPTS_PUTS("dax=never");
3026 } else if (test_opt2(sb, DAX_INODE)) {
3027 SEQ_OPTS_PUTS("dax=inode");
3028 }
3029
3030 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3031 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3032 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3033 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3034 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3035 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3036 }
3037
3038 if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3039 SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3040
3041 if (ext4_emergency_ro(sb))
3042 SEQ_OPTS_PUTS("emergency_ro");
3043
3044 ext4_show_quota_options(seq, sb);
3045 return 0;
3046 }
3047
ext4_show_options(struct seq_file * seq,struct dentry * root)3048 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3049 {
3050 return _ext4_show_options(seq, root->d_sb, 0);
3051 }
3052
ext4_seq_options_show(struct seq_file * seq,void * offset)3053 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3054 {
3055 struct super_block *sb = seq->private;
3056 int rc;
3057
3058 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3059 rc = _ext4_show_options(seq, sb, 1);
3060 seq_putc(seq, '\n');
3061 return rc;
3062 }
3063
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3064 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3065 int read_only)
3066 {
3067 struct ext4_sb_info *sbi = EXT4_SB(sb);
3068 int err = 0;
3069
3070 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3071 ext4_msg(sb, KERN_ERR, "revision level too high, "
3072 "forcing read-only mode");
3073 err = -EROFS;
3074 goto done;
3075 }
3076 if (read_only)
3077 goto done;
3078 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3079 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3080 "running e2fsck is recommended");
3081 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3082 ext4_msg(sb, KERN_WARNING,
3083 "warning: mounting fs with errors, "
3084 "running e2fsck is recommended");
3085 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3086 le16_to_cpu(es->s_mnt_count) >=
3087 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3088 ext4_msg(sb, KERN_WARNING,
3089 "warning: maximal mount count reached, "
3090 "running e2fsck is recommended");
3091 else if (le32_to_cpu(es->s_checkinterval) &&
3092 (ext4_get_tstamp(es, s_lastcheck) +
3093 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3094 ext4_msg(sb, KERN_WARNING,
3095 "warning: checktime reached, "
3096 "running e2fsck is recommended");
3097 if (!sbi->s_journal)
3098 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3099 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3100 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3101 le16_add_cpu(&es->s_mnt_count, 1);
3102 ext4_update_tstamp(es, s_mtime);
3103 if (sbi->s_journal) {
3104 ext4_set_feature_journal_needs_recovery(sb);
3105 if (ext4_has_feature_orphan_file(sb))
3106 ext4_set_feature_orphan_present(sb);
3107 }
3108
3109 err = ext4_commit_super(sb);
3110 done:
3111 if (test_opt(sb, DEBUG))
3112 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3113 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3114 sb->s_blocksize,
3115 sbi->s_groups_count,
3116 EXT4_BLOCKS_PER_GROUP(sb),
3117 EXT4_INODES_PER_GROUP(sb),
3118 sbi->s_mount_opt, sbi->s_mount_opt2);
3119 return err;
3120 }
3121
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3122 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3123 {
3124 struct ext4_sb_info *sbi = EXT4_SB(sb);
3125 struct flex_groups **old_groups, **new_groups;
3126 int size, i, j;
3127
3128 if (!sbi->s_log_groups_per_flex)
3129 return 0;
3130
3131 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3132 if (size <= sbi->s_flex_groups_allocated)
3133 return 0;
3134
3135 new_groups = kvzalloc(roundup_pow_of_two(size *
3136 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3137 if (!new_groups) {
3138 ext4_msg(sb, KERN_ERR,
3139 "not enough memory for %d flex group pointers", size);
3140 return -ENOMEM;
3141 }
3142 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3143 new_groups[i] = kvzalloc(roundup_pow_of_two(
3144 sizeof(struct flex_groups)),
3145 GFP_KERNEL);
3146 if (!new_groups[i]) {
3147 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3148 kvfree(new_groups[j]);
3149 kvfree(new_groups);
3150 ext4_msg(sb, KERN_ERR,
3151 "not enough memory for %d flex groups", size);
3152 return -ENOMEM;
3153 }
3154 }
3155 rcu_read_lock();
3156 old_groups = rcu_dereference(sbi->s_flex_groups);
3157 if (old_groups)
3158 memcpy(new_groups, old_groups,
3159 (sbi->s_flex_groups_allocated *
3160 sizeof(struct flex_groups *)));
3161 rcu_read_unlock();
3162 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3163 sbi->s_flex_groups_allocated = size;
3164 if (old_groups)
3165 ext4_kvfree_array_rcu(old_groups);
3166 return 0;
3167 }
3168
ext4_fill_flex_info(struct super_block * sb)3169 static int ext4_fill_flex_info(struct super_block *sb)
3170 {
3171 struct ext4_sb_info *sbi = EXT4_SB(sb);
3172 struct ext4_group_desc *gdp = NULL;
3173 struct flex_groups *fg;
3174 ext4_group_t flex_group;
3175 int i, err;
3176
3177 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3178 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3179 sbi->s_log_groups_per_flex = 0;
3180 return 1;
3181 }
3182
3183 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3184 if (err)
3185 goto failed;
3186
3187 for (i = 0; i < sbi->s_groups_count; i++) {
3188 gdp = ext4_get_group_desc(sb, i, NULL);
3189
3190 flex_group = ext4_flex_group(sbi, i);
3191 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3192 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3193 atomic64_add(ext4_free_group_clusters(sb, gdp),
3194 &fg->free_clusters);
3195 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3196 }
3197
3198 return 1;
3199 failed:
3200 return 0;
3201 }
3202
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3203 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3204 struct ext4_group_desc *gdp)
3205 {
3206 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3207 __u16 crc = 0;
3208 __le32 le_group = cpu_to_le32(block_group);
3209 struct ext4_sb_info *sbi = EXT4_SB(sb);
3210
3211 if (ext4_has_metadata_csum(sbi->s_sb)) {
3212 /* Use new metadata_csum algorithm */
3213 __u32 csum32;
3214 __u16 dummy_csum = 0;
3215
3216 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3217 sizeof(le_group));
3218 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3219 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3220 sizeof(dummy_csum));
3221 offset += sizeof(dummy_csum);
3222 if (offset < sbi->s_desc_size)
3223 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3224 sbi->s_desc_size - offset);
3225
3226 crc = csum32 & 0xFFFF;
3227 goto out;
3228 }
3229
3230 /* old crc16 code */
3231 if (!ext4_has_feature_gdt_csum(sb))
3232 return 0;
3233
3234 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3235 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3236 crc = crc16(crc, (__u8 *)gdp, offset);
3237 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3238 /* for checksum of struct ext4_group_desc do the rest...*/
3239 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3240 crc = crc16(crc, (__u8 *)gdp + offset,
3241 sbi->s_desc_size - offset);
3242
3243 out:
3244 return cpu_to_le16(crc);
3245 }
3246
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3247 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3248 struct ext4_group_desc *gdp)
3249 {
3250 if (ext4_has_group_desc_csum(sb) &&
3251 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3252 return 0;
3253
3254 return 1;
3255 }
3256
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3257 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3258 struct ext4_group_desc *gdp)
3259 {
3260 if (!ext4_has_group_desc_csum(sb))
3261 return;
3262 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3263 }
3264
3265 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3266 static int ext4_check_descriptors(struct super_block *sb,
3267 ext4_fsblk_t sb_block,
3268 ext4_group_t *first_not_zeroed)
3269 {
3270 struct ext4_sb_info *sbi = EXT4_SB(sb);
3271 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3272 ext4_fsblk_t last_block;
3273 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3274 ext4_fsblk_t block_bitmap;
3275 ext4_fsblk_t inode_bitmap;
3276 ext4_fsblk_t inode_table;
3277 int flexbg_flag = 0;
3278 ext4_group_t i, grp = sbi->s_groups_count;
3279
3280 if (ext4_has_feature_flex_bg(sb))
3281 flexbg_flag = 1;
3282
3283 ext4_debug("Checking group descriptors");
3284
3285 for (i = 0; i < sbi->s_groups_count; i++) {
3286 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3287
3288 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3289 last_block = ext4_blocks_count(sbi->s_es) - 1;
3290 else
3291 last_block = first_block +
3292 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3293
3294 if ((grp == sbi->s_groups_count) &&
3295 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3296 grp = i;
3297
3298 block_bitmap = ext4_block_bitmap(sb, gdp);
3299 if (block_bitmap == sb_block) {
3300 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3301 "Block bitmap for group %u overlaps "
3302 "superblock", i);
3303 if (!sb_rdonly(sb))
3304 return 0;
3305 }
3306 if (block_bitmap >= sb_block + 1 &&
3307 block_bitmap <= last_bg_block) {
3308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3309 "Block bitmap for group %u overlaps "
3310 "block group descriptors", i);
3311 if (!sb_rdonly(sb))
3312 return 0;
3313 }
3314 if (block_bitmap < first_block || block_bitmap > last_block) {
3315 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316 "Block bitmap for group %u not in group "
3317 "(block %llu)!", i, block_bitmap);
3318 return 0;
3319 }
3320 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3321 if (inode_bitmap == sb_block) {
3322 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3323 "Inode bitmap for group %u overlaps "
3324 "superblock", i);
3325 if (!sb_rdonly(sb))
3326 return 0;
3327 }
3328 if (inode_bitmap >= sb_block + 1 &&
3329 inode_bitmap <= last_bg_block) {
3330 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3331 "Inode bitmap for group %u overlaps "
3332 "block group descriptors", i);
3333 if (!sb_rdonly(sb))
3334 return 0;
3335 }
3336 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3337 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3338 "Inode bitmap for group %u not in group "
3339 "(block %llu)!", i, inode_bitmap);
3340 return 0;
3341 }
3342 inode_table = ext4_inode_table(sb, gdp);
3343 if (inode_table == sb_block) {
3344 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3345 "Inode table for group %u overlaps "
3346 "superblock", i);
3347 if (!sb_rdonly(sb))
3348 return 0;
3349 }
3350 if (inode_table >= sb_block + 1 &&
3351 inode_table <= last_bg_block) {
3352 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3353 "Inode table for group %u overlaps "
3354 "block group descriptors", i);
3355 if (!sb_rdonly(sb))
3356 return 0;
3357 }
3358 if (inode_table < first_block ||
3359 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3361 "Inode table for group %u not in group "
3362 "(block %llu)!", i, inode_table);
3363 return 0;
3364 }
3365 ext4_lock_group(sb, i);
3366 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3368 "Checksum for group %u failed (%u!=%u)",
3369 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3370 gdp)), le16_to_cpu(gdp->bg_checksum));
3371 if (!sb_rdonly(sb)) {
3372 ext4_unlock_group(sb, i);
3373 return 0;
3374 }
3375 }
3376 ext4_unlock_group(sb, i);
3377 if (!flexbg_flag)
3378 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3379 }
3380 if (NULL != first_not_zeroed)
3381 *first_not_zeroed = grp;
3382 return 1;
3383 }
3384
3385 /*
3386 * Maximal extent format file size.
3387 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3388 * extent format containers, within a sector_t, and within i_blocks
3389 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3390 * so that won't be a limiting factor.
3391 *
3392 * However there is other limiting factor. We do store extents in the form
3393 * of starting block and length, hence the resulting length of the extent
3394 * covering maximum file size must fit into on-disk format containers as
3395 * well. Given that length is always by 1 unit bigger than max unit (because
3396 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3397 *
3398 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3399 */
ext4_max_size(int blkbits,int has_huge_files)3400 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3401 {
3402 loff_t res;
3403 loff_t upper_limit = MAX_LFS_FILESIZE;
3404
3405 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3406
3407 if (!has_huge_files) {
3408 upper_limit = (1LL << 32) - 1;
3409
3410 /* total blocks in file system block size */
3411 upper_limit >>= (blkbits - 9);
3412 upper_limit <<= blkbits;
3413 }
3414
3415 /*
3416 * 32-bit extent-start container, ee_block. We lower the maxbytes
3417 * by one fs block, so ee_len can cover the extent of maximum file
3418 * size
3419 */
3420 res = (1LL << 32) - 1;
3421 res <<= blkbits;
3422
3423 /* Sanity check against vm- & vfs- imposed limits */
3424 if (res > upper_limit)
3425 res = upper_limit;
3426
3427 return res;
3428 }
3429
3430 /*
3431 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3432 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3433 * We need to be 1 filesystem block less than the 2^48 sector limit.
3434 */
ext4_max_bitmap_size(int bits,int has_huge_files)3435 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3436 {
3437 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3438 int meta_blocks;
3439 unsigned int ppb = 1 << (bits - 2);
3440
3441 /*
3442 * This is calculated to be the largest file size for a dense, block
3443 * mapped file such that the file's total number of 512-byte sectors,
3444 * including data and all indirect blocks, does not exceed (2^48 - 1).
3445 *
3446 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3447 * number of 512-byte sectors of the file.
3448 */
3449 if (!has_huge_files) {
3450 /*
3451 * !has_huge_files or implies that the inode i_block field
3452 * represents total file blocks in 2^32 512-byte sectors ==
3453 * size of vfs inode i_blocks * 8
3454 */
3455 upper_limit = (1LL << 32) - 1;
3456
3457 /* total blocks in file system block size */
3458 upper_limit >>= (bits - 9);
3459
3460 } else {
3461 /*
3462 * We use 48 bit ext4_inode i_blocks
3463 * With EXT4_HUGE_FILE_FL set the i_blocks
3464 * represent total number of blocks in
3465 * file system block size
3466 */
3467 upper_limit = (1LL << 48) - 1;
3468
3469 }
3470
3471 /* Compute how many blocks we can address by block tree */
3472 res += ppb;
3473 res += ppb * ppb;
3474 res += ((loff_t)ppb) * ppb * ppb;
3475 /* Compute how many metadata blocks are needed */
3476 meta_blocks = 1;
3477 meta_blocks += 1 + ppb;
3478 meta_blocks += 1 + ppb + ppb * ppb;
3479 /* Does block tree limit file size? */
3480 if (res + meta_blocks <= upper_limit)
3481 goto check_lfs;
3482
3483 res = upper_limit;
3484 /* How many metadata blocks are needed for addressing upper_limit? */
3485 upper_limit -= EXT4_NDIR_BLOCKS;
3486 /* indirect blocks */
3487 meta_blocks = 1;
3488 upper_limit -= ppb;
3489 /* double indirect blocks */
3490 if (upper_limit < ppb * ppb) {
3491 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3492 res -= meta_blocks;
3493 goto check_lfs;
3494 }
3495 meta_blocks += 1 + ppb;
3496 upper_limit -= ppb * ppb;
3497 /* tripple indirect blocks for the rest */
3498 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3499 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3500 res -= meta_blocks;
3501 check_lfs:
3502 res <<= bits;
3503 if (res > MAX_LFS_FILESIZE)
3504 res = MAX_LFS_FILESIZE;
3505
3506 return res;
3507 }
3508
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3509 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3510 ext4_fsblk_t logical_sb_block, int nr)
3511 {
3512 struct ext4_sb_info *sbi = EXT4_SB(sb);
3513 ext4_group_t bg, first_meta_bg;
3514 int has_super = 0;
3515
3516 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3517
3518 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3519 return logical_sb_block + nr + 1;
3520 bg = sbi->s_desc_per_block * nr;
3521 if (ext4_bg_has_super(sb, bg))
3522 has_super = 1;
3523
3524 /*
3525 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3526 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3527 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3528 * compensate.
3529 */
3530 if (sb->s_blocksize == 1024 && nr == 0 &&
3531 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3532 has_super++;
3533
3534 return (has_super + ext4_group_first_block_no(sb, bg));
3535 }
3536
3537 /**
3538 * ext4_get_stripe_size: Get the stripe size.
3539 * @sbi: In memory super block info
3540 *
3541 * If we have specified it via mount option, then
3542 * use the mount option value. If the value specified at mount time is
3543 * greater than the blocks per group use the super block value.
3544 * If the super block value is greater than blocks per group return 0.
3545 * Allocator needs it be less than blocks per group.
3546 *
3547 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3548 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3549 {
3550 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3551 unsigned long stripe_width =
3552 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3553 int ret;
3554
3555 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3556 ret = sbi->s_stripe;
3557 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3558 ret = stripe_width;
3559 else if (stride && stride <= sbi->s_blocks_per_group)
3560 ret = stride;
3561 else
3562 ret = 0;
3563
3564 /*
3565 * If the stripe width is 1, this makes no sense and
3566 * we set it to 0 to turn off stripe handling code.
3567 */
3568 if (ret <= 1)
3569 ret = 0;
3570
3571 return ret;
3572 }
3573
3574 /*
3575 * Check whether this filesystem can be mounted based on
3576 * the features present and the RDONLY/RDWR mount requested.
3577 * Returns 1 if this filesystem can be mounted as requested,
3578 * 0 if it cannot be.
3579 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3580 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3581 {
3582 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3583 ext4_msg(sb, KERN_ERR,
3584 "Couldn't mount because of "
3585 "unsupported optional features (%x)",
3586 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3587 ~EXT4_FEATURE_INCOMPAT_SUPP));
3588 return 0;
3589 }
3590
3591 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3592 ext4_msg(sb, KERN_ERR,
3593 "Filesystem with casefold feature cannot be "
3594 "mounted without CONFIG_UNICODE");
3595 return 0;
3596 }
3597
3598 if (readonly)
3599 return 1;
3600
3601 if (ext4_has_feature_readonly(sb)) {
3602 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3603 sb->s_flags |= SB_RDONLY;
3604 return 1;
3605 }
3606
3607 /* Check that feature set is OK for a read-write mount */
3608 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3609 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3610 "unsupported optional features (%x)",
3611 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3612 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3613 return 0;
3614 }
3615 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3616 ext4_msg(sb, KERN_ERR,
3617 "Can't support bigalloc feature without "
3618 "extents feature\n");
3619 return 0;
3620 }
3621
3622 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3623 if (!readonly && (ext4_has_feature_quota(sb) ||
3624 ext4_has_feature_project(sb))) {
3625 ext4_msg(sb, KERN_ERR,
3626 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3627 return 0;
3628 }
3629 #endif /* CONFIG_QUOTA */
3630 return 1;
3631 }
3632
3633 /*
3634 * This function is called once a day if we have errors logged
3635 * on the file system
3636 */
print_daily_error_info(struct timer_list * t)3637 static void print_daily_error_info(struct timer_list *t)
3638 {
3639 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3640 struct super_block *sb = sbi->s_sb;
3641 struct ext4_super_block *es = sbi->s_es;
3642
3643 if (es->s_error_count)
3644 /* fsck newer than v1.41.13 is needed to clean this condition. */
3645 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3646 le32_to_cpu(es->s_error_count));
3647 if (es->s_first_error_time) {
3648 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3649 sb->s_id,
3650 ext4_get_tstamp(es, s_first_error_time),
3651 (int) sizeof(es->s_first_error_func),
3652 es->s_first_error_func,
3653 le32_to_cpu(es->s_first_error_line));
3654 if (es->s_first_error_ino)
3655 printk(KERN_CONT ": inode %u",
3656 le32_to_cpu(es->s_first_error_ino));
3657 if (es->s_first_error_block)
3658 printk(KERN_CONT ": block %llu", (unsigned long long)
3659 le64_to_cpu(es->s_first_error_block));
3660 printk(KERN_CONT "\n");
3661 }
3662 if (es->s_last_error_time) {
3663 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3664 sb->s_id,
3665 ext4_get_tstamp(es, s_last_error_time),
3666 (int) sizeof(es->s_last_error_func),
3667 es->s_last_error_func,
3668 le32_to_cpu(es->s_last_error_line));
3669 if (es->s_last_error_ino)
3670 printk(KERN_CONT ": inode %u",
3671 le32_to_cpu(es->s_last_error_ino));
3672 if (es->s_last_error_block)
3673 printk(KERN_CONT ": block %llu", (unsigned long long)
3674 le64_to_cpu(es->s_last_error_block));
3675 printk(KERN_CONT "\n");
3676 }
3677 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3678 }
3679
3680 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3681 static int ext4_run_li_request(struct ext4_li_request *elr)
3682 {
3683 struct ext4_group_desc *gdp = NULL;
3684 struct super_block *sb = elr->lr_super;
3685 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3686 ext4_group_t group = elr->lr_next_group;
3687 unsigned int prefetch_ios = 0;
3688 int ret = 0;
3689 int nr = EXT4_SB(sb)->s_mb_prefetch;
3690 u64 start_time;
3691
3692 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3693 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3694 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3695 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3696 if (group >= elr->lr_next_group) {
3697 ret = 1;
3698 if (elr->lr_first_not_zeroed != ngroups &&
3699 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3700 elr->lr_next_group = elr->lr_first_not_zeroed;
3701 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3702 ret = 0;
3703 }
3704 }
3705 return ret;
3706 }
3707
3708 for (; group < ngroups; group++) {
3709 gdp = ext4_get_group_desc(sb, group, NULL);
3710 if (!gdp) {
3711 ret = 1;
3712 break;
3713 }
3714
3715 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3716 break;
3717 }
3718
3719 if (group >= ngroups)
3720 ret = 1;
3721
3722 if (!ret) {
3723 start_time = ktime_get_ns();
3724 ret = ext4_init_inode_table(sb, group,
3725 elr->lr_timeout ? 0 : 1);
3726 trace_ext4_lazy_itable_init(sb, group);
3727 if (elr->lr_timeout == 0) {
3728 elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3729 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3730 }
3731 elr->lr_next_sched = jiffies + elr->lr_timeout;
3732 elr->lr_next_group = group + 1;
3733 }
3734 return ret;
3735 }
3736
3737 /*
3738 * Remove lr_request from the list_request and free the
3739 * request structure. Should be called with li_list_mtx held
3740 */
ext4_remove_li_request(struct ext4_li_request * elr)3741 static void ext4_remove_li_request(struct ext4_li_request *elr)
3742 {
3743 if (!elr)
3744 return;
3745
3746 list_del(&elr->lr_request);
3747 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3748 kfree(elr);
3749 }
3750
ext4_unregister_li_request(struct super_block * sb)3751 static void ext4_unregister_li_request(struct super_block *sb)
3752 {
3753 mutex_lock(&ext4_li_mtx);
3754 if (!ext4_li_info) {
3755 mutex_unlock(&ext4_li_mtx);
3756 return;
3757 }
3758
3759 mutex_lock(&ext4_li_info->li_list_mtx);
3760 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3761 mutex_unlock(&ext4_li_info->li_list_mtx);
3762 mutex_unlock(&ext4_li_mtx);
3763 }
3764
3765 static struct task_struct *ext4_lazyinit_task;
3766
3767 /*
3768 * This is the function where ext4lazyinit thread lives. It walks
3769 * through the request list searching for next scheduled filesystem.
3770 * When such a fs is found, run the lazy initialization request
3771 * (ext4_rn_li_request) and keep track of the time spend in this
3772 * function. Based on that time we compute next schedule time of
3773 * the request. When walking through the list is complete, compute
3774 * next waking time and put itself into sleep.
3775 */
ext4_lazyinit_thread(void * arg)3776 static int ext4_lazyinit_thread(void *arg)
3777 {
3778 struct ext4_lazy_init *eli = arg;
3779 struct list_head *pos, *n;
3780 struct ext4_li_request *elr;
3781 unsigned long next_wakeup, cur;
3782
3783 BUG_ON(NULL == eli);
3784 set_freezable();
3785
3786 cont_thread:
3787 while (true) {
3788 bool next_wakeup_initialized = false;
3789
3790 next_wakeup = 0;
3791 mutex_lock(&eli->li_list_mtx);
3792 if (list_empty(&eli->li_request_list)) {
3793 mutex_unlock(&eli->li_list_mtx);
3794 goto exit_thread;
3795 }
3796 list_for_each_safe(pos, n, &eli->li_request_list) {
3797 int err = 0;
3798 int progress = 0;
3799 elr = list_entry(pos, struct ext4_li_request,
3800 lr_request);
3801
3802 if (time_before(jiffies, elr->lr_next_sched)) {
3803 if (!next_wakeup_initialized ||
3804 time_before(elr->lr_next_sched, next_wakeup)) {
3805 next_wakeup = elr->lr_next_sched;
3806 next_wakeup_initialized = true;
3807 }
3808 continue;
3809 }
3810 if (down_read_trylock(&elr->lr_super->s_umount)) {
3811 if (sb_start_write_trylock(elr->lr_super)) {
3812 progress = 1;
3813 /*
3814 * We hold sb->s_umount, sb can not
3815 * be removed from the list, it is
3816 * now safe to drop li_list_mtx
3817 */
3818 mutex_unlock(&eli->li_list_mtx);
3819 err = ext4_run_li_request(elr);
3820 sb_end_write(elr->lr_super);
3821 mutex_lock(&eli->li_list_mtx);
3822 n = pos->next;
3823 }
3824 up_read((&elr->lr_super->s_umount));
3825 }
3826 /* error, remove the lazy_init job */
3827 if (err) {
3828 ext4_remove_li_request(elr);
3829 continue;
3830 }
3831 if (!progress) {
3832 elr->lr_next_sched = jiffies +
3833 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3834 }
3835 if (!next_wakeup_initialized ||
3836 time_before(elr->lr_next_sched, next_wakeup)) {
3837 next_wakeup = elr->lr_next_sched;
3838 next_wakeup_initialized = true;
3839 }
3840 }
3841 mutex_unlock(&eli->li_list_mtx);
3842
3843 try_to_freeze();
3844
3845 cur = jiffies;
3846 if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3847 cond_resched();
3848 continue;
3849 }
3850
3851 schedule_timeout_interruptible(next_wakeup - cur);
3852
3853 if (kthread_should_stop()) {
3854 ext4_clear_request_list();
3855 goto exit_thread;
3856 }
3857 }
3858
3859 exit_thread:
3860 /*
3861 * It looks like the request list is empty, but we need
3862 * to check it under the li_list_mtx lock, to prevent any
3863 * additions into it, and of course we should lock ext4_li_mtx
3864 * to atomically free the list and ext4_li_info, because at
3865 * this point another ext4 filesystem could be registering
3866 * new one.
3867 */
3868 mutex_lock(&ext4_li_mtx);
3869 mutex_lock(&eli->li_list_mtx);
3870 if (!list_empty(&eli->li_request_list)) {
3871 mutex_unlock(&eli->li_list_mtx);
3872 mutex_unlock(&ext4_li_mtx);
3873 goto cont_thread;
3874 }
3875 mutex_unlock(&eli->li_list_mtx);
3876 kfree(ext4_li_info);
3877 ext4_li_info = NULL;
3878 mutex_unlock(&ext4_li_mtx);
3879
3880 return 0;
3881 }
3882
ext4_clear_request_list(void)3883 static void ext4_clear_request_list(void)
3884 {
3885 struct list_head *pos, *n;
3886 struct ext4_li_request *elr;
3887
3888 mutex_lock(&ext4_li_info->li_list_mtx);
3889 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3890 elr = list_entry(pos, struct ext4_li_request,
3891 lr_request);
3892 ext4_remove_li_request(elr);
3893 }
3894 mutex_unlock(&ext4_li_info->li_list_mtx);
3895 }
3896
ext4_run_lazyinit_thread(void)3897 static int ext4_run_lazyinit_thread(void)
3898 {
3899 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3900 ext4_li_info, "ext4lazyinit");
3901 if (IS_ERR(ext4_lazyinit_task)) {
3902 int err = PTR_ERR(ext4_lazyinit_task);
3903 ext4_clear_request_list();
3904 kfree(ext4_li_info);
3905 ext4_li_info = NULL;
3906 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3907 "initialization thread\n",
3908 err);
3909 return err;
3910 }
3911 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3912 return 0;
3913 }
3914
3915 /*
3916 * Check whether it make sense to run itable init. thread or not.
3917 * If there is at least one uninitialized inode table, return
3918 * corresponding group number, else the loop goes through all
3919 * groups and return total number of groups.
3920 */
ext4_has_uninit_itable(struct super_block * sb)3921 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3922 {
3923 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3924 struct ext4_group_desc *gdp = NULL;
3925
3926 if (!ext4_has_group_desc_csum(sb))
3927 return ngroups;
3928
3929 for (group = 0; group < ngroups; group++) {
3930 gdp = ext4_get_group_desc(sb, group, NULL);
3931 if (!gdp)
3932 continue;
3933
3934 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3935 break;
3936 }
3937
3938 return group;
3939 }
3940
ext4_li_info_new(void)3941 static int ext4_li_info_new(void)
3942 {
3943 struct ext4_lazy_init *eli = NULL;
3944
3945 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3946 if (!eli)
3947 return -ENOMEM;
3948
3949 INIT_LIST_HEAD(&eli->li_request_list);
3950 mutex_init(&eli->li_list_mtx);
3951
3952 eli->li_state |= EXT4_LAZYINIT_QUIT;
3953
3954 ext4_li_info = eli;
3955
3956 return 0;
3957 }
3958
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3959 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3960 ext4_group_t start)
3961 {
3962 struct ext4_li_request *elr;
3963
3964 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3965 if (!elr)
3966 return NULL;
3967
3968 elr->lr_super = sb;
3969 elr->lr_first_not_zeroed = start;
3970 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3971 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3972 elr->lr_next_group = start;
3973 } else {
3974 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3975 }
3976
3977 /*
3978 * Randomize first schedule time of the request to
3979 * spread the inode table initialization requests
3980 * better.
3981 */
3982 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3983 return elr;
3984 }
3985
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3986 int ext4_register_li_request(struct super_block *sb,
3987 ext4_group_t first_not_zeroed)
3988 {
3989 struct ext4_sb_info *sbi = EXT4_SB(sb);
3990 struct ext4_li_request *elr = NULL;
3991 ext4_group_t ngroups = sbi->s_groups_count;
3992 int ret = 0;
3993
3994 mutex_lock(&ext4_li_mtx);
3995 if (sbi->s_li_request != NULL) {
3996 /*
3997 * Reset timeout so it can be computed again, because
3998 * s_li_wait_mult might have changed.
3999 */
4000 sbi->s_li_request->lr_timeout = 0;
4001 goto out;
4002 }
4003
4004 if (sb_rdonly(sb) ||
4005 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4006 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4007 goto out;
4008
4009 elr = ext4_li_request_new(sb, first_not_zeroed);
4010 if (!elr) {
4011 ret = -ENOMEM;
4012 goto out;
4013 }
4014
4015 if (NULL == ext4_li_info) {
4016 ret = ext4_li_info_new();
4017 if (ret)
4018 goto out;
4019 }
4020
4021 mutex_lock(&ext4_li_info->li_list_mtx);
4022 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4023 mutex_unlock(&ext4_li_info->li_list_mtx);
4024
4025 sbi->s_li_request = elr;
4026 /*
4027 * set elr to NULL here since it has been inserted to
4028 * the request_list and the removal and free of it is
4029 * handled by ext4_clear_request_list from now on.
4030 */
4031 elr = NULL;
4032
4033 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4034 ret = ext4_run_lazyinit_thread();
4035 if (ret)
4036 goto out;
4037 }
4038 out:
4039 mutex_unlock(&ext4_li_mtx);
4040 if (ret)
4041 kfree(elr);
4042 return ret;
4043 }
4044
4045 /*
4046 * We do not need to lock anything since this is called on
4047 * module unload.
4048 */
ext4_destroy_lazyinit_thread(void)4049 static void ext4_destroy_lazyinit_thread(void)
4050 {
4051 /*
4052 * If thread exited earlier
4053 * there's nothing to be done.
4054 */
4055 if (!ext4_li_info || !ext4_lazyinit_task)
4056 return;
4057
4058 kthread_stop(ext4_lazyinit_task);
4059 }
4060
set_journal_csum_feature_set(struct super_block * sb)4061 static int set_journal_csum_feature_set(struct super_block *sb)
4062 {
4063 int ret = 1;
4064 int compat, incompat;
4065 struct ext4_sb_info *sbi = EXT4_SB(sb);
4066
4067 if (ext4_has_metadata_csum(sb)) {
4068 /* journal checksum v3 */
4069 compat = 0;
4070 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4071 } else {
4072 /* journal checksum v1 */
4073 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4074 incompat = 0;
4075 }
4076
4077 jbd2_journal_clear_features(sbi->s_journal,
4078 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4079 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4080 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4081 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4082 ret = jbd2_journal_set_features(sbi->s_journal,
4083 compat, 0,
4084 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4085 incompat);
4086 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4087 ret = jbd2_journal_set_features(sbi->s_journal,
4088 compat, 0,
4089 incompat);
4090 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4091 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4092 } else {
4093 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4094 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4095 }
4096
4097 return ret;
4098 }
4099
4100 /*
4101 * Note: calculating the overhead so we can be compatible with
4102 * historical BSD practice is quite difficult in the face of
4103 * clusters/bigalloc. This is because multiple metadata blocks from
4104 * different block group can end up in the same allocation cluster.
4105 * Calculating the exact overhead in the face of clustered allocation
4106 * requires either O(all block bitmaps) in memory or O(number of block
4107 * groups**2) in time. We will still calculate the superblock for
4108 * older file systems --- and if we come across with a bigalloc file
4109 * system with zero in s_overhead_clusters the estimate will be close to
4110 * correct especially for very large cluster sizes --- but for newer
4111 * file systems, it's better to calculate this figure once at mkfs
4112 * time, and store it in the superblock. If the superblock value is
4113 * present (even for non-bigalloc file systems), we will use it.
4114 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4115 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4116 char *buf)
4117 {
4118 struct ext4_sb_info *sbi = EXT4_SB(sb);
4119 struct ext4_group_desc *gdp;
4120 ext4_fsblk_t first_block, last_block, b;
4121 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4122 int s, j, count = 0;
4123 int has_super = ext4_bg_has_super(sb, grp);
4124
4125 if (!ext4_has_feature_bigalloc(sb))
4126 return (has_super + ext4_bg_num_gdb(sb, grp) +
4127 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4128 sbi->s_itb_per_group + 2);
4129
4130 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4131 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4132 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4133 for (i = 0; i < ngroups; i++) {
4134 gdp = ext4_get_group_desc(sb, i, NULL);
4135 b = ext4_block_bitmap(sb, gdp);
4136 if (b >= first_block && b <= last_block) {
4137 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4138 count++;
4139 }
4140 b = ext4_inode_bitmap(sb, gdp);
4141 if (b >= first_block && b <= last_block) {
4142 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4143 count++;
4144 }
4145 b = ext4_inode_table(sb, gdp);
4146 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4147 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4148 int c = EXT4_B2C(sbi, b - first_block);
4149 ext4_set_bit(c, buf);
4150 count++;
4151 }
4152 if (i != grp)
4153 continue;
4154 s = 0;
4155 if (ext4_bg_has_super(sb, grp)) {
4156 ext4_set_bit(s++, buf);
4157 count++;
4158 }
4159 j = ext4_bg_num_gdb(sb, grp);
4160 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4161 ext4_error(sb, "Invalid number of block group "
4162 "descriptor blocks: %d", j);
4163 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4164 }
4165 count += j;
4166 for (; j > 0; j--)
4167 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4168 }
4169 if (!count)
4170 return 0;
4171 return EXT4_CLUSTERS_PER_GROUP(sb) -
4172 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4173 }
4174
4175 /*
4176 * Compute the overhead and stash it in sbi->s_overhead
4177 */
ext4_calculate_overhead(struct super_block * sb)4178 int ext4_calculate_overhead(struct super_block *sb)
4179 {
4180 struct ext4_sb_info *sbi = EXT4_SB(sb);
4181 struct ext4_super_block *es = sbi->s_es;
4182 struct inode *j_inode;
4183 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4184 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4185 ext4_fsblk_t overhead = 0;
4186 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4187
4188 if (!buf)
4189 return -ENOMEM;
4190
4191 /*
4192 * Compute the overhead (FS structures). This is constant
4193 * for a given filesystem unless the number of block groups
4194 * changes so we cache the previous value until it does.
4195 */
4196
4197 /*
4198 * All of the blocks before first_data_block are overhead
4199 */
4200 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4201
4202 /*
4203 * Add the overhead found in each block group
4204 */
4205 for (i = 0; i < ngroups; i++) {
4206 int blks;
4207
4208 blks = count_overhead(sb, i, buf);
4209 overhead += blks;
4210 if (blks)
4211 memset(buf, 0, PAGE_SIZE);
4212 cond_resched();
4213 }
4214
4215 /*
4216 * Add the internal journal blocks whether the journal has been
4217 * loaded or not
4218 */
4219 if (sbi->s_journal && !sbi->s_journal_bdev_file)
4220 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4221 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4222 /* j_inum for internal journal is non-zero */
4223 j_inode = ext4_get_journal_inode(sb, j_inum);
4224 if (!IS_ERR(j_inode)) {
4225 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4226 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4227 iput(j_inode);
4228 } else {
4229 ext4_msg(sb, KERN_ERR, "can't get journal size");
4230 }
4231 }
4232 sbi->s_overhead = overhead;
4233 smp_wmb();
4234 free_page((unsigned long) buf);
4235 return 0;
4236 }
4237
ext4_set_resv_clusters(struct super_block * sb)4238 static void ext4_set_resv_clusters(struct super_block *sb)
4239 {
4240 ext4_fsblk_t resv_clusters;
4241 struct ext4_sb_info *sbi = EXT4_SB(sb);
4242
4243 /*
4244 * There's no need to reserve anything when we aren't using extents.
4245 * The space estimates are exact, there are no unwritten extents,
4246 * hole punching doesn't need new metadata... This is needed especially
4247 * to keep ext2/3 backward compatibility.
4248 */
4249 if (!ext4_has_feature_extents(sb))
4250 return;
4251 /*
4252 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4253 * This should cover the situations where we can not afford to run
4254 * out of space like for example punch hole, or converting
4255 * unwritten extents in delalloc path. In most cases such
4256 * allocation would require 1, or 2 blocks, higher numbers are
4257 * very rare.
4258 */
4259 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4260 sbi->s_cluster_bits);
4261
4262 do_div(resv_clusters, 50);
4263 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4264
4265 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4266 }
4267
ext4_quota_mode(struct super_block * sb)4268 static const char *ext4_quota_mode(struct super_block *sb)
4269 {
4270 #ifdef CONFIG_QUOTA
4271 if (!ext4_quota_capable(sb))
4272 return "none";
4273
4274 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4275 return "journalled";
4276 else
4277 return "writeback";
4278 #else
4279 return "disabled";
4280 #endif
4281 }
4282
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4283 static void ext4_setup_csum_trigger(struct super_block *sb,
4284 enum ext4_journal_trigger_type type,
4285 void (*trigger)(
4286 struct jbd2_buffer_trigger_type *type,
4287 struct buffer_head *bh,
4288 void *mapped_data,
4289 size_t size))
4290 {
4291 struct ext4_sb_info *sbi = EXT4_SB(sb);
4292
4293 sbi->s_journal_triggers[type].sb = sb;
4294 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4295 }
4296
ext4_free_sbi(struct ext4_sb_info * sbi)4297 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4298 {
4299 if (!sbi)
4300 return;
4301
4302 kfree(sbi->s_blockgroup_lock);
4303 fs_put_dax(sbi->s_daxdev, NULL);
4304 kfree(sbi);
4305 }
4306
ext4_alloc_sbi(struct super_block * sb)4307 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4308 {
4309 struct ext4_sb_info *sbi;
4310
4311 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4312 if (!sbi)
4313 return NULL;
4314
4315 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4316 NULL, NULL);
4317
4318 sbi->s_blockgroup_lock =
4319 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4320
4321 if (!sbi->s_blockgroup_lock)
4322 goto err_out;
4323
4324 sb->s_fs_info = sbi;
4325 sbi->s_sb = sb;
4326 return sbi;
4327 err_out:
4328 fs_put_dax(sbi->s_daxdev, NULL);
4329 kfree(sbi);
4330 return NULL;
4331 }
4332
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4333 static void ext4_set_def_opts(struct super_block *sb,
4334 struct ext4_super_block *es)
4335 {
4336 unsigned long def_mount_opts;
4337
4338 /* Set defaults before we parse the mount options */
4339 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4340 set_opt(sb, INIT_INODE_TABLE);
4341 if (def_mount_opts & EXT4_DEFM_DEBUG)
4342 set_opt(sb, DEBUG);
4343 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4344 set_opt(sb, GRPID);
4345 if (def_mount_opts & EXT4_DEFM_UID16)
4346 set_opt(sb, NO_UID32);
4347 /* xattr user namespace & acls are now defaulted on */
4348 set_opt(sb, XATTR_USER);
4349 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4350 set_opt(sb, POSIX_ACL);
4351 #endif
4352 if (ext4_has_feature_fast_commit(sb))
4353 set_opt2(sb, JOURNAL_FAST_COMMIT);
4354 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4355 if (ext4_has_metadata_csum(sb))
4356 set_opt(sb, JOURNAL_CHECKSUM);
4357
4358 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4359 set_opt(sb, JOURNAL_DATA);
4360 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4361 set_opt(sb, ORDERED_DATA);
4362 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4363 set_opt(sb, WRITEBACK_DATA);
4364
4365 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4366 set_opt(sb, ERRORS_PANIC);
4367 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4368 set_opt(sb, ERRORS_CONT);
4369 else
4370 set_opt(sb, ERRORS_RO);
4371 /* block_validity enabled by default; disable with noblock_validity */
4372 set_opt(sb, BLOCK_VALIDITY);
4373 if (def_mount_opts & EXT4_DEFM_DISCARD)
4374 set_opt(sb, DISCARD);
4375
4376 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4377 set_opt(sb, BARRIER);
4378
4379 /*
4380 * enable delayed allocation by default
4381 * Use -o nodelalloc to turn it off
4382 */
4383 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4384 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4385 set_opt(sb, DELALLOC);
4386
4387 if (sb->s_blocksize <= PAGE_SIZE)
4388 set_opt(sb, DIOREAD_NOLOCK);
4389 }
4390
ext4_handle_clustersize(struct super_block * sb)4391 static int ext4_handle_clustersize(struct super_block *sb)
4392 {
4393 struct ext4_sb_info *sbi = EXT4_SB(sb);
4394 struct ext4_super_block *es = sbi->s_es;
4395 int clustersize;
4396
4397 /* Handle clustersize */
4398 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4399 if (ext4_has_feature_bigalloc(sb)) {
4400 if (clustersize < sb->s_blocksize) {
4401 ext4_msg(sb, KERN_ERR,
4402 "cluster size (%d) smaller than "
4403 "block size (%lu)", clustersize, sb->s_blocksize);
4404 return -EINVAL;
4405 }
4406 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4407 le32_to_cpu(es->s_log_block_size);
4408 } else {
4409 if (clustersize != sb->s_blocksize) {
4410 ext4_msg(sb, KERN_ERR,
4411 "fragment/cluster size (%d) != "
4412 "block size (%lu)", clustersize, sb->s_blocksize);
4413 return -EINVAL;
4414 }
4415 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4416 ext4_msg(sb, KERN_ERR,
4417 "#blocks per group too big: %lu",
4418 sbi->s_blocks_per_group);
4419 return -EINVAL;
4420 }
4421 sbi->s_cluster_bits = 0;
4422 }
4423 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4424 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4425 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4426 sbi->s_clusters_per_group);
4427 return -EINVAL;
4428 }
4429 if (sbi->s_blocks_per_group !=
4430 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4431 ext4_msg(sb, KERN_ERR,
4432 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4433 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4434 return -EINVAL;
4435 }
4436 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4437
4438 /* Do we have standard group size of clustersize * 8 blocks ? */
4439 if (sbi->s_blocks_per_group == clustersize << 3)
4440 set_opt2(sb, STD_GROUP_SIZE);
4441
4442 return 0;
4443 }
4444
4445 /*
4446 * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4447 * @sb: super block
4448 * TODO: Later add support for bigalloc
4449 */
ext4_atomic_write_init(struct super_block * sb)4450 static void ext4_atomic_write_init(struct super_block *sb)
4451 {
4452 struct ext4_sb_info *sbi = EXT4_SB(sb);
4453 struct block_device *bdev = sb->s_bdev;
4454
4455 if (!bdev_can_atomic_write(bdev))
4456 return;
4457
4458 if (!ext4_has_feature_extents(sb))
4459 return;
4460
4461 sbi->s_awu_min = max(sb->s_blocksize,
4462 bdev_atomic_write_unit_min_bytes(bdev));
4463 sbi->s_awu_max = min(sb->s_blocksize,
4464 bdev_atomic_write_unit_max_bytes(bdev));
4465 if (sbi->s_awu_min && sbi->s_awu_max &&
4466 sbi->s_awu_min <= sbi->s_awu_max) {
4467 ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4468 sbi->s_awu_min, sbi->s_awu_max);
4469 } else {
4470 sbi->s_awu_min = 0;
4471 sbi->s_awu_max = 0;
4472 }
4473 }
4474
ext4_fast_commit_init(struct super_block * sb)4475 static void ext4_fast_commit_init(struct super_block *sb)
4476 {
4477 struct ext4_sb_info *sbi = EXT4_SB(sb);
4478
4479 /* Initialize fast commit stuff */
4480 atomic_set(&sbi->s_fc_subtid, 0);
4481 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4482 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4483 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4484 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4485 sbi->s_fc_bytes = 0;
4486 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4487 sbi->s_fc_ineligible_tid = 0;
4488 spin_lock_init(&sbi->s_fc_lock);
4489 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4490 sbi->s_fc_replay_state.fc_regions = NULL;
4491 sbi->s_fc_replay_state.fc_regions_size = 0;
4492 sbi->s_fc_replay_state.fc_regions_used = 0;
4493 sbi->s_fc_replay_state.fc_regions_valid = 0;
4494 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4495 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4496 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4497 }
4498
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4499 static int ext4_inode_info_init(struct super_block *sb,
4500 struct ext4_super_block *es)
4501 {
4502 struct ext4_sb_info *sbi = EXT4_SB(sb);
4503
4504 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4505 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4506 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4507 } else {
4508 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4509 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4510 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4511 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4512 sbi->s_first_ino);
4513 return -EINVAL;
4514 }
4515 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4516 (!is_power_of_2(sbi->s_inode_size)) ||
4517 (sbi->s_inode_size > sb->s_blocksize)) {
4518 ext4_msg(sb, KERN_ERR,
4519 "unsupported inode size: %d",
4520 sbi->s_inode_size);
4521 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4522 return -EINVAL;
4523 }
4524 /*
4525 * i_atime_extra is the last extra field available for
4526 * [acm]times in struct ext4_inode. Checking for that
4527 * field should suffice to ensure we have extra space
4528 * for all three.
4529 */
4530 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4531 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4532 sb->s_time_gran = 1;
4533 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4534 } else {
4535 sb->s_time_gran = NSEC_PER_SEC;
4536 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4537 }
4538 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4539 }
4540
4541 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4542 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4543 EXT4_GOOD_OLD_INODE_SIZE;
4544 if (ext4_has_feature_extra_isize(sb)) {
4545 unsigned v, max = (sbi->s_inode_size -
4546 EXT4_GOOD_OLD_INODE_SIZE);
4547
4548 v = le16_to_cpu(es->s_want_extra_isize);
4549 if (v > max) {
4550 ext4_msg(sb, KERN_ERR,
4551 "bad s_want_extra_isize: %d", v);
4552 return -EINVAL;
4553 }
4554 if (sbi->s_want_extra_isize < v)
4555 sbi->s_want_extra_isize = v;
4556
4557 v = le16_to_cpu(es->s_min_extra_isize);
4558 if (v > max) {
4559 ext4_msg(sb, KERN_ERR,
4560 "bad s_min_extra_isize: %d", v);
4561 return -EINVAL;
4562 }
4563 if (sbi->s_want_extra_isize < v)
4564 sbi->s_want_extra_isize = v;
4565 }
4566 }
4567
4568 return 0;
4569 }
4570
4571 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4572 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4573 {
4574 const struct ext4_sb_encodings *encoding_info;
4575 struct unicode_map *encoding;
4576 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4577
4578 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4579 return 0;
4580
4581 encoding_info = ext4_sb_read_encoding(es);
4582 if (!encoding_info) {
4583 ext4_msg(sb, KERN_ERR,
4584 "Encoding requested by superblock is unknown");
4585 return -EINVAL;
4586 }
4587
4588 encoding = utf8_load(encoding_info->version);
4589 if (IS_ERR(encoding)) {
4590 ext4_msg(sb, KERN_ERR,
4591 "can't mount with superblock charset: %s-%u.%u.%u "
4592 "not supported by the kernel. flags: 0x%x.",
4593 encoding_info->name,
4594 unicode_major(encoding_info->version),
4595 unicode_minor(encoding_info->version),
4596 unicode_rev(encoding_info->version),
4597 encoding_flags);
4598 return -EINVAL;
4599 }
4600 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4601 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4602 unicode_major(encoding_info->version),
4603 unicode_minor(encoding_info->version),
4604 unicode_rev(encoding_info->version),
4605 encoding_flags);
4606
4607 sb->s_encoding = encoding;
4608 sb->s_encoding_flags = encoding_flags;
4609
4610 return 0;
4611 }
4612 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4613 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4614 {
4615 return 0;
4616 }
4617 #endif
4618
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4619 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4620 {
4621 struct ext4_sb_info *sbi = EXT4_SB(sb);
4622
4623 /* Warn if metadata_csum and gdt_csum are both set. */
4624 if (ext4_has_feature_metadata_csum(sb) &&
4625 ext4_has_feature_gdt_csum(sb))
4626 ext4_warning(sb, "metadata_csum and uninit_bg are "
4627 "redundant flags; please run fsck.");
4628
4629 /* Check for a known checksum algorithm */
4630 if (!ext4_verify_csum_type(sb, es)) {
4631 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4632 "unknown checksum algorithm.");
4633 return -EINVAL;
4634 }
4635 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4636 ext4_orphan_file_block_trigger);
4637
4638 /* Check superblock checksum */
4639 if (!ext4_superblock_csum_verify(sb, es)) {
4640 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4641 "invalid superblock checksum. Run e2fsck?");
4642 return -EFSBADCRC;
4643 }
4644
4645 /* Precompute checksum seed for all metadata */
4646 if (ext4_has_feature_csum_seed(sb))
4647 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4648 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4649 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4650 sizeof(es->s_uuid));
4651 return 0;
4652 }
4653
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4654 static int ext4_check_feature_compatibility(struct super_block *sb,
4655 struct ext4_super_block *es,
4656 int silent)
4657 {
4658 struct ext4_sb_info *sbi = EXT4_SB(sb);
4659
4660 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4661 (ext4_has_compat_features(sb) ||
4662 ext4_has_ro_compat_features(sb) ||
4663 ext4_has_incompat_features(sb)))
4664 ext4_msg(sb, KERN_WARNING,
4665 "feature flags set on rev 0 fs, "
4666 "running e2fsck is recommended");
4667
4668 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4669 set_opt2(sb, HURD_COMPAT);
4670 if (ext4_has_feature_64bit(sb)) {
4671 ext4_msg(sb, KERN_ERR,
4672 "The Hurd can't support 64-bit file systems");
4673 return -EINVAL;
4674 }
4675
4676 /*
4677 * ea_inode feature uses l_i_version field which is not
4678 * available in HURD_COMPAT mode.
4679 */
4680 if (ext4_has_feature_ea_inode(sb)) {
4681 ext4_msg(sb, KERN_ERR,
4682 "ea_inode feature is not supported for Hurd");
4683 return -EINVAL;
4684 }
4685 }
4686
4687 if (IS_EXT2_SB(sb)) {
4688 if (ext2_feature_set_ok(sb))
4689 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4690 "using the ext4 subsystem");
4691 else {
4692 /*
4693 * If we're probing be silent, if this looks like
4694 * it's actually an ext[34] filesystem.
4695 */
4696 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4697 return -EINVAL;
4698 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4699 "to feature incompatibilities");
4700 return -EINVAL;
4701 }
4702 }
4703
4704 if (IS_EXT3_SB(sb)) {
4705 if (ext3_feature_set_ok(sb))
4706 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4707 "using the ext4 subsystem");
4708 else {
4709 /*
4710 * If we're probing be silent, if this looks like
4711 * it's actually an ext4 filesystem.
4712 */
4713 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4714 return -EINVAL;
4715 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4716 "to feature incompatibilities");
4717 return -EINVAL;
4718 }
4719 }
4720
4721 /*
4722 * Check feature flags regardless of the revision level, since we
4723 * previously didn't change the revision level when setting the flags,
4724 * so there is a chance incompat flags are set on a rev 0 filesystem.
4725 */
4726 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4727 return -EINVAL;
4728
4729 if (sbi->s_daxdev) {
4730 if (sb->s_blocksize == PAGE_SIZE)
4731 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4732 else
4733 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4734 }
4735
4736 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4737 if (ext4_has_feature_inline_data(sb)) {
4738 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4739 " that may contain inline data");
4740 return -EINVAL;
4741 }
4742 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4743 ext4_msg(sb, KERN_ERR,
4744 "DAX unsupported by block device.");
4745 return -EINVAL;
4746 }
4747 }
4748
4749 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4750 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4751 es->s_encryption_level);
4752 return -EINVAL;
4753 }
4754
4755 return 0;
4756 }
4757
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4758 static int ext4_check_geometry(struct super_block *sb,
4759 struct ext4_super_block *es)
4760 {
4761 struct ext4_sb_info *sbi = EXT4_SB(sb);
4762 __u64 blocks_count;
4763 int err;
4764
4765 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4766 ext4_msg(sb, KERN_ERR,
4767 "Number of reserved GDT blocks insanely large: %d",
4768 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4769 return -EINVAL;
4770 }
4771 /*
4772 * Test whether we have more sectors than will fit in sector_t,
4773 * and whether the max offset is addressable by the page cache.
4774 */
4775 err = generic_check_addressable(sb->s_blocksize_bits,
4776 ext4_blocks_count(es));
4777 if (err) {
4778 ext4_msg(sb, KERN_ERR, "filesystem"
4779 " too large to mount safely on this system");
4780 return err;
4781 }
4782
4783 /* check blocks count against device size */
4784 blocks_count = sb_bdev_nr_blocks(sb);
4785 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4786 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4787 "exceeds size of device (%llu blocks)",
4788 ext4_blocks_count(es), blocks_count);
4789 return -EINVAL;
4790 }
4791
4792 /*
4793 * It makes no sense for the first data block to be beyond the end
4794 * of the filesystem.
4795 */
4796 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4797 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4798 "block %u is beyond end of filesystem (%llu)",
4799 le32_to_cpu(es->s_first_data_block),
4800 ext4_blocks_count(es));
4801 return -EINVAL;
4802 }
4803 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4804 (sbi->s_cluster_ratio == 1)) {
4805 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4806 "block is 0 with a 1k block and cluster size");
4807 return -EINVAL;
4808 }
4809
4810 blocks_count = (ext4_blocks_count(es) -
4811 le32_to_cpu(es->s_first_data_block) +
4812 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4813 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4814 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4815 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4816 "(block count %llu, first data block %u, "
4817 "blocks per group %lu)", blocks_count,
4818 ext4_blocks_count(es),
4819 le32_to_cpu(es->s_first_data_block),
4820 EXT4_BLOCKS_PER_GROUP(sb));
4821 return -EINVAL;
4822 }
4823 sbi->s_groups_count = blocks_count;
4824 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4825 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4826 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4827 le32_to_cpu(es->s_inodes_count)) {
4828 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4829 le32_to_cpu(es->s_inodes_count),
4830 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4831 return -EINVAL;
4832 }
4833
4834 return 0;
4835 }
4836
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4837 static int ext4_group_desc_init(struct super_block *sb,
4838 struct ext4_super_block *es,
4839 ext4_fsblk_t logical_sb_block,
4840 ext4_group_t *first_not_zeroed)
4841 {
4842 struct ext4_sb_info *sbi = EXT4_SB(sb);
4843 unsigned int db_count;
4844 ext4_fsblk_t block;
4845 int i;
4846
4847 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4848 EXT4_DESC_PER_BLOCK(sb);
4849 if (ext4_has_feature_meta_bg(sb)) {
4850 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4851 ext4_msg(sb, KERN_WARNING,
4852 "first meta block group too large: %u "
4853 "(group descriptor block count %u)",
4854 le32_to_cpu(es->s_first_meta_bg), db_count);
4855 return -EINVAL;
4856 }
4857 }
4858 rcu_assign_pointer(sbi->s_group_desc,
4859 kvmalloc_array(db_count,
4860 sizeof(struct buffer_head *),
4861 GFP_KERNEL));
4862 if (sbi->s_group_desc == NULL) {
4863 ext4_msg(sb, KERN_ERR, "not enough memory");
4864 return -ENOMEM;
4865 }
4866
4867 bgl_lock_init(sbi->s_blockgroup_lock);
4868
4869 /* Pre-read the descriptors into the buffer cache */
4870 for (i = 0; i < db_count; i++) {
4871 block = descriptor_loc(sb, logical_sb_block, i);
4872 ext4_sb_breadahead_unmovable(sb, block);
4873 }
4874
4875 for (i = 0; i < db_count; i++) {
4876 struct buffer_head *bh;
4877
4878 block = descriptor_loc(sb, logical_sb_block, i);
4879 bh = ext4_sb_bread_unmovable(sb, block);
4880 if (IS_ERR(bh)) {
4881 ext4_msg(sb, KERN_ERR,
4882 "can't read group descriptor %d", i);
4883 sbi->s_gdb_count = i;
4884 return PTR_ERR(bh);
4885 }
4886 rcu_read_lock();
4887 rcu_dereference(sbi->s_group_desc)[i] = bh;
4888 rcu_read_unlock();
4889 }
4890 sbi->s_gdb_count = db_count;
4891 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4892 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4893 return -EFSCORRUPTED;
4894 }
4895
4896 return 0;
4897 }
4898
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4899 static int ext4_load_and_init_journal(struct super_block *sb,
4900 struct ext4_super_block *es,
4901 struct ext4_fs_context *ctx)
4902 {
4903 struct ext4_sb_info *sbi = EXT4_SB(sb);
4904 int err;
4905
4906 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4907 if (err)
4908 return err;
4909
4910 if (ext4_has_feature_64bit(sb) &&
4911 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4912 JBD2_FEATURE_INCOMPAT_64BIT)) {
4913 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4914 goto out;
4915 }
4916
4917 if (!set_journal_csum_feature_set(sb)) {
4918 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4919 "feature set");
4920 goto out;
4921 }
4922
4923 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4924 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4925 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4926 ext4_msg(sb, KERN_ERR,
4927 "Failed to set fast commit journal feature");
4928 goto out;
4929 }
4930
4931 /* We have now updated the journal if required, so we can
4932 * validate the data journaling mode. */
4933 switch (test_opt(sb, DATA_FLAGS)) {
4934 case 0:
4935 /* No mode set, assume a default based on the journal
4936 * capabilities: ORDERED_DATA if the journal can
4937 * cope, else JOURNAL_DATA
4938 */
4939 if (jbd2_journal_check_available_features
4940 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4941 set_opt(sb, ORDERED_DATA);
4942 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4943 } else {
4944 set_opt(sb, JOURNAL_DATA);
4945 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4946 }
4947 break;
4948
4949 case EXT4_MOUNT_ORDERED_DATA:
4950 case EXT4_MOUNT_WRITEBACK_DATA:
4951 if (!jbd2_journal_check_available_features
4952 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4953 ext4_msg(sb, KERN_ERR, "Journal does not support "
4954 "requested data journaling mode");
4955 goto out;
4956 }
4957 break;
4958 default:
4959 break;
4960 }
4961
4962 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4963 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4964 ext4_msg(sb, KERN_ERR, "can't mount with "
4965 "journal_async_commit in data=ordered mode");
4966 goto out;
4967 }
4968
4969 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4970
4971 sbi->s_journal->j_submit_inode_data_buffers =
4972 ext4_journal_submit_inode_data_buffers;
4973 sbi->s_journal->j_finish_inode_data_buffers =
4974 ext4_journal_finish_inode_data_buffers;
4975
4976 return 0;
4977
4978 out:
4979 ext4_journal_destroy(sbi, sbi->s_journal);
4980 return -EINVAL;
4981 }
4982
ext4_check_journal_data_mode(struct super_block * sb)4983 static int ext4_check_journal_data_mode(struct super_block *sb)
4984 {
4985 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4986 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4987 "data=journal disables delayed allocation, "
4988 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4989 /* can't mount with both data=journal and dioread_nolock. */
4990 clear_opt(sb, DIOREAD_NOLOCK);
4991 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4992 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4993 ext4_msg(sb, KERN_ERR, "can't mount with "
4994 "both data=journal and delalloc");
4995 return -EINVAL;
4996 }
4997 if (test_opt(sb, DAX_ALWAYS)) {
4998 ext4_msg(sb, KERN_ERR, "can't mount with "
4999 "both data=journal and dax");
5000 return -EINVAL;
5001 }
5002 if (ext4_has_feature_encrypt(sb)) {
5003 ext4_msg(sb, KERN_WARNING,
5004 "encrypted files will use data=ordered "
5005 "instead of data journaling mode");
5006 }
5007 if (test_opt(sb, DELALLOC))
5008 clear_opt(sb, DELALLOC);
5009 } else {
5010 sb->s_iflags |= SB_I_CGROUPWB;
5011 }
5012
5013 return 0;
5014 }
5015
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5016 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5017 int silent)
5018 {
5019 struct ext4_sb_info *sbi = EXT4_SB(sb);
5020 struct ext4_super_block *es;
5021 ext4_fsblk_t logical_sb_block;
5022 unsigned long offset = 0;
5023 struct buffer_head *bh;
5024 int ret = -EINVAL;
5025 int blocksize;
5026
5027 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5028 if (!blocksize) {
5029 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5030 return -EINVAL;
5031 }
5032
5033 /*
5034 * The ext4 superblock will not be buffer aligned for other than 1kB
5035 * block sizes. We need to calculate the offset from buffer start.
5036 */
5037 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5038 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5039 offset = do_div(logical_sb_block, blocksize);
5040 } else {
5041 logical_sb_block = sbi->s_sb_block;
5042 }
5043
5044 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5045 if (IS_ERR(bh)) {
5046 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5047 return PTR_ERR(bh);
5048 }
5049 /*
5050 * Note: s_es must be initialized as soon as possible because
5051 * some ext4 macro-instructions depend on its value
5052 */
5053 es = (struct ext4_super_block *) (bh->b_data + offset);
5054 sbi->s_es = es;
5055 sb->s_magic = le16_to_cpu(es->s_magic);
5056 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5057 if (!silent)
5058 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5059 goto out;
5060 }
5061
5062 if (le32_to_cpu(es->s_log_block_size) >
5063 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5064 ext4_msg(sb, KERN_ERR,
5065 "Invalid log block size: %u",
5066 le32_to_cpu(es->s_log_block_size));
5067 goto out;
5068 }
5069 if (le32_to_cpu(es->s_log_cluster_size) >
5070 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5071 ext4_msg(sb, KERN_ERR,
5072 "Invalid log cluster size: %u",
5073 le32_to_cpu(es->s_log_cluster_size));
5074 goto out;
5075 }
5076
5077 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5078
5079 /*
5080 * If the default block size is not the same as the real block size,
5081 * we need to reload it.
5082 */
5083 if (sb->s_blocksize == blocksize) {
5084 *lsb = logical_sb_block;
5085 sbi->s_sbh = bh;
5086 return 0;
5087 }
5088
5089 /*
5090 * bh must be released before kill_bdev(), otherwise
5091 * it won't be freed and its page also. kill_bdev()
5092 * is called by sb_set_blocksize().
5093 */
5094 brelse(bh);
5095 /* Validate the filesystem blocksize */
5096 if (!sb_set_blocksize(sb, blocksize)) {
5097 ext4_msg(sb, KERN_ERR, "bad block size %d",
5098 blocksize);
5099 bh = NULL;
5100 goto out;
5101 }
5102
5103 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5104 offset = do_div(logical_sb_block, blocksize);
5105 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5106 if (IS_ERR(bh)) {
5107 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5108 ret = PTR_ERR(bh);
5109 bh = NULL;
5110 goto out;
5111 }
5112 es = (struct ext4_super_block *)(bh->b_data + offset);
5113 sbi->s_es = es;
5114 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5115 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5116 goto out;
5117 }
5118 *lsb = logical_sb_block;
5119 sbi->s_sbh = bh;
5120 return 0;
5121 out:
5122 brelse(bh);
5123 return ret;
5124 }
5125
ext4_hash_info_init(struct super_block * sb)5126 static int ext4_hash_info_init(struct super_block *sb)
5127 {
5128 struct ext4_sb_info *sbi = EXT4_SB(sb);
5129 struct ext4_super_block *es = sbi->s_es;
5130 unsigned int i;
5131
5132 sbi->s_def_hash_version = es->s_def_hash_version;
5133
5134 if (sbi->s_def_hash_version > DX_HASH_LAST) {
5135 ext4_msg(sb, KERN_ERR,
5136 "Invalid default hash set in the superblock");
5137 return -EINVAL;
5138 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5139 ext4_msg(sb, KERN_ERR,
5140 "SIPHASH is not a valid default hash value");
5141 return -EINVAL;
5142 }
5143
5144 for (i = 0; i < 4; i++)
5145 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5146
5147 if (ext4_has_feature_dir_index(sb)) {
5148 i = le32_to_cpu(es->s_flags);
5149 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5150 sbi->s_hash_unsigned = 3;
5151 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5152 #ifdef __CHAR_UNSIGNED__
5153 if (!sb_rdonly(sb))
5154 es->s_flags |=
5155 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5156 sbi->s_hash_unsigned = 3;
5157 #else
5158 if (!sb_rdonly(sb))
5159 es->s_flags |=
5160 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5161 #endif
5162 }
5163 }
5164 return 0;
5165 }
5166
ext4_block_group_meta_init(struct super_block * sb,int silent)5167 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5168 {
5169 struct ext4_sb_info *sbi = EXT4_SB(sb);
5170 struct ext4_super_block *es = sbi->s_es;
5171 int has_huge_files;
5172
5173 has_huge_files = ext4_has_feature_huge_file(sb);
5174 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5175 has_huge_files);
5176 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5177
5178 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5179 if (ext4_has_feature_64bit(sb)) {
5180 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5181 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5182 !is_power_of_2(sbi->s_desc_size)) {
5183 ext4_msg(sb, KERN_ERR,
5184 "unsupported descriptor size %lu",
5185 sbi->s_desc_size);
5186 return -EINVAL;
5187 }
5188 } else
5189 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5190
5191 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5192 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5193
5194 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5195 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5196 if (!silent)
5197 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5198 return -EINVAL;
5199 }
5200 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5201 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5202 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5203 sbi->s_inodes_per_group);
5204 return -EINVAL;
5205 }
5206 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5207 sbi->s_inodes_per_block;
5208 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5209 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5210 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5211 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5212
5213 return 0;
5214 }
5215
5216 /*
5217 * It's hard to get stripe aligned blocks if stripe is not aligned with
5218 * cluster, just disable stripe and alert user to simplify code and avoid
5219 * stripe aligned allocation which will rarely succeed.
5220 */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5221 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5222 {
5223 struct ext4_sb_info *sbi = EXT4_SB(sb);
5224 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5225 stripe % sbi->s_cluster_ratio != 0);
5226 }
5227
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5228 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5229 {
5230 struct ext4_super_block *es = NULL;
5231 struct ext4_sb_info *sbi = EXT4_SB(sb);
5232 ext4_fsblk_t logical_sb_block;
5233 struct inode *root;
5234 int needs_recovery;
5235 int err;
5236 ext4_group_t first_not_zeroed;
5237 struct ext4_fs_context *ctx = fc->fs_private;
5238 int silent = fc->sb_flags & SB_SILENT;
5239
5240 /* Set defaults for the variables that will be set during parsing */
5241 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5242 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5243
5244 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5245 sbi->s_sectors_written_start =
5246 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5247
5248 err = ext4_load_super(sb, &logical_sb_block, silent);
5249 if (err)
5250 goto out_fail;
5251
5252 es = sbi->s_es;
5253 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5254
5255 err = ext4_init_metadata_csum(sb, es);
5256 if (err)
5257 goto failed_mount;
5258
5259 ext4_set_def_opts(sb, es);
5260
5261 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5262 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5263 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5264 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5265 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5266
5267 /*
5268 * set default s_li_wait_mult for lazyinit, for the case there is
5269 * no mount option specified.
5270 */
5271 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5272
5273 err = ext4_inode_info_init(sb, es);
5274 if (err)
5275 goto failed_mount;
5276
5277 err = parse_apply_sb_mount_options(sb, ctx);
5278 if (err < 0)
5279 goto failed_mount;
5280
5281 sbi->s_def_mount_opt = sbi->s_mount_opt;
5282 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5283
5284 err = ext4_check_opt_consistency(fc, sb);
5285 if (err < 0)
5286 goto failed_mount;
5287
5288 ext4_apply_options(fc, sb);
5289
5290 err = ext4_encoding_init(sb, es);
5291 if (err)
5292 goto failed_mount;
5293
5294 err = ext4_check_journal_data_mode(sb);
5295 if (err)
5296 goto failed_mount;
5297
5298 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5299 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5300
5301 /* i_version is always enabled now */
5302 sb->s_flags |= SB_I_VERSION;
5303
5304 /* HSM events are allowed by default. */
5305 sb->s_iflags |= SB_I_ALLOW_HSM;
5306
5307 err = ext4_check_feature_compatibility(sb, es, silent);
5308 if (err)
5309 goto failed_mount;
5310
5311 err = ext4_block_group_meta_init(sb, silent);
5312 if (err)
5313 goto failed_mount;
5314
5315 err = ext4_hash_info_init(sb);
5316 if (err)
5317 goto failed_mount;
5318
5319 err = ext4_handle_clustersize(sb);
5320 if (err)
5321 goto failed_mount;
5322
5323 err = ext4_check_geometry(sb, es);
5324 if (err)
5325 goto failed_mount;
5326
5327 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5328 spin_lock_init(&sbi->s_error_lock);
5329 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5330
5331 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5332 if (err)
5333 goto failed_mount3;
5334
5335 err = ext4_es_register_shrinker(sbi);
5336 if (err)
5337 goto failed_mount3;
5338
5339 sbi->s_stripe = ext4_get_stripe_size(sbi);
5340 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5341 ext4_msg(sb, KERN_WARNING,
5342 "stripe (%lu) is not aligned with cluster size (%u), "
5343 "stripe is disabled",
5344 sbi->s_stripe, sbi->s_cluster_ratio);
5345 sbi->s_stripe = 0;
5346 }
5347 sbi->s_extent_max_zeroout_kb = 32;
5348
5349 /*
5350 * set up enough so that it can read an inode
5351 */
5352 sb->s_op = &ext4_sops;
5353 sb->s_export_op = &ext4_export_ops;
5354 sb->s_xattr = ext4_xattr_handlers;
5355 #ifdef CONFIG_FS_ENCRYPTION
5356 sb->s_cop = &ext4_cryptops;
5357 #endif
5358 #ifdef CONFIG_FS_VERITY
5359 sb->s_vop = &ext4_verityops;
5360 #endif
5361 #ifdef CONFIG_QUOTA
5362 sb->dq_op = &ext4_quota_operations;
5363 if (ext4_has_feature_quota(sb))
5364 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5365 else
5366 sb->s_qcop = &ext4_qctl_operations;
5367 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5368 #endif
5369 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5370 super_set_sysfs_name_bdev(sb);
5371
5372 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5373 mutex_init(&sbi->s_orphan_lock);
5374
5375 spin_lock_init(&sbi->s_bdev_wb_lock);
5376
5377 ext4_atomic_write_init(sb);
5378 ext4_fast_commit_init(sb);
5379
5380 sb->s_root = NULL;
5381
5382 needs_recovery = (es->s_last_orphan != 0 ||
5383 ext4_has_feature_orphan_present(sb) ||
5384 ext4_has_feature_journal_needs_recovery(sb));
5385
5386 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5387 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5388 if (err)
5389 goto failed_mount3a;
5390 }
5391
5392 err = -EINVAL;
5393 /*
5394 * The first inode we look at is the journal inode. Don't try
5395 * root first: it may be modified in the journal!
5396 */
5397 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5398 err = ext4_load_and_init_journal(sb, es, ctx);
5399 if (err)
5400 goto failed_mount3a;
5401 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5402 ext4_has_feature_journal_needs_recovery(sb)) {
5403 ext4_msg(sb, KERN_ERR, "required journal recovery "
5404 "suppressed and not mounted read-only");
5405 goto failed_mount3a;
5406 } else {
5407 /* Nojournal mode, all journal mount options are illegal */
5408 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5409 ext4_msg(sb, KERN_ERR, "can't mount with "
5410 "journal_async_commit, fs mounted w/o journal");
5411 goto failed_mount3a;
5412 }
5413
5414 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5415 ext4_msg(sb, KERN_ERR, "can't mount with "
5416 "journal_checksum, fs mounted w/o journal");
5417 goto failed_mount3a;
5418 }
5419 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5420 ext4_msg(sb, KERN_ERR, "can't mount with "
5421 "commit=%lu, fs mounted w/o journal",
5422 sbi->s_commit_interval / HZ);
5423 goto failed_mount3a;
5424 }
5425 if (EXT4_MOUNT_DATA_FLAGS &
5426 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5427 ext4_msg(sb, KERN_ERR, "can't mount with "
5428 "data=, fs mounted w/o journal");
5429 goto failed_mount3a;
5430 }
5431 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5432 clear_opt(sb, JOURNAL_CHECKSUM);
5433 clear_opt(sb, DATA_FLAGS);
5434 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5435 sbi->s_journal = NULL;
5436 needs_recovery = 0;
5437 }
5438
5439 if (!test_opt(sb, NO_MBCACHE)) {
5440 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5441 if (!sbi->s_ea_block_cache) {
5442 ext4_msg(sb, KERN_ERR,
5443 "Failed to create ea_block_cache");
5444 err = -EINVAL;
5445 goto failed_mount_wq;
5446 }
5447
5448 if (ext4_has_feature_ea_inode(sb)) {
5449 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5450 if (!sbi->s_ea_inode_cache) {
5451 ext4_msg(sb, KERN_ERR,
5452 "Failed to create ea_inode_cache");
5453 err = -EINVAL;
5454 goto failed_mount_wq;
5455 }
5456 }
5457 }
5458
5459 /*
5460 * Get the # of file system overhead blocks from the
5461 * superblock if present.
5462 */
5463 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5464 /* ignore the precalculated value if it is ridiculous */
5465 if (sbi->s_overhead > ext4_blocks_count(es))
5466 sbi->s_overhead = 0;
5467 /*
5468 * If the bigalloc feature is not enabled recalculating the
5469 * overhead doesn't take long, so we might as well just redo
5470 * it to make sure we are using the correct value.
5471 */
5472 if (!ext4_has_feature_bigalloc(sb))
5473 sbi->s_overhead = 0;
5474 if (sbi->s_overhead == 0) {
5475 err = ext4_calculate_overhead(sb);
5476 if (err)
5477 goto failed_mount_wq;
5478 }
5479
5480 /*
5481 * The maximum number of concurrent works can be high and
5482 * concurrency isn't really necessary. Limit it to 1.
5483 */
5484 EXT4_SB(sb)->rsv_conversion_wq =
5485 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5486 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5487 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5488 err = -ENOMEM;
5489 goto failed_mount4;
5490 }
5491
5492 /*
5493 * The jbd2_journal_load will have done any necessary log recovery,
5494 * so we can safely mount the rest of the filesystem now.
5495 */
5496
5497 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5498 if (IS_ERR(root)) {
5499 ext4_msg(sb, KERN_ERR, "get root inode failed");
5500 err = PTR_ERR(root);
5501 root = NULL;
5502 goto failed_mount4;
5503 }
5504 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5505 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5506 iput(root);
5507 err = -EFSCORRUPTED;
5508 goto failed_mount4;
5509 }
5510
5511 generic_set_sb_d_ops(sb);
5512 sb->s_root = d_make_root(root);
5513 if (!sb->s_root) {
5514 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5515 err = -ENOMEM;
5516 goto failed_mount4;
5517 }
5518
5519 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5520 if (err == -EROFS) {
5521 sb->s_flags |= SB_RDONLY;
5522 } else if (err)
5523 goto failed_mount4a;
5524
5525 ext4_set_resv_clusters(sb);
5526
5527 if (test_opt(sb, BLOCK_VALIDITY)) {
5528 err = ext4_setup_system_zone(sb);
5529 if (err) {
5530 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5531 "zone (%d)", err);
5532 goto failed_mount4a;
5533 }
5534 }
5535 ext4_fc_replay_cleanup(sb);
5536
5537 ext4_ext_init(sb);
5538
5539 /*
5540 * Enable optimize_scan if number of groups is > threshold. This can be
5541 * turned off by passing "mb_optimize_scan=0". This can also be
5542 * turned on forcefully by passing "mb_optimize_scan=1".
5543 */
5544 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5545 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5546 set_opt2(sb, MB_OPTIMIZE_SCAN);
5547 else
5548 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5549 }
5550
5551 err = ext4_mb_init(sb);
5552 if (err) {
5553 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5554 err);
5555 goto failed_mount5;
5556 }
5557
5558 /*
5559 * We can only set up the journal commit callback once
5560 * mballoc is initialized
5561 */
5562 if (sbi->s_journal)
5563 sbi->s_journal->j_commit_callback =
5564 ext4_journal_commit_callback;
5565
5566 err = ext4_percpu_param_init(sbi);
5567 if (err)
5568 goto failed_mount6;
5569
5570 if (ext4_has_feature_flex_bg(sb))
5571 if (!ext4_fill_flex_info(sb)) {
5572 ext4_msg(sb, KERN_ERR,
5573 "unable to initialize "
5574 "flex_bg meta info!");
5575 err = -ENOMEM;
5576 goto failed_mount6;
5577 }
5578
5579 err = ext4_register_li_request(sb, first_not_zeroed);
5580 if (err)
5581 goto failed_mount6;
5582
5583 err = ext4_init_orphan_info(sb);
5584 if (err)
5585 goto failed_mount7;
5586 #ifdef CONFIG_QUOTA
5587 /* Enable quota usage during mount. */
5588 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5589 err = ext4_enable_quotas(sb);
5590 if (err)
5591 goto failed_mount8;
5592 }
5593 #endif /* CONFIG_QUOTA */
5594
5595 /*
5596 * Save the original bdev mapping's wb_err value which could be
5597 * used to detect the metadata async write error.
5598 */
5599 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5600 &sbi->s_bdev_wb_err);
5601 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5602 ext4_orphan_cleanup(sb, es);
5603 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5604 /*
5605 * Update the checksum after updating free space/inode counters and
5606 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5607 * checksum in the buffer cache until it is written out and
5608 * e2fsprogs programs trying to open a file system immediately
5609 * after it is mounted can fail.
5610 */
5611 ext4_superblock_csum_set(sb);
5612 if (needs_recovery) {
5613 ext4_msg(sb, KERN_INFO, "recovery complete");
5614 err = ext4_mark_recovery_complete(sb, es);
5615 if (err)
5616 goto failed_mount9;
5617 }
5618
5619 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5620 ext4_msg(sb, KERN_WARNING,
5621 "mounting with \"discard\" option, but the device does not support discard");
5622
5623 if (es->s_error_count)
5624 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5625
5626 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5627 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5628 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5629 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5630 atomic_set(&sbi->s_warning_count, 0);
5631 atomic_set(&sbi->s_msg_count, 0);
5632
5633 /* Register sysfs after all initializations are complete. */
5634 err = ext4_register_sysfs(sb);
5635 if (err)
5636 goto failed_mount9;
5637
5638 return 0;
5639
5640 failed_mount9:
5641 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5642 failed_mount8: __maybe_unused
5643 ext4_release_orphan_info(sb);
5644 failed_mount7:
5645 ext4_unregister_li_request(sb);
5646 failed_mount6:
5647 ext4_mb_release(sb);
5648 ext4_flex_groups_free(sbi);
5649 ext4_percpu_param_destroy(sbi);
5650 failed_mount5:
5651 ext4_ext_release(sb);
5652 ext4_release_system_zone(sb);
5653 failed_mount4a:
5654 dput(sb->s_root);
5655 sb->s_root = NULL;
5656 failed_mount4:
5657 ext4_msg(sb, KERN_ERR, "mount failed");
5658 if (EXT4_SB(sb)->rsv_conversion_wq)
5659 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5660 failed_mount_wq:
5661 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5662 sbi->s_ea_inode_cache = NULL;
5663
5664 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5665 sbi->s_ea_block_cache = NULL;
5666
5667 if (sbi->s_journal) {
5668 ext4_journal_destroy(sbi, sbi->s_journal);
5669 }
5670 failed_mount3a:
5671 ext4_es_unregister_shrinker(sbi);
5672 failed_mount3:
5673 /* flush s_sb_upd_work before sbi destroy */
5674 flush_work(&sbi->s_sb_upd_work);
5675 ext4_stop_mmpd(sbi);
5676 del_timer_sync(&sbi->s_err_report);
5677 ext4_group_desc_free(sbi);
5678 failed_mount:
5679 #if IS_ENABLED(CONFIG_UNICODE)
5680 utf8_unload(sb->s_encoding);
5681 #endif
5682
5683 #ifdef CONFIG_QUOTA
5684 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5685 kfree(get_qf_name(sb, sbi, i));
5686 #endif
5687 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5688 brelse(sbi->s_sbh);
5689 if (sbi->s_journal_bdev_file) {
5690 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5691 bdev_fput(sbi->s_journal_bdev_file);
5692 }
5693 out_fail:
5694 invalidate_bdev(sb->s_bdev);
5695 sb->s_fs_info = NULL;
5696 return err;
5697 }
5698
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5699 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5700 {
5701 struct ext4_fs_context *ctx = fc->fs_private;
5702 struct ext4_sb_info *sbi;
5703 const char *descr;
5704 int ret;
5705
5706 sbi = ext4_alloc_sbi(sb);
5707 if (!sbi)
5708 return -ENOMEM;
5709
5710 fc->s_fs_info = sbi;
5711
5712 /* Cleanup superblock name */
5713 strreplace(sb->s_id, '/', '!');
5714
5715 sbi->s_sb_block = 1; /* Default super block location */
5716 if (ctx->spec & EXT4_SPEC_s_sb_block)
5717 sbi->s_sb_block = ctx->s_sb_block;
5718
5719 ret = __ext4_fill_super(fc, sb);
5720 if (ret < 0)
5721 goto free_sbi;
5722
5723 if (sbi->s_journal) {
5724 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5725 descr = " journalled data mode";
5726 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5727 descr = " ordered data mode";
5728 else
5729 descr = " writeback data mode";
5730 } else
5731 descr = "out journal";
5732
5733 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5734 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5735 "Quota mode: %s.", &sb->s_uuid,
5736 sb_rdonly(sb) ? "ro" : "r/w", descr,
5737 ext4_quota_mode(sb));
5738
5739 /* Update the s_overhead_clusters if necessary */
5740 ext4_update_overhead(sb, false);
5741 return 0;
5742
5743 free_sbi:
5744 ext4_free_sbi(sbi);
5745 fc->s_fs_info = NULL;
5746 return ret;
5747 }
5748
ext4_get_tree(struct fs_context * fc)5749 static int ext4_get_tree(struct fs_context *fc)
5750 {
5751 return get_tree_bdev(fc, ext4_fill_super);
5752 }
5753
5754 /*
5755 * Setup any per-fs journal parameters now. We'll do this both on
5756 * initial mount, once the journal has been initialised but before we've
5757 * done any recovery; and again on any subsequent remount.
5758 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5759 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5760 {
5761 struct ext4_sb_info *sbi = EXT4_SB(sb);
5762
5763 journal->j_commit_interval = sbi->s_commit_interval;
5764 journal->j_min_batch_time = sbi->s_min_batch_time;
5765 journal->j_max_batch_time = sbi->s_max_batch_time;
5766 ext4_fc_init(sb, journal);
5767
5768 write_lock(&journal->j_state_lock);
5769 if (test_opt(sb, BARRIER))
5770 journal->j_flags |= JBD2_BARRIER;
5771 else
5772 journal->j_flags &= ~JBD2_BARRIER;
5773 if (test_opt(sb, DATA_ERR_ABORT))
5774 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5775 else
5776 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5777 /*
5778 * Always enable journal cycle record option, letting the journal
5779 * records log transactions continuously between each mount.
5780 */
5781 journal->j_flags |= JBD2_CYCLE_RECORD;
5782 write_unlock(&journal->j_state_lock);
5783 }
5784
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5785 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5786 unsigned int journal_inum)
5787 {
5788 struct inode *journal_inode;
5789
5790 /*
5791 * Test for the existence of a valid inode on disk. Bad things
5792 * happen if we iget() an unused inode, as the subsequent iput()
5793 * will try to delete it.
5794 */
5795 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5796 if (IS_ERR(journal_inode)) {
5797 ext4_msg(sb, KERN_ERR, "no journal found");
5798 return ERR_CAST(journal_inode);
5799 }
5800 if (!journal_inode->i_nlink) {
5801 make_bad_inode(journal_inode);
5802 iput(journal_inode);
5803 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5804 return ERR_PTR(-EFSCORRUPTED);
5805 }
5806 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5807 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5808 iput(journal_inode);
5809 return ERR_PTR(-EFSCORRUPTED);
5810 }
5811
5812 ext4_debug("Journal inode found at %p: %lld bytes\n",
5813 journal_inode, journal_inode->i_size);
5814 return journal_inode;
5815 }
5816
ext4_journal_bmap(journal_t * journal,sector_t * block)5817 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5818 {
5819 struct ext4_map_blocks map;
5820 int ret;
5821
5822 if (journal->j_inode == NULL)
5823 return 0;
5824
5825 map.m_lblk = *block;
5826 map.m_len = 1;
5827 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5828 if (ret <= 0) {
5829 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5830 "journal bmap failed: block %llu ret %d\n",
5831 *block, ret);
5832 jbd2_journal_abort(journal, ret ? ret : -EIO);
5833 return ret;
5834 }
5835 *block = map.m_pblk;
5836 return 0;
5837 }
5838
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5839 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5840 unsigned int journal_inum)
5841 {
5842 struct inode *journal_inode;
5843 journal_t *journal;
5844
5845 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5846 if (IS_ERR(journal_inode))
5847 return ERR_CAST(journal_inode);
5848
5849 journal = jbd2_journal_init_inode(journal_inode);
5850 if (IS_ERR(journal)) {
5851 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5852 iput(journal_inode);
5853 return ERR_CAST(journal);
5854 }
5855 journal->j_private = sb;
5856 journal->j_bmap = ext4_journal_bmap;
5857 ext4_init_journal_params(sb, journal);
5858 return journal;
5859 }
5860
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5861 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5862 dev_t j_dev, ext4_fsblk_t *j_start,
5863 ext4_fsblk_t *j_len)
5864 {
5865 struct buffer_head *bh;
5866 struct block_device *bdev;
5867 struct file *bdev_file;
5868 int hblock, blocksize;
5869 ext4_fsblk_t sb_block;
5870 unsigned long offset;
5871 struct ext4_super_block *es;
5872 int errno;
5873
5874 bdev_file = bdev_file_open_by_dev(j_dev,
5875 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5876 sb, &fs_holder_ops);
5877 if (IS_ERR(bdev_file)) {
5878 ext4_msg(sb, KERN_ERR,
5879 "failed to open journal device unknown-block(%u,%u) %ld",
5880 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5881 return bdev_file;
5882 }
5883
5884 bdev = file_bdev(bdev_file);
5885 blocksize = sb->s_blocksize;
5886 hblock = bdev_logical_block_size(bdev);
5887 if (blocksize < hblock) {
5888 ext4_msg(sb, KERN_ERR,
5889 "blocksize too small for journal device");
5890 errno = -EINVAL;
5891 goto out_bdev;
5892 }
5893
5894 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5895 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5896 set_blocksize(bdev_file, blocksize);
5897 bh = __bread(bdev, sb_block, blocksize);
5898 if (!bh) {
5899 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5900 "external journal");
5901 errno = -EINVAL;
5902 goto out_bdev;
5903 }
5904
5905 es = (struct ext4_super_block *) (bh->b_data + offset);
5906 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5907 !(le32_to_cpu(es->s_feature_incompat) &
5908 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5909 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5910 errno = -EFSCORRUPTED;
5911 goto out_bh;
5912 }
5913
5914 if ((le32_to_cpu(es->s_feature_ro_compat) &
5915 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5916 es->s_checksum != ext4_superblock_csum(sb, es)) {
5917 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5918 errno = -EFSCORRUPTED;
5919 goto out_bh;
5920 }
5921
5922 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5923 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5924 errno = -EFSCORRUPTED;
5925 goto out_bh;
5926 }
5927
5928 *j_start = sb_block + 1;
5929 *j_len = ext4_blocks_count(es);
5930 brelse(bh);
5931 return bdev_file;
5932
5933 out_bh:
5934 brelse(bh);
5935 out_bdev:
5936 bdev_fput(bdev_file);
5937 return ERR_PTR(errno);
5938 }
5939
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5940 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5941 dev_t j_dev)
5942 {
5943 journal_t *journal;
5944 ext4_fsblk_t j_start;
5945 ext4_fsblk_t j_len;
5946 struct file *bdev_file;
5947 int errno = 0;
5948
5949 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5950 if (IS_ERR(bdev_file))
5951 return ERR_CAST(bdev_file);
5952
5953 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5954 j_len, sb->s_blocksize);
5955 if (IS_ERR(journal)) {
5956 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5957 errno = PTR_ERR(journal);
5958 goto out_bdev;
5959 }
5960 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5961 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5962 "user (unsupported) - %d",
5963 be32_to_cpu(journal->j_superblock->s_nr_users));
5964 errno = -EINVAL;
5965 goto out_journal;
5966 }
5967 journal->j_private = sb;
5968 EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5969 ext4_init_journal_params(sb, journal);
5970 return journal;
5971
5972 out_journal:
5973 ext4_journal_destroy(EXT4_SB(sb), journal);
5974 out_bdev:
5975 bdev_fput(bdev_file);
5976 return ERR_PTR(errno);
5977 }
5978
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5979 static int ext4_load_journal(struct super_block *sb,
5980 struct ext4_super_block *es,
5981 unsigned long journal_devnum)
5982 {
5983 journal_t *journal;
5984 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5985 dev_t journal_dev;
5986 int err = 0;
5987 int really_read_only;
5988 int journal_dev_ro;
5989
5990 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5991 return -EFSCORRUPTED;
5992
5993 if (journal_devnum &&
5994 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5995 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5996 "numbers have changed");
5997 journal_dev = new_decode_dev(journal_devnum);
5998 } else
5999 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6000
6001 if (journal_inum && journal_dev) {
6002 ext4_msg(sb, KERN_ERR,
6003 "filesystem has both journal inode and journal device!");
6004 return -EINVAL;
6005 }
6006
6007 if (journal_inum) {
6008 journal = ext4_open_inode_journal(sb, journal_inum);
6009 if (IS_ERR(journal))
6010 return PTR_ERR(journal);
6011 } else {
6012 journal = ext4_open_dev_journal(sb, journal_dev);
6013 if (IS_ERR(journal))
6014 return PTR_ERR(journal);
6015 }
6016
6017 journal_dev_ro = bdev_read_only(journal->j_dev);
6018 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6019
6020 if (journal_dev_ro && !sb_rdonly(sb)) {
6021 ext4_msg(sb, KERN_ERR,
6022 "journal device read-only, try mounting with '-o ro'");
6023 err = -EROFS;
6024 goto err_out;
6025 }
6026
6027 /*
6028 * Are we loading a blank journal or performing recovery after a
6029 * crash? For recovery, we need to check in advance whether we
6030 * can get read-write access to the device.
6031 */
6032 if (ext4_has_feature_journal_needs_recovery(sb)) {
6033 if (sb_rdonly(sb)) {
6034 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6035 "required on readonly filesystem");
6036 if (really_read_only) {
6037 ext4_msg(sb, KERN_ERR, "write access "
6038 "unavailable, cannot proceed "
6039 "(try mounting with noload)");
6040 err = -EROFS;
6041 goto err_out;
6042 }
6043 ext4_msg(sb, KERN_INFO, "write access will "
6044 "be enabled during recovery");
6045 }
6046 }
6047
6048 if (!(journal->j_flags & JBD2_BARRIER))
6049 ext4_msg(sb, KERN_INFO, "barriers disabled");
6050
6051 if (!ext4_has_feature_journal_needs_recovery(sb))
6052 err = jbd2_journal_wipe(journal, !really_read_only);
6053 if (!err) {
6054 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6055 __le16 orig_state;
6056 bool changed = false;
6057
6058 if (save)
6059 memcpy(save, ((char *) es) +
6060 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6061 err = jbd2_journal_load(journal);
6062 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6063 save, EXT4_S_ERR_LEN)) {
6064 memcpy(((char *) es) + EXT4_S_ERR_START,
6065 save, EXT4_S_ERR_LEN);
6066 changed = true;
6067 }
6068 kfree(save);
6069 orig_state = es->s_state;
6070 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6071 EXT4_ERROR_FS);
6072 if (orig_state != es->s_state)
6073 changed = true;
6074 /* Write out restored error information to the superblock */
6075 if (changed && !really_read_only) {
6076 int err2;
6077 err2 = ext4_commit_super(sb);
6078 err = err ? : err2;
6079 }
6080 }
6081
6082 if (err) {
6083 ext4_msg(sb, KERN_ERR, "error loading journal");
6084 goto err_out;
6085 }
6086
6087 EXT4_SB(sb)->s_journal = journal;
6088 err = ext4_clear_journal_err(sb, es);
6089 if (err) {
6090 ext4_journal_destroy(EXT4_SB(sb), journal);
6091 return err;
6092 }
6093
6094 if (!really_read_only && journal_devnum &&
6095 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6096 es->s_journal_dev = cpu_to_le32(journal_devnum);
6097 ext4_commit_super(sb);
6098 }
6099 if (!really_read_only && journal_inum &&
6100 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6101 es->s_journal_inum = cpu_to_le32(journal_inum);
6102 ext4_commit_super(sb);
6103 }
6104
6105 return 0;
6106
6107 err_out:
6108 ext4_journal_destroy(EXT4_SB(sb), journal);
6109 return err;
6110 }
6111
6112 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6113 static void ext4_update_super(struct super_block *sb)
6114 {
6115 struct ext4_sb_info *sbi = EXT4_SB(sb);
6116 struct ext4_super_block *es = sbi->s_es;
6117 struct buffer_head *sbh = sbi->s_sbh;
6118
6119 lock_buffer(sbh);
6120 /*
6121 * If the file system is mounted read-only, don't update the
6122 * superblock write time. This avoids updating the superblock
6123 * write time when we are mounting the root file system
6124 * read/only but we need to replay the journal; at that point,
6125 * for people who are east of GMT and who make their clock
6126 * tick in localtime for Windows bug-for-bug compatibility,
6127 * the clock is set in the future, and this will cause e2fsck
6128 * to complain and force a full file system check.
6129 */
6130 if (!sb_rdonly(sb))
6131 ext4_update_tstamp(es, s_wtime);
6132 es->s_kbytes_written =
6133 cpu_to_le64(sbi->s_kbytes_written +
6134 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6135 sbi->s_sectors_written_start) >> 1));
6136 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6137 ext4_free_blocks_count_set(es,
6138 EXT4_C2B(sbi, percpu_counter_sum_positive(
6139 &sbi->s_freeclusters_counter)));
6140 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6141 es->s_free_inodes_count =
6142 cpu_to_le32(percpu_counter_sum_positive(
6143 &sbi->s_freeinodes_counter));
6144 /* Copy error information to the on-disk superblock */
6145 spin_lock(&sbi->s_error_lock);
6146 if (sbi->s_add_error_count > 0) {
6147 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6148 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6149 __ext4_update_tstamp(&es->s_first_error_time,
6150 &es->s_first_error_time_hi,
6151 sbi->s_first_error_time);
6152 strtomem_pad(es->s_first_error_func,
6153 sbi->s_first_error_func, 0);
6154 es->s_first_error_line =
6155 cpu_to_le32(sbi->s_first_error_line);
6156 es->s_first_error_ino =
6157 cpu_to_le32(sbi->s_first_error_ino);
6158 es->s_first_error_block =
6159 cpu_to_le64(sbi->s_first_error_block);
6160 es->s_first_error_errcode =
6161 ext4_errno_to_code(sbi->s_first_error_code);
6162 }
6163 __ext4_update_tstamp(&es->s_last_error_time,
6164 &es->s_last_error_time_hi,
6165 sbi->s_last_error_time);
6166 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6167 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6168 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6169 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6170 es->s_last_error_errcode =
6171 ext4_errno_to_code(sbi->s_last_error_code);
6172 /*
6173 * Start the daily error reporting function if it hasn't been
6174 * started already
6175 */
6176 if (!es->s_error_count)
6177 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6178 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6179 sbi->s_add_error_count = 0;
6180 }
6181 spin_unlock(&sbi->s_error_lock);
6182
6183 ext4_superblock_csum_set(sb);
6184 unlock_buffer(sbh);
6185 }
6186
ext4_commit_super(struct super_block * sb)6187 static int ext4_commit_super(struct super_block *sb)
6188 {
6189 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6190
6191 if (!sbh)
6192 return -EINVAL;
6193
6194 ext4_update_super(sb);
6195
6196 lock_buffer(sbh);
6197 /* Buffer got discarded which means block device got invalidated */
6198 if (!buffer_mapped(sbh)) {
6199 unlock_buffer(sbh);
6200 return -EIO;
6201 }
6202
6203 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6204 /*
6205 * Oh, dear. A previous attempt to write the
6206 * superblock failed. This could happen because the
6207 * USB device was yanked out. Or it could happen to
6208 * be a transient write error and maybe the block will
6209 * be remapped. Nothing we can do but to retry the
6210 * write and hope for the best.
6211 */
6212 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6213 "superblock detected");
6214 clear_buffer_write_io_error(sbh);
6215 set_buffer_uptodate(sbh);
6216 }
6217 get_bh(sbh);
6218 /* Clear potential dirty bit if it was journalled update */
6219 clear_buffer_dirty(sbh);
6220 sbh->b_end_io = end_buffer_write_sync;
6221 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6222 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6223 wait_on_buffer(sbh);
6224 if (buffer_write_io_error(sbh)) {
6225 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6226 "superblock");
6227 clear_buffer_write_io_error(sbh);
6228 set_buffer_uptodate(sbh);
6229 return -EIO;
6230 }
6231 return 0;
6232 }
6233
6234 /*
6235 * Have we just finished recovery? If so, and if we are mounting (or
6236 * remounting) the filesystem readonly, then we will end up with a
6237 * consistent fs on disk. Record that fact.
6238 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6239 static int ext4_mark_recovery_complete(struct super_block *sb,
6240 struct ext4_super_block *es)
6241 {
6242 int err;
6243 journal_t *journal = EXT4_SB(sb)->s_journal;
6244
6245 if (!ext4_has_feature_journal(sb)) {
6246 if (journal != NULL) {
6247 ext4_error(sb, "Journal got removed while the fs was "
6248 "mounted!");
6249 return -EFSCORRUPTED;
6250 }
6251 return 0;
6252 }
6253 jbd2_journal_lock_updates(journal);
6254 err = jbd2_journal_flush(journal, 0);
6255 if (err < 0)
6256 goto out;
6257
6258 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6259 ext4_has_feature_orphan_present(sb))) {
6260 if (!ext4_orphan_file_empty(sb)) {
6261 ext4_error(sb, "Orphan file not empty on read-only fs.");
6262 err = -EFSCORRUPTED;
6263 goto out;
6264 }
6265 ext4_clear_feature_journal_needs_recovery(sb);
6266 ext4_clear_feature_orphan_present(sb);
6267 ext4_commit_super(sb);
6268 }
6269 out:
6270 jbd2_journal_unlock_updates(journal);
6271 return err;
6272 }
6273
6274 /*
6275 * If we are mounting (or read-write remounting) a filesystem whose journal
6276 * has recorded an error from a previous lifetime, move that error to the
6277 * main filesystem now.
6278 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6279 static int ext4_clear_journal_err(struct super_block *sb,
6280 struct ext4_super_block *es)
6281 {
6282 journal_t *journal;
6283 int j_errno;
6284 const char *errstr;
6285
6286 if (!ext4_has_feature_journal(sb)) {
6287 ext4_error(sb, "Journal got removed while the fs was mounted!");
6288 return -EFSCORRUPTED;
6289 }
6290
6291 journal = EXT4_SB(sb)->s_journal;
6292
6293 /*
6294 * Now check for any error status which may have been recorded in the
6295 * journal by a prior ext4_error() or ext4_abort()
6296 */
6297
6298 j_errno = jbd2_journal_errno(journal);
6299 if (j_errno) {
6300 char nbuf[16];
6301
6302 errstr = ext4_decode_error(sb, j_errno, nbuf);
6303 ext4_warning(sb, "Filesystem error recorded "
6304 "from previous mount: %s", errstr);
6305
6306 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6307 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6308 j_errno = ext4_commit_super(sb);
6309 if (j_errno)
6310 return j_errno;
6311 ext4_warning(sb, "Marked fs in need of filesystem check.");
6312
6313 jbd2_journal_clear_err(journal);
6314 jbd2_journal_update_sb_errno(journal);
6315 }
6316 return 0;
6317 }
6318
6319 /*
6320 * Force the running and committing transactions to commit,
6321 * and wait on the commit.
6322 */
ext4_force_commit(struct super_block * sb)6323 int ext4_force_commit(struct super_block *sb)
6324 {
6325 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6326 }
6327
ext4_sync_fs(struct super_block * sb,int wait)6328 static int ext4_sync_fs(struct super_block *sb, int wait)
6329 {
6330 int ret = 0;
6331 tid_t target;
6332 bool needs_barrier = false;
6333 struct ext4_sb_info *sbi = EXT4_SB(sb);
6334
6335 if (unlikely(ext4_forced_shutdown(sb)))
6336 return -EIO;
6337
6338 trace_ext4_sync_fs(sb, wait);
6339 flush_workqueue(sbi->rsv_conversion_wq);
6340 /*
6341 * Writeback quota in non-journalled quota case - journalled quota has
6342 * no dirty dquots
6343 */
6344 dquot_writeback_dquots(sb, -1);
6345 /*
6346 * Data writeback is possible w/o journal transaction, so barrier must
6347 * being sent at the end of the function. But we can skip it if
6348 * transaction_commit will do it for us.
6349 */
6350 if (sbi->s_journal) {
6351 target = jbd2_get_latest_transaction(sbi->s_journal);
6352 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6353 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6354 needs_barrier = true;
6355
6356 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6357 if (wait)
6358 ret = jbd2_log_wait_commit(sbi->s_journal,
6359 target);
6360 }
6361 } else if (wait && test_opt(sb, BARRIER))
6362 needs_barrier = true;
6363 if (needs_barrier) {
6364 int err;
6365 err = blkdev_issue_flush(sb->s_bdev);
6366 if (!ret)
6367 ret = err;
6368 }
6369
6370 return ret;
6371 }
6372
6373 /*
6374 * LVM calls this function before a (read-only) snapshot is created. This
6375 * gives us a chance to flush the journal completely and mark the fs clean.
6376 *
6377 * Note that only this function cannot bring a filesystem to be in a clean
6378 * state independently. It relies on upper layer to stop all data & metadata
6379 * modifications.
6380 */
ext4_freeze(struct super_block * sb)6381 static int ext4_freeze(struct super_block *sb)
6382 {
6383 int error = 0;
6384 journal_t *journal = EXT4_SB(sb)->s_journal;
6385
6386 if (journal) {
6387 /* Now we set up the journal barrier. */
6388 jbd2_journal_lock_updates(journal);
6389
6390 /*
6391 * Don't clear the needs_recovery flag if we failed to
6392 * flush the journal.
6393 */
6394 error = jbd2_journal_flush(journal, 0);
6395 if (error < 0)
6396 goto out;
6397
6398 /* Journal blocked and flushed, clear needs_recovery flag. */
6399 ext4_clear_feature_journal_needs_recovery(sb);
6400 if (ext4_orphan_file_empty(sb))
6401 ext4_clear_feature_orphan_present(sb);
6402 }
6403
6404 error = ext4_commit_super(sb);
6405 out:
6406 if (journal)
6407 /* we rely on upper layer to stop further updates */
6408 jbd2_journal_unlock_updates(journal);
6409 return error;
6410 }
6411
6412 /*
6413 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6414 * flag here, even though the filesystem is not technically dirty yet.
6415 */
ext4_unfreeze(struct super_block * sb)6416 static int ext4_unfreeze(struct super_block *sb)
6417 {
6418 if (ext4_forced_shutdown(sb))
6419 return 0;
6420
6421 if (EXT4_SB(sb)->s_journal) {
6422 /* Reset the needs_recovery flag before the fs is unlocked. */
6423 ext4_set_feature_journal_needs_recovery(sb);
6424 if (ext4_has_feature_orphan_file(sb))
6425 ext4_set_feature_orphan_present(sb);
6426 }
6427
6428 ext4_commit_super(sb);
6429 return 0;
6430 }
6431
6432 /*
6433 * Structure to save mount options for ext4_remount's benefit
6434 */
6435 struct ext4_mount_options {
6436 unsigned long s_mount_opt;
6437 unsigned long s_mount_opt2;
6438 kuid_t s_resuid;
6439 kgid_t s_resgid;
6440 unsigned long s_commit_interval;
6441 u32 s_min_batch_time, s_max_batch_time;
6442 #ifdef CONFIG_QUOTA
6443 int s_jquota_fmt;
6444 char *s_qf_names[EXT4_MAXQUOTAS];
6445 #endif
6446 };
6447
__ext4_remount(struct fs_context * fc,struct super_block * sb)6448 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6449 {
6450 struct ext4_fs_context *ctx = fc->fs_private;
6451 struct ext4_super_block *es;
6452 struct ext4_sb_info *sbi = EXT4_SB(sb);
6453 unsigned long old_sb_flags;
6454 struct ext4_mount_options old_opts;
6455 ext4_group_t g;
6456 int err = 0;
6457 int alloc_ctx;
6458 #ifdef CONFIG_QUOTA
6459 int enable_quota = 0;
6460 int i, j;
6461 char *to_free[EXT4_MAXQUOTAS];
6462 #endif
6463
6464
6465 /* Store the original options */
6466 old_sb_flags = sb->s_flags;
6467 old_opts.s_mount_opt = sbi->s_mount_opt;
6468 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6469 old_opts.s_resuid = sbi->s_resuid;
6470 old_opts.s_resgid = sbi->s_resgid;
6471 old_opts.s_commit_interval = sbi->s_commit_interval;
6472 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6473 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6474 #ifdef CONFIG_QUOTA
6475 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6476 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6477 if (sbi->s_qf_names[i]) {
6478 char *qf_name = get_qf_name(sb, sbi, i);
6479
6480 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6481 if (!old_opts.s_qf_names[i]) {
6482 for (j = 0; j < i; j++)
6483 kfree(old_opts.s_qf_names[j]);
6484 return -ENOMEM;
6485 }
6486 } else
6487 old_opts.s_qf_names[i] = NULL;
6488 #endif
6489 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6490 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6491 ctx->journal_ioprio =
6492 sbi->s_journal->j_task->io_context->ioprio;
6493 else
6494 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6495
6496 }
6497
6498 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6499 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6500 ext4_msg(sb, KERN_WARNING,
6501 "stripe (%lu) is not aligned with cluster size (%u), "
6502 "stripe is disabled",
6503 ctx->s_stripe, sbi->s_cluster_ratio);
6504 ctx->s_stripe = 0;
6505 }
6506
6507 /*
6508 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6509 * two calls to ext4_should_dioread_nolock() to return inconsistent
6510 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6511 * here s_writepages_rwsem to avoid race between writepages ops and
6512 * remount.
6513 */
6514 alloc_ctx = ext4_writepages_down_write(sb);
6515 ext4_apply_options(fc, sb);
6516 ext4_writepages_up_write(sb, alloc_ctx);
6517
6518 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6519 test_opt(sb, JOURNAL_CHECKSUM)) {
6520 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6521 "during remount not supported; ignoring");
6522 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6523 }
6524
6525 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6526 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6527 ext4_msg(sb, KERN_ERR, "can't mount with "
6528 "both data=journal and delalloc");
6529 err = -EINVAL;
6530 goto restore_opts;
6531 }
6532 if (test_opt(sb, DIOREAD_NOLOCK)) {
6533 ext4_msg(sb, KERN_ERR, "can't mount with "
6534 "both data=journal and dioread_nolock");
6535 err = -EINVAL;
6536 goto restore_opts;
6537 }
6538 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6539 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6540 ext4_msg(sb, KERN_ERR, "can't mount with "
6541 "journal_async_commit in data=ordered mode");
6542 err = -EINVAL;
6543 goto restore_opts;
6544 }
6545 }
6546
6547 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6548 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6549 err = -EINVAL;
6550 goto restore_opts;
6551 }
6552
6553 if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6554 !test_opt(sb, DELALLOC)) {
6555 ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6556 err = -EINVAL;
6557 goto restore_opts;
6558 }
6559
6560 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6561 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6562
6563 es = sbi->s_es;
6564
6565 if (sbi->s_journal) {
6566 ext4_init_journal_params(sb, sbi->s_journal);
6567 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6568 }
6569
6570 /* Flush outstanding errors before changing fs state */
6571 flush_work(&sbi->s_sb_upd_work);
6572
6573 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6574 if (ext4_forced_shutdown(sb)) {
6575 err = -EROFS;
6576 goto restore_opts;
6577 }
6578
6579 if (fc->sb_flags & SB_RDONLY) {
6580 err = sync_filesystem(sb);
6581 if (err < 0)
6582 goto restore_opts;
6583 err = dquot_suspend(sb, -1);
6584 if (err < 0)
6585 goto restore_opts;
6586
6587 /*
6588 * First of all, the unconditional stuff we have to do
6589 * to disable replay of the journal when we next remount
6590 */
6591 sb->s_flags |= SB_RDONLY;
6592
6593 /*
6594 * OK, test if we are remounting a valid rw partition
6595 * readonly, and if so set the rdonly flag and then
6596 * mark the partition as valid again.
6597 */
6598 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6599 (sbi->s_mount_state & EXT4_VALID_FS))
6600 es->s_state = cpu_to_le16(sbi->s_mount_state);
6601
6602 if (sbi->s_journal) {
6603 /*
6604 * We let remount-ro finish even if marking fs
6605 * as clean failed...
6606 */
6607 ext4_mark_recovery_complete(sb, es);
6608 }
6609 } else {
6610 /* Make sure we can mount this feature set readwrite */
6611 if (ext4_has_feature_readonly(sb) ||
6612 !ext4_feature_set_ok(sb, 0)) {
6613 err = -EROFS;
6614 goto restore_opts;
6615 }
6616 /*
6617 * Make sure the group descriptor checksums
6618 * are sane. If they aren't, refuse to remount r/w.
6619 */
6620 for (g = 0; g < sbi->s_groups_count; g++) {
6621 struct ext4_group_desc *gdp =
6622 ext4_get_group_desc(sb, g, NULL);
6623
6624 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6625 ext4_msg(sb, KERN_ERR,
6626 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6627 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6628 le16_to_cpu(gdp->bg_checksum));
6629 err = -EFSBADCRC;
6630 goto restore_opts;
6631 }
6632 }
6633
6634 /*
6635 * If we have an unprocessed orphan list hanging
6636 * around from a previously readonly bdev mount,
6637 * require a full umount/remount for now.
6638 */
6639 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6640 ext4_msg(sb, KERN_WARNING, "Couldn't "
6641 "remount RDWR because of unprocessed "
6642 "orphan inode list. Please "
6643 "umount/remount instead");
6644 err = -EINVAL;
6645 goto restore_opts;
6646 }
6647
6648 /*
6649 * Mounting a RDONLY partition read-write, so reread
6650 * and store the current valid flag. (It may have
6651 * been changed by e2fsck since we originally mounted
6652 * the partition.)
6653 */
6654 if (sbi->s_journal) {
6655 err = ext4_clear_journal_err(sb, es);
6656 if (err)
6657 goto restore_opts;
6658 }
6659 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6660 ~EXT4_FC_REPLAY);
6661
6662 err = ext4_setup_super(sb, es, 0);
6663 if (err)
6664 goto restore_opts;
6665
6666 sb->s_flags &= ~SB_RDONLY;
6667 if (ext4_has_feature_mmp(sb)) {
6668 err = ext4_multi_mount_protect(sb,
6669 le64_to_cpu(es->s_mmp_block));
6670 if (err)
6671 goto restore_opts;
6672 }
6673 #ifdef CONFIG_QUOTA
6674 enable_quota = 1;
6675 #endif
6676 }
6677 }
6678
6679 /*
6680 * Handle creation of system zone data early because it can fail.
6681 * Releasing of existing data is done when we are sure remount will
6682 * succeed.
6683 */
6684 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6685 err = ext4_setup_system_zone(sb);
6686 if (err)
6687 goto restore_opts;
6688 }
6689
6690 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6691 err = ext4_commit_super(sb);
6692 if (err)
6693 goto restore_opts;
6694 }
6695
6696 #ifdef CONFIG_QUOTA
6697 if (enable_quota) {
6698 if (sb_any_quota_suspended(sb))
6699 dquot_resume(sb, -1);
6700 else if (ext4_has_feature_quota(sb)) {
6701 err = ext4_enable_quotas(sb);
6702 if (err)
6703 goto restore_opts;
6704 }
6705 }
6706 /* Release old quota file names */
6707 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6708 kfree(old_opts.s_qf_names[i]);
6709 #endif
6710 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6711 ext4_release_system_zone(sb);
6712
6713 /*
6714 * Reinitialize lazy itable initialization thread based on
6715 * current settings
6716 */
6717 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6718 ext4_unregister_li_request(sb);
6719 else {
6720 ext4_group_t first_not_zeroed;
6721 first_not_zeroed = ext4_has_uninit_itable(sb);
6722 ext4_register_li_request(sb, first_not_zeroed);
6723 }
6724
6725 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6726 ext4_stop_mmpd(sbi);
6727
6728 /*
6729 * Handle aborting the filesystem as the last thing during remount to
6730 * avoid obsure errors during remount when some option changes fail to
6731 * apply due to shutdown filesystem.
6732 */
6733 if (test_opt2(sb, ABORT))
6734 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6735
6736 return 0;
6737
6738 restore_opts:
6739 /*
6740 * If there was a failing r/w to ro transition, we may need to
6741 * re-enable quota
6742 */
6743 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6744 sb_any_quota_suspended(sb))
6745 dquot_resume(sb, -1);
6746
6747 alloc_ctx = ext4_writepages_down_write(sb);
6748 sb->s_flags = old_sb_flags;
6749 sbi->s_mount_opt = old_opts.s_mount_opt;
6750 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6751 sbi->s_resuid = old_opts.s_resuid;
6752 sbi->s_resgid = old_opts.s_resgid;
6753 sbi->s_commit_interval = old_opts.s_commit_interval;
6754 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6755 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6756 ext4_writepages_up_write(sb, alloc_ctx);
6757
6758 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6759 ext4_release_system_zone(sb);
6760 #ifdef CONFIG_QUOTA
6761 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6762 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6763 to_free[i] = get_qf_name(sb, sbi, i);
6764 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6765 }
6766 synchronize_rcu();
6767 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6768 kfree(to_free[i]);
6769 #endif
6770 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6771 ext4_stop_mmpd(sbi);
6772 return err;
6773 }
6774
ext4_reconfigure(struct fs_context * fc)6775 static int ext4_reconfigure(struct fs_context *fc)
6776 {
6777 struct super_block *sb = fc->root->d_sb;
6778 int ret;
6779
6780 fc->s_fs_info = EXT4_SB(sb);
6781
6782 ret = ext4_check_opt_consistency(fc, sb);
6783 if (ret < 0)
6784 return ret;
6785
6786 ret = __ext4_remount(fc, sb);
6787 if (ret < 0)
6788 return ret;
6789
6790 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6791 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6792 ext4_quota_mode(sb));
6793
6794 return 0;
6795 }
6796
6797 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6798 static int ext4_statfs_project(struct super_block *sb,
6799 kprojid_t projid, struct kstatfs *buf)
6800 {
6801 struct kqid qid;
6802 struct dquot *dquot;
6803 u64 limit;
6804 u64 curblock;
6805
6806 qid = make_kqid_projid(projid);
6807 dquot = dqget(sb, qid);
6808 if (IS_ERR(dquot))
6809 return PTR_ERR(dquot);
6810 spin_lock(&dquot->dq_dqb_lock);
6811
6812 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6813 dquot->dq_dqb.dqb_bhardlimit);
6814 limit >>= sb->s_blocksize_bits;
6815
6816 if (limit) {
6817 uint64_t remaining = 0;
6818
6819 curblock = (dquot->dq_dqb.dqb_curspace +
6820 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6821 if (limit > curblock)
6822 remaining = limit - curblock;
6823
6824 buf->f_blocks = min(buf->f_blocks, limit);
6825 buf->f_bfree = min(buf->f_bfree, remaining);
6826 buf->f_bavail = min(buf->f_bavail, remaining);
6827 }
6828
6829 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6830 dquot->dq_dqb.dqb_ihardlimit);
6831 if (limit) {
6832 uint64_t remaining = 0;
6833
6834 if (limit > dquot->dq_dqb.dqb_curinodes)
6835 remaining = limit - dquot->dq_dqb.dqb_curinodes;
6836
6837 buf->f_files = min(buf->f_files, limit);
6838 buf->f_ffree = min(buf->f_ffree, remaining);
6839 }
6840
6841 spin_unlock(&dquot->dq_dqb_lock);
6842 dqput(dquot);
6843 return 0;
6844 }
6845 #endif
6846
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6847 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6848 {
6849 struct super_block *sb = dentry->d_sb;
6850 struct ext4_sb_info *sbi = EXT4_SB(sb);
6851 struct ext4_super_block *es = sbi->s_es;
6852 ext4_fsblk_t overhead = 0, resv_blocks;
6853 s64 bfree;
6854 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6855
6856 if (!test_opt(sb, MINIX_DF))
6857 overhead = sbi->s_overhead;
6858
6859 buf->f_type = EXT4_SUPER_MAGIC;
6860 buf->f_bsize = sb->s_blocksize;
6861 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6862 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6863 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6864 /* prevent underflow in case that few free space is available */
6865 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6866 buf->f_bavail = buf->f_bfree -
6867 (ext4_r_blocks_count(es) + resv_blocks);
6868 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6869 buf->f_bavail = 0;
6870 buf->f_files = le32_to_cpu(es->s_inodes_count);
6871 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6872 buf->f_namelen = EXT4_NAME_LEN;
6873 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6874
6875 #ifdef CONFIG_QUOTA
6876 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6877 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6878 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6879 #endif
6880 return 0;
6881 }
6882
6883
6884 #ifdef CONFIG_QUOTA
6885
6886 /*
6887 * Helper functions so that transaction is started before we acquire dqio_sem
6888 * to keep correct lock ordering of transaction > dqio_sem
6889 */
dquot_to_inode(struct dquot * dquot)6890 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6891 {
6892 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6893 }
6894
ext4_write_dquot(struct dquot * dquot)6895 static int ext4_write_dquot(struct dquot *dquot)
6896 {
6897 int ret, err;
6898 handle_t *handle;
6899 struct inode *inode;
6900
6901 inode = dquot_to_inode(dquot);
6902 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6903 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6904 if (IS_ERR(handle))
6905 return PTR_ERR(handle);
6906 ret = dquot_commit(dquot);
6907 if (ret < 0)
6908 ext4_error_err(dquot->dq_sb, -ret,
6909 "Failed to commit dquot type %d",
6910 dquot->dq_id.type);
6911 err = ext4_journal_stop(handle);
6912 if (!ret)
6913 ret = err;
6914 return ret;
6915 }
6916
ext4_acquire_dquot(struct dquot * dquot)6917 static int ext4_acquire_dquot(struct dquot *dquot)
6918 {
6919 int ret, err;
6920 handle_t *handle;
6921
6922 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6923 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6924 if (IS_ERR(handle))
6925 return PTR_ERR(handle);
6926 ret = dquot_acquire(dquot);
6927 if (ret < 0)
6928 ext4_error_err(dquot->dq_sb, -ret,
6929 "Failed to acquire dquot type %d",
6930 dquot->dq_id.type);
6931 err = ext4_journal_stop(handle);
6932 if (!ret)
6933 ret = err;
6934 return ret;
6935 }
6936
ext4_release_dquot(struct dquot * dquot)6937 static int ext4_release_dquot(struct dquot *dquot)
6938 {
6939 int ret, err;
6940 handle_t *handle;
6941 bool freeze_protected = false;
6942
6943 /*
6944 * Trying to sb_start_intwrite() in a running transaction
6945 * can result in a deadlock. Further, running transactions
6946 * are already protected from freezing.
6947 */
6948 if (!ext4_journal_current_handle()) {
6949 sb_start_intwrite(dquot->dq_sb);
6950 freeze_protected = true;
6951 }
6952
6953 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6954 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6955 if (IS_ERR(handle)) {
6956 /* Release dquot anyway to avoid endless cycle in dqput() */
6957 dquot_release(dquot);
6958 if (freeze_protected)
6959 sb_end_intwrite(dquot->dq_sb);
6960 return PTR_ERR(handle);
6961 }
6962 ret = dquot_release(dquot);
6963 if (ret < 0)
6964 ext4_error_err(dquot->dq_sb, -ret,
6965 "Failed to release dquot type %d",
6966 dquot->dq_id.type);
6967 err = ext4_journal_stop(handle);
6968 if (!ret)
6969 ret = err;
6970
6971 if (freeze_protected)
6972 sb_end_intwrite(dquot->dq_sb);
6973
6974 return ret;
6975 }
6976
ext4_mark_dquot_dirty(struct dquot * dquot)6977 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6978 {
6979 struct super_block *sb = dquot->dq_sb;
6980
6981 if (ext4_is_quota_journalled(sb)) {
6982 dquot_mark_dquot_dirty(dquot);
6983 return ext4_write_dquot(dquot);
6984 } else {
6985 return dquot_mark_dquot_dirty(dquot);
6986 }
6987 }
6988
ext4_write_info(struct super_block * sb,int type)6989 static int ext4_write_info(struct super_block *sb, int type)
6990 {
6991 int ret, err;
6992 handle_t *handle;
6993
6994 /* Data block + inode block */
6995 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6996 if (IS_ERR(handle))
6997 return PTR_ERR(handle);
6998 ret = dquot_commit_info(sb, type);
6999 err = ext4_journal_stop(handle);
7000 if (!ret)
7001 ret = err;
7002 return ret;
7003 }
7004
lockdep_set_quota_inode(struct inode * inode,int subclass)7005 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7006 {
7007 struct ext4_inode_info *ei = EXT4_I(inode);
7008
7009 /* The first argument of lockdep_set_subclass has to be
7010 * *exactly* the same as the argument to init_rwsem() --- in
7011 * this case, in init_once() --- or lockdep gets unhappy
7012 * because the name of the lock is set using the
7013 * stringification of the argument to init_rwsem().
7014 */
7015 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
7016 lockdep_set_subclass(&ei->i_data_sem, subclass);
7017 }
7018
7019 /*
7020 * Standard function to be called on quota_on
7021 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7022 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7023 const struct path *path)
7024 {
7025 int err;
7026
7027 if (!test_opt(sb, QUOTA))
7028 return -EINVAL;
7029
7030 /* Quotafile not on the same filesystem? */
7031 if (path->dentry->d_sb != sb)
7032 return -EXDEV;
7033
7034 /* Quota already enabled for this file? */
7035 if (IS_NOQUOTA(d_inode(path->dentry)))
7036 return -EBUSY;
7037
7038 /* Journaling quota? */
7039 if (EXT4_SB(sb)->s_qf_names[type]) {
7040 /* Quotafile not in fs root? */
7041 if (path->dentry->d_parent != sb->s_root)
7042 ext4_msg(sb, KERN_WARNING,
7043 "Quota file not on filesystem root. "
7044 "Journaled quota will not work");
7045 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7046 } else {
7047 /*
7048 * Clear the flag just in case mount options changed since
7049 * last time.
7050 */
7051 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7052 }
7053
7054 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7055 err = dquot_quota_on(sb, type, format_id, path);
7056 if (!err) {
7057 struct inode *inode = d_inode(path->dentry);
7058 handle_t *handle;
7059
7060 /*
7061 * Set inode flags to prevent userspace from messing with quota
7062 * files. If this fails, we return success anyway since quotas
7063 * are already enabled and this is not a hard failure.
7064 */
7065 inode_lock(inode);
7066 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7067 if (IS_ERR(handle))
7068 goto unlock_inode;
7069 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7070 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7071 S_NOATIME | S_IMMUTABLE);
7072 err = ext4_mark_inode_dirty(handle, inode);
7073 ext4_journal_stop(handle);
7074 unlock_inode:
7075 inode_unlock(inode);
7076 if (err)
7077 dquot_quota_off(sb, type);
7078 }
7079 if (err)
7080 lockdep_set_quota_inode(path->dentry->d_inode,
7081 I_DATA_SEM_NORMAL);
7082 return err;
7083 }
7084
ext4_check_quota_inum(int type,unsigned long qf_inum)7085 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7086 {
7087 switch (type) {
7088 case USRQUOTA:
7089 return qf_inum == EXT4_USR_QUOTA_INO;
7090 case GRPQUOTA:
7091 return qf_inum == EXT4_GRP_QUOTA_INO;
7092 case PRJQUOTA:
7093 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7094 default:
7095 BUG();
7096 }
7097 }
7098
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7099 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7100 unsigned int flags)
7101 {
7102 int err;
7103 struct inode *qf_inode;
7104 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7105 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7106 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7107 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7108 };
7109
7110 BUG_ON(!ext4_has_feature_quota(sb));
7111
7112 if (!qf_inums[type])
7113 return -EPERM;
7114
7115 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7116 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7117 qf_inums[type], type);
7118 return -EUCLEAN;
7119 }
7120
7121 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7122 if (IS_ERR(qf_inode)) {
7123 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7124 qf_inums[type], type);
7125 return PTR_ERR(qf_inode);
7126 }
7127
7128 /* Don't account quota for quota files to avoid recursion */
7129 qf_inode->i_flags |= S_NOQUOTA;
7130 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7131 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7132 if (err)
7133 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7134 iput(qf_inode);
7135
7136 return err;
7137 }
7138
7139 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7140 int ext4_enable_quotas(struct super_block *sb)
7141 {
7142 int type, err = 0;
7143 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7144 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7145 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7146 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7147 };
7148 bool quota_mopt[EXT4_MAXQUOTAS] = {
7149 test_opt(sb, USRQUOTA),
7150 test_opt(sb, GRPQUOTA),
7151 test_opt(sb, PRJQUOTA),
7152 };
7153
7154 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7155 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7156 if (qf_inums[type]) {
7157 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7158 DQUOT_USAGE_ENABLED |
7159 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7160 if (err) {
7161 ext4_warning(sb,
7162 "Failed to enable quota tracking "
7163 "(type=%d, err=%d, ino=%lu). "
7164 "Please run e2fsck to fix.", type,
7165 err, qf_inums[type]);
7166
7167 ext4_quotas_off(sb, type);
7168 return err;
7169 }
7170 }
7171 }
7172 return 0;
7173 }
7174
ext4_quota_off(struct super_block * sb,int type)7175 static int ext4_quota_off(struct super_block *sb, int type)
7176 {
7177 struct inode *inode = sb_dqopt(sb)->files[type];
7178 handle_t *handle;
7179 int err;
7180
7181 /* Force all delayed allocation blocks to be allocated.
7182 * Caller already holds s_umount sem */
7183 if (test_opt(sb, DELALLOC))
7184 sync_filesystem(sb);
7185
7186 if (!inode || !igrab(inode))
7187 goto out;
7188
7189 err = dquot_quota_off(sb, type);
7190 if (err || ext4_has_feature_quota(sb))
7191 goto out_put;
7192 /*
7193 * When the filesystem was remounted read-only first, we cannot cleanup
7194 * inode flags here. Bad luck but people should be using QUOTA feature
7195 * these days anyway.
7196 */
7197 if (sb_rdonly(sb))
7198 goto out_put;
7199
7200 inode_lock(inode);
7201 /*
7202 * Update modification times of quota files when userspace can
7203 * start looking at them. If we fail, we return success anyway since
7204 * this is not a hard failure and quotas are already disabled.
7205 */
7206 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7207 if (IS_ERR(handle)) {
7208 err = PTR_ERR(handle);
7209 goto out_unlock;
7210 }
7211 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7212 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7213 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7214 err = ext4_mark_inode_dirty(handle, inode);
7215 ext4_journal_stop(handle);
7216 out_unlock:
7217 inode_unlock(inode);
7218 out_put:
7219 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7220 iput(inode);
7221 return err;
7222 out:
7223 return dquot_quota_off(sb, type);
7224 }
7225
7226 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7227 * acquiring the locks... As quota files are never truncated and quota code
7228 * itself serializes the operations (and no one else should touch the files)
7229 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7230 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7231 size_t len, loff_t off)
7232 {
7233 struct inode *inode = sb_dqopt(sb)->files[type];
7234 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7235 int offset = off & (sb->s_blocksize - 1);
7236 int tocopy;
7237 size_t toread;
7238 struct buffer_head *bh;
7239 loff_t i_size = i_size_read(inode);
7240
7241 if (off > i_size)
7242 return 0;
7243 if (off+len > i_size)
7244 len = i_size-off;
7245 toread = len;
7246 while (toread > 0) {
7247 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7248 bh = ext4_bread(NULL, inode, blk, 0);
7249 if (IS_ERR(bh))
7250 return PTR_ERR(bh);
7251 if (!bh) /* A hole? */
7252 memset(data, 0, tocopy);
7253 else
7254 memcpy(data, bh->b_data+offset, tocopy);
7255 brelse(bh);
7256 offset = 0;
7257 toread -= tocopy;
7258 data += tocopy;
7259 blk++;
7260 }
7261 return len;
7262 }
7263
7264 /* Write to quotafile (we know the transaction is already started and has
7265 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7266 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7267 const char *data, size_t len, loff_t off)
7268 {
7269 struct inode *inode = sb_dqopt(sb)->files[type];
7270 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7271 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7272 int retries = 0;
7273 struct buffer_head *bh;
7274 handle_t *handle = journal_current_handle();
7275
7276 if (!handle) {
7277 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7278 " cancelled because transaction is not started",
7279 (unsigned long long)off, (unsigned long long)len);
7280 return -EIO;
7281 }
7282 /*
7283 * Since we account only one data block in transaction credits,
7284 * then it is impossible to cross a block boundary.
7285 */
7286 if (sb->s_blocksize - offset < len) {
7287 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7288 " cancelled because not block aligned",
7289 (unsigned long long)off, (unsigned long long)len);
7290 return -EIO;
7291 }
7292
7293 do {
7294 bh = ext4_bread(handle, inode, blk,
7295 EXT4_GET_BLOCKS_CREATE |
7296 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7297 } while (PTR_ERR(bh) == -ENOSPC &&
7298 ext4_should_retry_alloc(inode->i_sb, &retries));
7299 if (IS_ERR(bh))
7300 return PTR_ERR(bh);
7301 if (!bh)
7302 goto out;
7303 BUFFER_TRACE(bh, "get write access");
7304 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7305 if (err) {
7306 brelse(bh);
7307 return err;
7308 }
7309 lock_buffer(bh);
7310 memcpy(bh->b_data+offset, data, len);
7311 flush_dcache_page(bh->b_page);
7312 unlock_buffer(bh);
7313 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7314 brelse(bh);
7315 out:
7316 if (inode->i_size < off + len) {
7317 i_size_write(inode, off + len);
7318 EXT4_I(inode)->i_disksize = inode->i_size;
7319 err2 = ext4_mark_inode_dirty(handle, inode);
7320 if (unlikely(err2 && !err))
7321 err = err2;
7322 }
7323 return err ? err : len;
7324 }
7325 #endif
7326
7327 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7328 static inline void register_as_ext2(void)
7329 {
7330 int err = register_filesystem(&ext2_fs_type);
7331 if (err)
7332 printk(KERN_WARNING
7333 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7334 }
7335
unregister_as_ext2(void)7336 static inline void unregister_as_ext2(void)
7337 {
7338 unregister_filesystem(&ext2_fs_type);
7339 }
7340
ext2_feature_set_ok(struct super_block * sb)7341 static inline int ext2_feature_set_ok(struct super_block *sb)
7342 {
7343 if (ext4_has_unknown_ext2_incompat_features(sb))
7344 return 0;
7345 if (sb_rdonly(sb))
7346 return 1;
7347 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7348 return 0;
7349 return 1;
7350 }
7351 #else
register_as_ext2(void)7352 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7353 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7354 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7355 #endif
7356
register_as_ext3(void)7357 static inline void register_as_ext3(void)
7358 {
7359 int err = register_filesystem(&ext3_fs_type);
7360 if (err)
7361 printk(KERN_WARNING
7362 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7363 }
7364
unregister_as_ext3(void)7365 static inline void unregister_as_ext3(void)
7366 {
7367 unregister_filesystem(&ext3_fs_type);
7368 }
7369
ext3_feature_set_ok(struct super_block * sb)7370 static inline int ext3_feature_set_ok(struct super_block *sb)
7371 {
7372 if (ext4_has_unknown_ext3_incompat_features(sb))
7373 return 0;
7374 if (!ext4_has_feature_journal(sb))
7375 return 0;
7376 if (sb_rdonly(sb))
7377 return 1;
7378 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7379 return 0;
7380 return 1;
7381 }
7382
ext4_kill_sb(struct super_block * sb)7383 static void ext4_kill_sb(struct super_block *sb)
7384 {
7385 struct ext4_sb_info *sbi = EXT4_SB(sb);
7386 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7387
7388 kill_block_super(sb);
7389
7390 if (bdev_file)
7391 bdev_fput(bdev_file);
7392 }
7393
7394 static struct file_system_type ext4_fs_type = {
7395 .owner = THIS_MODULE,
7396 .name = "ext4",
7397 .init_fs_context = ext4_init_fs_context,
7398 .parameters = ext4_param_specs,
7399 .kill_sb = ext4_kill_sb,
7400 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7401 };
7402 MODULE_ALIAS_FS("ext4");
7403
7404 /* Shared across all ext4 file systems */
7405 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7406
ext4_init_fs(void)7407 static int __init ext4_init_fs(void)
7408 {
7409 int i, err;
7410
7411 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7412 ext4_li_info = NULL;
7413
7414 /* Build-time check for flags consistency */
7415 ext4_check_flag_values();
7416
7417 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7418 init_waitqueue_head(&ext4__ioend_wq[i]);
7419
7420 err = ext4_init_es();
7421 if (err)
7422 return err;
7423
7424 err = ext4_init_pending();
7425 if (err)
7426 goto out7;
7427
7428 err = ext4_init_post_read_processing();
7429 if (err)
7430 goto out6;
7431
7432 err = ext4_init_pageio();
7433 if (err)
7434 goto out5;
7435
7436 err = ext4_init_system_zone();
7437 if (err)
7438 goto out4;
7439
7440 err = ext4_init_sysfs();
7441 if (err)
7442 goto out3;
7443
7444 err = ext4_init_mballoc();
7445 if (err)
7446 goto out2;
7447 err = init_inodecache();
7448 if (err)
7449 goto out1;
7450
7451 err = ext4_fc_init_dentry_cache();
7452 if (err)
7453 goto out05;
7454
7455 register_as_ext3();
7456 register_as_ext2();
7457 err = register_filesystem(&ext4_fs_type);
7458 if (err)
7459 goto out;
7460
7461 return 0;
7462 out:
7463 unregister_as_ext2();
7464 unregister_as_ext3();
7465 ext4_fc_destroy_dentry_cache();
7466 out05:
7467 destroy_inodecache();
7468 out1:
7469 ext4_exit_mballoc();
7470 out2:
7471 ext4_exit_sysfs();
7472 out3:
7473 ext4_exit_system_zone();
7474 out4:
7475 ext4_exit_pageio();
7476 out5:
7477 ext4_exit_post_read_processing();
7478 out6:
7479 ext4_exit_pending();
7480 out7:
7481 ext4_exit_es();
7482
7483 return err;
7484 }
7485
ext4_exit_fs(void)7486 static void __exit ext4_exit_fs(void)
7487 {
7488 ext4_destroy_lazyinit_thread();
7489 unregister_as_ext2();
7490 unregister_as_ext3();
7491 unregister_filesystem(&ext4_fs_type);
7492 ext4_fc_destroy_dentry_cache();
7493 destroy_inodecache();
7494 ext4_exit_mballoc();
7495 ext4_exit_sysfs();
7496 ext4_exit_system_zone();
7497 ext4_exit_pageio();
7498 ext4_exit_post_read_processing();
7499 ext4_exit_es();
7500 ext4_exit_pending();
7501 }
7502
7503 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7504 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7505 MODULE_LICENSE("GPL");
7506 module_init(ext4_init_fs)
7507 module_exit(ext4_exit_fs)
7508