1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
42
43 do {
44 unsigned long flags;
45
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72 /* Oops, that failed? */
73 } while (inprogress);
74 }
75
76 /**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
79 *
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
85 *
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
88 *
89 * Returns: false if a threaded handler is active.
90 *
91 * This function may be called - with care - from IRQ context.
92 *
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
97 */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
105 }
106
107 return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
__synchronize_irq(struct irq_desc * desc)111 static void __synchronize_irq(struct irq_desc *desc)
112 {
113 __synchronize_hardirq(desc, true);
114 /*
115 * We made sure that no hardirq handler is running. Now verify that no
116 * threaded handlers are active.
117 */
118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119 }
120
121 /**
122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123 * @irq: interrupt number to wait for
124 *
125 * This function waits for any pending IRQ handlers for this interrupt
126 * to complete before returning. If you use this function while
127 * holding a resource the IRQ handler may need you will deadlock.
128 *
129 * Can only be called from preemptible code as it might sleep when
130 * an interrupt thread is associated to @irq.
131 *
132 * It optionally makes sure (when the irq chip supports that method)
133 * that the interrupt is not pending in any CPU and waiting for
134 * service.
135 */
synchronize_irq(unsigned int irq)136 void synchronize_irq(unsigned int irq)
137 {
138 struct irq_desc *desc = irq_to_desc(irq);
139
140 if (desc)
141 __synchronize_irq(desc);
142 }
143 EXPORT_SYMBOL(synchronize_irq);
144
145 #ifdef CONFIG_SMP
146 cpumask_var_t irq_default_affinity;
147
__irq_can_set_affinity(struct irq_desc * desc)148 static bool __irq_can_set_affinity(struct irq_desc *desc)
149 {
150 if (!desc || !irqd_can_balance(&desc->irq_data) ||
151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152 return false;
153 return true;
154 }
155
156 /**
157 * irq_can_set_affinity - Check if the affinity of a given irq can be set
158 * @irq: Interrupt to check
159 *
160 */
irq_can_set_affinity(unsigned int irq)161 int irq_can_set_affinity(unsigned int irq)
162 {
163 return __irq_can_set_affinity(irq_to_desc(irq));
164 }
165
166 /**
167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168 * @irq: Interrupt to check
169 *
170 * Like irq_can_set_affinity() above, but additionally checks for the
171 * AFFINITY_MANAGED flag.
172 */
irq_can_set_affinity_usr(unsigned int irq)173 bool irq_can_set_affinity_usr(unsigned int irq)
174 {
175 struct irq_desc *desc = irq_to_desc(irq);
176
177 return __irq_can_set_affinity(desc) &&
178 !irqd_affinity_is_managed(&desc->irq_data);
179 }
180
181 /**
182 * irq_set_thread_affinity - Notify irq threads to adjust affinity
183 * @desc: irq descriptor which has affinity changed
184 *
185 * We just set IRQTF_AFFINITY and delegate the affinity setting
186 * to the interrupt thread itself. We can not call
187 * set_cpus_allowed_ptr() here as we hold desc->lock and this
188 * code can be called from hard interrupt context.
189 */
irq_set_thread_affinity(struct irq_desc * desc)190 void irq_set_thread_affinity(struct irq_desc *desc)
191 {
192 struct irqaction *action;
193
194 for_each_action_of_desc(desc, action) {
195 if (action->thread) {
196 set_bit(IRQTF_AFFINITY, &action->thread_flags);
197 wake_up_process(action->thread);
198 }
199 if (action->secondary && action->secondary->thread) {
200 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
201 wake_up_process(action->secondary->thread);
202 }
203 }
204 }
205
206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)207 static void irq_validate_effective_affinity(struct irq_data *data)
208 {
209 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
210 struct irq_chip *chip = irq_data_get_irq_chip(data);
211
212 if (!cpumask_empty(m))
213 return;
214 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
215 chip->name, data->irq);
216 }
217 #else
irq_validate_effective_affinity(struct irq_data * data)218 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
219 #endif
220
221 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
222
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)223 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
224 bool force)
225 {
226 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
227 struct irq_desc *desc = irq_data_to_desc(data);
228 struct irq_chip *chip = irq_data_get_irq_chip(data);
229 const struct cpumask *prog_mask;
230 int ret;
231
232 if (!chip || !chip->irq_set_affinity)
233 return -EINVAL;
234
235 /*
236 * If this is a managed interrupt and housekeeping is enabled on
237 * it check whether the requested affinity mask intersects with
238 * a housekeeping CPU. If so, then remove the isolated CPUs from
239 * the mask and just keep the housekeeping CPU(s). This prevents
240 * the affinity setter from routing the interrupt to an isolated
241 * CPU to avoid that I/O submitted from a housekeeping CPU causes
242 * interrupts on an isolated one.
243 *
244 * If the masks do not intersect or include online CPU(s) then
245 * keep the requested mask. The isolated target CPUs are only
246 * receiving interrupts when the I/O operation was submitted
247 * directly from them.
248 *
249 * If all housekeeping CPUs in the affinity mask are offline, the
250 * interrupt will be migrated by the CPU hotplug code once a
251 * housekeeping CPU which belongs to the affinity mask comes
252 * online.
253 */
254 if (irqd_affinity_is_managed(data) &&
255 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
256 const struct cpumask *hk_mask;
257
258 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
259
260 cpumask_and(tmp_mask, mask, hk_mask);
261 if (!cpumask_intersects(tmp_mask, cpu_online_mask))
262 prog_mask = mask;
263 else
264 prog_mask = tmp_mask;
265 } else {
266 prog_mask = mask;
267 }
268
269 /*
270 * Make sure we only provide online CPUs to the irqchip,
271 * unless we are being asked to force the affinity (in which
272 * case we do as we are told).
273 */
274 cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
275 if (!force && !cpumask_empty(tmp_mask))
276 ret = chip->irq_set_affinity(data, tmp_mask, force);
277 else if (force)
278 ret = chip->irq_set_affinity(data, mask, force);
279 else
280 ret = -EINVAL;
281
282 switch (ret) {
283 case IRQ_SET_MASK_OK:
284 case IRQ_SET_MASK_OK_DONE:
285 cpumask_copy(desc->irq_common_data.affinity, mask);
286 fallthrough;
287 case IRQ_SET_MASK_OK_NOCOPY:
288 irq_validate_effective_affinity(data);
289 irq_set_thread_affinity(desc);
290 ret = 0;
291 }
292
293 return ret;
294 }
295
296 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)297 static inline int irq_set_affinity_pending(struct irq_data *data,
298 const struct cpumask *dest)
299 {
300 struct irq_desc *desc = irq_data_to_desc(data);
301
302 irqd_set_move_pending(data);
303 irq_copy_pending(desc, dest);
304 return 0;
305 }
306 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)307 static inline int irq_set_affinity_pending(struct irq_data *data,
308 const struct cpumask *dest)
309 {
310 return -EBUSY;
311 }
312 #endif
313
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)314 static int irq_try_set_affinity(struct irq_data *data,
315 const struct cpumask *dest, bool force)
316 {
317 int ret = irq_do_set_affinity(data, dest, force);
318
319 /*
320 * In case that the underlying vector management is busy and the
321 * architecture supports the generic pending mechanism then utilize
322 * this to avoid returning an error to user space.
323 */
324 if (ret == -EBUSY && !force)
325 ret = irq_set_affinity_pending(data, dest);
326 return ret;
327 }
328
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask)329 static bool irq_set_affinity_deactivated(struct irq_data *data,
330 const struct cpumask *mask)
331 {
332 struct irq_desc *desc = irq_data_to_desc(data);
333
334 /*
335 * Handle irq chips which can handle affinity only in activated
336 * state correctly
337 *
338 * If the interrupt is not yet activated, just store the affinity
339 * mask and do not call the chip driver at all. On activation the
340 * driver has to make sure anyway that the interrupt is in a
341 * usable state so startup works.
342 */
343 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
344 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
345 return false;
346
347 cpumask_copy(desc->irq_common_data.affinity, mask);
348 irq_data_update_effective_affinity(data, mask);
349 irqd_set(data, IRQD_AFFINITY_SET);
350 return true;
351 }
352
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)353 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
354 bool force)
355 {
356 struct irq_chip *chip = irq_data_get_irq_chip(data);
357 struct irq_desc *desc = irq_data_to_desc(data);
358 int ret = 0;
359
360 if (!chip || !chip->irq_set_affinity)
361 return -EINVAL;
362
363 if (irq_set_affinity_deactivated(data, mask))
364 return 0;
365
366 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
367 ret = irq_try_set_affinity(data, mask, force);
368 } else {
369 irqd_set_move_pending(data);
370 irq_copy_pending(desc, mask);
371 }
372
373 if (desc->affinity_notify) {
374 kref_get(&desc->affinity_notify->kref);
375 if (!schedule_work(&desc->affinity_notify->work)) {
376 /* Work was already scheduled, drop our extra ref */
377 kref_put(&desc->affinity_notify->kref,
378 desc->affinity_notify->release);
379 }
380 }
381 irqd_set(data, IRQD_AFFINITY_SET);
382
383 return ret;
384 }
385
386 /**
387 * irq_update_affinity_desc - Update affinity management for an interrupt
388 * @irq: The interrupt number to update
389 * @affinity: Pointer to the affinity descriptor
390 *
391 * This interface can be used to configure the affinity management of
392 * interrupts which have been allocated already.
393 *
394 * There are certain limitations on when it may be used - attempts to use it
395 * for when the kernel is configured for generic IRQ reservation mode (in
396 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
397 * managed/non-managed interrupt accounting. In addition, attempts to use it on
398 * an interrupt which is already started or which has already been configured
399 * as managed will also fail, as these mean invalid init state or double init.
400 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)401 int irq_update_affinity_desc(unsigned int irq,
402 struct irq_affinity_desc *affinity)
403 {
404 struct irq_desc *desc;
405 unsigned long flags;
406 bool activated;
407 int ret = 0;
408
409 /*
410 * Supporting this with the reservation scheme used by x86 needs
411 * some more thought. Fail it for now.
412 */
413 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
414 return -EOPNOTSUPP;
415
416 desc = irq_get_desc_buslock(irq, &flags, 0);
417 if (!desc)
418 return -EINVAL;
419
420 /* Requires the interrupt to be shut down */
421 if (irqd_is_started(&desc->irq_data)) {
422 ret = -EBUSY;
423 goto out_unlock;
424 }
425
426 /* Interrupts which are already managed cannot be modified */
427 if (irqd_affinity_is_managed(&desc->irq_data)) {
428 ret = -EBUSY;
429 goto out_unlock;
430 }
431
432 /*
433 * Deactivate the interrupt. That's required to undo
434 * anything an earlier activation has established.
435 */
436 activated = irqd_is_activated(&desc->irq_data);
437 if (activated)
438 irq_domain_deactivate_irq(&desc->irq_data);
439
440 if (affinity->is_managed) {
441 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
442 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
443 }
444
445 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
446
447 /* Restore the activation state */
448 if (activated)
449 irq_domain_activate_irq(&desc->irq_data, false);
450
451 out_unlock:
452 irq_put_desc_busunlock(desc, flags);
453 return ret;
454 }
455
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)456 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
457 bool force)
458 {
459 struct irq_desc *desc = irq_to_desc(irq);
460 unsigned long flags;
461 int ret;
462
463 if (!desc)
464 return -EINVAL;
465
466 raw_spin_lock_irqsave(&desc->lock, flags);
467 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
468 raw_spin_unlock_irqrestore(&desc->lock, flags);
469 return ret;
470 }
471
472 /**
473 * irq_set_affinity - Set the irq affinity of a given irq
474 * @irq: Interrupt to set affinity
475 * @cpumask: cpumask
476 *
477 * Fails if cpumask does not contain an online CPU
478 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)479 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
480 {
481 return __irq_set_affinity(irq, cpumask, false);
482 }
483 EXPORT_SYMBOL_GPL(irq_set_affinity);
484
485 /**
486 * irq_force_affinity - Force the irq affinity of a given irq
487 * @irq: Interrupt to set affinity
488 * @cpumask: cpumask
489 *
490 * Same as irq_set_affinity, but without checking the mask against
491 * online cpus.
492 *
493 * Solely for low level cpu hotplug code, where we need to make per
494 * cpu interrupts affine before the cpu becomes online.
495 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)496 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
497 {
498 return __irq_set_affinity(irq, cpumask, true);
499 }
500 EXPORT_SYMBOL_GPL(irq_force_affinity);
501
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)502 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
503 bool setaffinity)
504 {
505 unsigned long flags;
506 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
507
508 if (!desc)
509 return -EINVAL;
510 desc->affinity_hint = m;
511 irq_put_desc_unlock(desc, flags);
512 if (m && setaffinity)
513 __irq_set_affinity(irq, m, false);
514 return 0;
515 }
516 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
517
irq_affinity_notify(struct work_struct * work)518 static void irq_affinity_notify(struct work_struct *work)
519 {
520 struct irq_affinity_notify *notify =
521 container_of(work, struct irq_affinity_notify, work);
522 struct irq_desc *desc = irq_to_desc(notify->irq);
523 cpumask_var_t cpumask;
524 unsigned long flags;
525
526 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
527 goto out;
528
529 raw_spin_lock_irqsave(&desc->lock, flags);
530 if (irq_move_pending(&desc->irq_data))
531 irq_get_pending(cpumask, desc);
532 else
533 cpumask_copy(cpumask, desc->irq_common_data.affinity);
534 raw_spin_unlock_irqrestore(&desc->lock, flags);
535
536 notify->notify(notify, cpumask);
537
538 free_cpumask_var(cpumask);
539 out:
540 kref_put(¬ify->kref, notify->release);
541 }
542
543 /**
544 * irq_set_affinity_notifier - control notification of IRQ affinity changes
545 * @irq: Interrupt for which to enable/disable notification
546 * @notify: Context for notification, or %NULL to disable
547 * notification. Function pointers must be initialised;
548 * the other fields will be initialised by this function.
549 *
550 * Must be called in process context. Notification may only be enabled
551 * after the IRQ is allocated and must be disabled before the IRQ is
552 * freed using free_irq().
553 */
554 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)555 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
556 {
557 struct irq_desc *desc = irq_to_desc(irq);
558 struct irq_affinity_notify *old_notify;
559 unsigned long flags;
560
561 /* The release function is promised process context */
562 might_sleep();
563
564 if (!desc || irq_is_nmi(desc))
565 return -EINVAL;
566
567 /* Complete initialisation of *notify */
568 if (notify) {
569 notify->irq = irq;
570 kref_init(¬ify->kref);
571 INIT_WORK(¬ify->work, irq_affinity_notify);
572 }
573
574 raw_spin_lock_irqsave(&desc->lock, flags);
575 old_notify = desc->affinity_notify;
576 desc->affinity_notify = notify;
577 raw_spin_unlock_irqrestore(&desc->lock, flags);
578
579 if (old_notify) {
580 if (cancel_work_sync(&old_notify->work)) {
581 /* Pending work had a ref, put that one too */
582 kref_put(&old_notify->kref, old_notify->release);
583 }
584 kref_put(&old_notify->kref, old_notify->release);
585 }
586
587 return 0;
588 }
589 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
590
591 #ifndef CONFIG_AUTO_IRQ_AFFINITY
592 /*
593 * Generic version of the affinity autoselector.
594 */
irq_setup_affinity(struct irq_desc * desc)595 int irq_setup_affinity(struct irq_desc *desc)
596 {
597 struct cpumask *set = irq_default_affinity;
598 int ret, node = irq_desc_get_node(desc);
599 static DEFINE_RAW_SPINLOCK(mask_lock);
600 static struct cpumask mask;
601
602 /* Excludes PER_CPU and NO_BALANCE interrupts */
603 if (!__irq_can_set_affinity(desc))
604 return 0;
605
606 raw_spin_lock(&mask_lock);
607 /*
608 * Preserve the managed affinity setting and a userspace affinity
609 * setup, but make sure that one of the targets is online.
610 */
611 if (irqd_affinity_is_managed(&desc->irq_data) ||
612 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
613 if (cpumask_intersects(desc->irq_common_data.affinity,
614 cpu_online_mask))
615 set = desc->irq_common_data.affinity;
616 else
617 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
618 }
619
620 cpumask_and(&mask, cpu_online_mask, set);
621 if (cpumask_empty(&mask))
622 cpumask_copy(&mask, cpu_online_mask);
623
624 if (node != NUMA_NO_NODE) {
625 const struct cpumask *nodemask = cpumask_of_node(node);
626
627 /* make sure at least one of the cpus in nodemask is online */
628 if (cpumask_intersects(&mask, nodemask))
629 cpumask_and(&mask, &mask, nodemask);
630 }
631 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
632 raw_spin_unlock(&mask_lock);
633 return ret;
634 }
635 #else
636 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)637 int irq_setup_affinity(struct irq_desc *desc)
638 {
639 return irq_select_affinity(irq_desc_get_irq(desc));
640 }
641 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
642 #endif /* CONFIG_SMP */
643
644
645 /**
646 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
647 * @irq: interrupt number to set affinity
648 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
649 * specific data for percpu_devid interrupts
650 *
651 * This function uses the vCPU specific data to set the vCPU
652 * affinity for an irq. The vCPU specific data is passed from
653 * outside, such as KVM. One example code path is as below:
654 * KVM -> IOMMU -> irq_set_vcpu_affinity().
655 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)656 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
657 {
658 unsigned long flags;
659 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
660 struct irq_data *data;
661 struct irq_chip *chip;
662 int ret = -ENOSYS;
663
664 if (!desc)
665 return -EINVAL;
666
667 data = irq_desc_get_irq_data(desc);
668 do {
669 chip = irq_data_get_irq_chip(data);
670 if (chip && chip->irq_set_vcpu_affinity)
671 break;
672 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
673 data = data->parent_data;
674 #else
675 data = NULL;
676 #endif
677 } while (data);
678
679 if (data)
680 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
681 irq_put_desc_unlock(desc, flags);
682
683 return ret;
684 }
685 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
686
__disable_irq(struct irq_desc * desc)687 void __disable_irq(struct irq_desc *desc)
688 {
689 if (!desc->depth++)
690 irq_disable(desc);
691 }
692
__disable_irq_nosync(unsigned int irq)693 static int __disable_irq_nosync(unsigned int irq)
694 {
695 unsigned long flags;
696 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
697
698 if (!desc)
699 return -EINVAL;
700 __disable_irq(desc);
701 irq_put_desc_busunlock(desc, flags);
702 return 0;
703 }
704
705 /**
706 * disable_irq_nosync - disable an irq without waiting
707 * @irq: Interrupt to disable
708 *
709 * Disable the selected interrupt line. Disables and Enables are
710 * nested.
711 * Unlike disable_irq(), this function does not ensure existing
712 * instances of the IRQ handler have completed before returning.
713 *
714 * This function may be called from IRQ context.
715 */
disable_irq_nosync(unsigned int irq)716 void disable_irq_nosync(unsigned int irq)
717 {
718 __disable_irq_nosync(irq);
719 }
720 EXPORT_SYMBOL(disable_irq_nosync);
721
722 /**
723 * disable_irq - disable an irq and wait for completion
724 * @irq: Interrupt to disable
725 *
726 * Disable the selected interrupt line. Enables and Disables are
727 * nested.
728 * This function waits for any pending IRQ handlers for this interrupt
729 * to complete before returning. If you use this function while
730 * holding a resource the IRQ handler may need you will deadlock.
731 *
732 * Can only be called from preemptible code as it might sleep when
733 * an interrupt thread is associated to @irq.
734 *
735 */
disable_irq(unsigned int irq)736 void disable_irq(unsigned int irq)
737 {
738 might_sleep();
739 if (!__disable_irq_nosync(irq))
740 synchronize_irq(irq);
741 }
742 EXPORT_SYMBOL(disable_irq);
743
744 /**
745 * disable_hardirq - disables an irq and waits for hardirq completion
746 * @irq: Interrupt to disable
747 *
748 * Disable the selected interrupt line. Enables and Disables are
749 * nested.
750 * This function waits for any pending hard IRQ handlers for this
751 * interrupt to complete before returning. If you use this function while
752 * holding a resource the hard IRQ handler may need you will deadlock.
753 *
754 * When used to optimistically disable an interrupt from atomic context
755 * the return value must be checked.
756 *
757 * Returns: false if a threaded handler is active.
758 *
759 * This function may be called - with care - from IRQ context.
760 */
disable_hardirq(unsigned int irq)761 bool disable_hardirq(unsigned int irq)
762 {
763 if (!__disable_irq_nosync(irq))
764 return synchronize_hardirq(irq);
765
766 return false;
767 }
768 EXPORT_SYMBOL_GPL(disable_hardirq);
769
770 /**
771 * disable_nmi_nosync - disable an nmi without waiting
772 * @irq: Interrupt to disable
773 *
774 * Disable the selected interrupt line. Disables and enables are
775 * nested.
776 * The interrupt to disable must have been requested through request_nmi.
777 * Unlike disable_nmi(), this function does not ensure existing
778 * instances of the IRQ handler have completed before returning.
779 */
disable_nmi_nosync(unsigned int irq)780 void disable_nmi_nosync(unsigned int irq)
781 {
782 disable_irq_nosync(irq);
783 }
784
__enable_irq(struct irq_desc * desc)785 void __enable_irq(struct irq_desc *desc)
786 {
787 switch (desc->depth) {
788 case 0:
789 err_out:
790 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
791 irq_desc_get_irq(desc));
792 break;
793 case 1: {
794 if (desc->istate & IRQS_SUSPENDED)
795 goto err_out;
796 /* Prevent probing on this irq: */
797 irq_settings_set_noprobe(desc);
798 /*
799 * Call irq_startup() not irq_enable() here because the
800 * interrupt might be marked NOAUTOEN so irq_startup()
801 * needs to be invoked when it gets enabled the first time.
802 * This is also required when __enable_irq() is invoked for
803 * a managed and shutdown interrupt from the S3 resume
804 * path.
805 *
806 * If it was already started up, then irq_startup() will
807 * invoke irq_enable() under the hood.
808 */
809 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
810 break;
811 }
812 default:
813 desc->depth--;
814 }
815 }
816
817 /**
818 * enable_irq - enable handling of an irq
819 * @irq: Interrupt to enable
820 *
821 * Undoes the effect of one call to disable_irq(). If this
822 * matches the last disable, processing of interrupts on this
823 * IRQ line is re-enabled.
824 *
825 * This function may be called from IRQ context only when
826 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
827 */
enable_irq(unsigned int irq)828 void enable_irq(unsigned int irq)
829 {
830 unsigned long flags;
831 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
832
833 if (!desc)
834 return;
835 if (WARN(!desc->irq_data.chip,
836 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
837 goto out;
838
839 __enable_irq(desc);
840 out:
841 irq_put_desc_busunlock(desc, flags);
842 }
843 EXPORT_SYMBOL(enable_irq);
844
845 /**
846 * enable_nmi - enable handling of an nmi
847 * @irq: Interrupt to enable
848 *
849 * The interrupt to enable must have been requested through request_nmi.
850 * Undoes the effect of one call to disable_nmi(). If this
851 * matches the last disable, processing of interrupts on this
852 * IRQ line is re-enabled.
853 */
enable_nmi(unsigned int irq)854 void enable_nmi(unsigned int irq)
855 {
856 enable_irq(irq);
857 }
858
set_irq_wake_real(unsigned int irq,unsigned int on)859 static int set_irq_wake_real(unsigned int irq, unsigned int on)
860 {
861 struct irq_desc *desc = irq_to_desc(irq);
862 int ret = -ENXIO;
863
864 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
865 return 0;
866
867 if (desc->irq_data.chip->irq_set_wake)
868 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
869
870 return ret;
871 }
872
873 /**
874 * irq_set_irq_wake - control irq power management wakeup
875 * @irq: interrupt to control
876 * @on: enable/disable power management wakeup
877 *
878 * Enable/disable power management wakeup mode, which is
879 * disabled by default. Enables and disables must match,
880 * just as they match for non-wakeup mode support.
881 *
882 * Wakeup mode lets this IRQ wake the system from sleep
883 * states like "suspend to RAM".
884 *
885 * Note: irq enable/disable state is completely orthogonal
886 * to the enable/disable state of irq wake. An irq can be
887 * disabled with disable_irq() and still wake the system as
888 * long as the irq has wake enabled. If this does not hold,
889 * then the underlying irq chip and the related driver need
890 * to be investigated.
891 */
irq_set_irq_wake(unsigned int irq,unsigned int on)892 int irq_set_irq_wake(unsigned int irq, unsigned int on)
893 {
894 unsigned long flags;
895 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
896 int ret = 0;
897
898 if (!desc)
899 return -EINVAL;
900
901 /* Don't use NMIs as wake up interrupts please */
902 if (irq_is_nmi(desc)) {
903 ret = -EINVAL;
904 goto out_unlock;
905 }
906
907 /* wakeup-capable irqs can be shared between drivers that
908 * don't need to have the same sleep mode behaviors.
909 */
910 if (on) {
911 if (desc->wake_depth++ == 0) {
912 ret = set_irq_wake_real(irq, on);
913 if (ret)
914 desc->wake_depth = 0;
915 else
916 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
917 }
918 } else {
919 if (desc->wake_depth == 0) {
920 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
921 } else if (--desc->wake_depth == 0) {
922 ret = set_irq_wake_real(irq, on);
923 if (ret)
924 desc->wake_depth = 1;
925 else
926 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
927 }
928 }
929
930 out_unlock:
931 irq_put_desc_busunlock(desc, flags);
932 return ret;
933 }
934 EXPORT_SYMBOL(irq_set_irq_wake);
935
936 /*
937 * Internal function that tells the architecture code whether a
938 * particular irq has been exclusively allocated or is available
939 * for driver use.
940 */
can_request_irq(unsigned int irq,unsigned long irqflags)941 int can_request_irq(unsigned int irq, unsigned long irqflags)
942 {
943 unsigned long flags;
944 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
945 int canrequest = 0;
946
947 if (!desc)
948 return 0;
949
950 if (irq_settings_can_request(desc)) {
951 if (!desc->action ||
952 irqflags & desc->action->flags & IRQF_SHARED)
953 canrequest = 1;
954 }
955 irq_put_desc_unlock(desc, flags);
956 return canrequest;
957 }
958
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)959 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
960 {
961 struct irq_chip *chip = desc->irq_data.chip;
962 int ret, unmask = 0;
963
964 if (!chip || !chip->irq_set_type) {
965 /*
966 * IRQF_TRIGGER_* but the PIC does not support multiple
967 * flow-types?
968 */
969 pr_debug("No set_type function for IRQ %d (%s)\n",
970 irq_desc_get_irq(desc),
971 chip ? (chip->name ? : "unknown") : "unknown");
972 return 0;
973 }
974
975 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
976 if (!irqd_irq_masked(&desc->irq_data))
977 mask_irq(desc);
978 if (!irqd_irq_disabled(&desc->irq_data))
979 unmask = 1;
980 }
981
982 /* Mask all flags except trigger mode */
983 flags &= IRQ_TYPE_SENSE_MASK;
984 ret = chip->irq_set_type(&desc->irq_data, flags);
985
986 switch (ret) {
987 case IRQ_SET_MASK_OK:
988 case IRQ_SET_MASK_OK_DONE:
989 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
990 irqd_set(&desc->irq_data, flags);
991 fallthrough;
992
993 case IRQ_SET_MASK_OK_NOCOPY:
994 flags = irqd_get_trigger_type(&desc->irq_data);
995 irq_settings_set_trigger_mask(desc, flags);
996 irqd_clear(&desc->irq_data, IRQD_LEVEL);
997 irq_settings_clr_level(desc);
998 if (flags & IRQ_TYPE_LEVEL_MASK) {
999 irq_settings_set_level(desc);
1000 irqd_set(&desc->irq_data, IRQD_LEVEL);
1001 }
1002
1003 ret = 0;
1004 break;
1005 default:
1006 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1007 flags, irq_desc_get_irq(desc), chip->irq_set_type);
1008 }
1009 if (unmask)
1010 unmask_irq(desc);
1011 return ret;
1012 }
1013
1014 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1015 int irq_set_parent(int irq, int parent_irq)
1016 {
1017 unsigned long flags;
1018 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1019
1020 if (!desc)
1021 return -EINVAL;
1022
1023 desc->parent_irq = parent_irq;
1024
1025 irq_put_desc_unlock(desc, flags);
1026 return 0;
1027 }
1028 EXPORT_SYMBOL_GPL(irq_set_parent);
1029 #endif
1030
1031 /*
1032 * Default primary interrupt handler for threaded interrupts. Is
1033 * assigned as primary handler when request_threaded_irq is called
1034 * with handler == NULL. Useful for oneshot interrupts.
1035 */
irq_default_primary_handler(int irq,void * dev_id)1036 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1037 {
1038 return IRQ_WAKE_THREAD;
1039 }
1040
1041 /*
1042 * Primary handler for nested threaded interrupts. Should never be
1043 * called.
1044 */
irq_nested_primary_handler(int irq,void * dev_id)1045 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1046 {
1047 WARN(1, "Primary handler called for nested irq %d\n", irq);
1048 return IRQ_NONE;
1049 }
1050
irq_forced_secondary_handler(int irq,void * dev_id)1051 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1052 {
1053 WARN(1, "Secondary action handler called for irq %d\n", irq);
1054 return IRQ_NONE;
1055 }
1056
1057 #ifdef CONFIG_SMP
1058 /*
1059 * Check whether we need to change the affinity of the interrupt thread.
1060 */
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1061 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1062 {
1063 cpumask_var_t mask;
1064 bool valid = false;
1065
1066 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1067 return;
1068
1069 __set_current_state(TASK_RUNNING);
1070
1071 /*
1072 * In case we are out of memory we set IRQTF_AFFINITY again and
1073 * try again next time
1074 */
1075 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1076 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1077 return;
1078 }
1079
1080 raw_spin_lock_irq(&desc->lock);
1081 /*
1082 * This code is triggered unconditionally. Check the affinity
1083 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1084 */
1085 if (cpumask_available(desc->irq_common_data.affinity)) {
1086 const struct cpumask *m;
1087
1088 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1089 cpumask_copy(mask, m);
1090 valid = true;
1091 }
1092 raw_spin_unlock_irq(&desc->lock);
1093
1094 if (valid)
1095 set_cpus_allowed_ptr(current, mask);
1096 free_cpumask_var(mask);
1097 }
1098 #else
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1099 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1100 #endif
1101
irq_wait_for_interrupt(struct irq_desc * desc,struct irqaction * action)1102 static int irq_wait_for_interrupt(struct irq_desc *desc,
1103 struct irqaction *action)
1104 {
1105 for (;;) {
1106 set_current_state(TASK_INTERRUPTIBLE);
1107 irq_thread_check_affinity(desc, action);
1108
1109 if (kthread_should_stop()) {
1110 /* may need to run one last time */
1111 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1112 &action->thread_flags)) {
1113 __set_current_state(TASK_RUNNING);
1114 return 0;
1115 }
1116 __set_current_state(TASK_RUNNING);
1117 return -1;
1118 }
1119
1120 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1121 &action->thread_flags)) {
1122 __set_current_state(TASK_RUNNING);
1123 return 0;
1124 }
1125 schedule();
1126 }
1127 }
1128
1129 /*
1130 * Oneshot interrupts keep the irq line masked until the threaded
1131 * handler finished. unmask if the interrupt has not been disabled and
1132 * is marked MASKED.
1133 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1134 static void irq_finalize_oneshot(struct irq_desc *desc,
1135 struct irqaction *action)
1136 {
1137 if (!(desc->istate & IRQS_ONESHOT) ||
1138 action->handler == irq_forced_secondary_handler)
1139 return;
1140 again:
1141 chip_bus_lock(desc);
1142 raw_spin_lock_irq(&desc->lock);
1143
1144 /*
1145 * Implausible though it may be we need to protect us against
1146 * the following scenario:
1147 *
1148 * The thread is faster done than the hard interrupt handler
1149 * on the other CPU. If we unmask the irq line then the
1150 * interrupt can come in again and masks the line, leaves due
1151 * to IRQS_INPROGRESS and the irq line is masked forever.
1152 *
1153 * This also serializes the state of shared oneshot handlers
1154 * versus "desc->threads_oneshot |= action->thread_mask;" in
1155 * irq_wake_thread(). See the comment there which explains the
1156 * serialization.
1157 */
1158 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1159 raw_spin_unlock_irq(&desc->lock);
1160 chip_bus_sync_unlock(desc);
1161 cpu_relax();
1162 goto again;
1163 }
1164
1165 /*
1166 * Now check again, whether the thread should run. Otherwise
1167 * we would clear the threads_oneshot bit of this thread which
1168 * was just set.
1169 */
1170 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1171 goto out_unlock;
1172
1173 desc->threads_oneshot &= ~action->thread_mask;
1174
1175 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1176 irqd_irq_masked(&desc->irq_data))
1177 unmask_threaded_irq(desc);
1178
1179 out_unlock:
1180 raw_spin_unlock_irq(&desc->lock);
1181 chip_bus_sync_unlock(desc);
1182 }
1183
1184 /*
1185 * Interrupts explicitly requested as threaded interrupts want to be
1186 * preemptible - many of them need to sleep and wait for slow busses to
1187 * complete.
1188 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1189 static irqreturn_t irq_thread_fn(struct irq_desc *desc, struct irqaction *action)
1190 {
1191 irqreturn_t ret = action->thread_fn(action->irq, action->dev_id);
1192
1193 if (ret == IRQ_HANDLED)
1194 atomic_inc(&desc->threads_handled);
1195
1196 irq_finalize_oneshot(desc, action);
1197 return ret;
1198 }
1199
1200 /*
1201 * Interrupts which are not explicitly requested as threaded
1202 * interrupts rely on the implicit bh/preempt disable of the hard irq
1203 * context. So we need to disable bh here to avoid deadlocks and other
1204 * side effects.
1205 */
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1206 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1207 {
1208 irqreturn_t ret;
1209
1210 local_bh_disable();
1211 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1212 local_irq_disable();
1213 ret = irq_thread_fn(desc, action);
1214 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1215 local_irq_enable();
1216 local_bh_enable();
1217 return ret;
1218 }
1219
wake_threads_waitq(struct irq_desc * desc)1220 void wake_threads_waitq(struct irq_desc *desc)
1221 {
1222 if (atomic_dec_and_test(&desc->threads_active))
1223 wake_up(&desc->wait_for_threads);
1224 }
1225
irq_thread_dtor(struct callback_head * unused)1226 static void irq_thread_dtor(struct callback_head *unused)
1227 {
1228 struct task_struct *tsk = current;
1229 struct irq_desc *desc;
1230 struct irqaction *action;
1231
1232 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1233 return;
1234
1235 action = kthread_data(tsk);
1236
1237 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1238 tsk->comm, tsk->pid, action->irq);
1239
1240
1241 desc = irq_to_desc(action->irq);
1242 /*
1243 * If IRQTF_RUNTHREAD is set, we need to decrement
1244 * desc->threads_active and wake possible waiters.
1245 */
1246 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1247 wake_threads_waitq(desc);
1248
1249 /* Prevent a stale desc->threads_oneshot */
1250 irq_finalize_oneshot(desc, action);
1251 }
1252
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1253 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1254 {
1255 struct irqaction *secondary = action->secondary;
1256
1257 if (WARN_ON_ONCE(!secondary))
1258 return;
1259
1260 raw_spin_lock_irq(&desc->lock);
1261 __irq_wake_thread(desc, secondary);
1262 raw_spin_unlock_irq(&desc->lock);
1263 }
1264
1265 /*
1266 * Internal function to notify that a interrupt thread is ready.
1267 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1268 static void irq_thread_set_ready(struct irq_desc *desc,
1269 struct irqaction *action)
1270 {
1271 set_bit(IRQTF_READY, &action->thread_flags);
1272 wake_up(&desc->wait_for_threads);
1273 }
1274
1275 /*
1276 * Internal function to wake up a interrupt thread and wait until it is
1277 * ready.
1278 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1279 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1280 struct irqaction *action)
1281 {
1282 if (!action || !action->thread)
1283 return;
1284
1285 wake_up_process(action->thread);
1286 wait_event(desc->wait_for_threads,
1287 test_bit(IRQTF_READY, &action->thread_flags));
1288 }
1289
1290 /*
1291 * Interrupt handler thread
1292 */
irq_thread(void * data)1293 static int irq_thread(void *data)
1294 {
1295 struct callback_head on_exit_work;
1296 struct irqaction *action = data;
1297 struct irq_desc *desc = irq_to_desc(action->irq);
1298 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1299 struct irqaction *action);
1300
1301 irq_thread_set_ready(desc, action);
1302
1303 sched_set_fifo(current);
1304
1305 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1306 &action->thread_flags))
1307 handler_fn = irq_forced_thread_fn;
1308 else
1309 handler_fn = irq_thread_fn;
1310
1311 init_task_work(&on_exit_work, irq_thread_dtor);
1312 task_work_add(current, &on_exit_work, TWA_NONE);
1313
1314 while (!irq_wait_for_interrupt(desc, action)) {
1315 irqreturn_t action_ret;
1316
1317 action_ret = handler_fn(desc, action);
1318 if (action_ret == IRQ_WAKE_THREAD)
1319 irq_wake_secondary(desc, action);
1320
1321 wake_threads_waitq(desc);
1322 }
1323
1324 /*
1325 * This is the regular exit path. __free_irq() is stopping the
1326 * thread via kthread_stop() after calling
1327 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1328 * oneshot mask bit can be set.
1329 */
1330 task_work_cancel_func(current, irq_thread_dtor);
1331 return 0;
1332 }
1333
1334 /**
1335 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1336 * @irq: Interrupt line
1337 * @dev_id: Device identity for which the thread should be woken
1338 *
1339 */
irq_wake_thread(unsigned int irq,void * dev_id)1340 void irq_wake_thread(unsigned int irq, void *dev_id)
1341 {
1342 struct irq_desc *desc = irq_to_desc(irq);
1343 struct irqaction *action;
1344 unsigned long flags;
1345
1346 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1347 return;
1348
1349 raw_spin_lock_irqsave(&desc->lock, flags);
1350 for_each_action_of_desc(desc, action) {
1351 if (action->dev_id == dev_id) {
1352 if (action->thread)
1353 __irq_wake_thread(desc, action);
1354 break;
1355 }
1356 }
1357 raw_spin_unlock_irqrestore(&desc->lock, flags);
1358 }
1359 EXPORT_SYMBOL_GPL(irq_wake_thread);
1360
irq_setup_forced_threading(struct irqaction * new)1361 static int irq_setup_forced_threading(struct irqaction *new)
1362 {
1363 if (!force_irqthreads())
1364 return 0;
1365 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1366 return 0;
1367
1368 /*
1369 * No further action required for interrupts which are requested as
1370 * threaded interrupts already
1371 */
1372 if (new->handler == irq_default_primary_handler)
1373 return 0;
1374
1375 new->flags |= IRQF_ONESHOT;
1376
1377 /*
1378 * Handle the case where we have a real primary handler and a
1379 * thread handler. We force thread them as well by creating a
1380 * secondary action.
1381 */
1382 if (new->handler && new->thread_fn) {
1383 /* Allocate the secondary action */
1384 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1385 if (!new->secondary)
1386 return -ENOMEM;
1387 new->secondary->handler = irq_forced_secondary_handler;
1388 new->secondary->thread_fn = new->thread_fn;
1389 new->secondary->dev_id = new->dev_id;
1390 new->secondary->irq = new->irq;
1391 new->secondary->name = new->name;
1392 }
1393 /* Deal with the primary handler */
1394 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1395 new->thread_fn = new->handler;
1396 new->handler = irq_default_primary_handler;
1397 return 0;
1398 }
1399
irq_request_resources(struct irq_desc * desc)1400 static int irq_request_resources(struct irq_desc *desc)
1401 {
1402 struct irq_data *d = &desc->irq_data;
1403 struct irq_chip *c = d->chip;
1404
1405 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1406 }
1407
irq_release_resources(struct irq_desc * desc)1408 static void irq_release_resources(struct irq_desc *desc)
1409 {
1410 struct irq_data *d = &desc->irq_data;
1411 struct irq_chip *c = d->chip;
1412
1413 if (c->irq_release_resources)
1414 c->irq_release_resources(d);
1415 }
1416
irq_supports_nmi(struct irq_desc * desc)1417 static bool irq_supports_nmi(struct irq_desc *desc)
1418 {
1419 struct irq_data *d = irq_desc_get_irq_data(desc);
1420
1421 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1422 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1423 if (d->parent_data)
1424 return false;
1425 #endif
1426 /* Don't support NMIs for chips behind a slow bus */
1427 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1428 return false;
1429
1430 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1431 }
1432
irq_nmi_setup(struct irq_desc * desc)1433 static int irq_nmi_setup(struct irq_desc *desc)
1434 {
1435 struct irq_data *d = irq_desc_get_irq_data(desc);
1436 struct irq_chip *c = d->chip;
1437
1438 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1439 }
1440
irq_nmi_teardown(struct irq_desc * desc)1441 static void irq_nmi_teardown(struct irq_desc *desc)
1442 {
1443 struct irq_data *d = irq_desc_get_irq_data(desc);
1444 struct irq_chip *c = d->chip;
1445
1446 if (c->irq_nmi_teardown)
1447 c->irq_nmi_teardown(d);
1448 }
1449
1450 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1451 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1452 {
1453 struct task_struct *t;
1454
1455 if (!secondary) {
1456 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1457 new->name);
1458 } else {
1459 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1460 new->name);
1461 }
1462
1463 if (IS_ERR(t))
1464 return PTR_ERR(t);
1465
1466 /*
1467 * We keep the reference to the task struct even if
1468 * the thread dies to avoid that the interrupt code
1469 * references an already freed task_struct.
1470 */
1471 new->thread = get_task_struct(t);
1472 /*
1473 * Tell the thread to set its affinity. This is
1474 * important for shared interrupt handlers as we do
1475 * not invoke setup_affinity() for the secondary
1476 * handlers as everything is already set up. Even for
1477 * interrupts marked with IRQF_NO_BALANCE this is
1478 * correct as we want the thread to move to the cpu(s)
1479 * on which the requesting code placed the interrupt.
1480 */
1481 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1482 return 0;
1483 }
1484
1485 /*
1486 * Internal function to register an irqaction - typically used to
1487 * allocate special interrupts that are part of the architecture.
1488 *
1489 * Locking rules:
1490 *
1491 * desc->request_mutex Provides serialization against a concurrent free_irq()
1492 * chip_bus_lock Provides serialization for slow bus operations
1493 * desc->lock Provides serialization against hard interrupts
1494 *
1495 * chip_bus_lock and desc->lock are sufficient for all other management and
1496 * interrupt related functions. desc->request_mutex solely serializes
1497 * request/free_irq().
1498 */
1499 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1500 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1501 {
1502 struct irqaction *old, **old_ptr;
1503 unsigned long flags, thread_mask = 0;
1504 int ret, nested, shared = 0;
1505
1506 if (!desc)
1507 return -EINVAL;
1508
1509 if (desc->irq_data.chip == &no_irq_chip)
1510 return -ENOSYS;
1511 if (!try_module_get(desc->owner))
1512 return -ENODEV;
1513
1514 new->irq = irq;
1515
1516 /*
1517 * If the trigger type is not specified by the caller,
1518 * then use the default for this interrupt.
1519 */
1520 if (!(new->flags & IRQF_TRIGGER_MASK))
1521 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1522
1523 /*
1524 * Check whether the interrupt nests into another interrupt
1525 * thread.
1526 */
1527 nested = irq_settings_is_nested_thread(desc);
1528 if (nested) {
1529 if (!new->thread_fn) {
1530 ret = -EINVAL;
1531 goto out_mput;
1532 }
1533 /*
1534 * Replace the primary handler which was provided from
1535 * the driver for non nested interrupt handling by the
1536 * dummy function which warns when called.
1537 */
1538 new->handler = irq_nested_primary_handler;
1539 } else {
1540 if (irq_settings_can_thread(desc)) {
1541 ret = irq_setup_forced_threading(new);
1542 if (ret)
1543 goto out_mput;
1544 }
1545 }
1546
1547 /*
1548 * Create a handler thread when a thread function is supplied
1549 * and the interrupt does not nest into another interrupt
1550 * thread.
1551 */
1552 if (new->thread_fn && !nested) {
1553 ret = setup_irq_thread(new, irq, false);
1554 if (ret)
1555 goto out_mput;
1556 if (new->secondary) {
1557 ret = setup_irq_thread(new->secondary, irq, true);
1558 if (ret)
1559 goto out_thread;
1560 }
1561 }
1562
1563 /*
1564 * Drivers are often written to work w/o knowledge about the
1565 * underlying irq chip implementation, so a request for a
1566 * threaded irq without a primary hard irq context handler
1567 * requires the ONESHOT flag to be set. Some irq chips like
1568 * MSI based interrupts are per se one shot safe. Check the
1569 * chip flags, so we can avoid the unmask dance at the end of
1570 * the threaded handler for those.
1571 */
1572 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1573 new->flags &= ~IRQF_ONESHOT;
1574
1575 /*
1576 * Protects against a concurrent __free_irq() call which might wait
1577 * for synchronize_hardirq() to complete without holding the optional
1578 * chip bus lock and desc->lock. Also protects against handing out
1579 * a recycled oneshot thread_mask bit while it's still in use by
1580 * its previous owner.
1581 */
1582 mutex_lock(&desc->request_mutex);
1583
1584 /*
1585 * Acquire bus lock as the irq_request_resources() callback below
1586 * might rely on the serialization or the magic power management
1587 * functions which are abusing the irq_bus_lock() callback,
1588 */
1589 chip_bus_lock(desc);
1590
1591 /* First installed action requests resources. */
1592 if (!desc->action) {
1593 ret = irq_request_resources(desc);
1594 if (ret) {
1595 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1596 new->name, irq, desc->irq_data.chip->name);
1597 goto out_bus_unlock;
1598 }
1599 }
1600
1601 /*
1602 * The following block of code has to be executed atomically
1603 * protected against a concurrent interrupt and any of the other
1604 * management calls which are not serialized via
1605 * desc->request_mutex or the optional bus lock.
1606 */
1607 raw_spin_lock_irqsave(&desc->lock, flags);
1608 old_ptr = &desc->action;
1609 old = *old_ptr;
1610 if (old) {
1611 /*
1612 * Can't share interrupts unless both agree to and are
1613 * the same type (level, edge, polarity). So both flag
1614 * fields must have IRQF_SHARED set and the bits which
1615 * set the trigger type must match. Also all must
1616 * agree on ONESHOT.
1617 * Interrupt lines used for NMIs cannot be shared.
1618 */
1619 unsigned int oldtype;
1620
1621 if (irq_is_nmi(desc)) {
1622 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1623 new->name, irq, desc->irq_data.chip->name);
1624 ret = -EINVAL;
1625 goto out_unlock;
1626 }
1627
1628 /*
1629 * If nobody did set the configuration before, inherit
1630 * the one provided by the requester.
1631 */
1632 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1633 oldtype = irqd_get_trigger_type(&desc->irq_data);
1634 } else {
1635 oldtype = new->flags & IRQF_TRIGGER_MASK;
1636 irqd_set_trigger_type(&desc->irq_data, oldtype);
1637 }
1638
1639 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1640 (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1641 goto mismatch;
1642
1643 if ((old->flags & IRQF_ONESHOT) &&
1644 (new->flags & IRQF_COND_ONESHOT))
1645 new->flags |= IRQF_ONESHOT;
1646 else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1647 goto mismatch;
1648
1649 /* All handlers must agree on per-cpuness */
1650 if ((old->flags & IRQF_PERCPU) !=
1651 (new->flags & IRQF_PERCPU))
1652 goto mismatch;
1653
1654 /* add new interrupt at end of irq queue */
1655 do {
1656 /*
1657 * Or all existing action->thread_mask bits,
1658 * so we can find the next zero bit for this
1659 * new action.
1660 */
1661 thread_mask |= old->thread_mask;
1662 old_ptr = &old->next;
1663 old = *old_ptr;
1664 } while (old);
1665 shared = 1;
1666 }
1667
1668 /*
1669 * Setup the thread mask for this irqaction for ONESHOT. For
1670 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1671 * conditional in irq_wake_thread().
1672 */
1673 if (new->flags & IRQF_ONESHOT) {
1674 /*
1675 * Unlikely to have 32 resp 64 irqs sharing one line,
1676 * but who knows.
1677 */
1678 if (thread_mask == ~0UL) {
1679 ret = -EBUSY;
1680 goto out_unlock;
1681 }
1682 /*
1683 * The thread_mask for the action is or'ed to
1684 * desc->thread_active to indicate that the
1685 * IRQF_ONESHOT thread handler has been woken, but not
1686 * yet finished. The bit is cleared when a thread
1687 * completes. When all threads of a shared interrupt
1688 * line have completed desc->threads_active becomes
1689 * zero and the interrupt line is unmasked. See
1690 * handle.c:irq_wake_thread() for further information.
1691 *
1692 * If no thread is woken by primary (hard irq context)
1693 * interrupt handlers, then desc->threads_active is
1694 * also checked for zero to unmask the irq line in the
1695 * affected hard irq flow handlers
1696 * (handle_[fasteoi|level]_irq).
1697 *
1698 * The new action gets the first zero bit of
1699 * thread_mask assigned. See the loop above which or's
1700 * all existing action->thread_mask bits.
1701 */
1702 new->thread_mask = 1UL << ffz(thread_mask);
1703
1704 } else if (new->handler == irq_default_primary_handler &&
1705 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1706 /*
1707 * The interrupt was requested with handler = NULL, so
1708 * we use the default primary handler for it. But it
1709 * does not have the oneshot flag set. In combination
1710 * with level interrupts this is deadly, because the
1711 * default primary handler just wakes the thread, then
1712 * the irq lines is reenabled, but the device still
1713 * has the level irq asserted. Rinse and repeat....
1714 *
1715 * While this works for edge type interrupts, we play
1716 * it safe and reject unconditionally because we can't
1717 * say for sure which type this interrupt really
1718 * has. The type flags are unreliable as the
1719 * underlying chip implementation can override them.
1720 */
1721 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1722 new->name, irq);
1723 ret = -EINVAL;
1724 goto out_unlock;
1725 }
1726
1727 if (!shared) {
1728 /* Setup the type (level, edge polarity) if configured: */
1729 if (new->flags & IRQF_TRIGGER_MASK) {
1730 ret = __irq_set_trigger(desc,
1731 new->flags & IRQF_TRIGGER_MASK);
1732
1733 if (ret)
1734 goto out_unlock;
1735 }
1736
1737 /*
1738 * Activate the interrupt. That activation must happen
1739 * independently of IRQ_NOAUTOEN. request_irq() can fail
1740 * and the callers are supposed to handle
1741 * that. enable_irq() of an interrupt requested with
1742 * IRQ_NOAUTOEN is not supposed to fail. The activation
1743 * keeps it in shutdown mode, it merily associates
1744 * resources if necessary and if that's not possible it
1745 * fails. Interrupts which are in managed shutdown mode
1746 * will simply ignore that activation request.
1747 */
1748 ret = irq_activate(desc);
1749 if (ret)
1750 goto out_unlock;
1751
1752 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1753 IRQS_ONESHOT | IRQS_WAITING);
1754 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1755
1756 if (new->flags & IRQF_PERCPU) {
1757 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1758 irq_settings_set_per_cpu(desc);
1759 if (new->flags & IRQF_NO_DEBUG)
1760 irq_settings_set_no_debug(desc);
1761 }
1762
1763 if (noirqdebug)
1764 irq_settings_set_no_debug(desc);
1765
1766 if (new->flags & IRQF_ONESHOT)
1767 desc->istate |= IRQS_ONESHOT;
1768
1769 /* Exclude IRQ from balancing if requested */
1770 if (new->flags & IRQF_NOBALANCING) {
1771 irq_settings_set_no_balancing(desc);
1772 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1773 }
1774
1775 if (!(new->flags & IRQF_NO_AUTOEN) &&
1776 irq_settings_can_autoenable(desc)) {
1777 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1778 } else {
1779 /*
1780 * Shared interrupts do not go well with disabling
1781 * auto enable. The sharing interrupt might request
1782 * it while it's still disabled and then wait for
1783 * interrupts forever.
1784 */
1785 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1786 /* Undo nested disables: */
1787 desc->depth = 1;
1788 }
1789
1790 } else if (new->flags & IRQF_TRIGGER_MASK) {
1791 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1792 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1793
1794 if (nmsk != omsk)
1795 /* hope the handler works with current trigger mode */
1796 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1797 irq, omsk, nmsk);
1798 }
1799
1800 *old_ptr = new;
1801
1802 irq_pm_install_action(desc, new);
1803
1804 /* Reset broken irq detection when installing new handler */
1805 desc->irq_count = 0;
1806 desc->irqs_unhandled = 0;
1807
1808 /*
1809 * Check whether we disabled the irq via the spurious handler
1810 * before. Reenable it and give it another chance.
1811 */
1812 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1813 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1814 __enable_irq(desc);
1815 }
1816
1817 raw_spin_unlock_irqrestore(&desc->lock, flags);
1818 chip_bus_sync_unlock(desc);
1819 mutex_unlock(&desc->request_mutex);
1820
1821 irq_setup_timings(desc, new);
1822
1823 wake_up_and_wait_for_irq_thread_ready(desc, new);
1824 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1825
1826 register_irq_proc(irq, desc);
1827 new->dir = NULL;
1828 register_handler_proc(irq, new);
1829 return 0;
1830
1831 mismatch:
1832 if (!(new->flags & IRQF_PROBE_SHARED)) {
1833 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1834 irq, new->flags, new->name, old->flags, old->name);
1835 #ifdef CONFIG_DEBUG_SHIRQ
1836 dump_stack();
1837 #endif
1838 }
1839 ret = -EBUSY;
1840
1841 out_unlock:
1842 raw_spin_unlock_irqrestore(&desc->lock, flags);
1843
1844 if (!desc->action)
1845 irq_release_resources(desc);
1846 out_bus_unlock:
1847 chip_bus_sync_unlock(desc);
1848 mutex_unlock(&desc->request_mutex);
1849
1850 out_thread:
1851 if (new->thread) {
1852 struct task_struct *t = new->thread;
1853
1854 new->thread = NULL;
1855 kthread_stop_put(t);
1856 }
1857 if (new->secondary && new->secondary->thread) {
1858 struct task_struct *t = new->secondary->thread;
1859
1860 new->secondary->thread = NULL;
1861 kthread_stop_put(t);
1862 }
1863 out_mput:
1864 module_put(desc->owner);
1865 return ret;
1866 }
1867
1868 /*
1869 * Internal function to unregister an irqaction - used to free
1870 * regular and special interrupts that are part of the architecture.
1871 */
__free_irq(struct irq_desc * desc,void * dev_id)1872 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1873 {
1874 unsigned irq = desc->irq_data.irq;
1875 struct irqaction *action, **action_ptr;
1876 unsigned long flags;
1877
1878 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1879
1880 mutex_lock(&desc->request_mutex);
1881 chip_bus_lock(desc);
1882 raw_spin_lock_irqsave(&desc->lock, flags);
1883
1884 /*
1885 * There can be multiple actions per IRQ descriptor, find the right
1886 * one based on the dev_id:
1887 */
1888 action_ptr = &desc->action;
1889 for (;;) {
1890 action = *action_ptr;
1891
1892 if (!action) {
1893 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1894 raw_spin_unlock_irqrestore(&desc->lock, flags);
1895 chip_bus_sync_unlock(desc);
1896 mutex_unlock(&desc->request_mutex);
1897 return NULL;
1898 }
1899
1900 if (action->dev_id == dev_id)
1901 break;
1902 action_ptr = &action->next;
1903 }
1904
1905 /* Found it - now remove it from the list of entries: */
1906 *action_ptr = action->next;
1907
1908 irq_pm_remove_action(desc, action);
1909
1910 /* If this was the last handler, shut down the IRQ line: */
1911 if (!desc->action) {
1912 irq_settings_clr_disable_unlazy(desc);
1913 /* Only shutdown. Deactivate after synchronize_hardirq() */
1914 irq_shutdown(desc);
1915 }
1916
1917 #ifdef CONFIG_SMP
1918 /* make sure affinity_hint is cleaned up */
1919 if (WARN_ON_ONCE(desc->affinity_hint))
1920 desc->affinity_hint = NULL;
1921 #endif
1922
1923 raw_spin_unlock_irqrestore(&desc->lock, flags);
1924 /*
1925 * Drop bus_lock here so the changes which were done in the chip
1926 * callbacks above are synced out to the irq chips which hang
1927 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1928 *
1929 * Aside of that the bus_lock can also be taken from the threaded
1930 * handler in irq_finalize_oneshot() which results in a deadlock
1931 * because kthread_stop() would wait forever for the thread to
1932 * complete, which is blocked on the bus lock.
1933 *
1934 * The still held desc->request_mutex() protects against a
1935 * concurrent request_irq() of this irq so the release of resources
1936 * and timing data is properly serialized.
1937 */
1938 chip_bus_sync_unlock(desc);
1939
1940 unregister_handler_proc(irq, action);
1941
1942 /*
1943 * Make sure it's not being used on another CPU and if the chip
1944 * supports it also make sure that there is no (not yet serviced)
1945 * interrupt in flight at the hardware level.
1946 */
1947 __synchronize_irq(desc);
1948
1949 #ifdef CONFIG_DEBUG_SHIRQ
1950 /*
1951 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1952 * event to happen even now it's being freed, so let's make sure that
1953 * is so by doing an extra call to the handler ....
1954 *
1955 * ( We do this after actually deregistering it, to make sure that a
1956 * 'real' IRQ doesn't run in parallel with our fake. )
1957 */
1958 if (action->flags & IRQF_SHARED) {
1959 local_irq_save(flags);
1960 action->handler(irq, dev_id);
1961 local_irq_restore(flags);
1962 }
1963 #endif
1964
1965 /*
1966 * The action has already been removed above, but the thread writes
1967 * its oneshot mask bit when it completes. Though request_mutex is
1968 * held across this which prevents __setup_irq() from handing out
1969 * the same bit to a newly requested action.
1970 */
1971 if (action->thread) {
1972 kthread_stop_put(action->thread);
1973 if (action->secondary && action->secondary->thread)
1974 kthread_stop_put(action->secondary->thread);
1975 }
1976
1977 /* Last action releases resources */
1978 if (!desc->action) {
1979 /*
1980 * Reacquire bus lock as irq_release_resources() might
1981 * require it to deallocate resources over the slow bus.
1982 */
1983 chip_bus_lock(desc);
1984 /*
1985 * There is no interrupt on the fly anymore. Deactivate it
1986 * completely.
1987 */
1988 raw_spin_lock_irqsave(&desc->lock, flags);
1989 irq_domain_deactivate_irq(&desc->irq_data);
1990 raw_spin_unlock_irqrestore(&desc->lock, flags);
1991
1992 irq_release_resources(desc);
1993 chip_bus_sync_unlock(desc);
1994 irq_remove_timings(desc);
1995 }
1996
1997 mutex_unlock(&desc->request_mutex);
1998
1999 irq_chip_pm_put(&desc->irq_data);
2000 module_put(desc->owner);
2001 kfree(action->secondary);
2002 return action;
2003 }
2004
2005 /**
2006 * free_irq - free an interrupt allocated with request_irq
2007 * @irq: Interrupt line to free
2008 * @dev_id: Device identity to free
2009 *
2010 * Remove an interrupt handler. The handler is removed and if the
2011 * interrupt line is no longer in use by any driver it is disabled.
2012 * On a shared IRQ the caller must ensure the interrupt is disabled
2013 * on the card it drives before calling this function. The function
2014 * does not return until any executing interrupts for this IRQ
2015 * have completed.
2016 *
2017 * This function must not be called from interrupt context.
2018 *
2019 * Returns the devname argument passed to request_irq.
2020 */
free_irq(unsigned int irq,void * dev_id)2021 const void *free_irq(unsigned int irq, void *dev_id)
2022 {
2023 struct irq_desc *desc = irq_to_desc(irq);
2024 struct irqaction *action;
2025 const char *devname;
2026
2027 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2028 return NULL;
2029
2030 #ifdef CONFIG_SMP
2031 if (WARN_ON(desc->affinity_notify))
2032 desc->affinity_notify = NULL;
2033 #endif
2034
2035 action = __free_irq(desc, dev_id);
2036
2037 if (!action)
2038 return NULL;
2039
2040 devname = action->name;
2041 kfree(action);
2042 return devname;
2043 }
2044 EXPORT_SYMBOL(free_irq);
2045
2046 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2047 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2048 {
2049 const char *devname = NULL;
2050
2051 desc->istate &= ~IRQS_NMI;
2052
2053 if (!WARN_ON(desc->action == NULL)) {
2054 irq_pm_remove_action(desc, desc->action);
2055 devname = desc->action->name;
2056 unregister_handler_proc(irq, desc->action);
2057
2058 kfree(desc->action);
2059 desc->action = NULL;
2060 }
2061
2062 irq_settings_clr_disable_unlazy(desc);
2063 irq_shutdown_and_deactivate(desc);
2064
2065 irq_release_resources(desc);
2066
2067 irq_chip_pm_put(&desc->irq_data);
2068 module_put(desc->owner);
2069
2070 return devname;
2071 }
2072
free_nmi(unsigned int irq,void * dev_id)2073 const void *free_nmi(unsigned int irq, void *dev_id)
2074 {
2075 struct irq_desc *desc = irq_to_desc(irq);
2076 unsigned long flags;
2077 const void *devname;
2078
2079 if (!desc || WARN_ON(!irq_is_nmi(desc)))
2080 return NULL;
2081
2082 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2083 return NULL;
2084
2085 /* NMI still enabled */
2086 if (WARN_ON(desc->depth == 0))
2087 disable_nmi_nosync(irq);
2088
2089 raw_spin_lock_irqsave(&desc->lock, flags);
2090
2091 irq_nmi_teardown(desc);
2092 devname = __cleanup_nmi(irq, desc);
2093
2094 raw_spin_unlock_irqrestore(&desc->lock, flags);
2095
2096 return devname;
2097 }
2098
2099 /**
2100 * request_threaded_irq - allocate an interrupt line
2101 * @irq: Interrupt line to allocate
2102 * @handler: Function to be called when the IRQ occurs.
2103 * Primary handler for threaded interrupts.
2104 * If handler is NULL and thread_fn != NULL
2105 * the default primary handler is installed.
2106 * @thread_fn: Function called from the irq handler thread
2107 * If NULL, no irq thread is created
2108 * @irqflags: Interrupt type flags
2109 * @devname: An ascii name for the claiming device
2110 * @dev_id: A cookie passed back to the handler function
2111 *
2112 * This call allocates interrupt resources and enables the
2113 * interrupt line and IRQ handling. From the point this
2114 * call is made your handler function may be invoked. Since
2115 * your handler function must clear any interrupt the board
2116 * raises, you must take care both to initialise your hardware
2117 * and to set up the interrupt handler in the right order.
2118 *
2119 * If you want to set up a threaded irq handler for your device
2120 * then you need to supply @handler and @thread_fn. @handler is
2121 * still called in hard interrupt context and has to check
2122 * whether the interrupt originates from the device. If yes it
2123 * needs to disable the interrupt on the device and return
2124 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2125 * @thread_fn. This split handler design is necessary to support
2126 * shared interrupts.
2127 *
2128 * Dev_id must be globally unique. Normally the address of the
2129 * device data structure is used as the cookie. Since the handler
2130 * receives this value it makes sense to use it.
2131 *
2132 * If your interrupt is shared you must pass a non NULL dev_id
2133 * as this is required when freeing the interrupt.
2134 *
2135 * Flags:
2136 *
2137 * IRQF_SHARED Interrupt is shared
2138 * IRQF_TRIGGER_* Specify active edge(s) or level
2139 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2140 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2141 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2142 irq_handler_t thread_fn, unsigned long irqflags,
2143 const char *devname, void *dev_id)
2144 {
2145 struct irqaction *action;
2146 struct irq_desc *desc;
2147 int retval;
2148
2149 if (irq == IRQ_NOTCONNECTED)
2150 return -ENOTCONN;
2151
2152 /*
2153 * Sanity-check: shared interrupts must pass in a real dev-ID,
2154 * otherwise we'll have trouble later trying to figure out
2155 * which interrupt is which (messes up the interrupt freeing
2156 * logic etc).
2157 *
2158 * Also shared interrupts do not go well with disabling auto enable.
2159 * The sharing interrupt might request it while it's still disabled
2160 * and then wait for interrupts forever.
2161 *
2162 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2163 * it cannot be set along with IRQF_NO_SUSPEND.
2164 */
2165 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2166 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2167 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2168 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2169 return -EINVAL;
2170
2171 desc = irq_to_desc(irq);
2172 if (!desc)
2173 return -EINVAL;
2174
2175 if (!irq_settings_can_request(desc) ||
2176 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2177 return -EINVAL;
2178
2179 if (!handler) {
2180 if (!thread_fn)
2181 return -EINVAL;
2182 handler = irq_default_primary_handler;
2183 }
2184
2185 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2186 if (!action)
2187 return -ENOMEM;
2188
2189 action->handler = handler;
2190 action->thread_fn = thread_fn;
2191 action->flags = irqflags;
2192 action->name = devname;
2193 action->dev_id = dev_id;
2194
2195 retval = irq_chip_pm_get(&desc->irq_data);
2196 if (retval < 0) {
2197 kfree(action);
2198 return retval;
2199 }
2200
2201 retval = __setup_irq(irq, desc, action);
2202
2203 if (retval) {
2204 irq_chip_pm_put(&desc->irq_data);
2205 kfree(action->secondary);
2206 kfree(action);
2207 }
2208
2209 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2210 if (!retval && (irqflags & IRQF_SHARED)) {
2211 /*
2212 * It's a shared IRQ -- the driver ought to be prepared for it
2213 * to happen immediately, so let's make sure....
2214 * We disable the irq to make sure that a 'real' IRQ doesn't
2215 * run in parallel with our fake.
2216 */
2217 unsigned long flags;
2218
2219 disable_irq(irq);
2220 local_irq_save(flags);
2221
2222 handler(irq, dev_id);
2223
2224 local_irq_restore(flags);
2225 enable_irq(irq);
2226 }
2227 #endif
2228 return retval;
2229 }
2230 EXPORT_SYMBOL(request_threaded_irq);
2231
2232 /**
2233 * request_any_context_irq - allocate an interrupt line
2234 * @irq: Interrupt line to allocate
2235 * @handler: Function to be called when the IRQ occurs.
2236 * Threaded handler for threaded interrupts.
2237 * @flags: Interrupt type flags
2238 * @name: An ascii name for the claiming device
2239 * @dev_id: A cookie passed back to the handler function
2240 *
2241 * This call allocates interrupt resources and enables the
2242 * interrupt line and IRQ handling. It selects either a
2243 * hardirq or threaded handling method depending on the
2244 * context.
2245 *
2246 * On failure, it returns a negative value. On success,
2247 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2248 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2249 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2250 unsigned long flags, const char *name, void *dev_id)
2251 {
2252 struct irq_desc *desc;
2253 int ret;
2254
2255 if (irq == IRQ_NOTCONNECTED)
2256 return -ENOTCONN;
2257
2258 desc = irq_to_desc(irq);
2259 if (!desc)
2260 return -EINVAL;
2261
2262 if (irq_settings_is_nested_thread(desc)) {
2263 ret = request_threaded_irq(irq, NULL, handler,
2264 flags, name, dev_id);
2265 return !ret ? IRQC_IS_NESTED : ret;
2266 }
2267
2268 ret = request_irq(irq, handler, flags, name, dev_id);
2269 return !ret ? IRQC_IS_HARDIRQ : ret;
2270 }
2271 EXPORT_SYMBOL_GPL(request_any_context_irq);
2272
2273 /**
2274 * request_nmi - allocate an interrupt line for NMI delivery
2275 * @irq: Interrupt line to allocate
2276 * @handler: Function to be called when the IRQ occurs.
2277 * Threaded handler for threaded interrupts.
2278 * @irqflags: Interrupt type flags
2279 * @name: An ascii name for the claiming device
2280 * @dev_id: A cookie passed back to the handler function
2281 *
2282 * This call allocates interrupt resources and enables the
2283 * interrupt line and IRQ handling. It sets up the IRQ line
2284 * to be handled as an NMI.
2285 *
2286 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2287 * cannot be threaded.
2288 *
2289 * Interrupt lines requested for NMI delivering must produce per cpu
2290 * interrupts and have auto enabling setting disabled.
2291 *
2292 * Dev_id must be globally unique. Normally the address of the
2293 * device data structure is used as the cookie. Since the handler
2294 * receives this value it makes sense to use it.
2295 *
2296 * If the interrupt line cannot be used to deliver NMIs, function
2297 * will fail and return a negative value.
2298 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2299 int request_nmi(unsigned int irq, irq_handler_t handler,
2300 unsigned long irqflags, const char *name, void *dev_id)
2301 {
2302 struct irqaction *action;
2303 struct irq_desc *desc;
2304 unsigned long flags;
2305 int retval;
2306
2307 if (irq == IRQ_NOTCONNECTED)
2308 return -ENOTCONN;
2309
2310 /* NMI cannot be shared, used for Polling */
2311 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2312 return -EINVAL;
2313
2314 if (!(irqflags & IRQF_PERCPU))
2315 return -EINVAL;
2316
2317 if (!handler)
2318 return -EINVAL;
2319
2320 desc = irq_to_desc(irq);
2321
2322 if (!desc || (irq_settings_can_autoenable(desc) &&
2323 !(irqflags & IRQF_NO_AUTOEN)) ||
2324 !irq_settings_can_request(desc) ||
2325 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2326 !irq_supports_nmi(desc))
2327 return -EINVAL;
2328
2329 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2330 if (!action)
2331 return -ENOMEM;
2332
2333 action->handler = handler;
2334 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2335 action->name = name;
2336 action->dev_id = dev_id;
2337
2338 retval = irq_chip_pm_get(&desc->irq_data);
2339 if (retval < 0)
2340 goto err_out;
2341
2342 retval = __setup_irq(irq, desc, action);
2343 if (retval)
2344 goto err_irq_setup;
2345
2346 raw_spin_lock_irqsave(&desc->lock, flags);
2347
2348 /* Setup NMI state */
2349 desc->istate |= IRQS_NMI;
2350 retval = irq_nmi_setup(desc);
2351 if (retval) {
2352 __cleanup_nmi(irq, desc);
2353 raw_spin_unlock_irqrestore(&desc->lock, flags);
2354 return -EINVAL;
2355 }
2356
2357 raw_spin_unlock_irqrestore(&desc->lock, flags);
2358
2359 return 0;
2360
2361 err_irq_setup:
2362 irq_chip_pm_put(&desc->irq_data);
2363 err_out:
2364 kfree(action);
2365
2366 return retval;
2367 }
2368
enable_percpu_irq(unsigned int irq,unsigned int type)2369 void enable_percpu_irq(unsigned int irq, unsigned int type)
2370 {
2371 unsigned int cpu = smp_processor_id();
2372 unsigned long flags;
2373 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2374
2375 if (!desc)
2376 return;
2377
2378 /*
2379 * If the trigger type is not specified by the caller, then
2380 * use the default for this interrupt.
2381 */
2382 type &= IRQ_TYPE_SENSE_MASK;
2383 if (type == IRQ_TYPE_NONE)
2384 type = irqd_get_trigger_type(&desc->irq_data);
2385
2386 if (type != IRQ_TYPE_NONE) {
2387 int ret;
2388
2389 ret = __irq_set_trigger(desc, type);
2390
2391 if (ret) {
2392 WARN(1, "failed to set type for IRQ%d\n", irq);
2393 goto out;
2394 }
2395 }
2396
2397 irq_percpu_enable(desc, cpu);
2398 out:
2399 irq_put_desc_unlock(desc, flags);
2400 }
2401 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2402
enable_percpu_nmi(unsigned int irq,unsigned int type)2403 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2404 {
2405 enable_percpu_irq(irq, type);
2406 }
2407
2408 /**
2409 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2410 * @irq: Linux irq number to check for
2411 *
2412 * Must be called from a non migratable context. Returns the enable
2413 * state of a per cpu interrupt on the current cpu.
2414 */
irq_percpu_is_enabled(unsigned int irq)2415 bool irq_percpu_is_enabled(unsigned int irq)
2416 {
2417 unsigned int cpu = smp_processor_id();
2418 struct irq_desc *desc;
2419 unsigned long flags;
2420 bool is_enabled;
2421
2422 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2423 if (!desc)
2424 return false;
2425
2426 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2427 irq_put_desc_unlock(desc, flags);
2428
2429 return is_enabled;
2430 }
2431 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2432
disable_percpu_irq(unsigned int irq)2433 void disable_percpu_irq(unsigned int irq)
2434 {
2435 unsigned int cpu = smp_processor_id();
2436 unsigned long flags;
2437 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2438
2439 if (!desc)
2440 return;
2441
2442 irq_percpu_disable(desc, cpu);
2443 irq_put_desc_unlock(desc, flags);
2444 }
2445 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2446
disable_percpu_nmi(unsigned int irq)2447 void disable_percpu_nmi(unsigned int irq)
2448 {
2449 disable_percpu_irq(irq);
2450 }
2451
2452 /*
2453 * Internal function to unregister a percpu irqaction.
2454 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2455 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2456 {
2457 struct irq_desc *desc = irq_to_desc(irq);
2458 struct irqaction *action;
2459 unsigned long flags;
2460
2461 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2462
2463 if (!desc)
2464 return NULL;
2465
2466 raw_spin_lock_irqsave(&desc->lock, flags);
2467
2468 action = desc->action;
2469 if (!action || action->percpu_dev_id != dev_id) {
2470 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2471 goto bad;
2472 }
2473
2474 if (!cpumask_empty(desc->percpu_enabled)) {
2475 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2476 irq, cpumask_first(desc->percpu_enabled));
2477 goto bad;
2478 }
2479
2480 /* Found it - now remove it from the list of entries: */
2481 desc->action = NULL;
2482
2483 desc->istate &= ~IRQS_NMI;
2484
2485 raw_spin_unlock_irqrestore(&desc->lock, flags);
2486
2487 unregister_handler_proc(irq, action);
2488
2489 irq_chip_pm_put(&desc->irq_data);
2490 module_put(desc->owner);
2491 return action;
2492
2493 bad:
2494 raw_spin_unlock_irqrestore(&desc->lock, flags);
2495 return NULL;
2496 }
2497
2498 /**
2499 * remove_percpu_irq - free a per-cpu interrupt
2500 * @irq: Interrupt line to free
2501 * @act: irqaction for the interrupt
2502 *
2503 * Used to remove interrupts statically setup by the early boot process.
2504 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2505 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2506 {
2507 struct irq_desc *desc = irq_to_desc(irq);
2508
2509 if (desc && irq_settings_is_per_cpu_devid(desc))
2510 __free_percpu_irq(irq, act->percpu_dev_id);
2511 }
2512
2513 /**
2514 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2515 * @irq: Interrupt line to free
2516 * @dev_id: Device identity to free
2517 *
2518 * Remove a percpu interrupt handler. The handler is removed, but
2519 * the interrupt line is not disabled. This must be done on each
2520 * CPU before calling this function. The function does not return
2521 * until any executing interrupts for this IRQ have completed.
2522 *
2523 * This function must not be called from interrupt context.
2524 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2525 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2526 {
2527 struct irq_desc *desc = irq_to_desc(irq);
2528
2529 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2530 return;
2531
2532 chip_bus_lock(desc);
2533 kfree(__free_percpu_irq(irq, dev_id));
2534 chip_bus_sync_unlock(desc);
2535 }
2536 EXPORT_SYMBOL_GPL(free_percpu_irq);
2537
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2538 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2539 {
2540 struct irq_desc *desc = irq_to_desc(irq);
2541
2542 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2543 return;
2544
2545 if (WARN_ON(!irq_is_nmi(desc)))
2546 return;
2547
2548 kfree(__free_percpu_irq(irq, dev_id));
2549 }
2550
2551 /**
2552 * setup_percpu_irq - setup a per-cpu interrupt
2553 * @irq: Interrupt line to setup
2554 * @act: irqaction for the interrupt
2555 *
2556 * Used to statically setup per-cpu interrupts in the early boot process.
2557 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2558 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2559 {
2560 struct irq_desc *desc = irq_to_desc(irq);
2561 int retval;
2562
2563 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2564 return -EINVAL;
2565
2566 retval = irq_chip_pm_get(&desc->irq_data);
2567 if (retval < 0)
2568 return retval;
2569
2570 retval = __setup_irq(irq, desc, act);
2571
2572 if (retval)
2573 irq_chip_pm_put(&desc->irq_data);
2574
2575 return retval;
2576 }
2577
2578 /**
2579 * __request_percpu_irq - allocate a percpu interrupt line
2580 * @irq: Interrupt line to allocate
2581 * @handler: Function to be called when the IRQ occurs.
2582 * @flags: Interrupt type flags (IRQF_TIMER only)
2583 * @devname: An ascii name for the claiming device
2584 * @dev_id: A percpu cookie passed back to the handler function
2585 *
2586 * This call allocates interrupt resources and enables the
2587 * interrupt on the local CPU. If the interrupt is supposed to be
2588 * enabled on other CPUs, it has to be done on each CPU using
2589 * enable_percpu_irq().
2590 *
2591 * Dev_id must be globally unique. It is a per-cpu variable, and
2592 * the handler gets called with the interrupted CPU's instance of
2593 * that variable.
2594 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2595 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2596 unsigned long flags, const char *devname,
2597 void __percpu *dev_id)
2598 {
2599 struct irqaction *action;
2600 struct irq_desc *desc;
2601 int retval;
2602
2603 if (!dev_id)
2604 return -EINVAL;
2605
2606 desc = irq_to_desc(irq);
2607 if (!desc || !irq_settings_can_request(desc) ||
2608 !irq_settings_is_per_cpu_devid(desc))
2609 return -EINVAL;
2610
2611 if (flags && flags != IRQF_TIMER)
2612 return -EINVAL;
2613
2614 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2615 if (!action)
2616 return -ENOMEM;
2617
2618 action->handler = handler;
2619 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2620 action->name = devname;
2621 action->percpu_dev_id = dev_id;
2622
2623 retval = irq_chip_pm_get(&desc->irq_data);
2624 if (retval < 0) {
2625 kfree(action);
2626 return retval;
2627 }
2628
2629 retval = __setup_irq(irq, desc, action);
2630
2631 if (retval) {
2632 irq_chip_pm_put(&desc->irq_data);
2633 kfree(action);
2634 }
2635
2636 return retval;
2637 }
2638 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2639
2640 /**
2641 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2642 * @irq: Interrupt line to allocate
2643 * @handler: Function to be called when the IRQ occurs.
2644 * @name: An ascii name for the claiming device
2645 * @dev_id: A percpu cookie passed back to the handler function
2646 *
2647 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2648 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2649 * being enabled on the same CPU by using enable_percpu_nmi().
2650 *
2651 * Dev_id must be globally unique. It is a per-cpu variable, and
2652 * the handler gets called with the interrupted CPU's instance of
2653 * that variable.
2654 *
2655 * Interrupt lines requested for NMI delivering should have auto enabling
2656 * setting disabled.
2657 *
2658 * If the interrupt line cannot be used to deliver NMIs, function
2659 * will fail returning a negative value.
2660 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2661 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2662 const char *name, void __percpu *dev_id)
2663 {
2664 struct irqaction *action;
2665 struct irq_desc *desc;
2666 unsigned long flags;
2667 int retval;
2668
2669 if (!handler)
2670 return -EINVAL;
2671
2672 desc = irq_to_desc(irq);
2673
2674 if (!desc || !irq_settings_can_request(desc) ||
2675 !irq_settings_is_per_cpu_devid(desc) ||
2676 irq_settings_can_autoenable(desc) ||
2677 !irq_supports_nmi(desc))
2678 return -EINVAL;
2679
2680 /* The line cannot already be NMI */
2681 if (irq_is_nmi(desc))
2682 return -EINVAL;
2683
2684 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2685 if (!action)
2686 return -ENOMEM;
2687
2688 action->handler = handler;
2689 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2690 | IRQF_NOBALANCING;
2691 action->name = name;
2692 action->percpu_dev_id = dev_id;
2693
2694 retval = irq_chip_pm_get(&desc->irq_data);
2695 if (retval < 0)
2696 goto err_out;
2697
2698 retval = __setup_irq(irq, desc, action);
2699 if (retval)
2700 goto err_irq_setup;
2701
2702 raw_spin_lock_irqsave(&desc->lock, flags);
2703 desc->istate |= IRQS_NMI;
2704 raw_spin_unlock_irqrestore(&desc->lock, flags);
2705
2706 return 0;
2707
2708 err_irq_setup:
2709 irq_chip_pm_put(&desc->irq_data);
2710 err_out:
2711 kfree(action);
2712
2713 return retval;
2714 }
2715
2716 /**
2717 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2718 * @irq: Interrupt line to prepare for NMI delivery
2719 *
2720 * This call prepares an interrupt line to deliver NMI on the current CPU,
2721 * before that interrupt line gets enabled with enable_percpu_nmi().
2722 *
2723 * As a CPU local operation, this should be called from non-preemptible
2724 * context.
2725 *
2726 * If the interrupt line cannot be used to deliver NMIs, function
2727 * will fail returning a negative value.
2728 */
prepare_percpu_nmi(unsigned int irq)2729 int prepare_percpu_nmi(unsigned int irq)
2730 {
2731 unsigned long flags;
2732 struct irq_desc *desc;
2733 int ret = 0;
2734
2735 WARN_ON(preemptible());
2736
2737 desc = irq_get_desc_lock(irq, &flags,
2738 IRQ_GET_DESC_CHECK_PERCPU);
2739 if (!desc)
2740 return -EINVAL;
2741
2742 if (WARN(!irq_is_nmi(desc),
2743 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2744 irq)) {
2745 ret = -EINVAL;
2746 goto out;
2747 }
2748
2749 ret = irq_nmi_setup(desc);
2750 if (ret) {
2751 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2752 goto out;
2753 }
2754
2755 out:
2756 irq_put_desc_unlock(desc, flags);
2757 return ret;
2758 }
2759
2760 /**
2761 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2762 * @irq: Interrupt line from which CPU local NMI configuration should be
2763 * removed
2764 *
2765 * This call undoes the setup done by prepare_percpu_nmi().
2766 *
2767 * IRQ line should not be enabled for the current CPU.
2768 *
2769 * As a CPU local operation, this should be called from non-preemptible
2770 * context.
2771 */
teardown_percpu_nmi(unsigned int irq)2772 void teardown_percpu_nmi(unsigned int irq)
2773 {
2774 unsigned long flags;
2775 struct irq_desc *desc;
2776
2777 WARN_ON(preemptible());
2778
2779 desc = irq_get_desc_lock(irq, &flags,
2780 IRQ_GET_DESC_CHECK_PERCPU);
2781 if (!desc)
2782 return;
2783
2784 if (WARN_ON(!irq_is_nmi(desc)))
2785 goto out;
2786
2787 irq_nmi_teardown(desc);
2788 out:
2789 irq_put_desc_unlock(desc, flags);
2790 }
2791
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2792 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2793 bool *state)
2794 {
2795 struct irq_chip *chip;
2796 int err = -EINVAL;
2797
2798 do {
2799 chip = irq_data_get_irq_chip(data);
2800 if (WARN_ON_ONCE(!chip))
2801 return -ENODEV;
2802 if (chip->irq_get_irqchip_state)
2803 break;
2804 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2805 data = data->parent_data;
2806 #else
2807 data = NULL;
2808 #endif
2809 } while (data);
2810
2811 if (data)
2812 err = chip->irq_get_irqchip_state(data, which, state);
2813 return err;
2814 }
2815
2816 /**
2817 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2818 * @irq: Interrupt line that is forwarded to a VM
2819 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2820 * @state: a pointer to a boolean where the state is to be stored
2821 *
2822 * This call snapshots the internal irqchip state of an
2823 * interrupt, returning into @state the bit corresponding to
2824 * stage @which
2825 *
2826 * This function should be called with preemption disabled if the
2827 * interrupt controller has per-cpu registers.
2828 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2829 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2830 bool *state)
2831 {
2832 struct irq_desc *desc;
2833 struct irq_data *data;
2834 unsigned long flags;
2835 int err = -EINVAL;
2836
2837 desc = irq_get_desc_buslock(irq, &flags, 0);
2838 if (!desc)
2839 return err;
2840
2841 data = irq_desc_get_irq_data(desc);
2842
2843 err = __irq_get_irqchip_state(data, which, state);
2844
2845 irq_put_desc_busunlock(desc, flags);
2846 return err;
2847 }
2848 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2849
2850 /**
2851 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2852 * @irq: Interrupt line that is forwarded to a VM
2853 * @which: State to be restored (one of IRQCHIP_STATE_*)
2854 * @val: Value corresponding to @which
2855 *
2856 * This call sets the internal irqchip state of an interrupt,
2857 * depending on the value of @which.
2858 *
2859 * This function should be called with migration disabled if the
2860 * interrupt controller has per-cpu registers.
2861 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2862 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2863 bool val)
2864 {
2865 struct irq_desc *desc;
2866 struct irq_data *data;
2867 struct irq_chip *chip;
2868 unsigned long flags;
2869 int err = -EINVAL;
2870
2871 desc = irq_get_desc_buslock(irq, &flags, 0);
2872 if (!desc)
2873 return err;
2874
2875 data = irq_desc_get_irq_data(desc);
2876
2877 do {
2878 chip = irq_data_get_irq_chip(data);
2879 if (WARN_ON_ONCE(!chip)) {
2880 err = -ENODEV;
2881 goto out_unlock;
2882 }
2883 if (chip->irq_set_irqchip_state)
2884 break;
2885 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2886 data = data->parent_data;
2887 #else
2888 data = NULL;
2889 #endif
2890 } while (data);
2891
2892 if (data)
2893 err = chip->irq_set_irqchip_state(data, which, val);
2894
2895 out_unlock:
2896 irq_put_desc_busunlock(desc, flags);
2897 return err;
2898 }
2899 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2900
2901 /**
2902 * irq_has_action - Check whether an interrupt is requested
2903 * @irq: The linux irq number
2904 *
2905 * Returns: A snapshot of the current state
2906 */
irq_has_action(unsigned int irq)2907 bool irq_has_action(unsigned int irq)
2908 {
2909 bool res;
2910
2911 rcu_read_lock();
2912 res = irq_desc_has_action(irq_to_desc(irq));
2913 rcu_read_unlock();
2914 return res;
2915 }
2916 EXPORT_SYMBOL_GPL(irq_has_action);
2917
2918 /**
2919 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2920 * @irq: The linux irq number
2921 * @bitmask: The bitmask to evaluate
2922 *
2923 * Returns: True if one of the bits in @bitmask is set
2924 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2925 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2926 {
2927 struct irq_desc *desc;
2928 bool res = false;
2929
2930 rcu_read_lock();
2931 desc = irq_to_desc(irq);
2932 if (desc)
2933 res = !!(desc->status_use_accessors & bitmask);
2934 rcu_read_unlock();
2935 return res;
2936 }
2937 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2938