1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <[email protected]>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/cpu.h>
41 #include <linux/io.h>
42 #include <linux/hardirq.h>
43 #include <linux/atomic.h>
44 #include <linux/iommu.h>
45 #include <linux/ubsan.h>
46
47 #include <asm/stacktrace.h>
48 #include <asm/processor.h>
49 #include <asm/debugreg.h>
50 #include <asm/realmode.h>
51 #include <asm/text-patching.h>
52 #include <asm/ftrace.h>
53 #include <asm/traps.h>
54 #include <asm/desc.h>
55 #include <asm/fred.h>
56 #include <asm/fpu/api.h>
57 #include <asm/cpu.h>
58 #include <asm/cpu_entry_area.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/fpu/xstate.h>
64 #include <asm/vm86.h>
65 #include <asm/umip.h>
66 #include <asm/insn.h>
67 #include <asm/insn-eval.h>
68 #include <asm/vdso.h>
69 #include <asm/tdx.h>
70 #include <asm/cfi.h>
71
72 #ifdef CONFIG_X86_64
73 #include <asm/x86_init.h>
74 #else
75 #include <asm/processor-flags.h>
76 #include <asm/setup.h>
77 #endif
78
79 #include <asm/proto.h>
80
81 DECLARE_BITMAP(system_vectors, NR_VECTORS);
82
is_valid_bugaddr(unsigned long addr)83 __always_inline int is_valid_bugaddr(unsigned long addr)
84 {
85 if (addr < TASK_SIZE_MAX)
86 return 0;
87
88 /*
89 * We got #UD, if the text isn't readable we'd have gotten
90 * a different exception.
91 */
92 return *(unsigned short *)addr == INSN_UD2;
93 }
94
95 /*
96 * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
97 * If it's a UD1, get the ModRM byte to pass along to UBSan.
98 */
decode_bug(unsigned long addr,u32 * imm)99 __always_inline int decode_bug(unsigned long addr, u32 *imm)
100 {
101 u8 v;
102
103 if (addr < TASK_SIZE_MAX)
104 return BUG_NONE;
105
106 v = *(u8 *)(addr++);
107 if (v == INSN_ASOP)
108 v = *(u8 *)(addr++);
109 if (v != OPCODE_ESCAPE)
110 return BUG_NONE;
111
112 v = *(u8 *)(addr++);
113 if (v == SECOND_BYTE_OPCODE_UD2)
114 return BUG_UD2;
115
116 if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1)
117 return BUG_NONE;
118
119 /* Retrieve the immediate (type value) for the UBSAN UD1 */
120 v = *(u8 *)(addr++);
121 if (X86_MODRM_RM(v) == 4)
122 addr++;
123
124 *imm = 0;
125 if (X86_MODRM_MOD(v) == 1)
126 *imm = *(u8 *)addr;
127 else if (X86_MODRM_MOD(v) == 2)
128 *imm = *(u32 *)addr;
129 else
130 WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v));
131
132 return BUG_UD1;
133 }
134
135
136 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)137 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
138 struct pt_regs *regs, long error_code)
139 {
140 if (v8086_mode(regs)) {
141 /*
142 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
143 * On nmi (interrupt 2), do_trap should not be called.
144 */
145 if (trapnr < X86_TRAP_UD) {
146 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
147 error_code, trapnr))
148 return 0;
149 }
150 } else if (!user_mode(regs)) {
151 if (fixup_exception(regs, trapnr, error_code, 0))
152 return 0;
153
154 tsk->thread.error_code = error_code;
155 tsk->thread.trap_nr = trapnr;
156 die(str, regs, error_code);
157 } else {
158 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
159 return 0;
160 }
161
162 /*
163 * We want error_code and trap_nr set for userspace faults and
164 * kernelspace faults which result in die(), but not
165 * kernelspace faults which are fixed up. die() gives the
166 * process no chance to handle the signal and notice the
167 * kernel fault information, so that won't result in polluting
168 * the information about previously queued, but not yet
169 * delivered, faults. See also exc_general_protection below.
170 */
171 tsk->thread.error_code = error_code;
172 tsk->thread.trap_nr = trapnr;
173
174 return -1;
175 }
176
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)177 static void show_signal(struct task_struct *tsk, int signr,
178 const char *type, const char *desc,
179 struct pt_regs *regs, long error_code)
180 {
181 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
182 printk_ratelimit()) {
183 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
184 tsk->comm, task_pid_nr(tsk), type, desc,
185 regs->ip, regs->sp, error_code);
186 print_vma_addr(KERN_CONT " in ", regs->ip);
187 pr_cont("\n");
188 }
189 }
190
191 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)192 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
193 long error_code, int sicode, void __user *addr)
194 {
195 struct task_struct *tsk = current;
196
197 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
198 return;
199
200 show_signal(tsk, signr, "trap ", str, regs, error_code);
201
202 if (!sicode)
203 force_sig(signr);
204 else
205 force_sig_fault(signr, sicode, addr);
206 }
207 NOKPROBE_SYMBOL(do_trap);
208
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)209 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
210 unsigned long trapnr, int signr, int sicode, void __user *addr)
211 {
212 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
213
214 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
215 NOTIFY_STOP) {
216 cond_local_irq_enable(regs);
217 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
218 cond_local_irq_disable(regs);
219 }
220 }
221
222 /*
223 * Posix requires to provide the address of the faulting instruction for
224 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
225 *
226 * This address is usually regs->ip, but when an uprobe moved the code out
227 * of line then regs->ip points to the XOL code which would confuse
228 * anything which analyzes the fault address vs. the unmodified binary. If
229 * a trap happened in XOL code then uprobe maps regs->ip back to the
230 * original instruction address.
231 */
error_get_trap_addr(struct pt_regs * regs)232 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
233 {
234 return (void __user *)uprobe_get_trap_addr(regs);
235 }
236
DEFINE_IDTENTRY(exc_divide_error)237 DEFINE_IDTENTRY(exc_divide_error)
238 {
239 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
240 FPE_INTDIV, error_get_trap_addr(regs));
241 }
242
DEFINE_IDTENTRY(exc_overflow)243 DEFINE_IDTENTRY(exc_overflow)
244 {
245 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
246 }
247
248 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)249 void handle_invalid_op(struct pt_regs *regs)
250 #else
251 static inline void handle_invalid_op(struct pt_regs *regs)
252 #endif
253 {
254 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
255 ILL_ILLOPN, error_get_trap_addr(regs));
256 }
257
handle_bug(struct pt_regs * regs)258 static noinstr bool handle_bug(struct pt_regs *regs)
259 {
260 bool handled = false;
261 int ud_type;
262 u32 imm;
263
264 ud_type = decode_bug(regs->ip, &imm);
265 if (ud_type == BUG_NONE)
266 return handled;
267
268 /*
269 * All lies, just get the WARN/BUG out.
270 */
271 instrumentation_begin();
272 /*
273 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
274 * is a rare case that uses @regs without passing them to
275 * irqentry_enter().
276 */
277 kmsan_unpoison_entry_regs(regs);
278 /*
279 * Since we're emulating a CALL with exceptions, restore the interrupt
280 * state to what it was at the exception site.
281 */
282 if (regs->flags & X86_EFLAGS_IF)
283 raw_local_irq_enable();
284 if (ud_type == BUG_UD2) {
285 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
286 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
287 regs->ip += LEN_UD2;
288 handled = true;
289 }
290 } else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) {
291 pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip);
292 }
293 if (regs->flags & X86_EFLAGS_IF)
294 raw_local_irq_disable();
295 instrumentation_end();
296
297 return handled;
298 }
299
DEFINE_IDTENTRY_RAW(exc_invalid_op)300 DEFINE_IDTENTRY_RAW(exc_invalid_op)
301 {
302 irqentry_state_t state;
303
304 /*
305 * We use UD2 as a short encoding for 'CALL __WARN', as such
306 * handle it before exception entry to avoid recursive WARN
307 * in case exception entry is the one triggering WARNs.
308 */
309 if (!user_mode(regs) && handle_bug(regs))
310 return;
311
312 state = irqentry_enter(regs);
313 instrumentation_begin();
314 handle_invalid_op(regs);
315 instrumentation_end();
316 irqentry_exit(regs, state);
317 }
318
DEFINE_IDTENTRY(exc_coproc_segment_overrun)319 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
320 {
321 do_error_trap(regs, 0, "coprocessor segment overrun",
322 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
323 }
324
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)325 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
326 {
327 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
328 0, NULL);
329 }
330
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)331 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
332 {
333 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
334 SIGBUS, 0, NULL);
335 }
336
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)337 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
338 {
339 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
340 0, NULL);
341 }
342
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)343 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
344 {
345 char *str = "alignment check";
346
347 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
348 return;
349
350 if (!user_mode(regs))
351 die("Split lock detected\n", regs, error_code);
352
353 local_irq_enable();
354
355 if (handle_user_split_lock(regs, error_code))
356 goto out;
357
358 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
359 error_code, BUS_ADRALN, NULL);
360
361 out:
362 local_irq_disable();
363 }
364
365 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)366 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
367 unsigned long fault_address,
368 struct stack_info *info)
369 {
370 const char *name = stack_type_name(info->type);
371
372 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
373 name, (void *)fault_address, info->begin, info->end);
374
375 die("stack guard page", regs, 0);
376
377 /* Be absolutely certain we don't return. */
378 panic("%s stack guard hit", name);
379 }
380 #endif
381
382 /*
383 * Prevent the compiler and/or objtool from marking the !CONFIG_X86_ESPFIX64
384 * version of exc_double_fault() as noreturn. Otherwise the noreturn mismatch
385 * between configs triggers objtool warnings.
386 *
387 * This is a temporary hack until we have compiler or plugin support for
388 * annotating noreturns.
389 */
390 #ifdef CONFIG_X86_ESPFIX64
391 #define always_true() true
392 #else
393 bool always_true(void);
always_true(void)394 bool __weak always_true(void) { return true; }
395 #endif
396
397 /*
398 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
399 *
400 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
401 * SDM's warnings about double faults being unrecoverable, returning works as
402 * expected. Presumably what the SDM actually means is that the CPU may get
403 * the register state wrong on entry, so returning could be a bad idea.
404 *
405 * Various CPU engineers have promised that double faults due to an IRET fault
406 * while the stack is read-only are, in fact, recoverable.
407 *
408 * On x86_32, this is entered through a task gate, and regs are synthesized
409 * from the TSS. Returning is, in principle, okay, but changes to regs will
410 * be lost. If, for some reason, we need to return to a context with modified
411 * regs, the shim code could be adjusted to synchronize the registers.
412 *
413 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
414 * to be read before doing anything else.
415 */
DEFINE_IDTENTRY_DF(exc_double_fault)416 DEFINE_IDTENTRY_DF(exc_double_fault)
417 {
418 static const char str[] = "double fault";
419 struct task_struct *tsk = current;
420
421 #ifdef CONFIG_VMAP_STACK
422 unsigned long address = read_cr2();
423 struct stack_info info;
424 #endif
425
426 #ifdef CONFIG_X86_ESPFIX64
427 extern unsigned char native_irq_return_iret[];
428
429 /*
430 * If IRET takes a non-IST fault on the espfix64 stack, then we
431 * end up promoting it to a doublefault. In that case, take
432 * advantage of the fact that we're not using the normal (TSS.sp0)
433 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
434 * and then modify our own IRET frame so that, when we return,
435 * we land directly at the #GP(0) vector with the stack already
436 * set up according to its expectations.
437 *
438 * The net result is that our #GP handler will think that we
439 * entered from usermode with the bad user context.
440 *
441 * No need for nmi_enter() here because we don't use RCU.
442 */
443 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
444 regs->cs == __KERNEL_CS &&
445 regs->ip == (unsigned long)native_irq_return_iret)
446 {
447 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
448 unsigned long *p = (unsigned long *)regs->sp;
449
450 /*
451 * regs->sp points to the failing IRET frame on the
452 * ESPFIX64 stack. Copy it to the entry stack. This fills
453 * in gpregs->ss through gpregs->ip.
454 *
455 */
456 gpregs->ip = p[0];
457 gpregs->cs = p[1];
458 gpregs->flags = p[2];
459 gpregs->sp = p[3];
460 gpregs->ss = p[4];
461 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
462
463 /*
464 * Adjust our frame so that we return straight to the #GP
465 * vector with the expected RSP value. This is safe because
466 * we won't enable interrupts or schedule before we invoke
467 * general_protection, so nothing will clobber the stack
468 * frame we just set up.
469 *
470 * We will enter general_protection with kernel GSBASE,
471 * which is what the stub expects, given that the faulting
472 * RIP will be the IRET instruction.
473 */
474 regs->ip = (unsigned long)asm_exc_general_protection;
475 regs->sp = (unsigned long)&gpregs->orig_ax;
476
477 return;
478 }
479 #endif
480
481 irqentry_nmi_enter(regs);
482 instrumentation_begin();
483 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
484
485 tsk->thread.error_code = error_code;
486 tsk->thread.trap_nr = X86_TRAP_DF;
487
488 #ifdef CONFIG_VMAP_STACK
489 /*
490 * If we overflow the stack into a guard page, the CPU will fail
491 * to deliver #PF and will send #DF instead. Similarly, if we
492 * take any non-IST exception while too close to the bottom of
493 * the stack, the processor will get a page fault while
494 * delivering the exception and will generate a double fault.
495 *
496 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
497 * Page-Fault Exception (#PF):
498 *
499 * Processors update CR2 whenever a page fault is detected. If a
500 * second page fault occurs while an earlier page fault is being
501 * delivered, the faulting linear address of the second fault will
502 * overwrite the contents of CR2 (replacing the previous
503 * address). These updates to CR2 occur even if the page fault
504 * results in a double fault or occurs during the delivery of a
505 * double fault.
506 *
507 * The logic below has a small possibility of incorrectly diagnosing
508 * some errors as stack overflows. For example, if the IDT or GDT
509 * gets corrupted such that #GP delivery fails due to a bad descriptor
510 * causing #GP and we hit this condition while CR2 coincidentally
511 * points to the stack guard page, we'll think we overflowed the
512 * stack. Given that we're going to panic one way or another
513 * if this happens, this isn't necessarily worth fixing.
514 *
515 * If necessary, we could improve the test by only diagnosing
516 * a stack overflow if the saved RSP points within 47 bytes of
517 * the bottom of the stack: if RSP == tsk_stack + 48 and we
518 * take an exception, the stack is already aligned and there
519 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
520 * possible error code, so a stack overflow would *not* double
521 * fault. With any less space left, exception delivery could
522 * fail, and, as a practical matter, we've overflowed the
523 * stack even if the actual trigger for the double fault was
524 * something else.
525 */
526 if (get_stack_guard_info((void *)address, &info))
527 handle_stack_overflow(regs, address, &info);
528 #endif
529
530 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
531 die("double fault", regs, error_code);
532 if (always_true())
533 panic("Machine halted.");
534 instrumentation_end();
535 }
536
DEFINE_IDTENTRY(exc_bounds)537 DEFINE_IDTENTRY(exc_bounds)
538 {
539 if (notify_die(DIE_TRAP, "bounds", regs, 0,
540 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
541 return;
542 cond_local_irq_enable(regs);
543
544 if (!user_mode(regs))
545 die("bounds", regs, 0);
546
547 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
548
549 cond_local_irq_disable(regs);
550 }
551
552 enum kernel_gp_hint {
553 GP_NO_HINT,
554 GP_NON_CANONICAL,
555 GP_CANONICAL
556 };
557
558 /*
559 * When an uncaught #GP occurs, try to determine the memory address accessed by
560 * the instruction and return that address to the caller. Also, try to figure
561 * out whether any part of the access to that address was non-canonical.
562 */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)563 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
564 unsigned long *addr)
565 {
566 u8 insn_buf[MAX_INSN_SIZE];
567 struct insn insn;
568 int ret;
569
570 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
571 MAX_INSN_SIZE))
572 return GP_NO_HINT;
573
574 ret = insn_decode_kernel(&insn, insn_buf);
575 if (ret < 0)
576 return GP_NO_HINT;
577
578 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
579 if (*addr == -1UL)
580 return GP_NO_HINT;
581
582 #ifdef CONFIG_X86_64
583 /*
584 * Check that:
585 * - the operand is not in the kernel half
586 * - the last byte of the operand is not in the user canonical half
587 */
588 if (*addr < ~__VIRTUAL_MASK &&
589 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
590 return GP_NON_CANONICAL;
591 #endif
592
593 return GP_CANONICAL;
594 }
595
596 #define GPFSTR "general protection fault"
597
fixup_iopl_exception(struct pt_regs * regs)598 static bool fixup_iopl_exception(struct pt_regs *regs)
599 {
600 struct thread_struct *t = ¤t->thread;
601 unsigned char byte;
602 unsigned long ip;
603
604 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
605 return false;
606
607 if (insn_get_effective_ip(regs, &ip))
608 return false;
609
610 if (get_user(byte, (const char __user *)ip))
611 return false;
612
613 if (byte != 0xfa && byte != 0xfb)
614 return false;
615
616 if (!t->iopl_warn && printk_ratelimit()) {
617 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
618 current->comm, task_pid_nr(current), ip);
619 print_vma_addr(KERN_CONT " in ", ip);
620 pr_cont("\n");
621 t->iopl_warn = 1;
622 }
623
624 regs->ip += 1;
625 return true;
626 }
627
628 /*
629 * The unprivileged ENQCMD instruction generates #GPs if the
630 * IA32_PASID MSR has not been populated. If possible, populate
631 * the MSR from a PASID previously allocated to the mm.
632 */
try_fixup_enqcmd_gp(void)633 static bool try_fixup_enqcmd_gp(void)
634 {
635 #ifdef CONFIG_ARCH_HAS_CPU_PASID
636 u32 pasid;
637
638 /*
639 * MSR_IA32_PASID is managed using XSAVE. Directly
640 * writing to the MSR is only possible when fpregs
641 * are valid and the fpstate is not. This is
642 * guaranteed when handling a userspace exception
643 * in *before* interrupts are re-enabled.
644 */
645 lockdep_assert_irqs_disabled();
646
647 /*
648 * Hardware without ENQCMD will not generate
649 * #GPs that can be fixed up here.
650 */
651 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
652 return false;
653
654 /*
655 * If the mm has not been allocated a
656 * PASID, the #GP can not be fixed up.
657 */
658 if (!mm_valid_pasid(current->mm))
659 return false;
660
661 pasid = mm_get_enqcmd_pasid(current->mm);
662
663 /*
664 * Did this thread already have its PASID activated?
665 * If so, the #GP must be from something else.
666 */
667 if (current->pasid_activated)
668 return false;
669
670 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
671 current->pasid_activated = 1;
672
673 return true;
674 #else
675 return false;
676 #endif
677 }
678
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str,unsigned long address)679 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
680 unsigned long error_code, const char *str,
681 unsigned long address)
682 {
683 if (fixup_exception(regs, trapnr, error_code, address))
684 return true;
685
686 current->thread.error_code = error_code;
687 current->thread.trap_nr = trapnr;
688
689 /*
690 * To be potentially processing a kprobe fault and to trust the result
691 * from kprobe_running(), we have to be non-preemptible.
692 */
693 if (!preemptible() && kprobe_running() &&
694 kprobe_fault_handler(regs, trapnr))
695 return true;
696
697 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
698 }
699
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)700 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
701 unsigned long error_code, const char *str)
702 {
703 current->thread.error_code = error_code;
704 current->thread.trap_nr = trapnr;
705 show_signal(current, SIGSEGV, "", str, regs, error_code);
706 force_sig(SIGSEGV);
707 }
708
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)709 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
710 {
711 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
712 enum kernel_gp_hint hint = GP_NO_HINT;
713 unsigned long gp_addr;
714
715 if (user_mode(regs) && try_fixup_enqcmd_gp())
716 return;
717
718 cond_local_irq_enable(regs);
719
720 if (static_cpu_has(X86_FEATURE_UMIP)) {
721 if (user_mode(regs) && fixup_umip_exception(regs))
722 goto exit;
723 }
724
725 if (v8086_mode(regs)) {
726 local_irq_enable();
727 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
728 local_irq_disable();
729 return;
730 }
731
732 if (user_mode(regs)) {
733 if (fixup_iopl_exception(regs))
734 goto exit;
735
736 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
737 goto exit;
738
739 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
740 goto exit;
741 }
742
743 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
744 goto exit;
745
746 if (error_code)
747 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
748 else
749 hint = get_kernel_gp_address(regs, &gp_addr);
750
751 if (hint != GP_NO_HINT)
752 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
753 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
754 : "maybe for address",
755 gp_addr);
756
757 /*
758 * KASAN is interested only in the non-canonical case, clear it
759 * otherwise.
760 */
761 if (hint != GP_NON_CANONICAL)
762 gp_addr = 0;
763
764 die_addr(desc, regs, error_code, gp_addr);
765
766 exit:
767 cond_local_irq_disable(regs);
768 }
769
do_int3(struct pt_regs * regs)770 static bool do_int3(struct pt_regs *regs)
771 {
772 int res;
773
774 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
775 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
776 SIGTRAP) == NOTIFY_STOP)
777 return true;
778 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
779
780 #ifdef CONFIG_KPROBES
781 if (kprobe_int3_handler(regs))
782 return true;
783 #endif
784 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
785
786 return res == NOTIFY_STOP;
787 }
788 NOKPROBE_SYMBOL(do_int3);
789
do_int3_user(struct pt_regs * regs)790 static void do_int3_user(struct pt_regs *regs)
791 {
792 if (do_int3(regs))
793 return;
794
795 cond_local_irq_enable(regs);
796 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
797 cond_local_irq_disable(regs);
798 }
799
DEFINE_IDTENTRY_RAW(exc_int3)800 DEFINE_IDTENTRY_RAW(exc_int3)
801 {
802 /*
803 * poke_int3_handler() is completely self contained code; it does (and
804 * must) *NOT* call out to anything, lest it hits upon yet another
805 * INT3.
806 */
807 if (poke_int3_handler(regs))
808 return;
809
810 /*
811 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
812 * and therefore can trigger INT3, hence poke_int3_handler() must
813 * be done before. If the entry came from kernel mode, then use
814 * nmi_enter() because the INT3 could have been hit in any context
815 * including NMI.
816 */
817 if (user_mode(regs)) {
818 irqentry_enter_from_user_mode(regs);
819 instrumentation_begin();
820 do_int3_user(regs);
821 instrumentation_end();
822 irqentry_exit_to_user_mode(regs);
823 } else {
824 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
825
826 instrumentation_begin();
827 if (!do_int3(regs))
828 die("int3", regs, 0);
829 instrumentation_end();
830 irqentry_nmi_exit(regs, irq_state);
831 }
832 }
833
834 #ifdef CONFIG_X86_64
835 /*
836 * Help handler running on a per-cpu (IST or entry trampoline) stack
837 * to switch to the normal thread stack if the interrupted code was in
838 * user mode. The actual stack switch is done in entry_64.S
839 */
sync_regs(struct pt_regs * eregs)840 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
841 {
842 struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
843 if (regs != eregs)
844 *regs = *eregs;
845 return regs;
846 }
847
848 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)849 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
850 {
851 unsigned long sp, *stack;
852 struct stack_info info;
853 struct pt_regs *regs_ret;
854
855 /*
856 * In the SYSCALL entry path the RSP value comes from user-space - don't
857 * trust it and switch to the current kernel stack
858 */
859 if (ip_within_syscall_gap(regs)) {
860 sp = current_top_of_stack();
861 goto sync;
862 }
863
864 /*
865 * From here on the RSP value is trusted. Now check whether entry
866 * happened from a safe stack. Not safe are the entry or unknown stacks,
867 * use the fall-back stack instead in this case.
868 */
869 sp = regs->sp;
870 stack = (unsigned long *)sp;
871
872 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
873 info.type > STACK_TYPE_EXCEPTION_LAST)
874 sp = __this_cpu_ist_top_va(VC2);
875
876 sync:
877 /*
878 * Found a safe stack - switch to it as if the entry didn't happen via
879 * IST stack. The code below only copies pt_regs, the real switch happens
880 * in assembly code.
881 */
882 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
883
884 regs_ret = (struct pt_regs *)sp;
885 *regs_ret = *regs;
886
887 return regs_ret;
888 }
889 #endif
890
fixup_bad_iret(struct pt_regs * bad_regs)891 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
892 {
893 struct pt_regs tmp, *new_stack;
894
895 /*
896 * This is called from entry_64.S early in handling a fault
897 * caused by a bad iret to user mode. To handle the fault
898 * correctly, we want to move our stack frame to where it would
899 * be had we entered directly on the entry stack (rather than
900 * just below the IRET frame) and we want to pretend that the
901 * exception came from the IRET target.
902 */
903 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
904
905 /* Copy the IRET target to the temporary storage. */
906 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
907
908 /* Copy the remainder of the stack from the current stack. */
909 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
910
911 /* Update the entry stack */
912 __memcpy(new_stack, &tmp, sizeof(tmp));
913
914 BUG_ON(!user_mode(new_stack));
915 return new_stack;
916 }
917 #endif
918
is_sysenter_singlestep(struct pt_regs * regs)919 static bool is_sysenter_singlestep(struct pt_regs *regs)
920 {
921 /*
922 * We don't try for precision here. If we're anywhere in the region of
923 * code that can be single-stepped in the SYSENTER entry path, then
924 * assume that this is a useless single-step trap due to SYSENTER
925 * being invoked with TF set. (We don't know in advance exactly
926 * which instructions will be hit because BTF could plausibly
927 * be set.)
928 */
929 #ifdef CONFIG_X86_32
930 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
931 (unsigned long)__end_SYSENTER_singlestep_region -
932 (unsigned long)__begin_SYSENTER_singlestep_region;
933 #elif defined(CONFIG_IA32_EMULATION)
934 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
935 (unsigned long)__end_entry_SYSENTER_compat -
936 (unsigned long)entry_SYSENTER_compat;
937 #else
938 return false;
939 #endif
940 }
941
debug_read_clear_dr6(void)942 static __always_inline unsigned long debug_read_clear_dr6(void)
943 {
944 unsigned long dr6;
945
946 /*
947 * The Intel SDM says:
948 *
949 * Certain debug exceptions may clear bits 0-3. The remaining
950 * contents of the DR6 register are never cleared by the
951 * processor. To avoid confusion in identifying debug
952 * exceptions, debug handlers should clear the register before
953 * returning to the interrupted task.
954 *
955 * Keep it simple: clear DR6 immediately.
956 */
957 get_debugreg(dr6, 6);
958 set_debugreg(DR6_RESERVED, 6);
959 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
960
961 return dr6;
962 }
963
964 /*
965 * Our handling of the processor debug registers is non-trivial.
966 * We do not clear them on entry and exit from the kernel. Therefore
967 * it is possible to get a watchpoint trap here from inside the kernel.
968 * However, the code in ./ptrace.c has ensured that the user can
969 * only set watchpoints on userspace addresses. Therefore the in-kernel
970 * watchpoint trap can only occur in code which is reading/writing
971 * from user space. Such code must not hold kernel locks (since it
972 * can equally take a page fault), therefore it is safe to call
973 * force_sig_info even though that claims and releases locks.
974 *
975 * Code in ./signal.c ensures that the debug control register
976 * is restored before we deliver any signal, and therefore that
977 * user code runs with the correct debug control register even though
978 * we clear it here.
979 *
980 * Being careful here means that we don't have to be as careful in a
981 * lot of more complicated places (task switching can be a bit lazy
982 * about restoring all the debug state, and ptrace doesn't have to
983 * find every occurrence of the TF bit that could be saved away even
984 * by user code)
985 *
986 * May run on IST stack.
987 */
988
notify_debug(struct pt_regs * regs,unsigned long * dr6)989 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
990 {
991 /*
992 * Notifiers will clear bits in @dr6 to indicate the event has been
993 * consumed - hw_breakpoint_handler(), single_stop_cont().
994 *
995 * Notifiers will set bits in @virtual_dr6 to indicate the desire
996 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
997 */
998 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
999 return true;
1000
1001 return false;
1002 }
1003
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)1004 static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
1005 {
1006 /*
1007 * Disable breakpoints during exception handling; recursive exceptions
1008 * are exceedingly 'fun'.
1009 *
1010 * Since this function is NOKPROBE, and that also applies to
1011 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1012 * HW_BREAKPOINT_W on our stack)
1013 *
1014 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1015 * includes the entry stack is excluded for everything.
1016 *
1017 * For FRED, nested #DB should just work fine. But when a watchpoint or
1018 * breakpoint is set in the code path which is executed by #DB handler,
1019 * it results in an endless recursion and stack overflow. Thus we stay
1020 * with the IDT approach, i.e., save DR7 and disable #DB.
1021 */
1022 unsigned long dr7 = local_db_save();
1023 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1024 instrumentation_begin();
1025
1026 /*
1027 * If something gets miswired and we end up here for a user mode
1028 * #DB, we will malfunction.
1029 */
1030 WARN_ON_ONCE(user_mode(regs));
1031
1032 if (test_thread_flag(TIF_BLOCKSTEP)) {
1033 /*
1034 * The SDM says "The processor clears the BTF flag when it
1035 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1036 * it for userspace, but we just took a kernel #DB, so re-set
1037 * BTF.
1038 */
1039 unsigned long debugctl;
1040
1041 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1042 debugctl |= DEBUGCTLMSR_BTF;
1043 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1044 }
1045
1046 /*
1047 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1048 * watchpoint at the same time then that will still be handled.
1049 */
1050 if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
1051 (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1052 dr6 &= ~DR_STEP;
1053
1054 /*
1055 * The kernel doesn't use INT1
1056 */
1057 if (!dr6)
1058 goto out;
1059
1060 if (notify_debug(regs, &dr6))
1061 goto out;
1062
1063 /*
1064 * The kernel doesn't use TF single-step outside of:
1065 *
1066 * - Kprobes, consumed through kprobe_debug_handler()
1067 * - KGDB, consumed through notify_debug()
1068 *
1069 * So if we get here with DR_STEP set, something is wonky.
1070 *
1071 * A known way to trigger this is through QEMU's GDB stub,
1072 * which leaks #DB into the guest and causes IST recursion.
1073 */
1074 if (WARN_ON_ONCE(dr6 & DR_STEP))
1075 regs->flags &= ~X86_EFLAGS_TF;
1076 out:
1077 instrumentation_end();
1078 irqentry_nmi_exit(regs, irq_state);
1079
1080 local_db_restore(dr7);
1081 }
1082
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1083 static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1084 {
1085 bool icebp;
1086
1087 /*
1088 * If something gets miswired and we end up here for a kernel mode
1089 * #DB, we will malfunction.
1090 */
1091 WARN_ON_ONCE(!user_mode(regs));
1092
1093 /*
1094 * NB: We can't easily clear DR7 here because
1095 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1096 * user memory, etc. This means that a recursive #DB is possible. If
1097 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1098 * Since we're not on the IST stack right now, everything will be
1099 * fine.
1100 */
1101
1102 irqentry_enter_from_user_mode(regs);
1103 instrumentation_begin();
1104
1105 /*
1106 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1107 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1108 *
1109 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1110 * even if it is not the result of PTRACE_SINGLESTEP.
1111 */
1112 current->thread.virtual_dr6 = (dr6 & DR_STEP);
1113
1114 /*
1115 * The SDM says "The processor clears the BTF flag when it
1116 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1117 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1118 */
1119 clear_thread_flag(TIF_BLOCKSTEP);
1120
1121 /*
1122 * If dr6 has no reason to give us about the origin of this trap,
1123 * then it's very likely the result of an icebp/int01 trap.
1124 * User wants a sigtrap for that.
1125 */
1126 icebp = !dr6;
1127
1128 if (notify_debug(regs, &dr6))
1129 goto out;
1130
1131 /* It's safe to allow irq's after DR6 has been saved */
1132 local_irq_enable();
1133
1134 if (v8086_mode(regs)) {
1135 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1136 goto out_irq;
1137 }
1138
1139 /* #DB for bus lock can only be triggered from userspace. */
1140 if (dr6 & DR_BUS_LOCK)
1141 handle_bus_lock(regs);
1142
1143 /* Add the virtual_dr6 bits for signals. */
1144 dr6 |= current->thread.virtual_dr6;
1145 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1146 send_sigtrap(regs, 0, get_si_code(dr6));
1147
1148 out_irq:
1149 local_irq_disable();
1150 out:
1151 instrumentation_end();
1152 irqentry_exit_to_user_mode(regs);
1153 }
1154
1155 #ifdef CONFIG_X86_64
1156 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1157 DEFINE_IDTENTRY_DEBUG(exc_debug)
1158 {
1159 exc_debug_kernel(regs, debug_read_clear_dr6());
1160 }
1161
1162 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1163 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1164 {
1165 exc_debug_user(regs, debug_read_clear_dr6());
1166 }
1167
1168 #ifdef CONFIG_X86_FRED
1169 /*
1170 * When occurred on different ring level, i.e., from user or kernel
1171 * context, #DB needs to be handled on different stack: User #DB on
1172 * current task stack, while kernel #DB on a dedicated stack.
1173 *
1174 * This is exactly how FRED event delivery invokes an exception
1175 * handler: ring 3 event on level 0 stack, i.e., current task stack;
1176 * ring 0 event on the #DB dedicated stack specified in the
1177 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1178 * entry stub doesn't do stack switch.
1179 */
DEFINE_FREDENTRY_DEBUG(exc_debug)1180 DEFINE_FREDENTRY_DEBUG(exc_debug)
1181 {
1182 /*
1183 * FRED #DB stores DR6 on the stack in the format which
1184 * debug_read_clear_dr6() returns for the IDT entry points.
1185 */
1186 unsigned long dr6 = fred_event_data(regs);
1187
1188 if (user_mode(regs))
1189 exc_debug_user(regs, dr6);
1190 else
1191 exc_debug_kernel(regs, dr6);
1192 }
1193 #endif /* CONFIG_X86_FRED */
1194
1195 #else
1196 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1197 DEFINE_IDTENTRY_RAW(exc_debug)
1198 {
1199 unsigned long dr6 = debug_read_clear_dr6();
1200
1201 if (user_mode(regs))
1202 exc_debug_user(regs, dr6);
1203 else
1204 exc_debug_kernel(regs, dr6);
1205 }
1206 #endif
1207
1208 /*
1209 * Note that we play around with the 'TS' bit in an attempt to get
1210 * the correct behaviour even in the presence of the asynchronous
1211 * IRQ13 behaviour
1212 */
math_error(struct pt_regs * regs,int trapnr)1213 static void math_error(struct pt_regs *regs, int trapnr)
1214 {
1215 struct task_struct *task = current;
1216 struct fpu *fpu = &task->thread.fpu;
1217 int si_code;
1218 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1219 "simd exception";
1220
1221 cond_local_irq_enable(regs);
1222
1223 if (!user_mode(regs)) {
1224 if (fixup_exception(regs, trapnr, 0, 0))
1225 goto exit;
1226
1227 task->thread.error_code = 0;
1228 task->thread.trap_nr = trapnr;
1229
1230 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1231 SIGFPE) != NOTIFY_STOP)
1232 die(str, regs, 0);
1233 goto exit;
1234 }
1235
1236 /*
1237 * Synchronize the FPU register state to the memory register state
1238 * if necessary. This allows the exception handler to inspect it.
1239 */
1240 fpu_sync_fpstate(fpu);
1241
1242 task->thread.trap_nr = trapnr;
1243 task->thread.error_code = 0;
1244
1245 si_code = fpu__exception_code(fpu, trapnr);
1246 /* Retry when we get spurious exceptions: */
1247 if (!si_code)
1248 goto exit;
1249
1250 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1251 goto exit;
1252
1253 force_sig_fault(SIGFPE, si_code,
1254 (void __user *)uprobe_get_trap_addr(regs));
1255 exit:
1256 cond_local_irq_disable(regs);
1257 }
1258
DEFINE_IDTENTRY(exc_coprocessor_error)1259 DEFINE_IDTENTRY(exc_coprocessor_error)
1260 {
1261 math_error(regs, X86_TRAP_MF);
1262 }
1263
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1264 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1265 {
1266 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1267 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1268 if (!static_cpu_has(X86_FEATURE_XMM)) {
1269 __exc_general_protection(regs, 0);
1270 return;
1271 }
1272 }
1273 math_error(regs, X86_TRAP_XF);
1274 }
1275
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1276 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1277 {
1278 /*
1279 * This addresses a Pentium Pro Erratum:
1280 *
1281 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1282 * Virtual Wire mode implemented through the local APIC, an
1283 * interrupt vector of 0Fh (Intel reserved encoding) may be
1284 * generated by the local APIC (Int 15). This vector may be
1285 * generated upon receipt of a spurious interrupt (an interrupt
1286 * which is removed before the system receives the INTA sequence)
1287 * instead of the programmed 8259 spurious interrupt vector.
1288 *
1289 * IMPLICATION: The spurious interrupt vector programmed in the
1290 * 8259 is normally handled by an operating system's spurious
1291 * interrupt handler. However, a vector of 0Fh is unknown to some
1292 * operating systems, which would crash if this erratum occurred.
1293 *
1294 * In theory this could be limited to 32bit, but the handler is not
1295 * hurting and who knows which other CPUs suffer from this.
1296 */
1297 }
1298
handle_xfd_event(struct pt_regs * regs)1299 static bool handle_xfd_event(struct pt_regs *regs)
1300 {
1301 u64 xfd_err;
1302 int err;
1303
1304 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1305 return false;
1306
1307 rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1308 if (!xfd_err)
1309 return false;
1310
1311 wrmsrl(MSR_IA32_XFD_ERR, 0);
1312
1313 /* Die if that happens in kernel space */
1314 if (WARN_ON(!user_mode(regs)))
1315 return false;
1316
1317 local_irq_enable();
1318
1319 err = xfd_enable_feature(xfd_err);
1320
1321 switch (err) {
1322 case -EPERM:
1323 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1324 break;
1325 case -EFAULT:
1326 force_sig(SIGSEGV);
1327 break;
1328 }
1329
1330 local_irq_disable();
1331 return true;
1332 }
1333
DEFINE_IDTENTRY(exc_device_not_available)1334 DEFINE_IDTENTRY(exc_device_not_available)
1335 {
1336 unsigned long cr0 = read_cr0();
1337
1338 if (handle_xfd_event(regs))
1339 return;
1340
1341 #ifdef CONFIG_MATH_EMULATION
1342 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1343 struct math_emu_info info = { };
1344
1345 cond_local_irq_enable(regs);
1346
1347 info.regs = regs;
1348 math_emulate(&info);
1349
1350 cond_local_irq_disable(regs);
1351 return;
1352 }
1353 #endif
1354
1355 /* This should not happen. */
1356 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1357 /* Try to fix it up and carry on. */
1358 write_cr0(cr0 & ~X86_CR0_TS);
1359 } else {
1360 /*
1361 * Something terrible happened, and we're better off trying
1362 * to kill the task than getting stuck in a never-ending
1363 * loop of #NM faults.
1364 */
1365 die("unexpected #NM exception", regs, 0);
1366 }
1367 }
1368
1369 #ifdef CONFIG_INTEL_TDX_GUEST
1370
1371 #define VE_FAULT_STR "VE fault"
1372
ve_raise_fault(struct pt_regs * regs,long error_code,unsigned long address)1373 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1374 unsigned long address)
1375 {
1376 if (user_mode(regs)) {
1377 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1378 return;
1379 }
1380
1381 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1382 VE_FAULT_STR, address)) {
1383 return;
1384 }
1385
1386 die_addr(VE_FAULT_STR, regs, error_code, address);
1387 }
1388
1389 /*
1390 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1391 * specific guest actions which may happen in either user space or the
1392 * kernel:
1393 *
1394 * * Specific instructions (WBINVD, for example)
1395 * * Specific MSR accesses
1396 * * Specific CPUID leaf accesses
1397 * * Access to specific guest physical addresses
1398 *
1399 * In the settings that Linux will run in, virtualization exceptions are
1400 * never generated on accesses to normal, TD-private memory that has been
1401 * accepted (by BIOS or with tdx_enc_status_changed()).
1402 *
1403 * Syscall entry code has a critical window where the kernel stack is not
1404 * yet set up. Any exception in this window leads to hard to debug issues
1405 * and can be exploited for privilege escalation. Exceptions in the NMI
1406 * entry code also cause issues. Returning from the exception handler with
1407 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1408 *
1409 * For these reasons, the kernel avoids #VEs during the syscall gap and
1410 * the NMI entry code. Entry code paths do not access TD-shared memory,
1411 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1412 * that might generate #VE. VMM can remove memory from TD at any point,
1413 * but access to unaccepted (or missing) private memory leads to VM
1414 * termination, not to #VE.
1415 *
1416 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1417 * handlers once the kernel is ready to deal with nested NMIs.
1418 *
1419 * During #VE delivery, all interrupts, including NMIs, are blocked until
1420 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1421 * the VE info.
1422 *
1423 * If a guest kernel action which would normally cause a #VE occurs in
1424 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1425 * exception) is delivered to the guest which will result in an oops.
1426 *
1427 * The entry code has been audited carefully for following these expectations.
1428 * Changes in the entry code have to be audited for correctness vs. this
1429 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1430 * privilege escalation or may lead to random crashes.
1431 */
DEFINE_IDTENTRY(exc_virtualization_exception)1432 DEFINE_IDTENTRY(exc_virtualization_exception)
1433 {
1434 struct ve_info ve;
1435
1436 /*
1437 * NMIs/Machine-checks/Interrupts will be in a disabled state
1438 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1439 * info cannot be overwritten by a nested #VE.
1440 */
1441 tdx_get_ve_info(&ve);
1442
1443 cond_local_irq_enable(regs);
1444
1445 /*
1446 * If tdx_handle_virt_exception() could not process
1447 * it successfully, treat it as #GP(0) and handle it.
1448 */
1449 if (!tdx_handle_virt_exception(regs, &ve))
1450 ve_raise_fault(regs, 0, ve.gla);
1451
1452 cond_local_irq_disable(regs);
1453 }
1454
1455 #endif
1456
1457 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1458 DEFINE_IDTENTRY_SW(iret_error)
1459 {
1460 local_irq_enable();
1461 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1462 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1463 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1464 ILL_BADSTK, (void __user *)NULL);
1465 }
1466 local_irq_disable();
1467 }
1468 #endif
1469
trap_init(void)1470 void __init trap_init(void)
1471 {
1472 /* Init cpu_entry_area before IST entries are set up */
1473 setup_cpu_entry_areas();
1474
1475 /* Init GHCB memory pages when running as an SEV-ES guest */
1476 sev_es_init_vc_handling();
1477
1478 /* Initialize TSS before setting up traps so ISTs work */
1479 cpu_init_exception_handling(true);
1480
1481 /* Setup traps as cpu_init() might #GP */
1482 if (!cpu_feature_enabled(X86_FEATURE_FRED))
1483 idt_setup_traps();
1484
1485 cpu_init();
1486 }
1487