1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "mes_v11_api_def.h"
40 #include "kfd_debug.h"
41
42 /* Size of the per-pipe EOP queue */
43 #define CIK_HPD_EOP_BYTES_LOG2 11
44 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
45
46 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
47 u32 pasid, unsigned int vmid);
48
49 static int execute_queues_cpsch(struct device_queue_manager *dqm,
50 enum kfd_unmap_queues_filter filter,
51 uint32_t filter_param,
52 uint32_t grace_period);
53 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
54 enum kfd_unmap_queues_filter filter,
55 uint32_t filter_param,
56 uint32_t grace_period,
57 bool reset);
58
59 static int map_queues_cpsch(struct device_queue_manager *dqm);
60
61 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
62 struct queue *q);
63
64 static inline void deallocate_hqd(struct device_queue_manager *dqm,
65 struct queue *q);
66 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
67 static int allocate_sdma_queue(struct device_queue_manager *dqm,
68 struct queue *q, const uint32_t *restore_sdma_id);
69 static void kfd_process_hw_exception(struct work_struct *work);
70
71 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)72 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
73 {
74 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
75 return KFD_MQD_TYPE_SDMA;
76 return KFD_MQD_TYPE_CP;
77 }
78
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)79 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
80 {
81 int i;
82 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
83 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
84
85 /* queue is available for KFD usage if bit is 1 */
86 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
87 if (test_bit(pipe_offset + i,
88 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
89 return true;
90 return false;
91 }
92
get_cp_queues_num(struct device_queue_manager * dqm)93 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
94 {
95 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
96 AMDGPU_MAX_QUEUES);
97 }
98
get_queues_per_pipe(struct device_queue_manager * dqm)99 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
100 {
101 return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
102 }
103
get_pipes_per_mec(struct device_queue_manager * dqm)104 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
105 {
106 return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
107 }
108
get_num_all_sdma_engines(struct device_queue_manager * dqm)109 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
110 {
111 return kfd_get_num_sdma_engines(dqm->dev) +
112 kfd_get_num_xgmi_sdma_engines(dqm->dev);
113 }
114
get_num_sdma_queues(struct device_queue_manager * dqm)115 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
116 {
117 return kfd_get_num_sdma_engines(dqm->dev) *
118 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
119 }
120
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)121 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
122 {
123 return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
124 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
125 }
126
init_sdma_bitmaps(struct device_queue_manager * dqm)127 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
128 {
129 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
130 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
131
132 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
133 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
134
135 /* Mask out the reserved queues */
136 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
137 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
138 KFD_MAX_SDMA_QUEUES);
139 }
140
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)141 void program_sh_mem_settings(struct device_queue_manager *dqm,
142 struct qcm_process_device *qpd)
143 {
144 uint32_t xcc_mask = dqm->dev->xcc_mask;
145 int xcc_id;
146
147 for_each_inst(xcc_id, xcc_mask)
148 dqm->dev->kfd2kgd->program_sh_mem_settings(
149 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
150 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
151 qpd->sh_mem_bases, xcc_id);
152 }
153
kfd_hws_hang(struct device_queue_manager * dqm)154 static void kfd_hws_hang(struct device_queue_manager *dqm)
155 {
156 struct device_process_node *cur;
157 struct qcm_process_device *qpd;
158 struct queue *q;
159
160 /* Mark all device queues as reset. */
161 list_for_each_entry(cur, &dqm->queues, list) {
162 qpd = cur->qpd;
163 list_for_each_entry(q, &qpd->queues_list, list) {
164 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
165
166 pdd->has_reset_queue = true;
167 }
168 }
169
170 /*
171 * Issue a GPU reset if HWS is unresponsive
172 */
173 schedule_work(&dqm->hw_exception_work);
174 }
175
convert_to_mes_queue_type(int queue_type)176 static int convert_to_mes_queue_type(int queue_type)
177 {
178 int mes_queue_type;
179
180 switch (queue_type) {
181 case KFD_QUEUE_TYPE_COMPUTE:
182 mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
183 break;
184 case KFD_QUEUE_TYPE_SDMA:
185 mes_queue_type = MES_QUEUE_TYPE_SDMA;
186 break;
187 default:
188 WARN(1, "Invalid queue type %d", queue_type);
189 mes_queue_type = -EINVAL;
190 break;
191 }
192
193 return mes_queue_type;
194 }
195
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)196 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
197 struct qcm_process_device *qpd)
198 {
199 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
200 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
201 struct mes_add_queue_input queue_input;
202 int r, queue_type;
203 uint64_t wptr_addr_off;
204
205 if (!dqm->sched_running || dqm->sched_halt)
206 return 0;
207 if (!down_read_trylock(&adev->reset_domain->sem))
208 return -EIO;
209
210 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
211 queue_input.process_id = qpd->pqm->process->pasid;
212 queue_input.page_table_base_addr = qpd->page_table_base;
213 queue_input.process_va_start = 0;
214 queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
215 /* MES unit for quantum is 100ns */
216 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */
217 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
218 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
219 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
220 queue_input.inprocess_gang_priority = q->properties.priority;
221 queue_input.gang_global_priority_level =
222 AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
223 queue_input.doorbell_offset = q->properties.doorbell_off;
224 queue_input.mqd_addr = q->gart_mqd_addr;
225 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
226
227 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
228 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
229
230 queue_input.is_kfd_process = 1;
231 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
232 queue_input.queue_size = q->properties.queue_size >> 2;
233
234 queue_input.paging = false;
235 queue_input.tba_addr = qpd->tba_addr;
236 queue_input.tma_addr = qpd->tma_addr;
237 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
238 queue_input.skip_process_ctx_clear =
239 qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
240 (qpd->pqm->process->debug_trap_enabled ||
241 kfd_dbg_has_ttmps_always_setup(q->device));
242
243 queue_type = convert_to_mes_queue_type(q->properties.type);
244 if (queue_type < 0) {
245 dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
246 q->properties.type);
247 up_read(&adev->reset_domain->sem);
248 return -EINVAL;
249 }
250 queue_input.queue_type = (uint32_t)queue_type;
251
252 queue_input.exclusively_scheduled = q->properties.is_gws;
253
254 amdgpu_mes_lock(&adev->mes);
255 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
256 amdgpu_mes_unlock(&adev->mes);
257 up_read(&adev->reset_domain->sem);
258 if (r) {
259 dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
260 q->properties.doorbell_off);
261 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
262 kfd_hws_hang(dqm);
263 }
264
265 return r;
266 }
267
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)268 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
269 struct qcm_process_device *qpd)
270 {
271 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
272 int r;
273 struct mes_remove_queue_input queue_input;
274
275 if (!dqm->sched_running || dqm->sched_halt)
276 return 0;
277 if (!down_read_trylock(&adev->reset_domain->sem))
278 return -EIO;
279
280 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
281 queue_input.doorbell_offset = q->properties.doorbell_off;
282 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
283
284 amdgpu_mes_lock(&adev->mes);
285 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
286 amdgpu_mes_unlock(&adev->mes);
287 up_read(&adev->reset_domain->sem);
288
289 if (r) {
290 dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
291 q->properties.doorbell_off);
292 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
293 kfd_hws_hang(dqm);
294 }
295
296 return r;
297 }
298
remove_all_kfd_queues_mes(struct device_queue_manager * dqm)299 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
300 {
301 struct device_process_node *cur;
302 struct device *dev = dqm->dev->adev->dev;
303 struct qcm_process_device *qpd;
304 struct queue *q;
305 int retval = 0;
306
307 list_for_each_entry(cur, &dqm->queues, list) {
308 qpd = cur->qpd;
309 list_for_each_entry(q, &qpd->queues_list, list) {
310 if (q->properties.is_active) {
311 retval = remove_queue_mes(dqm, q, qpd);
312 if (retval) {
313 dev_err(dev, "%s: Failed to remove queue %d for dev %d",
314 __func__,
315 q->properties.queue_id,
316 dqm->dev->id);
317 return retval;
318 }
319 }
320 }
321 }
322
323 return retval;
324 }
325
add_all_kfd_queues_mes(struct device_queue_manager * dqm)326 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
327 {
328 struct device_process_node *cur;
329 struct device *dev = dqm->dev->adev->dev;
330 struct qcm_process_device *qpd;
331 struct queue *q;
332 int retval = 0;
333
334 list_for_each_entry(cur, &dqm->queues, list) {
335 qpd = cur->qpd;
336 list_for_each_entry(q, &qpd->queues_list, list) {
337 if (!q->properties.is_active)
338 continue;
339 retval = add_queue_mes(dqm, q, qpd);
340 if (retval) {
341 dev_err(dev, "%s: Failed to add queue %d for dev %d",
342 __func__,
343 q->properties.queue_id,
344 dqm->dev->id);
345 return retval;
346 }
347 }
348 }
349
350 return retval;
351 }
352
suspend_all_queues_mes(struct device_queue_manager * dqm)353 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
354 {
355 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
356 int r = 0;
357
358 if (!down_read_trylock(&adev->reset_domain->sem))
359 return -EIO;
360
361 r = amdgpu_mes_suspend(adev);
362 up_read(&adev->reset_domain->sem);
363
364 if (r) {
365 dev_err(adev->dev, "failed to suspend gangs from MES\n");
366 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
367 kfd_hws_hang(dqm);
368 }
369
370 return r;
371 }
372
resume_all_queues_mes(struct device_queue_manager * dqm)373 static int resume_all_queues_mes(struct device_queue_manager *dqm)
374 {
375 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
376 int r = 0;
377
378 if (!down_read_trylock(&adev->reset_domain->sem))
379 return -EIO;
380
381 r = amdgpu_mes_resume(adev);
382 up_read(&adev->reset_domain->sem);
383
384 if (r) {
385 dev_err(adev->dev, "failed to resume gangs from MES\n");
386 dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
387 kfd_hws_hang(dqm);
388 }
389
390 return r;
391 }
392
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)393 static void increment_queue_count(struct device_queue_manager *dqm,
394 struct qcm_process_device *qpd,
395 struct queue *q)
396 {
397 dqm->active_queue_count++;
398 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
399 q->properties.type == KFD_QUEUE_TYPE_DIQ)
400 dqm->active_cp_queue_count++;
401
402 if (q->properties.is_gws) {
403 dqm->gws_queue_count++;
404 qpd->mapped_gws_queue = true;
405 }
406 }
407
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)408 static void decrement_queue_count(struct device_queue_manager *dqm,
409 struct qcm_process_device *qpd,
410 struct queue *q)
411 {
412 dqm->active_queue_count--;
413 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
414 q->properties.type == KFD_QUEUE_TYPE_DIQ)
415 dqm->active_cp_queue_count--;
416
417 if (q->properties.is_gws) {
418 dqm->gws_queue_count--;
419 qpd->mapped_gws_queue = false;
420 }
421 }
422
423 /*
424 * Allocate a doorbell ID to this queue.
425 * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
426 */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)427 static int allocate_doorbell(struct qcm_process_device *qpd,
428 struct queue *q,
429 uint32_t const *restore_id)
430 {
431 struct kfd_node *dev = qpd->dqm->dev;
432
433 if (!KFD_IS_SOC15(dev)) {
434 /* On pre-SOC15 chips we need to use the queue ID to
435 * preserve the user mode ABI.
436 */
437
438 if (restore_id && *restore_id != q->properties.queue_id)
439 return -EINVAL;
440
441 q->doorbell_id = q->properties.queue_id;
442 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
443 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
444 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
445 * doorbell assignments based on the engine and queue id.
446 * The doobell index distance between RLC (2*i) and (2*i+1)
447 * for a SDMA engine is 512.
448 */
449
450 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
451
452 /*
453 * q->properties.sdma_engine_id corresponds to the virtual
454 * sdma engine number. However, for doorbell allocation,
455 * we need the physical sdma engine id in order to get the
456 * correct doorbell offset.
457 */
458 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
459 get_num_all_sdma_engines(qpd->dqm) +
460 q->properties.sdma_engine_id]
461 + (q->properties.sdma_queue_id & 1)
462 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
463 + (q->properties.sdma_queue_id >> 1);
464
465 if (restore_id && *restore_id != valid_id)
466 return -EINVAL;
467 q->doorbell_id = valid_id;
468 } else {
469 /* For CP queues on SOC15 */
470 if (restore_id) {
471 /* make sure that ID is free */
472 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
473 return -EINVAL;
474
475 q->doorbell_id = *restore_id;
476 } else {
477 /* or reserve a free doorbell ID */
478 unsigned int found;
479
480 found = find_first_zero_bit(qpd->doorbell_bitmap,
481 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
482 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
483 pr_debug("No doorbells available");
484 return -EBUSY;
485 }
486 set_bit(found, qpd->doorbell_bitmap);
487 q->doorbell_id = found;
488 }
489 }
490
491 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
492 qpd->proc_doorbells,
493 q->doorbell_id,
494 dev->kfd->device_info.doorbell_size);
495 return 0;
496 }
497
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)498 static void deallocate_doorbell(struct qcm_process_device *qpd,
499 struct queue *q)
500 {
501 unsigned int old;
502 struct kfd_node *dev = qpd->dqm->dev;
503
504 if (!KFD_IS_SOC15(dev) ||
505 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
506 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
507 return;
508
509 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
510 WARN_ON(!old);
511 }
512
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)513 static void program_trap_handler_settings(struct device_queue_manager *dqm,
514 struct qcm_process_device *qpd)
515 {
516 uint32_t xcc_mask = dqm->dev->xcc_mask;
517 int xcc_id;
518
519 if (dqm->dev->kfd2kgd->program_trap_handler_settings)
520 for_each_inst(xcc_id, xcc_mask)
521 dqm->dev->kfd2kgd->program_trap_handler_settings(
522 dqm->dev->adev, qpd->vmid, qpd->tba_addr,
523 qpd->tma_addr, xcc_id);
524 }
525
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)526 static int allocate_vmid(struct device_queue_manager *dqm,
527 struct qcm_process_device *qpd,
528 struct queue *q)
529 {
530 struct device *dev = dqm->dev->adev->dev;
531 int allocated_vmid = -1, i;
532
533 for (i = dqm->dev->vm_info.first_vmid_kfd;
534 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
535 if (!dqm->vmid_pasid[i]) {
536 allocated_vmid = i;
537 break;
538 }
539 }
540
541 if (allocated_vmid < 0) {
542 dev_err(dev, "no more vmid to allocate\n");
543 return -ENOSPC;
544 }
545
546 pr_debug("vmid allocated: %d\n", allocated_vmid);
547
548 dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
549
550 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
551
552 qpd->vmid = allocated_vmid;
553 q->properties.vmid = allocated_vmid;
554
555 program_sh_mem_settings(dqm, qpd);
556
557 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
558 program_trap_handler_settings(dqm, qpd);
559
560 /* qpd->page_table_base is set earlier when register_process()
561 * is called, i.e. when the first queue is created.
562 */
563 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
564 qpd->vmid,
565 qpd->page_table_base);
566 /* invalidate the VM context after pasid and vmid mapping is set up */
567 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
568
569 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
570 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
571 qpd->sh_hidden_private_base, qpd->vmid);
572
573 return 0;
574 }
575
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)576 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
577 struct qcm_process_device *qpd)
578 {
579 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
580 int ret;
581
582 if (!qpd->ib_kaddr)
583 return -ENOMEM;
584
585 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
586 if (ret)
587 return ret;
588
589 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
590 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
591 pmf->release_mem_size / sizeof(uint32_t));
592 }
593
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)594 static void deallocate_vmid(struct device_queue_manager *dqm,
595 struct qcm_process_device *qpd,
596 struct queue *q)
597 {
598 struct device *dev = dqm->dev->adev->dev;
599
600 /* On GFX v7, CP doesn't flush TC at dequeue */
601 if (q->device->adev->asic_type == CHIP_HAWAII)
602 if (flush_texture_cache_nocpsch(q->device, qpd))
603 dev_err(dev, "Failed to flush TC\n");
604
605 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
606
607 /* Release the vmid mapping */
608 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
609 dqm->vmid_pasid[qpd->vmid] = 0;
610
611 qpd->vmid = 0;
612 q->properties.vmid = 0;
613 }
614
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)615 static int create_queue_nocpsch(struct device_queue_manager *dqm,
616 struct queue *q,
617 struct qcm_process_device *qpd,
618 const struct kfd_criu_queue_priv_data *qd,
619 const void *restore_mqd, const void *restore_ctl_stack)
620 {
621 struct mqd_manager *mqd_mgr;
622 int retval;
623
624 dqm_lock(dqm);
625
626 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
627 pr_warn("Can't create new usermode queue because %d queues were already created\n",
628 dqm->total_queue_count);
629 retval = -EPERM;
630 goto out_unlock;
631 }
632
633 if (list_empty(&qpd->queues_list)) {
634 retval = allocate_vmid(dqm, qpd, q);
635 if (retval)
636 goto out_unlock;
637 }
638 q->properties.vmid = qpd->vmid;
639 /*
640 * Eviction state logic: mark all queues as evicted, even ones
641 * not currently active. Restoring inactive queues later only
642 * updates the is_evicted flag but is a no-op otherwise.
643 */
644 q->properties.is_evicted = !!qpd->evicted;
645
646 q->properties.tba_addr = qpd->tba_addr;
647 q->properties.tma_addr = qpd->tma_addr;
648
649 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
650 q->properties.type)];
651 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
652 retval = allocate_hqd(dqm, q);
653 if (retval)
654 goto deallocate_vmid;
655 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
656 q->pipe, q->queue);
657 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
658 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
659 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
660 if (retval)
661 goto deallocate_vmid;
662 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
663 }
664
665 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
666 if (retval)
667 goto out_deallocate_hqd;
668
669 /* Temporarily release dqm lock to avoid a circular lock dependency */
670 dqm_unlock(dqm);
671 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
672 dqm_lock(dqm);
673
674 if (!q->mqd_mem_obj) {
675 retval = -ENOMEM;
676 goto out_deallocate_doorbell;
677 }
678
679 if (qd)
680 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
681 &q->properties, restore_mqd, restore_ctl_stack,
682 qd->ctl_stack_size);
683 else
684 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
685 &q->gart_mqd_addr, &q->properties);
686
687 if (q->properties.is_active) {
688 if (!dqm->sched_running) {
689 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
690 goto add_queue_to_list;
691 }
692
693 if (WARN(q->process->mm != current->mm,
694 "should only run in user thread"))
695 retval = -EFAULT;
696 else
697 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
698 q->queue, &q->properties, current->mm);
699 if (retval)
700 goto out_free_mqd;
701 }
702
703 add_queue_to_list:
704 list_add(&q->list, &qpd->queues_list);
705 qpd->queue_count++;
706 if (q->properties.is_active)
707 increment_queue_count(dqm, qpd, q);
708
709 /*
710 * Unconditionally increment this counter, regardless of the queue's
711 * type or whether the queue is active.
712 */
713 dqm->total_queue_count++;
714 pr_debug("Total of %d queues are accountable so far\n",
715 dqm->total_queue_count);
716 goto out_unlock;
717
718 out_free_mqd:
719 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
720 out_deallocate_doorbell:
721 deallocate_doorbell(qpd, q);
722 out_deallocate_hqd:
723 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
724 deallocate_hqd(dqm, q);
725 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
726 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
727 deallocate_sdma_queue(dqm, q);
728 deallocate_vmid:
729 if (list_empty(&qpd->queues_list))
730 deallocate_vmid(dqm, qpd, q);
731 out_unlock:
732 dqm_unlock(dqm);
733 return retval;
734 }
735
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)736 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
737 {
738 bool set;
739 int pipe, bit, i;
740
741 set = false;
742
743 for (pipe = dqm->next_pipe_to_allocate, i = 0;
744 i < get_pipes_per_mec(dqm);
745 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
746
747 if (!is_pipe_enabled(dqm, 0, pipe))
748 continue;
749
750 if (dqm->allocated_queues[pipe] != 0) {
751 bit = ffs(dqm->allocated_queues[pipe]) - 1;
752 dqm->allocated_queues[pipe] &= ~(1 << bit);
753 q->pipe = pipe;
754 q->queue = bit;
755 set = true;
756 break;
757 }
758 }
759
760 if (!set)
761 return -EBUSY;
762
763 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
764 /* horizontal hqd allocation */
765 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
766
767 return 0;
768 }
769
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)770 static inline void deallocate_hqd(struct device_queue_manager *dqm,
771 struct queue *q)
772 {
773 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
774 }
775
776 #define SQ_IND_CMD_CMD_KILL 0x00000003
777 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001
778
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)779 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
780 {
781 int status = 0;
782 unsigned int vmid;
783 uint16_t queried_pasid;
784 union SQ_CMD_BITS reg_sq_cmd;
785 union GRBM_GFX_INDEX_BITS reg_gfx_index;
786 struct kfd_process_device *pdd;
787 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
788 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
789 uint32_t xcc_mask = dev->xcc_mask;
790 int xcc_id;
791
792 reg_sq_cmd.u32All = 0;
793 reg_gfx_index.u32All = 0;
794
795 pr_debug("Killing all process wavefronts\n");
796
797 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
798 dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
799 return -EOPNOTSUPP;
800 }
801
802 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
803 * ATC_VMID15_PASID_MAPPING
804 * to check which VMID the current process is mapped to.
805 */
806
807 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
808 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
809 (dev->adev, vmid, &queried_pasid);
810
811 if (status && queried_pasid == p->pasid) {
812 pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
813 vmid, p->pasid);
814 break;
815 }
816 }
817
818 if (vmid > last_vmid_to_scan) {
819 dev_err(dev->adev->dev, "Didn't find vmid for pasid 0x%x\n", p->pasid);
820 return -EFAULT;
821 }
822
823 /* taking the VMID for that process on the safe way using PDD */
824 pdd = kfd_get_process_device_data(dev, p);
825 if (!pdd)
826 return -EFAULT;
827
828 reg_gfx_index.bits.sh_broadcast_writes = 1;
829 reg_gfx_index.bits.se_broadcast_writes = 1;
830 reg_gfx_index.bits.instance_broadcast_writes = 1;
831 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
832 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
833 reg_sq_cmd.bits.vm_id = vmid;
834
835 for_each_inst(xcc_id, xcc_mask)
836 dev->kfd2kgd->wave_control_execute(
837 dev->adev, reg_gfx_index.u32All,
838 reg_sq_cmd.u32All, xcc_id);
839
840 return 0;
841 }
842
843 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
844 * to avoid asynchronized access
845 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)846 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
847 struct qcm_process_device *qpd,
848 struct queue *q)
849 {
850 int retval;
851 struct mqd_manager *mqd_mgr;
852
853 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
854 q->properties.type)];
855
856 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
857 deallocate_hqd(dqm, q);
858 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
859 deallocate_sdma_queue(dqm, q);
860 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
861 deallocate_sdma_queue(dqm, q);
862 else {
863 pr_debug("q->properties.type %d is invalid\n",
864 q->properties.type);
865 return -EINVAL;
866 }
867 dqm->total_queue_count--;
868
869 deallocate_doorbell(qpd, q);
870
871 if (!dqm->sched_running) {
872 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
873 return 0;
874 }
875
876 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
877 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
878 KFD_UNMAP_LATENCY_MS,
879 q->pipe, q->queue);
880 if (retval == -ETIME)
881 qpd->reset_wavefronts = true;
882
883 list_del(&q->list);
884 if (list_empty(&qpd->queues_list)) {
885 if (qpd->reset_wavefronts) {
886 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
887 dqm->dev);
888 /* dbgdev_wave_reset_wavefronts has to be called before
889 * deallocate_vmid(), i.e. when vmid is still in use.
890 */
891 dbgdev_wave_reset_wavefronts(dqm->dev,
892 qpd->pqm->process);
893 qpd->reset_wavefronts = false;
894 }
895
896 deallocate_vmid(dqm, qpd, q);
897 }
898 qpd->queue_count--;
899 if (q->properties.is_active)
900 decrement_queue_count(dqm, qpd, q);
901
902 return retval;
903 }
904
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)905 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
906 struct qcm_process_device *qpd,
907 struct queue *q)
908 {
909 int retval;
910 uint64_t sdma_val = 0;
911 struct device *dev = dqm->dev->adev->dev;
912 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
913 struct mqd_manager *mqd_mgr =
914 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
915
916 /* Get the SDMA queue stats */
917 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
918 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
919 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
920 &sdma_val);
921 if (retval)
922 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
923 q->properties.queue_id);
924 }
925
926 dqm_lock(dqm);
927 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
928 if (!retval)
929 pdd->sdma_past_activity_counter += sdma_val;
930 dqm_unlock(dqm);
931
932 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
933
934 return retval;
935 }
936
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)937 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
938 struct mqd_update_info *minfo)
939 {
940 int retval = 0;
941 struct device *dev = dqm->dev->adev->dev;
942 struct mqd_manager *mqd_mgr;
943 struct kfd_process_device *pdd;
944 bool prev_active = false;
945
946 dqm_lock(dqm);
947 pdd = kfd_get_process_device_data(q->device, q->process);
948 if (!pdd) {
949 retval = -ENODEV;
950 goto out_unlock;
951 }
952 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
953 q->properties.type)];
954
955 /* Save previous activity state for counters */
956 prev_active = q->properties.is_active;
957
958 /* Make sure the queue is unmapped before updating the MQD */
959 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
960 if (!dqm->dev->kfd->shared_resources.enable_mes)
961 retval = unmap_queues_cpsch(dqm,
962 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
963 else if (prev_active)
964 retval = remove_queue_mes(dqm, q, &pdd->qpd);
965
966 /* queue is reset so inaccessable */
967 if (pdd->has_reset_queue) {
968 retval = -EACCES;
969 goto out_unlock;
970 }
971
972 if (retval) {
973 dev_err(dev, "unmap queue failed\n");
974 goto out_unlock;
975 }
976 } else if (prev_active &&
977 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
978 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
979 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
980
981 if (!dqm->sched_running) {
982 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
983 goto out_unlock;
984 }
985
986 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
987 (dqm->dev->kfd->cwsr_enabled ?
988 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
989 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
990 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
991 if (retval) {
992 dev_err(dev, "destroy mqd failed\n");
993 goto out_unlock;
994 }
995 }
996
997 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
998
999 /*
1000 * check active state vs. the previous state and modify
1001 * counter accordingly. map_queues_cpsch uses the
1002 * dqm->active_queue_count to determine whether a new runlist must be
1003 * uploaded.
1004 */
1005 if (q->properties.is_active && !prev_active) {
1006 increment_queue_count(dqm, &pdd->qpd, q);
1007 } else if (!q->properties.is_active && prev_active) {
1008 decrement_queue_count(dqm, &pdd->qpd, q);
1009 } else if (q->gws && !q->properties.is_gws) {
1010 if (q->properties.is_active) {
1011 dqm->gws_queue_count++;
1012 pdd->qpd.mapped_gws_queue = true;
1013 }
1014 q->properties.is_gws = true;
1015 } else if (!q->gws && q->properties.is_gws) {
1016 if (q->properties.is_active) {
1017 dqm->gws_queue_count--;
1018 pdd->qpd.mapped_gws_queue = false;
1019 }
1020 q->properties.is_gws = false;
1021 }
1022
1023 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1024 if (!dqm->dev->kfd->shared_resources.enable_mes)
1025 retval = map_queues_cpsch(dqm);
1026 else if (q->properties.is_active)
1027 retval = add_queue_mes(dqm, q, &pdd->qpd);
1028 } else if (q->properties.is_active &&
1029 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1030 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1031 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1032 if (WARN(q->process->mm != current->mm,
1033 "should only run in user thread"))
1034 retval = -EFAULT;
1035 else
1036 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1037 q->pipe, q->queue,
1038 &q->properties, current->mm);
1039 }
1040
1041 out_unlock:
1042 dqm_unlock(dqm);
1043 return retval;
1044 }
1045
1046 /* suspend_single_queue does not lock the dqm like the
1047 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1048 * lock the dqm before calling, and unlock after calling.
1049 *
1050 * The reason we don't lock the dqm is because this function may be
1051 * called on multiple queues in a loop, so rather than locking/unlocking
1052 * multiple times, we will just keep the dqm locked for all of the calls.
1053 */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)1054 static int suspend_single_queue(struct device_queue_manager *dqm,
1055 struct kfd_process_device *pdd,
1056 struct queue *q)
1057 {
1058 bool is_new;
1059
1060 if (q->properties.is_suspended)
1061 return 0;
1062
1063 pr_debug("Suspending PASID %u queue [%i]\n",
1064 pdd->process->pasid,
1065 q->properties.queue_id);
1066
1067 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1068
1069 if (is_new || q->properties.is_being_destroyed) {
1070 pr_debug("Suspend: skip %s queue id %i\n",
1071 is_new ? "new" : "destroyed",
1072 q->properties.queue_id);
1073 return -EBUSY;
1074 }
1075
1076 q->properties.is_suspended = true;
1077 if (q->properties.is_active) {
1078 if (dqm->dev->kfd->shared_resources.enable_mes) {
1079 int r = remove_queue_mes(dqm, q, &pdd->qpd);
1080
1081 if (r)
1082 return r;
1083 }
1084
1085 decrement_queue_count(dqm, &pdd->qpd, q);
1086 q->properties.is_active = false;
1087 }
1088
1089 return 0;
1090 }
1091
1092 /* resume_single_queue does not lock the dqm like the functions
1093 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1094 * lock the dqm before calling, and unlock after calling.
1095 *
1096 * The reason we don't lock the dqm is because this function may be
1097 * called on multiple queues in a loop, so rather than locking/unlocking
1098 * multiple times, we will just keep the dqm locked for all of the calls.
1099 */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1100 static int resume_single_queue(struct device_queue_manager *dqm,
1101 struct qcm_process_device *qpd,
1102 struct queue *q)
1103 {
1104 struct kfd_process_device *pdd;
1105
1106 if (!q->properties.is_suspended)
1107 return 0;
1108
1109 pdd = qpd_to_pdd(qpd);
1110
1111 pr_debug("Restoring from suspend PASID %u queue [%i]\n",
1112 pdd->process->pasid,
1113 q->properties.queue_id);
1114
1115 q->properties.is_suspended = false;
1116
1117 if (QUEUE_IS_ACTIVE(q->properties)) {
1118 if (dqm->dev->kfd->shared_resources.enable_mes) {
1119 int r = add_queue_mes(dqm, q, &pdd->qpd);
1120
1121 if (r)
1122 return r;
1123 }
1124
1125 q->properties.is_active = true;
1126 increment_queue_count(dqm, qpd, q);
1127 }
1128
1129 return 0;
1130 }
1131
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1132 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1133 struct qcm_process_device *qpd)
1134 {
1135 struct queue *q;
1136 struct mqd_manager *mqd_mgr;
1137 struct kfd_process_device *pdd;
1138 int retval, ret = 0;
1139
1140 dqm_lock(dqm);
1141 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1142 goto out;
1143
1144 pdd = qpd_to_pdd(qpd);
1145 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1146 pdd->process->pasid);
1147
1148 pdd->last_evict_timestamp = get_jiffies_64();
1149 /* Mark all queues as evicted. Deactivate all active queues on
1150 * the qpd.
1151 */
1152 list_for_each_entry(q, &qpd->queues_list, list) {
1153 q->properties.is_evicted = true;
1154 if (!q->properties.is_active)
1155 continue;
1156
1157 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1158 q->properties.type)];
1159 q->properties.is_active = false;
1160 decrement_queue_count(dqm, qpd, q);
1161
1162 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1163 continue;
1164
1165 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1166 (dqm->dev->kfd->cwsr_enabled ?
1167 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1168 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1169 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1170 if (retval && !ret)
1171 /* Return the first error, but keep going to
1172 * maintain a consistent eviction state
1173 */
1174 ret = retval;
1175 }
1176
1177 out:
1178 dqm_unlock(dqm);
1179 return ret;
1180 }
1181
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1182 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1183 struct qcm_process_device *qpd)
1184 {
1185 struct queue *q;
1186 struct device *dev = dqm->dev->adev->dev;
1187 struct kfd_process_device *pdd;
1188 int retval = 0;
1189
1190 dqm_lock(dqm);
1191 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1192 goto out;
1193
1194 pdd = qpd_to_pdd(qpd);
1195
1196 /* The debugger creates processes that temporarily have not acquired
1197 * all VMs for all devices and has no VMs itself.
1198 * Skip queue eviction on process eviction.
1199 */
1200 if (!pdd->drm_priv)
1201 goto out;
1202
1203 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1204 pdd->process->pasid);
1205
1206 /* Mark all queues as evicted. Deactivate all active queues on
1207 * the qpd.
1208 */
1209 list_for_each_entry(q, &qpd->queues_list, list) {
1210 q->properties.is_evicted = true;
1211 if (!q->properties.is_active)
1212 continue;
1213
1214 q->properties.is_active = false;
1215 decrement_queue_count(dqm, qpd, q);
1216
1217 if (dqm->dev->kfd->shared_resources.enable_mes) {
1218 int err;
1219
1220 err = remove_queue_mes(dqm, q, qpd);
1221 if (err) {
1222 dev_err(dev, "Failed to evict queue %d\n",
1223 q->properties.queue_id);
1224 retval = err;
1225 }
1226 }
1227 }
1228 pdd->last_evict_timestamp = get_jiffies_64();
1229 if (!dqm->dev->kfd->shared_resources.enable_mes)
1230 retval = execute_queues_cpsch(dqm,
1231 qpd->is_debug ?
1232 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1233 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1234 USE_DEFAULT_GRACE_PERIOD);
1235
1236 out:
1237 dqm_unlock(dqm);
1238 return retval;
1239 }
1240
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1241 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1242 struct qcm_process_device *qpd)
1243 {
1244 struct mm_struct *mm = NULL;
1245 struct queue *q;
1246 struct mqd_manager *mqd_mgr;
1247 struct kfd_process_device *pdd;
1248 uint64_t pd_base;
1249 uint64_t eviction_duration;
1250 int retval, ret = 0;
1251
1252 pdd = qpd_to_pdd(qpd);
1253 /* Retrieve PD base */
1254 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1255
1256 dqm_lock(dqm);
1257 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1258 goto out;
1259 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1260 qpd->evicted--;
1261 goto out;
1262 }
1263
1264 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1265 pdd->process->pasid);
1266
1267 /* Update PD Base in QPD */
1268 qpd->page_table_base = pd_base;
1269 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1270
1271 if (!list_empty(&qpd->queues_list)) {
1272 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1273 dqm->dev->adev,
1274 qpd->vmid,
1275 qpd->page_table_base);
1276 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1277 }
1278
1279 /* Take a safe reference to the mm_struct, which may otherwise
1280 * disappear even while the kfd_process is still referenced.
1281 */
1282 mm = get_task_mm(pdd->process->lead_thread);
1283 if (!mm) {
1284 ret = -EFAULT;
1285 goto out;
1286 }
1287
1288 /* Remove the eviction flags. Activate queues that are not
1289 * inactive for other reasons.
1290 */
1291 list_for_each_entry(q, &qpd->queues_list, list) {
1292 q->properties.is_evicted = false;
1293 if (!QUEUE_IS_ACTIVE(q->properties))
1294 continue;
1295
1296 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1297 q->properties.type)];
1298 q->properties.is_active = true;
1299 increment_queue_count(dqm, qpd, q);
1300
1301 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1302 continue;
1303
1304 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1305 q->queue, &q->properties, mm);
1306 if (retval && !ret)
1307 /* Return the first error, but keep going to
1308 * maintain a consistent eviction state
1309 */
1310 ret = retval;
1311 }
1312 qpd->evicted = 0;
1313 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1314 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1315 out:
1316 if (mm)
1317 mmput(mm);
1318 dqm_unlock(dqm);
1319 return ret;
1320 }
1321
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1322 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1323 struct qcm_process_device *qpd)
1324 {
1325 struct queue *q;
1326 struct device *dev = dqm->dev->adev->dev;
1327 struct kfd_process_device *pdd;
1328 uint64_t eviction_duration;
1329 int retval = 0;
1330
1331 pdd = qpd_to_pdd(qpd);
1332
1333 dqm_lock(dqm);
1334 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1335 goto out;
1336 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1337 qpd->evicted--;
1338 goto out;
1339 }
1340
1341 /* The debugger creates processes that temporarily have not acquired
1342 * all VMs for all devices and has no VMs itself.
1343 * Skip queue restore on process restore.
1344 */
1345 if (!pdd->drm_priv)
1346 goto vm_not_acquired;
1347
1348 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1349 pdd->process->pasid);
1350
1351 /* Update PD Base in QPD */
1352 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1353 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1354
1355 /* activate all active queues on the qpd */
1356 list_for_each_entry(q, &qpd->queues_list, list) {
1357 q->properties.is_evicted = false;
1358 if (!QUEUE_IS_ACTIVE(q->properties))
1359 continue;
1360
1361 q->properties.is_active = true;
1362 increment_queue_count(dqm, &pdd->qpd, q);
1363
1364 if (dqm->dev->kfd->shared_resources.enable_mes) {
1365 retval = add_queue_mes(dqm, q, qpd);
1366 if (retval) {
1367 dev_err(dev, "Failed to restore queue %d\n",
1368 q->properties.queue_id);
1369 goto out;
1370 }
1371 }
1372 }
1373 if (!dqm->dev->kfd->shared_resources.enable_mes)
1374 retval = execute_queues_cpsch(dqm,
1375 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1376 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1377 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1378 vm_not_acquired:
1379 qpd->evicted = 0;
1380 out:
1381 dqm_unlock(dqm);
1382 return retval;
1383 }
1384
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1385 static int register_process(struct device_queue_manager *dqm,
1386 struct qcm_process_device *qpd)
1387 {
1388 struct device_process_node *n;
1389 struct kfd_process_device *pdd;
1390 uint64_t pd_base;
1391 int retval;
1392
1393 n = kzalloc(sizeof(*n), GFP_KERNEL);
1394 if (!n)
1395 return -ENOMEM;
1396
1397 n->qpd = qpd;
1398
1399 pdd = qpd_to_pdd(qpd);
1400 /* Retrieve PD base */
1401 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1402
1403 dqm_lock(dqm);
1404 list_add(&n->list, &dqm->queues);
1405
1406 /* Update PD Base in QPD */
1407 qpd->page_table_base = pd_base;
1408 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1409
1410 retval = dqm->asic_ops.update_qpd(dqm, qpd);
1411
1412 dqm->processes_count++;
1413
1414 dqm_unlock(dqm);
1415
1416 /* Outside the DQM lock because under the DQM lock we can't do
1417 * reclaim or take other locks that others hold while reclaiming.
1418 */
1419 kfd_inc_compute_active(dqm->dev);
1420
1421 return retval;
1422 }
1423
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1424 static int unregister_process(struct device_queue_manager *dqm,
1425 struct qcm_process_device *qpd)
1426 {
1427 int retval;
1428 struct device_process_node *cur, *next;
1429
1430 pr_debug("qpd->queues_list is %s\n",
1431 list_empty(&qpd->queues_list) ? "empty" : "not empty");
1432
1433 retval = 0;
1434 dqm_lock(dqm);
1435
1436 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1437 if (qpd == cur->qpd) {
1438 list_del(&cur->list);
1439 kfree(cur);
1440 dqm->processes_count--;
1441 goto out;
1442 }
1443 }
1444 /* qpd not found in dqm list */
1445 retval = 1;
1446 out:
1447 dqm_unlock(dqm);
1448
1449 /* Outside the DQM lock because under the DQM lock we can't do
1450 * reclaim or take other locks that others hold while reclaiming.
1451 */
1452 if (!retval)
1453 kfd_dec_compute_active(dqm->dev);
1454
1455 return retval;
1456 }
1457
1458 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1459 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1460 unsigned int vmid)
1461 {
1462 uint32_t xcc_mask = dqm->dev->xcc_mask;
1463 int xcc_id, ret;
1464
1465 for_each_inst(xcc_id, xcc_mask) {
1466 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1467 dqm->dev->adev, pasid, vmid, xcc_id);
1468 if (ret)
1469 break;
1470 }
1471
1472 return ret;
1473 }
1474
init_interrupts(struct device_queue_manager * dqm)1475 static void init_interrupts(struct device_queue_manager *dqm)
1476 {
1477 uint32_t xcc_mask = dqm->dev->xcc_mask;
1478 unsigned int i, xcc_id;
1479
1480 for_each_inst(xcc_id, xcc_mask) {
1481 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1482 if (is_pipe_enabled(dqm, 0, i)) {
1483 dqm->dev->kfd2kgd->init_interrupts(
1484 dqm->dev->adev, i, xcc_id);
1485 }
1486 }
1487 }
1488 }
1489
initialize_nocpsch(struct device_queue_manager * dqm)1490 static int initialize_nocpsch(struct device_queue_manager *dqm)
1491 {
1492 int pipe, queue;
1493
1494 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1495
1496 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1497 sizeof(unsigned int), GFP_KERNEL);
1498 if (!dqm->allocated_queues)
1499 return -ENOMEM;
1500
1501 mutex_init(&dqm->lock_hidden);
1502 INIT_LIST_HEAD(&dqm->queues);
1503 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1504 dqm->active_cp_queue_count = 0;
1505 dqm->gws_queue_count = 0;
1506
1507 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1508 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1509
1510 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1511 if (test_bit(pipe_offset + queue,
1512 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1513 dqm->allocated_queues[pipe] |= 1 << queue;
1514 }
1515
1516 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1517
1518 init_sdma_bitmaps(dqm);
1519
1520 return 0;
1521 }
1522
uninitialize(struct device_queue_manager * dqm)1523 static void uninitialize(struct device_queue_manager *dqm)
1524 {
1525 int i;
1526
1527 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1528
1529 kfree(dqm->allocated_queues);
1530 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1531 kfree(dqm->mqd_mgrs[i]);
1532 mutex_destroy(&dqm->lock_hidden);
1533 }
1534
start_nocpsch(struct device_queue_manager * dqm)1535 static int start_nocpsch(struct device_queue_manager *dqm)
1536 {
1537 int r = 0;
1538
1539 pr_info("SW scheduler is used");
1540 init_interrupts(dqm);
1541
1542 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1543 r = pm_init(&dqm->packet_mgr, dqm);
1544 if (!r)
1545 dqm->sched_running = true;
1546
1547 return r;
1548 }
1549
stop_nocpsch(struct device_queue_manager * dqm)1550 static int stop_nocpsch(struct device_queue_manager *dqm)
1551 {
1552 dqm_lock(dqm);
1553 if (!dqm->sched_running) {
1554 dqm_unlock(dqm);
1555 return 0;
1556 }
1557
1558 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1559 pm_uninit(&dqm->packet_mgr);
1560 dqm->sched_running = false;
1561 dqm_unlock(dqm);
1562
1563 return 0;
1564 }
1565
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1566 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1567 struct queue *q, const uint32_t *restore_sdma_id)
1568 {
1569 struct device *dev = dqm->dev->adev->dev;
1570 int bit;
1571
1572 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1573 if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1574 dev_err(dev, "No more SDMA queue to allocate\n");
1575 return -ENOMEM;
1576 }
1577
1578 if (restore_sdma_id) {
1579 /* Re-use existing sdma_id */
1580 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1581 dev_err(dev, "SDMA queue already in use\n");
1582 return -EBUSY;
1583 }
1584 clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1585 q->sdma_id = *restore_sdma_id;
1586 } else {
1587 /* Find first available sdma_id */
1588 bit = find_first_bit(dqm->sdma_bitmap,
1589 get_num_sdma_queues(dqm));
1590 clear_bit(bit, dqm->sdma_bitmap);
1591 q->sdma_id = bit;
1592 }
1593
1594 q->properties.sdma_engine_id =
1595 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1596 q->properties.sdma_queue_id = q->sdma_id /
1597 kfd_get_num_sdma_engines(dqm->dev);
1598 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1599 if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1600 dev_err(dev, "No more XGMI SDMA queue to allocate\n");
1601 return -ENOMEM;
1602 }
1603 if (restore_sdma_id) {
1604 /* Re-use existing sdma_id */
1605 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1606 dev_err(dev, "SDMA queue already in use\n");
1607 return -EBUSY;
1608 }
1609 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1610 q->sdma_id = *restore_sdma_id;
1611 } else {
1612 bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1613 get_num_xgmi_sdma_queues(dqm));
1614 clear_bit(bit, dqm->xgmi_sdma_bitmap);
1615 q->sdma_id = bit;
1616 }
1617 /* sdma_engine_id is sdma id including
1618 * both PCIe-optimized SDMAs and XGMI-
1619 * optimized SDMAs. The calculation below
1620 * assumes the first N engines are always
1621 * PCIe-optimized ones
1622 */
1623 q->properties.sdma_engine_id =
1624 kfd_get_num_sdma_engines(dqm->dev) +
1625 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1626 q->properties.sdma_queue_id = q->sdma_id /
1627 kfd_get_num_xgmi_sdma_engines(dqm->dev);
1628 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1629 int i, num_queues, num_engines, eng_offset = 0, start_engine;
1630 bool free_bit_found = false, is_xgmi = false;
1631
1632 if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1633 num_queues = get_num_sdma_queues(dqm);
1634 num_engines = kfd_get_num_sdma_engines(dqm->dev);
1635 q->properties.type = KFD_QUEUE_TYPE_SDMA;
1636 } else {
1637 num_queues = get_num_xgmi_sdma_queues(dqm);
1638 num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1639 eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1640 q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1641 is_xgmi = true;
1642 }
1643
1644 /* Scan available bit based on target engine ID. */
1645 start_engine = q->properties.sdma_engine_id - eng_offset;
1646 for (i = start_engine; i < num_queues; i += num_engines) {
1647
1648 if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1649 continue;
1650
1651 clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1652 q->sdma_id = i;
1653 q->properties.sdma_queue_id = q->sdma_id / num_engines;
1654 free_bit_found = true;
1655 break;
1656 }
1657
1658 if (!free_bit_found) {
1659 dev_err(dev, "No more SDMA queue to allocate for target ID %i\n",
1660 q->properties.sdma_engine_id);
1661 return -ENOMEM;
1662 }
1663 }
1664
1665 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1666 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1667
1668 return 0;
1669 }
1670
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1671 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1672 struct queue *q)
1673 {
1674 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1675 if (q->sdma_id >= get_num_sdma_queues(dqm))
1676 return;
1677 set_bit(q->sdma_id, dqm->sdma_bitmap);
1678 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1679 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1680 return;
1681 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1682 }
1683 }
1684
1685 /*
1686 * Device Queue Manager implementation for cp scheduler
1687 */
1688
set_sched_resources(struct device_queue_manager * dqm)1689 static int set_sched_resources(struct device_queue_manager *dqm)
1690 {
1691 int i, mec;
1692 struct scheduling_resources res;
1693 struct device *dev = dqm->dev->adev->dev;
1694
1695 res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1696
1697 res.queue_mask = 0;
1698 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1699 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1700 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1701
1702 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1703 continue;
1704
1705 /* only acquire queues from the first MEC */
1706 if (mec > 0)
1707 continue;
1708
1709 /* This situation may be hit in the future if a new HW
1710 * generation exposes more than 64 queues. If so, the
1711 * definition of res.queue_mask needs updating
1712 */
1713 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1714 dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1715 break;
1716 }
1717
1718 res.queue_mask |= 1ull
1719 << amdgpu_queue_mask_bit_to_set_resource_bit(
1720 dqm->dev->adev, i);
1721 }
1722 res.gws_mask = ~0ull;
1723 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1724
1725 pr_debug("Scheduling resources:\n"
1726 "vmid mask: 0x%8X\n"
1727 "queue mask: 0x%8llX\n",
1728 res.vmid_mask, res.queue_mask);
1729
1730 return pm_send_set_resources(&dqm->packet_mgr, &res);
1731 }
1732
initialize_cpsch(struct device_queue_manager * dqm)1733 static int initialize_cpsch(struct device_queue_manager *dqm)
1734 {
1735 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1736
1737 mutex_init(&dqm->lock_hidden);
1738 INIT_LIST_HEAD(&dqm->queues);
1739 dqm->active_queue_count = dqm->processes_count = 0;
1740 dqm->active_cp_queue_count = 0;
1741 dqm->gws_queue_count = 0;
1742 dqm->active_runlist = false;
1743 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1744 dqm->trap_debug_vmid = 0;
1745
1746 init_sdma_bitmaps(dqm);
1747
1748 if (dqm->dev->kfd2kgd->get_iq_wait_times)
1749 dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1750 &dqm->wait_times,
1751 ffs(dqm->dev->xcc_mask) - 1);
1752 return 0;
1753 }
1754
1755 /* halt_cpsch:
1756 * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1757 * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1758 * is called.
1759 */
halt_cpsch(struct device_queue_manager * dqm)1760 static int halt_cpsch(struct device_queue_manager *dqm)
1761 {
1762 int ret = 0;
1763
1764 dqm_lock(dqm);
1765 if (!dqm->sched_running) {
1766 dqm_unlock(dqm);
1767 return 0;
1768 }
1769
1770 WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1771
1772 if (!dqm->is_hws_hang) {
1773 if (!dqm->dev->kfd->shared_resources.enable_mes)
1774 ret = unmap_queues_cpsch(dqm,
1775 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1776 USE_DEFAULT_GRACE_PERIOD, false);
1777 else
1778 ret = remove_all_kfd_queues_mes(dqm);
1779 }
1780 dqm->sched_halt = true;
1781 dqm_unlock(dqm);
1782
1783 return ret;
1784 }
1785
1786 /* unhalt_cpsch
1787 * Unset dqm->sched_halt and map queues back to runlist
1788 */
unhalt_cpsch(struct device_queue_manager * dqm)1789 static int unhalt_cpsch(struct device_queue_manager *dqm)
1790 {
1791 int ret = 0;
1792
1793 dqm_lock(dqm);
1794 if (!dqm->sched_running || !dqm->sched_halt) {
1795 WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1796 dqm_unlock(dqm);
1797 return 0;
1798 }
1799 dqm->sched_halt = false;
1800 if (!dqm->dev->kfd->shared_resources.enable_mes)
1801 ret = execute_queues_cpsch(dqm,
1802 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1803 0, USE_DEFAULT_GRACE_PERIOD);
1804 else
1805 ret = add_all_kfd_queues_mes(dqm);
1806
1807 dqm_unlock(dqm);
1808
1809 return ret;
1810 }
1811
start_cpsch(struct device_queue_manager * dqm)1812 static int start_cpsch(struct device_queue_manager *dqm)
1813 {
1814 struct device *dev = dqm->dev->adev->dev;
1815 int retval, num_hw_queue_slots;
1816
1817 retval = 0;
1818
1819 dqm_lock(dqm);
1820
1821 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1822 retval = pm_init(&dqm->packet_mgr, dqm);
1823 if (retval)
1824 goto fail_packet_manager_init;
1825
1826 retval = set_sched_resources(dqm);
1827 if (retval)
1828 goto fail_set_sched_resources;
1829 }
1830 pr_debug("Allocating fence memory\n");
1831
1832 /* allocate fence memory on the gart */
1833 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1834 &dqm->fence_mem);
1835
1836 if (retval)
1837 goto fail_allocate_vidmem;
1838
1839 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1840 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1841
1842 init_interrupts(dqm);
1843
1844 /* clear hang status when driver try to start the hw scheduler */
1845 dqm->sched_running = true;
1846
1847 if (!dqm->dev->kfd->shared_resources.enable_mes)
1848 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1849
1850 /* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */
1851 if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu &&
1852 (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) {
1853 uint32_t reg_offset = 0;
1854 uint32_t grace_period = 1;
1855
1856 retval = pm_update_grace_period(&dqm->packet_mgr,
1857 grace_period);
1858 if (retval)
1859 dev_err(dev, "Setting grace timeout failed\n");
1860 else if (dqm->dev->kfd2kgd->build_grace_period_packet_info)
1861 /* Update dqm->wait_times maintained in software */
1862 dqm->dev->kfd2kgd->build_grace_period_packet_info(
1863 dqm->dev->adev, dqm->wait_times,
1864 grace_period, ®_offset,
1865 &dqm->wait_times);
1866 }
1867
1868 /* setup per-queue reset detection buffer */
1869 num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1870 dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1871 NUM_XCC(dqm->dev->xcc_mask);
1872
1873 dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1874 dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1875
1876 if (!dqm->detect_hang_info) {
1877 retval = -ENOMEM;
1878 goto fail_detect_hang_buffer;
1879 }
1880
1881 dqm_unlock(dqm);
1882
1883 return 0;
1884 fail_detect_hang_buffer:
1885 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1886 fail_allocate_vidmem:
1887 fail_set_sched_resources:
1888 if (!dqm->dev->kfd->shared_resources.enable_mes)
1889 pm_uninit(&dqm->packet_mgr);
1890 fail_packet_manager_init:
1891 dqm_unlock(dqm);
1892 return retval;
1893 }
1894
stop_cpsch(struct device_queue_manager * dqm)1895 static int stop_cpsch(struct device_queue_manager *dqm)
1896 {
1897 dqm_lock(dqm);
1898 if (!dqm->sched_running) {
1899 dqm_unlock(dqm);
1900 return 0;
1901 }
1902
1903 if (!dqm->dev->kfd->shared_resources.enable_mes)
1904 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1905 else
1906 remove_all_kfd_queues_mes(dqm);
1907
1908 dqm->sched_running = false;
1909
1910 if (!dqm->dev->kfd->shared_resources.enable_mes)
1911 pm_release_ib(&dqm->packet_mgr);
1912
1913 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1914 if (!dqm->dev->kfd->shared_resources.enable_mes)
1915 pm_uninit(&dqm->packet_mgr);
1916 kfree(dqm->detect_hang_info);
1917 dqm->detect_hang_info = NULL;
1918 dqm_unlock(dqm);
1919
1920 return 0;
1921 }
1922
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1923 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1924 struct kernel_queue *kq,
1925 struct qcm_process_device *qpd)
1926 {
1927 dqm_lock(dqm);
1928 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1929 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1930 dqm->total_queue_count);
1931 dqm_unlock(dqm);
1932 return -EPERM;
1933 }
1934
1935 /*
1936 * Unconditionally increment this counter, regardless of the queue's
1937 * type or whether the queue is active.
1938 */
1939 dqm->total_queue_count++;
1940 pr_debug("Total of %d queues are accountable so far\n",
1941 dqm->total_queue_count);
1942
1943 list_add(&kq->list, &qpd->priv_queue_list);
1944 increment_queue_count(dqm, qpd, kq->queue);
1945 qpd->is_debug = true;
1946 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1947 USE_DEFAULT_GRACE_PERIOD);
1948 dqm_unlock(dqm);
1949
1950 return 0;
1951 }
1952
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1953 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1954 struct kernel_queue *kq,
1955 struct qcm_process_device *qpd)
1956 {
1957 dqm_lock(dqm);
1958 list_del(&kq->list);
1959 decrement_queue_count(dqm, qpd, kq->queue);
1960 qpd->is_debug = false;
1961 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1962 USE_DEFAULT_GRACE_PERIOD);
1963 /*
1964 * Unconditionally decrement this counter, regardless of the queue's
1965 * type.
1966 */
1967 dqm->total_queue_count--;
1968 pr_debug("Total of %d queues are accountable so far\n",
1969 dqm->total_queue_count);
1970 dqm_unlock(dqm);
1971 }
1972
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1973 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1974 struct qcm_process_device *qpd,
1975 const struct kfd_criu_queue_priv_data *qd,
1976 const void *restore_mqd, const void *restore_ctl_stack)
1977 {
1978 int retval;
1979 struct mqd_manager *mqd_mgr;
1980
1981 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1982 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1983 dqm->total_queue_count);
1984 retval = -EPERM;
1985 goto out;
1986 }
1987
1988 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1989 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1990 q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1991 dqm_lock(dqm);
1992 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1993 dqm_unlock(dqm);
1994 if (retval)
1995 goto out;
1996 }
1997
1998 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1999 if (retval)
2000 goto out_deallocate_sdma_queue;
2001
2002 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2003 q->properties.type)];
2004
2005 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2006 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2007 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
2008 q->properties.tba_addr = qpd->tba_addr;
2009 q->properties.tma_addr = qpd->tma_addr;
2010 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2011 if (!q->mqd_mem_obj) {
2012 retval = -ENOMEM;
2013 goto out_deallocate_doorbell;
2014 }
2015
2016 dqm_lock(dqm);
2017 /*
2018 * Eviction state logic: mark all queues as evicted, even ones
2019 * not currently active. Restoring inactive queues later only
2020 * updates the is_evicted flag but is a no-op otherwise.
2021 */
2022 q->properties.is_evicted = !!qpd->evicted;
2023 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2024 kfd_dbg_has_cwsr_workaround(q->device);
2025
2026 if (qd)
2027 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2028 &q->properties, restore_mqd, restore_ctl_stack,
2029 qd->ctl_stack_size);
2030 else
2031 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2032 &q->gart_mqd_addr, &q->properties);
2033
2034 list_add(&q->list, &qpd->queues_list);
2035 qpd->queue_count++;
2036
2037 if (q->properties.is_active) {
2038 increment_queue_count(dqm, qpd, q);
2039
2040 if (!dqm->dev->kfd->shared_resources.enable_mes)
2041 retval = execute_queues_cpsch(dqm,
2042 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2043 else
2044 retval = add_queue_mes(dqm, q, qpd);
2045 if (retval)
2046 goto cleanup_queue;
2047 }
2048
2049 /*
2050 * Unconditionally increment this counter, regardless of the queue's
2051 * type or whether the queue is active.
2052 */
2053 dqm->total_queue_count++;
2054
2055 pr_debug("Total of %d queues are accountable so far\n",
2056 dqm->total_queue_count);
2057
2058 dqm_unlock(dqm);
2059 return retval;
2060
2061 cleanup_queue:
2062 qpd->queue_count--;
2063 list_del(&q->list);
2064 if (q->properties.is_active)
2065 decrement_queue_count(dqm, qpd, q);
2066 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2067 dqm_unlock(dqm);
2068 out_deallocate_doorbell:
2069 deallocate_doorbell(qpd, q);
2070 out_deallocate_sdma_queue:
2071 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2072 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2073 dqm_lock(dqm);
2074 deallocate_sdma_queue(dqm, q);
2075 dqm_unlock(dqm);
2076 }
2077 out:
2078 return retval;
2079 }
2080
amdkfd_fence_wait_timeout(struct device_queue_manager * dqm,uint64_t fence_value,unsigned int timeout_ms)2081 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2082 uint64_t fence_value,
2083 unsigned int timeout_ms)
2084 {
2085 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2086 struct device *dev = dqm->dev->adev->dev;
2087 uint64_t *fence_addr = dqm->fence_addr;
2088
2089 while (*fence_addr != fence_value) {
2090 /* Fatal err detected, this response won't come */
2091 if (amdgpu_amdkfd_is_fed(dqm->dev->adev))
2092 return -EIO;
2093
2094 if (time_after(jiffies, end_jiffies)) {
2095 dev_err(dev, "qcm fence wait loop timeout expired\n");
2096 /* In HWS case, this is used to halt the driver thread
2097 * in order not to mess up CP states before doing
2098 * scandumps for FW debugging.
2099 */
2100 while (halt_if_hws_hang)
2101 schedule();
2102
2103 return -ETIME;
2104 }
2105 schedule();
2106 }
2107
2108 return 0;
2109 }
2110
2111 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)2112 static int map_queues_cpsch(struct device_queue_manager *dqm)
2113 {
2114 struct device *dev = dqm->dev->adev->dev;
2115 int retval;
2116
2117 if (!dqm->sched_running || dqm->sched_halt)
2118 return 0;
2119 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2120 return 0;
2121 if (dqm->active_runlist)
2122 return 0;
2123
2124 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2125 pr_debug("%s sent runlist\n", __func__);
2126 if (retval) {
2127 dev_err(dev, "failed to execute runlist\n");
2128 return retval;
2129 }
2130 dqm->active_runlist = true;
2131
2132 return retval;
2133 }
2134
set_queue_as_reset(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)2135 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2136 struct qcm_process_device *qpd)
2137 {
2138 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2139
2140 dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid 0x%0x is reset\n",
2141 q->properties.queue_id, q->process->pasid);
2142
2143 pdd->has_reset_queue = true;
2144 if (q->properties.is_active) {
2145 q->properties.is_active = false;
2146 decrement_queue_count(dqm, qpd, q);
2147 }
2148 }
2149
detect_queue_hang(struct device_queue_manager * dqm)2150 static int detect_queue_hang(struct device_queue_manager *dqm)
2151 {
2152 int i;
2153
2154 /* detect should be used only in dqm locked queue reset */
2155 if (WARN_ON(dqm->detect_hang_count > 0))
2156 return 0;
2157
2158 memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2159
2160 for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2161 uint32_t mec, pipe, queue;
2162 int xcc_id;
2163
2164 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2165 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2166
2167 if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2168 continue;
2169
2170 amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2171
2172 for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2173 uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2174 dqm->dev->adev, pipe, queue, xcc_id);
2175 struct dqm_detect_hang_info hang_info;
2176
2177 if (!queue_addr)
2178 continue;
2179
2180 hang_info.pipe_id = pipe;
2181 hang_info.queue_id = queue;
2182 hang_info.xcc_id = xcc_id;
2183 hang_info.queue_address = queue_addr;
2184
2185 dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2186 dqm->detect_hang_count++;
2187 }
2188 }
2189
2190 return dqm->detect_hang_count;
2191 }
2192
find_queue_by_address(struct device_queue_manager * dqm,uint64_t queue_address)2193 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2194 {
2195 struct device_process_node *cur;
2196 struct qcm_process_device *qpd;
2197 struct queue *q;
2198
2199 list_for_each_entry(cur, &dqm->queues, list) {
2200 qpd = cur->qpd;
2201 list_for_each_entry(q, &qpd->queues_list, list) {
2202 if (queue_address == q->properties.queue_address)
2203 return q;
2204 }
2205 }
2206
2207 return NULL;
2208 }
2209
2210 /* only for compute queue */
reset_queues_on_hws_hang(struct device_queue_manager * dqm)2211 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm)
2212 {
2213 int r = 0, reset_count = 0, i;
2214
2215 if (!dqm->detect_hang_info || dqm->is_hws_hang)
2216 return -EIO;
2217
2218 /* assume dqm locked. */
2219 if (!detect_queue_hang(dqm))
2220 return -ENOTRECOVERABLE;
2221
2222 for (i = 0; i < dqm->detect_hang_count; i++) {
2223 struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2224 struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2225 struct kfd_process_device *pdd;
2226 uint64_t queue_addr = 0;
2227
2228 if (!q) {
2229 r = -ENOTRECOVERABLE;
2230 goto reset_fail;
2231 }
2232
2233 pdd = kfd_get_process_device_data(dqm->dev, q->process);
2234 if (!pdd) {
2235 r = -ENOTRECOVERABLE;
2236 goto reset_fail;
2237 }
2238
2239 queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2240 hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2241 KFD_UNMAP_LATENCY_MS);
2242
2243 /* either reset failed or we reset an unexpected queue. */
2244 if (queue_addr != q->properties.queue_address) {
2245 r = -ENOTRECOVERABLE;
2246 goto reset_fail;
2247 }
2248
2249 set_queue_as_reset(dqm, q, &pdd->qpd);
2250 reset_count++;
2251 }
2252
2253 if (reset_count == dqm->detect_hang_count)
2254 kfd_signal_reset_event(dqm->dev);
2255 else
2256 r = -ENOTRECOVERABLE;
2257
2258 reset_fail:
2259 dqm->detect_hang_count = 0;
2260
2261 return r;
2262 }
2263
2264 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)2265 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2266 enum kfd_unmap_queues_filter filter,
2267 uint32_t filter_param,
2268 uint32_t grace_period,
2269 bool reset)
2270 {
2271 struct device *dev = dqm->dev->adev->dev;
2272 struct mqd_manager *mqd_mgr;
2273 int retval;
2274
2275 if (!dqm->sched_running)
2276 return 0;
2277 if (!dqm->active_runlist)
2278 return 0;
2279 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2280 return -EIO;
2281
2282 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2283 retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
2284 if (retval)
2285 goto out;
2286 }
2287
2288 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2289 if (retval)
2290 goto out;
2291
2292 *dqm->fence_addr = KFD_FENCE_INIT;
2293 mb();
2294 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2295 KFD_FENCE_COMPLETED);
2296 /* should be timed out */
2297 retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2298 queue_preemption_timeout_ms);
2299 if (retval) {
2300 dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2301 kfd_hws_hang(dqm);
2302 goto out;
2303 }
2304
2305 /* In the current MEC firmware implementation, if compute queue
2306 * doesn't response to the preemption request in time, HIQ will
2307 * abandon the unmap request without returning any timeout error
2308 * to driver. Instead, MEC firmware will log the doorbell of the
2309 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2310 * To make sure the queue unmap was successful, driver need to
2311 * check those fields
2312 */
2313 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2314 if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd)) {
2315 while (halt_if_hws_hang)
2316 schedule();
2317 if (reset_queues_on_hws_hang(dqm)) {
2318 dqm->is_hws_hang = true;
2319 kfd_hws_hang(dqm);
2320 retval = -ETIME;
2321 goto out;
2322 }
2323 }
2324
2325 /* We need to reset the grace period value for this device */
2326 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2327 if (pm_update_grace_period(&dqm->packet_mgr,
2328 USE_DEFAULT_GRACE_PERIOD))
2329 dev_err(dev, "Failed to reset grace period\n");
2330 }
2331
2332 pm_release_ib(&dqm->packet_mgr);
2333 dqm->active_runlist = false;
2334
2335 out:
2336 up_read(&dqm->dev->adev->reset_domain->sem);
2337 return retval;
2338 }
2339
2340 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2341 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2342 {
2343 int retval;
2344
2345 dqm_lock(dqm);
2346
2347 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2348 pasid, USE_DEFAULT_GRACE_PERIOD, true);
2349
2350 dqm_unlock(dqm);
2351 return retval;
2352 }
2353
2354 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2355 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2356 enum kfd_unmap_queues_filter filter,
2357 uint32_t filter_param,
2358 uint32_t grace_period)
2359 {
2360 int retval;
2361
2362 if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2363 return -EIO;
2364 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2365 if (!retval)
2366 retval = map_queues_cpsch(dqm);
2367 up_read(&dqm->dev->adev->reset_domain->sem);
2368 return retval;
2369 }
2370
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2371 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2372 struct queue *q)
2373 {
2374 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2375 q->process);
2376 int ret = 0;
2377
2378 if (WARN_ON(!pdd))
2379 return ret;
2380
2381 if (pdd->qpd.is_debug)
2382 return ret;
2383
2384 q->properties.is_being_destroyed = true;
2385
2386 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2387 dqm_unlock(dqm);
2388 mutex_unlock(&q->process->mutex);
2389 ret = wait_event_interruptible(dqm->destroy_wait,
2390 !q->properties.is_suspended);
2391
2392 mutex_lock(&q->process->mutex);
2393 dqm_lock(dqm);
2394 }
2395
2396 return ret;
2397 }
2398
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2399 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2400 struct qcm_process_device *qpd,
2401 struct queue *q)
2402 {
2403 int retval;
2404 struct mqd_manager *mqd_mgr;
2405 uint64_t sdma_val = 0;
2406 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2407 struct device *dev = dqm->dev->adev->dev;
2408
2409 /* Get the SDMA queue stats */
2410 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2411 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2412 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2413 &sdma_val);
2414 if (retval)
2415 dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2416 q->properties.queue_id);
2417 }
2418
2419 /* remove queue from list to prevent rescheduling after preemption */
2420 dqm_lock(dqm);
2421
2422 retval = wait_on_destroy_queue(dqm, q);
2423
2424 if (retval) {
2425 dqm_unlock(dqm);
2426 return retval;
2427 }
2428
2429 if (qpd->is_debug) {
2430 /*
2431 * error, currently we do not allow to destroy a queue
2432 * of a currently debugged process
2433 */
2434 retval = -EBUSY;
2435 goto failed_try_destroy_debugged_queue;
2436
2437 }
2438
2439 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2440 q->properties.type)];
2441
2442 deallocate_doorbell(qpd, q);
2443
2444 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2445 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2446 deallocate_sdma_queue(dqm, q);
2447 pdd->sdma_past_activity_counter += sdma_val;
2448 }
2449
2450 if (q->properties.is_active) {
2451 decrement_queue_count(dqm, qpd, q);
2452 q->properties.is_active = false;
2453 if (!dqm->dev->kfd->shared_resources.enable_mes) {
2454 retval = execute_queues_cpsch(dqm,
2455 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2456 USE_DEFAULT_GRACE_PERIOD);
2457 if (retval == -ETIME)
2458 qpd->reset_wavefronts = true;
2459 } else {
2460 retval = remove_queue_mes(dqm, q, qpd);
2461 }
2462 }
2463 list_del(&q->list);
2464 qpd->queue_count--;
2465
2466 /*
2467 * Unconditionally decrement this counter, regardless of the queue's
2468 * type
2469 */
2470 dqm->total_queue_count--;
2471 pr_debug("Total of %d queues are accountable so far\n",
2472 dqm->total_queue_count);
2473
2474 dqm_unlock(dqm);
2475
2476 /*
2477 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2478 * circular locking
2479 */
2480 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2481 qpd->pqm->process, q->device,
2482 -1, false, NULL, 0);
2483
2484 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2485
2486 return retval;
2487
2488 failed_try_destroy_debugged_queue:
2489
2490 dqm_unlock(dqm);
2491 return retval;
2492 }
2493
2494 /*
2495 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2496 * stay in user mode.
2497 */
2498 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2499 /* APE1 limit is inclusive and 64K aligned. */
2500 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2501
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)2502 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2503 struct qcm_process_device *qpd,
2504 enum cache_policy default_policy,
2505 enum cache_policy alternate_policy,
2506 void __user *alternate_aperture_base,
2507 uint64_t alternate_aperture_size)
2508 {
2509 bool retval = true;
2510
2511 if (!dqm->asic_ops.set_cache_memory_policy)
2512 return retval;
2513
2514 dqm_lock(dqm);
2515
2516 if (alternate_aperture_size == 0) {
2517 /* base > limit disables APE1 */
2518 qpd->sh_mem_ape1_base = 1;
2519 qpd->sh_mem_ape1_limit = 0;
2520 } else {
2521 /*
2522 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2523 * SH_MEM_APE1_BASE[31:0], 0x0000 }
2524 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2525 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2526 * Verify that the base and size parameters can be
2527 * represented in this format and convert them.
2528 * Additionally restrict APE1 to user-mode addresses.
2529 */
2530
2531 uint64_t base = (uintptr_t)alternate_aperture_base;
2532 uint64_t limit = base + alternate_aperture_size - 1;
2533
2534 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2535 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2536 retval = false;
2537 goto out;
2538 }
2539
2540 qpd->sh_mem_ape1_base = base >> 16;
2541 qpd->sh_mem_ape1_limit = limit >> 16;
2542 }
2543
2544 retval = dqm->asic_ops.set_cache_memory_policy(
2545 dqm,
2546 qpd,
2547 default_policy,
2548 alternate_policy,
2549 alternate_aperture_base,
2550 alternate_aperture_size);
2551
2552 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2553 program_sh_mem_settings(dqm, qpd);
2554
2555 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2556 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2557 qpd->sh_mem_ape1_limit);
2558
2559 out:
2560 dqm_unlock(dqm);
2561 return retval;
2562 }
2563
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2564 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2565 struct qcm_process_device *qpd)
2566 {
2567 struct queue *q;
2568 struct device_process_node *cur, *next_dpn;
2569 int retval = 0;
2570 bool found = false;
2571
2572 dqm_lock(dqm);
2573
2574 /* Clear all user mode queues */
2575 while (!list_empty(&qpd->queues_list)) {
2576 struct mqd_manager *mqd_mgr;
2577 int ret;
2578
2579 q = list_first_entry(&qpd->queues_list, struct queue, list);
2580 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2581 q->properties.type)];
2582 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2583 if (ret)
2584 retval = ret;
2585 dqm_unlock(dqm);
2586 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2587 dqm_lock(dqm);
2588 }
2589
2590 /* Unregister process */
2591 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2592 if (qpd == cur->qpd) {
2593 list_del(&cur->list);
2594 kfree(cur);
2595 dqm->processes_count--;
2596 found = true;
2597 break;
2598 }
2599 }
2600
2601 dqm_unlock(dqm);
2602
2603 /* Outside the DQM lock because under the DQM lock we can't do
2604 * reclaim or take other locks that others hold while reclaiming.
2605 */
2606 if (found)
2607 kfd_dec_compute_active(dqm->dev);
2608
2609 return retval;
2610 }
2611
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2612 static int get_wave_state(struct device_queue_manager *dqm,
2613 struct queue *q,
2614 void __user *ctl_stack,
2615 u32 *ctl_stack_used_size,
2616 u32 *save_area_used_size)
2617 {
2618 struct mqd_manager *mqd_mgr;
2619
2620 dqm_lock(dqm);
2621
2622 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2623
2624 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2625 q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2626 !mqd_mgr->get_wave_state) {
2627 dqm_unlock(dqm);
2628 return -EINVAL;
2629 }
2630
2631 dqm_unlock(dqm);
2632
2633 /*
2634 * get_wave_state is outside the dqm lock to prevent circular locking
2635 * and the queue should be protected against destruction by the process
2636 * lock.
2637 */
2638 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2639 ctl_stack, ctl_stack_used_size, save_area_used_size);
2640 }
2641
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2642 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2643 const struct queue *q,
2644 u32 *mqd_size,
2645 u32 *ctl_stack_size)
2646 {
2647 struct mqd_manager *mqd_mgr;
2648 enum KFD_MQD_TYPE mqd_type =
2649 get_mqd_type_from_queue_type(q->properties.type);
2650
2651 dqm_lock(dqm);
2652 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2653 *mqd_size = mqd_mgr->mqd_size;
2654 *ctl_stack_size = 0;
2655
2656 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2657 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2658
2659 dqm_unlock(dqm);
2660 }
2661
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2662 static int checkpoint_mqd(struct device_queue_manager *dqm,
2663 const struct queue *q,
2664 void *mqd,
2665 void *ctl_stack)
2666 {
2667 struct mqd_manager *mqd_mgr;
2668 int r = 0;
2669 enum KFD_MQD_TYPE mqd_type =
2670 get_mqd_type_from_queue_type(q->properties.type);
2671
2672 dqm_lock(dqm);
2673
2674 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2675 r = -EINVAL;
2676 goto dqm_unlock;
2677 }
2678
2679 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2680 if (!mqd_mgr->checkpoint_mqd) {
2681 r = -EOPNOTSUPP;
2682 goto dqm_unlock;
2683 }
2684
2685 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2686
2687 dqm_unlock:
2688 dqm_unlock(dqm);
2689 return r;
2690 }
2691
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2692 static int process_termination_cpsch(struct device_queue_manager *dqm,
2693 struct qcm_process_device *qpd)
2694 {
2695 int retval;
2696 struct queue *q;
2697 struct device *dev = dqm->dev->adev->dev;
2698 struct kernel_queue *kq, *kq_next;
2699 struct mqd_manager *mqd_mgr;
2700 struct device_process_node *cur, *next_dpn;
2701 enum kfd_unmap_queues_filter filter =
2702 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2703 bool found = false;
2704
2705 retval = 0;
2706
2707 dqm_lock(dqm);
2708
2709 /* Clean all kernel queues */
2710 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2711 list_del(&kq->list);
2712 decrement_queue_count(dqm, qpd, kq->queue);
2713 qpd->is_debug = false;
2714 dqm->total_queue_count--;
2715 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2716 }
2717
2718 /* Clear all user mode queues */
2719 list_for_each_entry(q, &qpd->queues_list, list) {
2720 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2721 deallocate_sdma_queue(dqm, q);
2722 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2723 deallocate_sdma_queue(dqm, q);
2724
2725 if (q->properties.is_active) {
2726 decrement_queue_count(dqm, qpd, q);
2727
2728 if (dqm->dev->kfd->shared_resources.enable_mes) {
2729 retval = remove_queue_mes(dqm, q, qpd);
2730 if (retval)
2731 dev_err(dev, "Failed to remove queue %d\n",
2732 q->properties.queue_id);
2733 }
2734 }
2735
2736 dqm->total_queue_count--;
2737 }
2738
2739 /* Unregister process */
2740 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2741 if (qpd == cur->qpd) {
2742 list_del(&cur->list);
2743 kfree(cur);
2744 dqm->processes_count--;
2745 found = true;
2746 break;
2747 }
2748 }
2749
2750 if (!dqm->dev->kfd->shared_resources.enable_mes)
2751 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2752
2753 if ((retval || qpd->reset_wavefronts) &&
2754 down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2755 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2756 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2757 qpd->reset_wavefronts = false;
2758 up_read(&dqm->dev->adev->reset_domain->sem);
2759 }
2760
2761 /* Lastly, free mqd resources.
2762 * Do free_mqd() after dqm_unlock to avoid circular locking.
2763 */
2764 while (!list_empty(&qpd->queues_list)) {
2765 q = list_first_entry(&qpd->queues_list, struct queue, list);
2766 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2767 q->properties.type)];
2768 list_del(&q->list);
2769 qpd->queue_count--;
2770 dqm_unlock(dqm);
2771 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2772 dqm_lock(dqm);
2773 }
2774 dqm_unlock(dqm);
2775
2776 /* Outside the DQM lock because under the DQM lock we can't do
2777 * reclaim or take other locks that others hold while reclaiming.
2778 */
2779 if (found)
2780 kfd_dec_compute_active(dqm->dev);
2781
2782 return retval;
2783 }
2784
init_mqd_managers(struct device_queue_manager * dqm)2785 static int init_mqd_managers(struct device_queue_manager *dqm)
2786 {
2787 int i, j;
2788 struct device *dev = dqm->dev->adev->dev;
2789 struct mqd_manager *mqd_mgr;
2790
2791 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2792 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2793 if (!mqd_mgr) {
2794 dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2795 goto out_free;
2796 }
2797 dqm->mqd_mgrs[i] = mqd_mgr;
2798 }
2799
2800 return 0;
2801
2802 out_free:
2803 for (j = 0; j < i; j++) {
2804 kfree(dqm->mqd_mgrs[j]);
2805 dqm->mqd_mgrs[j] = NULL;
2806 }
2807
2808 return -ENOMEM;
2809 }
2810
2811 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2812 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2813 {
2814 int retval;
2815 struct kfd_node *dev = dqm->dev;
2816 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2817 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2818 get_num_all_sdma_engines(dqm) *
2819 dev->kfd->device_info.num_sdma_queues_per_engine +
2820 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2821 NUM_XCC(dqm->dev->xcc_mask));
2822
2823 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2824 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2825 (void *)&(mem_obj->cpu_ptr), false);
2826
2827 return retval;
2828 }
2829
device_queue_manager_init(struct kfd_node * dev)2830 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2831 {
2832 struct device_queue_manager *dqm;
2833
2834 pr_debug("Loading device queue manager\n");
2835
2836 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2837 if (!dqm)
2838 return NULL;
2839
2840 switch (dev->adev->asic_type) {
2841 /* HWS is not available on Hawaii. */
2842 case CHIP_HAWAII:
2843 /* HWS depends on CWSR for timely dequeue. CWSR is not
2844 * available on Tonga.
2845 *
2846 * FIXME: This argument also applies to Kaveri.
2847 */
2848 case CHIP_TONGA:
2849 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2850 break;
2851 default:
2852 dqm->sched_policy = sched_policy;
2853 break;
2854 }
2855
2856 dqm->dev = dev;
2857 switch (dqm->sched_policy) {
2858 case KFD_SCHED_POLICY_HWS:
2859 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2860 /* initialize dqm for cp scheduling */
2861 dqm->ops.create_queue = create_queue_cpsch;
2862 dqm->ops.initialize = initialize_cpsch;
2863 dqm->ops.start = start_cpsch;
2864 dqm->ops.stop = stop_cpsch;
2865 dqm->ops.halt = halt_cpsch;
2866 dqm->ops.unhalt = unhalt_cpsch;
2867 dqm->ops.destroy_queue = destroy_queue_cpsch;
2868 dqm->ops.update_queue = update_queue;
2869 dqm->ops.register_process = register_process;
2870 dqm->ops.unregister_process = unregister_process;
2871 dqm->ops.uninitialize = uninitialize;
2872 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2873 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2874 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2875 dqm->ops.process_termination = process_termination_cpsch;
2876 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2877 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2878 dqm->ops.get_wave_state = get_wave_state;
2879 dqm->ops.reset_queues = reset_queues_cpsch;
2880 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2881 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2882 break;
2883 case KFD_SCHED_POLICY_NO_HWS:
2884 /* initialize dqm for no cp scheduling */
2885 dqm->ops.start = start_nocpsch;
2886 dqm->ops.stop = stop_nocpsch;
2887 dqm->ops.create_queue = create_queue_nocpsch;
2888 dqm->ops.destroy_queue = destroy_queue_nocpsch;
2889 dqm->ops.update_queue = update_queue;
2890 dqm->ops.register_process = register_process;
2891 dqm->ops.unregister_process = unregister_process;
2892 dqm->ops.initialize = initialize_nocpsch;
2893 dqm->ops.uninitialize = uninitialize;
2894 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2895 dqm->ops.process_termination = process_termination_nocpsch;
2896 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2897 dqm->ops.restore_process_queues =
2898 restore_process_queues_nocpsch;
2899 dqm->ops.get_wave_state = get_wave_state;
2900 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2901 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2902 break;
2903 default:
2904 dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2905 goto out_free;
2906 }
2907
2908 switch (dev->adev->asic_type) {
2909 case CHIP_KAVERI:
2910 case CHIP_HAWAII:
2911 device_queue_manager_init_cik(&dqm->asic_ops);
2912 break;
2913
2914 case CHIP_CARRIZO:
2915 case CHIP_TONGA:
2916 case CHIP_FIJI:
2917 case CHIP_POLARIS10:
2918 case CHIP_POLARIS11:
2919 case CHIP_POLARIS12:
2920 case CHIP_VEGAM:
2921 device_queue_manager_init_vi(&dqm->asic_ops);
2922 break;
2923
2924 default:
2925 if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
2926 device_queue_manager_init_v12(&dqm->asic_ops);
2927 else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2928 device_queue_manager_init_v11(&dqm->asic_ops);
2929 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2930 device_queue_manager_init_v10(&dqm->asic_ops);
2931 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2932 device_queue_manager_init_v9(&dqm->asic_ops);
2933 else {
2934 WARN(1, "Unexpected ASIC family %u",
2935 dev->adev->asic_type);
2936 goto out_free;
2937 }
2938 }
2939
2940 if (init_mqd_managers(dqm))
2941 goto out_free;
2942
2943 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2944 dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
2945 goto out_free;
2946 }
2947
2948 if (!dqm->ops.initialize(dqm)) {
2949 init_waitqueue_head(&dqm->destroy_wait);
2950 return dqm;
2951 }
2952
2953 out_free:
2954 kfree(dqm);
2955 return NULL;
2956 }
2957
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)2958 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2959 struct kfd_mem_obj *mqd)
2960 {
2961 WARN(!mqd, "No hiq sdma mqd trunk to free");
2962
2963 amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
2964 }
2965
device_queue_manager_uninit(struct device_queue_manager * dqm)2966 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2967 {
2968 dqm->ops.stop(dqm);
2969 dqm->ops.uninitialize(dqm);
2970 if (!dqm->dev->kfd->shared_resources.enable_mes)
2971 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2972 kfree(dqm);
2973 }
2974
kfd_dqm_suspend_bad_queue_mes(struct kfd_node * knode,u32 pasid,u32 doorbell_id)2975 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
2976 {
2977 struct kfd_process_device *pdd;
2978 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2979 struct device_queue_manager *dqm = knode->dqm;
2980 struct device *dev = dqm->dev->adev->dev;
2981 struct qcm_process_device *qpd;
2982 struct queue *q = NULL;
2983 int ret = 0;
2984
2985 if (!p)
2986 return -EINVAL;
2987
2988 dqm_lock(dqm);
2989
2990 pdd = kfd_get_process_device_data(dqm->dev, p);
2991 if (pdd) {
2992 qpd = &pdd->qpd;
2993
2994 list_for_each_entry(q, &qpd->queues_list, list) {
2995 if (q->doorbell_id == doorbell_id && q->properties.is_active) {
2996 ret = suspend_all_queues_mes(dqm);
2997 if (ret) {
2998 dev_err(dev, "Suspending all queues failed");
2999 goto out;
3000 }
3001
3002 q->properties.is_evicted = true;
3003 q->properties.is_active = false;
3004 decrement_queue_count(dqm, qpd, q);
3005
3006 ret = remove_queue_mes(dqm, q, qpd);
3007 if (ret) {
3008 dev_err(dev, "Removing bad queue failed");
3009 goto out;
3010 }
3011
3012 ret = resume_all_queues_mes(dqm);
3013 if (ret)
3014 dev_err(dev, "Resuming all queues failed");
3015
3016 break;
3017 }
3018 }
3019 }
3020
3021 out:
3022 dqm_unlock(dqm);
3023 return ret;
3024 }
3025
kfd_dqm_evict_pasid_mes(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3026 static int kfd_dqm_evict_pasid_mes(struct device_queue_manager *dqm,
3027 struct qcm_process_device *qpd)
3028 {
3029 struct device *dev = dqm->dev->adev->dev;
3030 int ret = 0;
3031
3032 /* Check if process is already evicted */
3033 dqm_lock(dqm);
3034 if (qpd->evicted) {
3035 /* Increment the evicted count to make sure the
3036 * process stays evicted before its terminated.
3037 */
3038 qpd->evicted++;
3039 dqm_unlock(dqm);
3040 goto out;
3041 }
3042 dqm_unlock(dqm);
3043
3044 ret = suspend_all_queues_mes(dqm);
3045 if (ret) {
3046 dev_err(dev, "Suspending all queues failed");
3047 goto out;
3048 }
3049
3050 ret = dqm->ops.evict_process_queues(dqm, qpd);
3051 if (ret) {
3052 dev_err(dev, "Evicting process queues failed");
3053 goto out;
3054 }
3055
3056 ret = resume_all_queues_mes(dqm);
3057 if (ret)
3058 dev_err(dev, "Resuming all queues failed");
3059
3060 out:
3061 return ret;
3062 }
3063
kfd_dqm_evict_pasid(struct device_queue_manager * dqm,u32 pasid)3064 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
3065 {
3066 struct kfd_process_device *pdd;
3067 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
3068 int ret = 0;
3069
3070 if (!p)
3071 return -EINVAL;
3072 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3073 pdd = kfd_get_process_device_data(dqm->dev, p);
3074 if (pdd) {
3075 if (dqm->dev->kfd->shared_resources.enable_mes)
3076 ret = kfd_dqm_evict_pasid_mes(dqm, &pdd->qpd);
3077 else
3078 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3079 }
3080
3081 kfd_unref_process(p);
3082
3083 return ret;
3084 }
3085
kfd_process_hw_exception(struct work_struct * work)3086 static void kfd_process_hw_exception(struct work_struct *work)
3087 {
3088 struct device_queue_manager *dqm = container_of(work,
3089 struct device_queue_manager, hw_exception_work);
3090 amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
3091 }
3092
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3093 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3094 struct qcm_process_device *qpd)
3095 {
3096 int r;
3097 struct device *dev = dqm->dev->adev->dev;
3098 int updated_vmid_mask;
3099
3100 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3101 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3102 return -EINVAL;
3103 }
3104
3105 dqm_lock(dqm);
3106
3107 if (dqm->trap_debug_vmid != 0) {
3108 dev_err(dev, "Trap debug id already reserved\n");
3109 r = -EBUSY;
3110 goto out_unlock;
3111 }
3112
3113 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3114 USE_DEFAULT_GRACE_PERIOD, false);
3115 if (r)
3116 goto out_unlock;
3117
3118 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3119 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3120
3121 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3122 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3123 r = set_sched_resources(dqm);
3124 if (r)
3125 goto out_unlock;
3126
3127 r = map_queues_cpsch(dqm);
3128 if (r)
3129 goto out_unlock;
3130
3131 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3132
3133 out_unlock:
3134 dqm_unlock(dqm);
3135 return r;
3136 }
3137
3138 /*
3139 * Releases vmid for the trap debugger
3140 */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3141 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3142 struct qcm_process_device *qpd)
3143 {
3144 struct device *dev = dqm->dev->adev->dev;
3145 int r;
3146 int updated_vmid_mask;
3147 uint32_t trap_debug_vmid;
3148
3149 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3150 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3151 return -EINVAL;
3152 }
3153
3154 dqm_lock(dqm);
3155 trap_debug_vmid = dqm->trap_debug_vmid;
3156 if (dqm->trap_debug_vmid == 0) {
3157 dev_err(dev, "Trap debug id is not reserved\n");
3158 r = -EINVAL;
3159 goto out_unlock;
3160 }
3161
3162 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3163 USE_DEFAULT_GRACE_PERIOD, false);
3164 if (r)
3165 goto out_unlock;
3166
3167 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3168 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3169
3170 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3171 dqm->trap_debug_vmid = 0;
3172 r = set_sched_resources(dqm);
3173 if (r)
3174 goto out_unlock;
3175
3176 r = map_queues_cpsch(dqm);
3177 if (r)
3178 goto out_unlock;
3179
3180 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3181
3182 out_unlock:
3183 dqm_unlock(dqm);
3184 return r;
3185 }
3186
3187 #define QUEUE_NOT_FOUND -1
3188 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)3189 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3190 {
3191 int i;
3192
3193 for (i = 0; i < num_queues; i++)
3194 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3195 }
3196
3197 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)3198 static int q_array_get_index(unsigned int queue_id,
3199 uint32_t num_queues,
3200 uint32_t *queue_ids)
3201 {
3202 int i;
3203
3204 for (i = 0; i < num_queues; i++)
3205 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3206 return i;
3207
3208 return QUEUE_NOT_FOUND;
3209 }
3210
3211 struct copy_context_work_handler_workarea {
3212 struct work_struct copy_context_work;
3213 struct kfd_process *p;
3214 };
3215
copy_context_work_handler(struct work_struct * work)3216 static void copy_context_work_handler(struct work_struct *work)
3217 {
3218 struct copy_context_work_handler_workarea *workarea;
3219 struct mqd_manager *mqd_mgr;
3220 struct queue *q;
3221 struct mm_struct *mm;
3222 struct kfd_process *p;
3223 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3224 int i;
3225
3226 workarea = container_of(work,
3227 struct copy_context_work_handler_workarea,
3228 copy_context_work);
3229
3230 p = workarea->p;
3231 mm = get_task_mm(p->lead_thread);
3232
3233 if (!mm)
3234 return;
3235
3236 kthread_use_mm(mm);
3237 for (i = 0; i < p->n_pdds; i++) {
3238 struct kfd_process_device *pdd = p->pdds[i];
3239 struct device_queue_manager *dqm = pdd->dev->dqm;
3240 struct qcm_process_device *qpd = &pdd->qpd;
3241
3242 list_for_each_entry(q, &qpd->queues_list, list) {
3243 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3244 continue;
3245
3246 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3247
3248 /* We ignore the return value from get_wave_state
3249 * because
3250 * i) right now, it always returns 0, and
3251 * ii) if we hit an error, we would continue to the
3252 * next queue anyway.
3253 */
3254 mqd_mgr->get_wave_state(mqd_mgr,
3255 q->mqd,
3256 &q->properties,
3257 (void __user *) q->properties.ctx_save_restore_area_address,
3258 &tmp_ctl_stack_used_size,
3259 &tmp_save_area_used_size);
3260 }
3261 }
3262 kthread_unuse_mm(mm);
3263 mmput(mm);
3264 }
3265
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)3266 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3267 {
3268 size_t array_size = num_queues * sizeof(uint32_t);
3269
3270 if (!usr_queue_id_array)
3271 return NULL;
3272
3273 return memdup_user(usr_queue_id_array, array_size);
3274 }
3275
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)3276 int resume_queues(struct kfd_process *p,
3277 uint32_t num_queues,
3278 uint32_t *usr_queue_id_array)
3279 {
3280 uint32_t *queue_ids = NULL;
3281 int total_resumed = 0;
3282 int i;
3283
3284 if (usr_queue_id_array) {
3285 queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3286
3287 if (IS_ERR(queue_ids))
3288 return PTR_ERR(queue_ids);
3289
3290 /* mask all queues as invalid. unmask per successful request */
3291 q_array_invalidate(num_queues, queue_ids);
3292 }
3293
3294 for (i = 0; i < p->n_pdds; i++) {
3295 struct kfd_process_device *pdd = p->pdds[i];
3296 struct device_queue_manager *dqm = pdd->dev->dqm;
3297 struct device *dev = dqm->dev->adev->dev;
3298 struct qcm_process_device *qpd = &pdd->qpd;
3299 struct queue *q;
3300 int r, per_device_resumed = 0;
3301
3302 dqm_lock(dqm);
3303
3304 /* unmask queues that resume or already resumed as valid */
3305 list_for_each_entry(q, &qpd->queues_list, list) {
3306 int q_idx = QUEUE_NOT_FOUND;
3307
3308 if (queue_ids)
3309 q_idx = q_array_get_index(
3310 q->properties.queue_id,
3311 num_queues,
3312 queue_ids);
3313
3314 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3315 int err = resume_single_queue(dqm, &pdd->qpd, q);
3316
3317 if (queue_ids) {
3318 if (!err) {
3319 queue_ids[q_idx] &=
3320 ~KFD_DBG_QUEUE_INVALID_MASK;
3321 } else {
3322 queue_ids[q_idx] |=
3323 KFD_DBG_QUEUE_ERROR_MASK;
3324 break;
3325 }
3326 }
3327
3328 if (dqm->dev->kfd->shared_resources.enable_mes) {
3329 wake_up_all(&dqm->destroy_wait);
3330 if (!err)
3331 total_resumed++;
3332 } else {
3333 per_device_resumed++;
3334 }
3335 }
3336 }
3337
3338 if (!per_device_resumed) {
3339 dqm_unlock(dqm);
3340 continue;
3341 }
3342
3343 r = execute_queues_cpsch(dqm,
3344 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3345 0,
3346 USE_DEFAULT_GRACE_PERIOD);
3347 if (r) {
3348 dev_err(dev, "Failed to resume process queues\n");
3349 if (queue_ids) {
3350 list_for_each_entry(q, &qpd->queues_list, list) {
3351 int q_idx = q_array_get_index(
3352 q->properties.queue_id,
3353 num_queues,
3354 queue_ids);
3355
3356 /* mask queue as error on resume fail */
3357 if (q_idx != QUEUE_NOT_FOUND)
3358 queue_ids[q_idx] |=
3359 KFD_DBG_QUEUE_ERROR_MASK;
3360 }
3361 }
3362 } else {
3363 wake_up_all(&dqm->destroy_wait);
3364 total_resumed += per_device_resumed;
3365 }
3366
3367 dqm_unlock(dqm);
3368 }
3369
3370 if (queue_ids) {
3371 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3372 num_queues * sizeof(uint32_t)))
3373 pr_err("copy_to_user failed on queue resume\n");
3374
3375 kfree(queue_ids);
3376 }
3377
3378 return total_resumed;
3379 }
3380
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)3381 int suspend_queues(struct kfd_process *p,
3382 uint32_t num_queues,
3383 uint32_t grace_period,
3384 uint64_t exception_clear_mask,
3385 uint32_t *usr_queue_id_array)
3386 {
3387 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3388 int total_suspended = 0;
3389 int i;
3390
3391 if (IS_ERR(queue_ids))
3392 return PTR_ERR(queue_ids);
3393
3394 /* mask all queues as invalid. umask on successful request */
3395 q_array_invalidate(num_queues, queue_ids);
3396
3397 for (i = 0; i < p->n_pdds; i++) {
3398 struct kfd_process_device *pdd = p->pdds[i];
3399 struct device_queue_manager *dqm = pdd->dev->dqm;
3400 struct device *dev = dqm->dev->adev->dev;
3401 struct qcm_process_device *qpd = &pdd->qpd;
3402 struct queue *q;
3403 int r, per_device_suspended = 0;
3404
3405 mutex_lock(&p->event_mutex);
3406 dqm_lock(dqm);
3407
3408 /* unmask queues that suspend or already suspended */
3409 list_for_each_entry(q, &qpd->queues_list, list) {
3410 int q_idx = q_array_get_index(q->properties.queue_id,
3411 num_queues,
3412 queue_ids);
3413
3414 if (q_idx != QUEUE_NOT_FOUND) {
3415 int err = suspend_single_queue(dqm, pdd, q);
3416 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3417
3418 if (!err) {
3419 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3420 if (exception_clear_mask && is_mes)
3421 q->properties.exception_status &=
3422 ~exception_clear_mask;
3423
3424 if (is_mes)
3425 total_suspended++;
3426 else
3427 per_device_suspended++;
3428 } else if (err != -EBUSY) {
3429 r = err;
3430 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3431 break;
3432 }
3433 }
3434 }
3435
3436 if (!per_device_suspended) {
3437 dqm_unlock(dqm);
3438 mutex_unlock(&p->event_mutex);
3439 if (total_suspended)
3440 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3441 continue;
3442 }
3443
3444 r = execute_queues_cpsch(dqm,
3445 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3446 grace_period);
3447
3448 if (r)
3449 dev_err(dev, "Failed to suspend process queues.\n");
3450 else
3451 total_suspended += per_device_suspended;
3452
3453 list_for_each_entry(q, &qpd->queues_list, list) {
3454 int q_idx = q_array_get_index(q->properties.queue_id,
3455 num_queues, queue_ids);
3456
3457 if (q_idx == QUEUE_NOT_FOUND)
3458 continue;
3459
3460 /* mask queue as error on suspend fail */
3461 if (r)
3462 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3463 else if (exception_clear_mask)
3464 q->properties.exception_status &=
3465 ~exception_clear_mask;
3466 }
3467
3468 dqm_unlock(dqm);
3469 mutex_unlock(&p->event_mutex);
3470 amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3471 }
3472
3473 if (total_suspended) {
3474 struct copy_context_work_handler_workarea copy_context_worker;
3475
3476 INIT_WORK_ONSTACK(
3477 ©_context_worker.copy_context_work,
3478 copy_context_work_handler);
3479
3480 copy_context_worker.p = p;
3481
3482 schedule_work(©_context_worker.copy_context_work);
3483
3484
3485 flush_work(©_context_worker.copy_context_work);
3486 destroy_work_on_stack(©_context_worker.copy_context_work);
3487 }
3488
3489 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3490 num_queues * sizeof(uint32_t)))
3491 pr_err("copy_to_user failed on queue suspend\n");
3492
3493 kfree(queue_ids);
3494
3495 return total_suspended;
3496 }
3497
set_queue_type_for_user(struct queue_properties * q_props)3498 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3499 {
3500 switch (q_props->type) {
3501 case KFD_QUEUE_TYPE_COMPUTE:
3502 return q_props->format == KFD_QUEUE_FORMAT_PM4
3503 ? KFD_IOC_QUEUE_TYPE_COMPUTE
3504 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3505 case KFD_QUEUE_TYPE_SDMA:
3506 return KFD_IOC_QUEUE_TYPE_SDMA;
3507 case KFD_QUEUE_TYPE_SDMA_XGMI:
3508 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3509 default:
3510 WARN_ONCE(true, "queue type not recognized!");
3511 return 0xffffffff;
3512 };
3513 }
3514
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3515 void set_queue_snapshot_entry(struct queue *q,
3516 uint64_t exception_clear_mask,
3517 struct kfd_queue_snapshot_entry *qss_entry)
3518 {
3519 qss_entry->ring_base_address = q->properties.queue_address;
3520 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3521 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3522 qss_entry->ctx_save_restore_address =
3523 q->properties.ctx_save_restore_area_address;
3524 qss_entry->ctx_save_restore_area_size =
3525 q->properties.ctx_save_restore_area_size;
3526 qss_entry->exception_status = q->properties.exception_status;
3527 qss_entry->queue_id = q->properties.queue_id;
3528 qss_entry->gpu_id = q->device->id;
3529 qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3530 qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3531 q->properties.exception_status &= ~exception_clear_mask;
3532 }
3533
debug_lock_and_unmap(struct device_queue_manager * dqm)3534 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3535 {
3536 struct device *dev = dqm->dev->adev->dev;
3537 int r;
3538
3539 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3540 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3541 return -EINVAL;
3542 }
3543
3544 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3545 return 0;
3546
3547 dqm_lock(dqm);
3548
3549 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3550 if (r)
3551 dqm_unlock(dqm);
3552
3553 return r;
3554 }
3555
debug_map_and_unlock(struct device_queue_manager * dqm)3556 int debug_map_and_unlock(struct device_queue_manager *dqm)
3557 {
3558 struct device *dev = dqm->dev->adev->dev;
3559 int r;
3560
3561 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3562 dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3563 return -EINVAL;
3564 }
3565
3566 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3567 return 0;
3568
3569 r = map_queues_cpsch(dqm);
3570
3571 dqm_unlock(dqm);
3572
3573 return r;
3574 }
3575
debug_refresh_runlist(struct device_queue_manager * dqm)3576 int debug_refresh_runlist(struct device_queue_manager *dqm)
3577 {
3578 int r = debug_lock_and_unmap(dqm);
3579
3580 if (r)
3581 return r;
3582
3583 return debug_map_and_unlock(dqm);
3584 }
3585
kfd_dqm_is_queue_in_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd,int doorbell_off,u32 * queue_format)3586 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3587 struct qcm_process_device *qpd,
3588 int doorbell_off, u32 *queue_format)
3589 {
3590 struct queue *q;
3591 bool r = false;
3592
3593 if (!queue_format)
3594 return r;
3595
3596 dqm_lock(dqm);
3597
3598 list_for_each_entry(q, &qpd->queues_list, list) {
3599 if (q->properties.doorbell_off == doorbell_off) {
3600 *queue_format = q->properties.format;
3601 r = true;
3602 goto out;
3603 }
3604 }
3605
3606 out:
3607 dqm_unlock(dqm);
3608 return r;
3609 }
3610 #if defined(CONFIG_DEBUG_FS)
3611
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3612 static void seq_reg_dump(struct seq_file *m,
3613 uint32_t (*dump)[2], uint32_t n_regs)
3614 {
3615 uint32_t i, count;
3616
3617 for (i = 0, count = 0; i < n_regs; i++) {
3618 if (count == 0 ||
3619 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3620 seq_printf(m, "%s %08x: %08x",
3621 i ? "\n" : "",
3622 dump[i][0], dump[i][1]);
3623 count = 7;
3624 } else {
3625 seq_printf(m, " %08x", dump[i][1]);
3626 count--;
3627 }
3628 }
3629
3630 seq_puts(m, "\n");
3631 }
3632
dqm_debugfs_hqds(struct seq_file * m,void * data)3633 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3634 {
3635 struct device_queue_manager *dqm = data;
3636 uint32_t xcc_mask = dqm->dev->xcc_mask;
3637 uint32_t (*dump)[2], n_regs;
3638 int pipe, queue;
3639 int r = 0, xcc_id;
3640 uint32_t sdma_engine_start;
3641
3642 if (!dqm->sched_running) {
3643 seq_puts(m, " Device is stopped\n");
3644 return 0;
3645 }
3646
3647 for_each_inst(xcc_id, xcc_mask) {
3648 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3649 KFD_CIK_HIQ_PIPE,
3650 KFD_CIK_HIQ_QUEUE, &dump,
3651 &n_regs, xcc_id);
3652 if (!r) {
3653 seq_printf(
3654 m,
3655 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3656 xcc_id,
3657 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3658 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3659 KFD_CIK_HIQ_QUEUE);
3660 seq_reg_dump(m, dump, n_regs);
3661
3662 kfree(dump);
3663 }
3664
3665 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3666 int pipe_offset = pipe * get_queues_per_pipe(dqm);
3667
3668 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3669 if (!test_bit(pipe_offset + queue,
3670 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3671 continue;
3672
3673 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3674 pipe, queue,
3675 &dump, &n_regs,
3676 xcc_id);
3677 if (r)
3678 break;
3679
3680 seq_printf(m,
3681 " Inst %d, CP Pipe %d, Queue %d\n",
3682 xcc_id, pipe, queue);
3683 seq_reg_dump(m, dump, n_regs);
3684
3685 kfree(dump);
3686 }
3687 }
3688 }
3689
3690 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3691 for (pipe = sdma_engine_start;
3692 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3693 pipe++) {
3694 for (queue = 0;
3695 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3696 queue++) {
3697 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3698 dqm->dev->adev, pipe, queue, &dump, &n_regs);
3699 if (r)
3700 break;
3701
3702 seq_printf(m, " SDMA Engine %d, RLC %d\n",
3703 pipe, queue);
3704 seq_reg_dump(m, dump, n_regs);
3705
3706 kfree(dump);
3707 }
3708 }
3709
3710 return r;
3711 }
3712
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3713 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3714 {
3715 int r = 0;
3716
3717 dqm_lock(dqm);
3718 r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3719 if (r) {
3720 dqm_unlock(dqm);
3721 return r;
3722 }
3723 dqm->active_runlist = true;
3724 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3725 0, USE_DEFAULT_GRACE_PERIOD);
3726 dqm_unlock(dqm);
3727
3728 return r;
3729 }
3730
3731 #endif
3732