1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27
28 #define DEBUG_TYPE "call-lowering"
29
30 using namespace llvm;
31
anchor()32 void CallLowering::anchor() {}
33
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
addFlagsUsingAttrFn(ISD::ArgFlagsTy & Flags,const std::function<bool (Attribute::AttrKind)> & AttrFn)36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37 const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38 if (AttrFn(Attribute::SExt))
39 Flags.setSExt();
40 if (AttrFn(Attribute::ZExt))
41 Flags.setZExt();
42 if (AttrFn(Attribute::InReg))
43 Flags.setInReg();
44 if (AttrFn(Attribute::StructRet))
45 Flags.setSRet();
46 if (AttrFn(Attribute::Nest))
47 Flags.setNest();
48 if (AttrFn(Attribute::ByVal))
49 Flags.setByVal();
50 if (AttrFn(Attribute::Preallocated))
51 Flags.setPreallocated();
52 if (AttrFn(Attribute::InAlloca))
53 Flags.setInAlloca();
54 if (AttrFn(Attribute::Returned))
55 Flags.setReturned();
56 if (AttrFn(Attribute::SwiftSelf))
57 Flags.setSwiftSelf();
58 if (AttrFn(Attribute::SwiftAsync))
59 Flags.setSwiftAsync();
60 if (AttrFn(Attribute::SwiftError))
61 Flags.setSwiftError();
62 }
63
getAttributesForArgIdx(const CallBase & Call,unsigned ArgIdx) const64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65 unsigned ArgIdx) const {
66 ISD::ArgFlagsTy Flags;
67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68 return Call.paramHasAttr(ArgIdx, Attr);
69 });
70 return Flags;
71 }
72
73 ISD::ArgFlagsTy
getAttributesForReturn(const CallBase & Call) const74 CallLowering::getAttributesForReturn(const CallBase &Call) const {
75 ISD::ArgFlagsTy Flags;
76 addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
77 return Call.hasRetAttr(Attr);
78 });
79 return Flags;
80 }
81
addArgFlagsFromAttributes(ISD::ArgFlagsTy & Flags,const AttributeList & Attrs,unsigned OpIdx) const82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
83 const AttributeList &Attrs,
84 unsigned OpIdx) const {
85 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
86 return Attrs.hasAttributeAtIndex(OpIdx, Attr);
87 });
88 }
89
lowerCall(MachineIRBuilder & MIRBuilder,const CallBase & CB,ArrayRef<Register> ResRegs,ArrayRef<ArrayRef<Register>> ArgRegs,Register SwiftErrorVReg,std::function<unsigned ()> GetCalleeReg) const90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
91 ArrayRef<Register> ResRegs,
92 ArrayRef<ArrayRef<Register>> ArgRegs,
93 Register SwiftErrorVReg,
94 std::function<unsigned()> GetCalleeReg) const {
95 CallLoweringInfo Info;
96 const DataLayout &DL = MIRBuilder.getDataLayout();
97 MachineFunction &MF = MIRBuilder.getMF();
98 MachineRegisterInfo &MRI = MF.getRegInfo();
99 bool CanBeTailCalled = CB.isTailCall() &&
100 isInTailCallPosition(CB, MF.getTarget()) &&
101 (MF.getFunction()
102 .getFnAttribute("disable-tail-calls")
103 .getValueAsString() != "true");
104
105 CallingConv::ID CallConv = CB.getCallingConv();
106 Type *RetTy = CB.getType();
107 bool IsVarArg = CB.getFunctionType()->isVarArg();
108
109 SmallVector<BaseArgInfo, 4> SplitArgs;
110 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
111 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
112
113 if (!Info.CanLowerReturn) {
114 // Callee requires sret demotion.
115 insertSRetOutgoingArgument(MIRBuilder, CB, Info);
116
117 // The sret demotion isn't compatible with tail-calls, since the sret
118 // argument points into the caller's stack frame.
119 CanBeTailCalled = false;
120 }
121
122
123 // First step is to marshall all the function's parameters into the correct
124 // physregs and memory locations. Gather the sequence of argument types that
125 // we'll pass to the assigner function.
126 unsigned i = 0;
127 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
128 for (const auto &Arg : CB.args()) {
129 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
130 i < NumFixedArgs};
131 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
132
133 // If we have an explicit sret argument that is an Instruction, (i.e., it
134 // might point to function-local memory), we can't meaningfully tail-call.
135 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
136 CanBeTailCalled = false;
137
138 Info.OrigArgs.push_back(OrigArg);
139 ++i;
140 }
141
142 // Try looking through a bitcast from one function type to another.
143 // Commonly happens with calls to objc_msgSend().
144 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
145 if (const Function *F = dyn_cast<Function>(CalleeV))
146 Info.Callee = MachineOperand::CreateGA(F, 0);
147 else
148 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
149
150 Register ReturnHintAlignReg;
151 Align ReturnHintAlign;
152
153 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
154
155 if (!Info.OrigRet.Ty->isVoidTy()) {
156 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
157
158 if (MaybeAlign Alignment = CB.getRetAlign()) {
159 if (*Alignment > Align(1)) {
160 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
161 Info.OrigRet.Regs[0] = ReturnHintAlignReg;
162 ReturnHintAlign = *Alignment;
163 }
164 }
165 }
166
167 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
168 if (Bundle && CB.isIndirectCall()) {
169 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
170 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
171 }
172
173 Info.CB = &CB;
174 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
175 Info.CallConv = CallConv;
176 Info.SwiftErrorVReg = SwiftErrorVReg;
177 Info.IsMustTailCall = CB.isMustTailCall();
178 Info.IsTailCall = CanBeTailCalled;
179 Info.IsVarArg = IsVarArg;
180 if (!lowerCall(MIRBuilder, Info))
181 return false;
182
183 if (ReturnHintAlignReg && !Info.IsTailCall) {
184 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
185 ReturnHintAlign);
186 }
187
188 return true;
189 }
190
191 template <typename FuncInfoTy>
setArgFlags(CallLowering::ArgInfo & Arg,unsigned OpIdx,const DataLayout & DL,const FuncInfoTy & FuncInfo) const192 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
193 const DataLayout &DL,
194 const FuncInfoTy &FuncInfo) const {
195 auto &Flags = Arg.Flags[0];
196 const AttributeList &Attrs = FuncInfo.getAttributes();
197 addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
198
199 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
200 if (PtrTy) {
201 Flags.setPointer();
202 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
203 }
204
205 Align MemAlign = DL.getABITypeAlign(Arg.Ty);
206 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
207 assert(OpIdx >= AttributeList::FirstArgIndex);
208 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
209
210 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
211 if (!ElementTy)
212 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
213 if (!ElementTy)
214 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
215 assert(ElementTy && "Must have byval, inalloca or preallocated type");
216 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
217
218 // For ByVal, alignment should be passed from FE. BE will guess if
219 // this info is not there but there are cases it cannot get right.
220 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
221 MemAlign = *ParamAlign;
222 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
223 MemAlign = *ParamAlign;
224 else
225 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
226 } else if (OpIdx >= AttributeList::FirstArgIndex) {
227 if (auto ParamAlign =
228 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
229 MemAlign = *ParamAlign;
230 }
231 Flags.setMemAlign(MemAlign);
232 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
233
234 // Don't try to use the returned attribute if the argument is marked as
235 // swiftself, since it won't be passed in x0.
236 if (Flags.isSwiftSelf())
237 Flags.setReturned(false);
238 }
239
240 template void
241 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
242 const DataLayout &DL,
243 const Function &FuncInfo) const;
244
245 template void
246 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
247 const DataLayout &DL,
248 const CallBase &FuncInfo) const;
249
splitToValueTypes(const ArgInfo & OrigArg,SmallVectorImpl<ArgInfo> & SplitArgs,const DataLayout & DL,CallingConv::ID CallConv,SmallVectorImpl<uint64_t> * Offsets) const250 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
251 SmallVectorImpl<ArgInfo> &SplitArgs,
252 const DataLayout &DL,
253 CallingConv::ID CallConv,
254 SmallVectorImpl<uint64_t> *Offsets) const {
255 LLVMContext &Ctx = OrigArg.Ty->getContext();
256
257 SmallVector<EVT, 4> SplitVTs;
258 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
259
260 if (SplitVTs.size() == 0)
261 return;
262
263 if (SplitVTs.size() == 1) {
264 // No splitting to do, but we want to replace the original type (e.g. [1 x
265 // double] -> double).
266 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
267 OrigArg.OrigArgIndex, OrigArg.Flags[0],
268 OrigArg.IsFixed, OrigArg.OrigValue);
269 return;
270 }
271
272 // Create one ArgInfo for each virtual register in the original ArgInfo.
273 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
274
275 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
276 OrigArg.Ty, CallConv, false, DL);
277 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
278 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
279 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
280 OrigArg.Flags[0], OrigArg.IsFixed);
281 if (NeedsRegBlock)
282 SplitArgs.back().Flags[0].setInConsecutiveRegs();
283 }
284
285 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
286 }
287
288 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
289 static MachineInstrBuilder
mergeVectorRegsToResultRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,ArrayRef<Register> SrcRegs)290 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
291 ArrayRef<Register> SrcRegs) {
292 MachineRegisterInfo &MRI = *B.getMRI();
293 LLT LLTy = MRI.getType(DstRegs[0]);
294 LLT PartLLT = MRI.getType(SrcRegs[0]);
295
296 // Deal with v3s16 split into v2s16
297 LLT LCMTy = getCoverTy(LLTy, PartLLT);
298 if (LCMTy == LLTy) {
299 // Common case where no padding is needed.
300 assert(DstRegs.size() == 1);
301 return B.buildConcatVectors(DstRegs[0], SrcRegs);
302 }
303
304 // We need to create an unmerge to the result registers, which may require
305 // widening the original value.
306 Register UnmergeSrcReg;
307 if (LCMTy != PartLLT) {
308 assert(DstRegs.size() == 1);
309 return B.buildDeleteTrailingVectorElements(
310 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
311 } else {
312 // We don't need to widen anything if we're extracting a scalar which was
313 // promoted to a vector e.g. s8 -> v4s8 -> s8
314 assert(SrcRegs.size() == 1);
315 UnmergeSrcReg = SrcRegs[0];
316 }
317
318 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
319
320 SmallVector<Register, 8> PadDstRegs(NumDst);
321 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
322
323 // Create the excess dead defs for the unmerge.
324 for (int I = DstRegs.size(); I != NumDst; ++I)
325 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
326
327 if (PadDstRegs.size() == 1)
328 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
329 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
330 }
331
332 /// Create a sequence of instructions to combine pieces split into register
333 /// typed values to the original IR value. \p OrigRegs contains the destination
334 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
335 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
buildCopyFromRegs(MachineIRBuilder & B,ArrayRef<Register> OrigRegs,ArrayRef<Register> Regs,LLT LLTy,LLT PartLLT,const ISD::ArgFlagsTy Flags)336 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
337 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
338 const ISD::ArgFlagsTy Flags) {
339 MachineRegisterInfo &MRI = *B.getMRI();
340
341 if (PartLLT == LLTy) {
342 // We should have avoided introducing a new virtual register, and just
343 // directly assigned here.
344 assert(OrigRegs[0] == Regs[0]);
345 return;
346 }
347
348 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
349 Regs.size() == 1) {
350 B.buildBitcast(OrigRegs[0], Regs[0]);
351 return;
352 }
353
354 // A vector PartLLT needs extending to LLTy's element size.
355 // E.g. <2 x s64> = G_SEXT <2 x s32>.
356 if (PartLLT.isVector() == LLTy.isVector() &&
357 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
358 (!PartLLT.isVector() ||
359 PartLLT.getNumElements() == LLTy.getNumElements()) &&
360 OrigRegs.size() == 1 && Regs.size() == 1) {
361 Register SrcReg = Regs[0];
362
363 LLT LocTy = MRI.getType(SrcReg);
364
365 if (Flags.isSExt()) {
366 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
367 .getReg(0);
368 } else if (Flags.isZExt()) {
369 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
370 .getReg(0);
371 }
372
373 // Sometimes pointers are passed zero extended.
374 LLT OrigTy = MRI.getType(OrigRegs[0]);
375 if (OrigTy.isPointer()) {
376 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
377 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
378 return;
379 }
380
381 B.buildTrunc(OrigRegs[0], SrcReg);
382 return;
383 }
384
385 if (!LLTy.isVector() && !PartLLT.isVector()) {
386 assert(OrigRegs.size() == 1);
387 LLT OrigTy = MRI.getType(OrigRegs[0]);
388
389 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
390 if (SrcSize == OrigTy.getSizeInBits())
391 B.buildMergeValues(OrigRegs[0], Regs);
392 else {
393 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
394 B.buildTrunc(OrigRegs[0], Widened);
395 }
396
397 return;
398 }
399
400 if (PartLLT.isVector()) {
401 assert(OrigRegs.size() == 1);
402 SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
403
404 // If PartLLT is a mismatched vector in both number of elements and element
405 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
406 // have the same elt type, i.e. v4s32.
407 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
408 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
409 Regs.size() == 1) {
410 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
411 .changeElementCount(PartLLT.getElementCount() * 2);
412 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
413 PartLLT = NewTy;
414 }
415
416 if (LLTy.getScalarType() == PartLLT.getElementType()) {
417 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
418 } else {
419 unsigned I = 0;
420 LLT GCDTy = getGCDType(LLTy, PartLLT);
421
422 // We are both splitting a vector, and bitcasting its element types. Cast
423 // the source pieces into the appropriate number of pieces with the result
424 // element type.
425 for (Register SrcReg : CastRegs)
426 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
427 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
428 }
429
430 return;
431 }
432
433 assert(LLTy.isVector() && !PartLLT.isVector());
434
435 LLT DstEltTy = LLTy.getElementType();
436
437 // Pointer information was discarded. We'll need to coerce some register types
438 // to avoid violating type constraints.
439 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
440
441 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
442
443 if (DstEltTy == PartLLT) {
444 // Vector was trivially scalarized.
445
446 if (RealDstEltTy.isPointer()) {
447 for (Register Reg : Regs)
448 MRI.setType(Reg, RealDstEltTy);
449 }
450
451 B.buildBuildVector(OrigRegs[0], Regs);
452 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
453 // Deal with vector with 64-bit elements decomposed to 32-bit
454 // registers. Need to create intermediate 64-bit elements.
455 SmallVector<Register, 8> EltMerges;
456 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
457
458 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
459
460 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
461 auto Merge =
462 B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt));
463 // Fix the type in case this is really a vector of pointers.
464 MRI.setType(Merge.getReg(0), RealDstEltTy);
465 EltMerges.push_back(Merge.getReg(0));
466 Regs = Regs.drop_front(PartsPerElt);
467 }
468
469 B.buildBuildVector(OrigRegs[0], EltMerges);
470 } else {
471 // Vector was split, and elements promoted to a wider type.
472 // FIXME: Should handle floating point promotions.
473 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
474 auto BV = B.buildBuildVector(BVType, Regs);
475 B.buildTrunc(OrigRegs[0], BV);
476 }
477 }
478
479 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
480 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
481 /// contain the type of scalar value extension if necessary.
482 ///
483 /// This is used for outgoing values (vregs to physregs)
buildCopyToRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,Register SrcReg,LLT SrcTy,LLT PartTy,unsigned ExtendOp=TargetOpcode::G_ANYEXT)484 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
485 Register SrcReg, LLT SrcTy, LLT PartTy,
486 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
487 // We could just insert a regular copy, but this is unreachable at the moment.
488 assert(SrcTy != PartTy && "identical part types shouldn't reach here");
489
490 const unsigned PartSize = PartTy.getSizeInBits();
491
492 if (PartTy.isVector() == SrcTy.isVector() &&
493 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
494 assert(DstRegs.size() == 1);
495 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
496 return;
497 }
498
499 if (SrcTy.isVector() && !PartTy.isVector() &&
500 PartSize > SrcTy.getElementType().getSizeInBits()) {
501 // Vector was scalarized, and the elements extended.
502 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
503 for (int i = 0, e = DstRegs.size(); i != e; ++i)
504 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
505 return;
506 }
507
508 if (SrcTy.isVector() && PartTy.isVector() &&
509 PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() &&
510 SrcTy.getNumElements() < PartTy.getNumElements()) {
511 // A coercion like: v2f32 -> v4f32.
512 Register DstReg = DstRegs.front();
513 B.buildPadVectorWithUndefElements(DstReg, SrcReg);
514 return;
515 }
516
517 LLT GCDTy = getGCDType(SrcTy, PartTy);
518 if (GCDTy == PartTy) {
519 // If this already evenly divisible, we can create a simple unmerge.
520 B.buildUnmerge(DstRegs, SrcReg);
521 return;
522 }
523
524 MachineRegisterInfo &MRI = *B.getMRI();
525 LLT DstTy = MRI.getType(DstRegs[0]);
526 LLT LCMTy = getCoverTy(SrcTy, PartTy);
527
528 if (PartTy.isVector() && LCMTy == PartTy) {
529 assert(DstRegs.size() == 1);
530 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
531 return;
532 }
533
534 const unsigned DstSize = DstTy.getSizeInBits();
535 const unsigned SrcSize = SrcTy.getSizeInBits();
536 unsigned CoveringSize = LCMTy.getSizeInBits();
537
538 Register UnmergeSrc = SrcReg;
539
540 if (!LCMTy.isVector() && CoveringSize != SrcSize) {
541 // For scalars, it's common to be able to use a simple extension.
542 if (SrcTy.isScalar() && DstTy.isScalar()) {
543 CoveringSize = alignTo(SrcSize, DstSize);
544 LLT CoverTy = LLT::scalar(CoveringSize);
545 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
546 } else {
547 // Widen to the common type.
548 // FIXME: This should respect the extend type
549 Register Undef = B.buildUndef(SrcTy).getReg(0);
550 SmallVector<Register, 8> MergeParts(1, SrcReg);
551 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
552 MergeParts.push_back(Undef);
553 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
554 }
555 }
556
557 if (LCMTy.isVector() && CoveringSize != SrcSize)
558 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
559
560 B.buildUnmerge(DstRegs, UnmergeSrc);
561 }
562
determineAndHandleAssignments(ValueHandler & Handler,ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,MachineIRBuilder & MIRBuilder,CallingConv::ID CallConv,bool IsVarArg,ArrayRef<Register> ThisReturnRegs) const563 bool CallLowering::determineAndHandleAssignments(
564 ValueHandler &Handler, ValueAssigner &Assigner,
565 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
566 CallingConv::ID CallConv, bool IsVarArg,
567 ArrayRef<Register> ThisReturnRegs) const {
568 MachineFunction &MF = MIRBuilder.getMF();
569 const Function &F = MF.getFunction();
570 SmallVector<CCValAssign, 16> ArgLocs;
571
572 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
573 if (!determineAssignments(Assigner, Args, CCInfo))
574 return false;
575
576 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
577 ThisReturnRegs);
578 }
579
extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags)580 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
581 if (Flags.isSExt())
582 return TargetOpcode::G_SEXT;
583 if (Flags.isZExt())
584 return TargetOpcode::G_ZEXT;
585 return TargetOpcode::G_ANYEXT;
586 }
587
determineAssignments(ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo) const588 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
589 SmallVectorImpl<ArgInfo> &Args,
590 CCState &CCInfo) const {
591 LLVMContext &Ctx = CCInfo.getContext();
592 const CallingConv::ID CallConv = CCInfo.getCallingConv();
593
594 unsigned NumArgs = Args.size();
595 for (unsigned i = 0; i != NumArgs; ++i) {
596 EVT CurVT = EVT::getEVT(Args[i].Ty);
597
598 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
599
600 // If we need to split the type over multiple regs, check it's a scenario
601 // we currently support.
602 unsigned NumParts =
603 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
604
605 if (NumParts == 1) {
606 // Try to use the register type if we couldn't assign the VT.
607 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
608 Args[i].Flags[0], CCInfo))
609 return false;
610 continue;
611 }
612
613 // For incoming arguments (physregs to vregs), we could have values in
614 // physregs (or memlocs) which we want to extract and copy to vregs.
615 // During this, we might have to deal with the LLT being split across
616 // multiple regs, so we have to record this information for later.
617 //
618 // If we have outgoing args, then we have the opposite case. We have a
619 // vreg with an LLT which we want to assign to a physical location, and
620 // we might have to record that the value has to be split later.
621
622 // We're handling an incoming arg which is split over multiple regs.
623 // E.g. passing an s128 on AArch64.
624 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
625 Args[i].Flags.clear();
626
627 for (unsigned Part = 0; Part < NumParts; ++Part) {
628 ISD::ArgFlagsTy Flags = OrigFlags;
629 if (Part == 0) {
630 Flags.setSplit();
631 } else {
632 Flags.setOrigAlign(Align(1));
633 if (Part == NumParts - 1)
634 Flags.setSplitEnd();
635 }
636
637 Args[i].Flags.push_back(Flags);
638 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
639 Args[i].Flags[Part], CCInfo)) {
640 // Still couldn't assign this smaller part type for some reason.
641 return false;
642 }
643 }
644 }
645
646 return true;
647 }
648
handleAssignments(ValueHandler & Handler,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,MachineIRBuilder & MIRBuilder,ArrayRef<Register> ThisReturnRegs) const649 bool CallLowering::handleAssignments(ValueHandler &Handler,
650 SmallVectorImpl<ArgInfo> &Args,
651 CCState &CCInfo,
652 SmallVectorImpl<CCValAssign> &ArgLocs,
653 MachineIRBuilder &MIRBuilder,
654 ArrayRef<Register> ThisReturnRegs) const {
655 MachineFunction &MF = MIRBuilder.getMF();
656 MachineRegisterInfo &MRI = MF.getRegInfo();
657 const Function &F = MF.getFunction();
658 const DataLayout &DL = F.getParent()->getDataLayout();
659
660 const unsigned NumArgs = Args.size();
661
662 // Stores thunks for outgoing register assignments. This is used so we delay
663 // generating register copies until mem loc assignments are done. We do this
664 // so that if the target is using the delayed stack protector feature, we can
665 // find the split point of the block accurately. E.g. if we have:
666 // G_STORE %val, %memloc
667 // $x0 = COPY %foo
668 // $x1 = COPY %bar
669 // CALL func
670 // ... then the split point for the block will correctly be at, and including,
671 // the copy to $x0. If instead the G_STORE instruction immediately precedes
672 // the CALL, then we'd prematurely choose the CALL as the split point, thus
673 // generating a split block with a CALL that uses undefined physregs.
674 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
675
676 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
677 assert(j < ArgLocs.size() && "Skipped too many arg locs");
678 CCValAssign &VA = ArgLocs[j];
679 assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
680
681 if (VA.needsCustom()) {
682 std::function<void()> Thunk;
683 unsigned NumArgRegs = Handler.assignCustomValue(
684 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
685 if (Thunk)
686 DelayedOutgoingRegAssignments.emplace_back(Thunk);
687 if (!NumArgRegs)
688 return false;
689 j += NumArgRegs;
690 continue;
691 }
692
693 const MVT ValVT = VA.getValVT();
694 const MVT LocVT = VA.getLocVT();
695
696 const LLT LocTy(LocVT);
697 const LLT ValTy(ValVT);
698 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
699 const EVT OrigVT = EVT::getEVT(Args[i].Ty);
700 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
701
702 // Expected to be multiple regs for a single incoming arg.
703 // There should be Regs.size() ArgLocs per argument.
704 // This should be the same as getNumRegistersForCallingConv
705 const unsigned NumParts = Args[i].Flags.size();
706
707 // Now split the registers into the assigned types.
708 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
709
710 if (NumParts != 1 || NewLLT != OrigTy) {
711 // If we can't directly assign the register, we need one or more
712 // intermediate values.
713 Args[i].Regs.resize(NumParts);
714
715 // For each split register, create and assign a vreg that will store
716 // the incoming component of the larger value. These will later be
717 // merged to form the final vreg.
718 for (unsigned Part = 0; Part < NumParts; ++Part)
719 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
720 }
721
722 assert((j + (NumParts - 1)) < ArgLocs.size() &&
723 "Too many regs for number of args");
724
725 // Coerce into outgoing value types before register assignment.
726 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
727 assert(Args[i].OrigRegs.size() == 1);
728 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
729 ValTy, extendOpFromFlags(Args[i].Flags[0]));
730 }
731
732 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
733 for (unsigned Part = 0; Part < NumParts; ++Part) {
734 Register ArgReg = Args[i].Regs[Part];
735 // There should be Regs.size() ArgLocs per argument.
736 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
737 CCValAssign &VA = ArgLocs[j + Idx];
738 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
739
740 if (VA.isMemLoc() && !Flags.isByVal()) {
741 // Individual pieces may have been spilled to the stack and others
742 // passed in registers.
743
744 // TODO: The memory size may be larger than the value we need to
745 // store. We may need to adjust the offset for big endian targets.
746 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
747
748 MachinePointerInfo MPO;
749 Register StackAddr = Handler.getStackAddress(
750 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
751
752 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
753 continue;
754 }
755
756 if (VA.isMemLoc() && Flags.isByVal()) {
757 assert(Args[i].Regs.size() == 1 &&
758 "didn't expect split byval pointer");
759
760 if (Handler.isIncomingArgumentHandler()) {
761 // We just need to copy the frame index value to the pointer.
762 MachinePointerInfo MPO;
763 Register StackAddr = Handler.getStackAddress(
764 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
765 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
766 } else {
767 // For outgoing byval arguments, insert the implicit copy byval
768 // implies, such that writes in the callee do not modify the caller's
769 // value.
770 uint64_t MemSize = Flags.getByValSize();
771 int64_t Offset = VA.getLocMemOffset();
772
773 MachinePointerInfo DstMPO;
774 Register StackAddr =
775 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
776
777 MachinePointerInfo SrcMPO(Args[i].OrigValue);
778 if (!Args[i].OrigValue) {
779 // We still need to accurately track the stack address space if we
780 // don't know the underlying value.
781 const LLT PtrTy = MRI.getType(StackAddr);
782 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
783 }
784
785 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
786 inferAlignFromPtrInfo(MF, DstMPO));
787
788 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
789 inferAlignFromPtrInfo(MF, SrcMPO));
790
791 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
792 DstMPO, DstAlign, SrcMPO, SrcAlign,
793 MemSize, VA);
794 }
795 continue;
796 }
797
798 assert(!VA.needsCustom() && "custom loc should have been handled already");
799
800 if (i == 0 && !ThisReturnRegs.empty() &&
801 Handler.isIncomingArgumentHandler() &&
802 isTypeIsValidForThisReturn(ValVT)) {
803 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
804 continue;
805 }
806
807 if (Handler.isIncomingArgumentHandler())
808 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
809 else {
810 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
811 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
812 });
813 }
814 }
815
816 // Now that all pieces have been assigned, re-pack the register typed values
817 // into the original value typed registers.
818 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
819 // Merge the split registers into the expected larger result vregs of
820 // the original call.
821 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
822 LocTy, Args[i].Flags[0]);
823 }
824
825 j += NumParts - 1;
826 }
827 for (auto &Fn : DelayedOutgoingRegAssignments)
828 Fn();
829
830 return true;
831 }
832
insertSRetLoads(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg,int FI) const833 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
834 ArrayRef<Register> VRegs, Register DemoteReg,
835 int FI) const {
836 MachineFunction &MF = MIRBuilder.getMF();
837 MachineRegisterInfo &MRI = MF.getRegInfo();
838 const DataLayout &DL = MF.getDataLayout();
839
840 SmallVector<EVT, 4> SplitVTs;
841 SmallVector<uint64_t, 4> Offsets;
842 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
843
844 assert(VRegs.size() == SplitVTs.size());
845
846 unsigned NumValues = SplitVTs.size();
847 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
848 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
849 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
850
851 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
852
853 for (unsigned I = 0; I < NumValues; ++I) {
854 Register Addr;
855 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
856 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
857 MRI.getType(VRegs[I]),
858 commonAlignment(BaseAlign, Offsets[I]));
859 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
860 }
861 }
862
insertSRetStores(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg) const863 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
864 ArrayRef<Register> VRegs,
865 Register DemoteReg) const {
866 MachineFunction &MF = MIRBuilder.getMF();
867 MachineRegisterInfo &MRI = MF.getRegInfo();
868 const DataLayout &DL = MF.getDataLayout();
869
870 SmallVector<EVT, 4> SplitVTs;
871 SmallVector<uint64_t, 4> Offsets;
872 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
873
874 assert(VRegs.size() == SplitVTs.size());
875
876 unsigned NumValues = SplitVTs.size();
877 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
878 unsigned AS = DL.getAllocaAddrSpace();
879 LLT OffsetLLTy =
880 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
881
882 MachinePointerInfo PtrInfo(AS);
883
884 for (unsigned I = 0; I < NumValues; ++I) {
885 Register Addr;
886 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
887 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
888 MRI.getType(VRegs[I]),
889 commonAlignment(BaseAlign, Offsets[I]));
890 MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
891 }
892 }
893
insertSRetIncomingArgument(const Function & F,SmallVectorImpl<ArgInfo> & SplitArgs,Register & DemoteReg,MachineRegisterInfo & MRI,const DataLayout & DL) const894 void CallLowering::insertSRetIncomingArgument(
895 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
896 MachineRegisterInfo &MRI, const DataLayout &DL) const {
897 unsigned AS = DL.getAllocaAddrSpace();
898 DemoteReg = MRI.createGenericVirtualRegister(
899 LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
900
901 Type *PtrTy = PointerType::get(F.getReturnType(), AS);
902
903 SmallVector<EVT, 1> ValueVTs;
904 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
905
906 // NOTE: Assume that a pointer won't get split into more than one VT.
907 assert(ValueVTs.size() == 1);
908
909 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
910 ArgInfo::NoArgIndex);
911 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
912 DemoteArg.Flags[0].setSRet();
913 SplitArgs.insert(SplitArgs.begin(), DemoteArg);
914 }
915
insertSRetOutgoingArgument(MachineIRBuilder & MIRBuilder,const CallBase & CB,CallLoweringInfo & Info) const916 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
917 const CallBase &CB,
918 CallLoweringInfo &Info) const {
919 const DataLayout &DL = MIRBuilder.getDataLayout();
920 Type *RetTy = CB.getType();
921 unsigned AS = DL.getAllocaAddrSpace();
922 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
923
924 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
925 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
926
927 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
928 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
929 ArgInfo::NoArgIndex);
930 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
931 DemoteArg.Flags[0].setSRet();
932
933 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
934 Info.DemoteStackIndex = FI;
935 Info.DemoteRegister = DemoteReg;
936 }
937
checkReturn(CCState & CCInfo,SmallVectorImpl<BaseArgInfo> & Outs,CCAssignFn * Fn) const938 bool CallLowering::checkReturn(CCState &CCInfo,
939 SmallVectorImpl<BaseArgInfo> &Outs,
940 CCAssignFn *Fn) const {
941 for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
942 MVT VT = MVT::getVT(Outs[I].Ty);
943 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
944 return false;
945 }
946 return true;
947 }
948
getReturnInfo(CallingConv::ID CallConv,Type * RetTy,AttributeList Attrs,SmallVectorImpl<BaseArgInfo> & Outs,const DataLayout & DL) const949 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
950 AttributeList Attrs,
951 SmallVectorImpl<BaseArgInfo> &Outs,
952 const DataLayout &DL) const {
953 LLVMContext &Context = RetTy->getContext();
954 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
955
956 SmallVector<EVT, 4> SplitVTs;
957 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
958 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
959
960 for (EVT VT : SplitVTs) {
961 unsigned NumParts =
962 TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
963 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
964 Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
965
966 for (unsigned I = 0; I < NumParts; ++I) {
967 Outs.emplace_back(PartTy, Flags);
968 }
969 }
970 }
971
checkReturnTypeForCallConv(MachineFunction & MF) const972 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
973 const auto &F = MF.getFunction();
974 Type *ReturnType = F.getReturnType();
975 CallingConv::ID CallConv = F.getCallingConv();
976
977 SmallVector<BaseArgInfo, 4> SplitArgs;
978 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
979 MF.getDataLayout());
980 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
981 }
982
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & OutLocs,const SmallVectorImpl<ArgInfo> & OutArgs) const983 bool CallLowering::parametersInCSRMatch(
984 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
985 const SmallVectorImpl<CCValAssign> &OutLocs,
986 const SmallVectorImpl<ArgInfo> &OutArgs) const {
987 for (unsigned i = 0; i < OutLocs.size(); ++i) {
988 const auto &ArgLoc = OutLocs[i];
989 // If it's not a register, it's fine.
990 if (!ArgLoc.isRegLoc())
991 continue;
992
993 MCRegister PhysReg = ArgLoc.getLocReg();
994
995 // Only look at callee-saved registers.
996 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
997 continue;
998
999 LLVM_DEBUG(
1000 dbgs()
1001 << "... Call has an argument passed in a callee-saved register.\n");
1002
1003 // Check if it was copied from.
1004 const ArgInfo &OutInfo = OutArgs[i];
1005
1006 if (OutInfo.Regs.size() > 1) {
1007 LLVM_DEBUG(
1008 dbgs() << "... Cannot handle arguments in multiple registers.\n");
1009 return false;
1010 }
1011
1012 // Check if we copy the register, walking through copies from virtual
1013 // registers. Note that getDefIgnoringCopies does not ignore copies from
1014 // physical registers.
1015 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1016 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1017 LLVM_DEBUG(
1018 dbgs()
1019 << "... Parameter was not copied into a VReg, cannot tail call.\n");
1020 return false;
1021 }
1022
1023 // Got a copy. Verify that it's the same as the register we want.
1024 Register CopyRHS = RegDef->getOperand(1).getReg();
1025 if (CopyRHS != PhysReg) {
1026 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1027 "VReg, cannot tail call.\n");
1028 return false;
1029 }
1030 }
1031
1032 return true;
1033 }
1034
resultsCompatible(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & InArgs,ValueAssigner & CalleeAssigner,ValueAssigner & CallerAssigner) const1035 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1036 MachineFunction &MF,
1037 SmallVectorImpl<ArgInfo> &InArgs,
1038 ValueAssigner &CalleeAssigner,
1039 ValueAssigner &CallerAssigner) const {
1040 const Function &F = MF.getFunction();
1041 CallingConv::ID CalleeCC = Info.CallConv;
1042 CallingConv::ID CallerCC = F.getCallingConv();
1043
1044 if (CallerCC == CalleeCC)
1045 return true;
1046
1047 SmallVector<CCValAssign, 16> ArgLocs1;
1048 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1049 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1050 return false;
1051
1052 SmallVector<CCValAssign, 16> ArgLocs2;
1053 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1054 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1055 return false;
1056
1057 // We need the argument locations to match up exactly. If there's more in
1058 // one than the other, then we are done.
1059 if (ArgLocs1.size() != ArgLocs2.size())
1060 return false;
1061
1062 // Make sure that each location is passed in exactly the same way.
1063 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1064 const CCValAssign &Loc1 = ArgLocs1[i];
1065 const CCValAssign &Loc2 = ArgLocs2[i];
1066
1067 // We need both of them to be the same. So if one is a register and one
1068 // isn't, we're done.
1069 if (Loc1.isRegLoc() != Loc2.isRegLoc())
1070 return false;
1071
1072 if (Loc1.isRegLoc()) {
1073 // If they don't have the same register location, we're done.
1074 if (Loc1.getLocReg() != Loc2.getLocReg())
1075 return false;
1076
1077 // They matched, so we can move to the next ArgLoc.
1078 continue;
1079 }
1080
1081 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1082 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1083 return false;
1084 }
1085
1086 return true;
1087 }
1088
getStackValueStoreType(const DataLayout & DL,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1089 LLT CallLowering::ValueHandler::getStackValueStoreType(
1090 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1091 const MVT ValVT = VA.getValVT();
1092 if (ValVT != MVT::iPTR) {
1093 LLT ValTy(ValVT);
1094
1095 // We lost the pointeriness going through CCValAssign, so try to restore it
1096 // based on the flags.
1097 if (Flags.isPointer()) {
1098 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1099 ValTy.getScalarSizeInBits());
1100 if (ValVT.isVector())
1101 return LLT::vector(ValTy.getElementCount(), PtrTy);
1102 return PtrTy;
1103 }
1104
1105 return ValTy;
1106 }
1107
1108 unsigned AddrSpace = Flags.getPointerAddrSpace();
1109 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1110 }
1111
copyArgumentMemory(const ArgInfo & Arg,Register DstPtr,Register SrcPtr,const MachinePointerInfo & DstPtrInfo,Align DstAlign,const MachinePointerInfo & SrcPtrInfo,Align SrcAlign,uint64_t MemSize,CCValAssign & VA) const1112 void CallLowering::ValueHandler::copyArgumentMemory(
1113 const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1114 const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1115 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1116 CCValAssign &VA) const {
1117 MachineFunction &MF = MIRBuilder.getMF();
1118 MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1119 SrcPtrInfo,
1120 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1121 SrcAlign);
1122
1123 MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1124 DstPtrInfo,
1125 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1126 MemSize, DstAlign);
1127
1128 const LLT PtrTy = MRI.getType(DstPtr);
1129 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1130
1131 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1132 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1133 }
1134
extendRegister(Register ValReg,CCValAssign & VA,unsigned MaxSizeBits)1135 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1136 CCValAssign &VA,
1137 unsigned MaxSizeBits) {
1138 LLT LocTy{VA.getLocVT()};
1139 LLT ValTy{VA.getValVT()};
1140
1141 if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1142 return ValReg;
1143
1144 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1145 if (MaxSizeBits <= ValTy.getSizeInBits())
1146 return ValReg;
1147 LocTy = LLT::scalar(MaxSizeBits);
1148 }
1149
1150 const LLT ValRegTy = MRI.getType(ValReg);
1151 if (ValRegTy.isPointer()) {
1152 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1153 // we have to cast to do the extension.
1154 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1155 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1156 }
1157
1158 switch (VA.getLocInfo()) {
1159 default: break;
1160 case CCValAssign::Full:
1161 case CCValAssign::BCvt:
1162 // FIXME: bitconverting between vector types may or may not be a
1163 // nop in big-endian situations.
1164 return ValReg;
1165 case CCValAssign::AExt: {
1166 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1167 return MIB.getReg(0);
1168 }
1169 case CCValAssign::SExt: {
1170 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1171 MIRBuilder.buildSExt(NewReg, ValReg);
1172 return NewReg;
1173 }
1174 case CCValAssign::ZExt: {
1175 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1176 MIRBuilder.buildZExt(NewReg, ValReg);
1177 return NewReg;
1178 }
1179 }
1180 llvm_unreachable("unable to extend register");
1181 }
1182
anchor()1183 void CallLowering::ValueAssigner::anchor() {}
1184
buildExtensionHint(CCValAssign & VA,Register SrcReg,LLT NarrowTy)1185 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1186 Register SrcReg,
1187 LLT NarrowTy) {
1188 switch (VA.getLocInfo()) {
1189 case CCValAssign::LocInfo::ZExt: {
1190 return MIRBuilder
1191 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1192 NarrowTy.getScalarSizeInBits())
1193 .getReg(0);
1194 }
1195 case CCValAssign::LocInfo::SExt: {
1196 return MIRBuilder
1197 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1198 NarrowTy.getScalarSizeInBits())
1199 .getReg(0);
1200 break;
1201 }
1202 default:
1203 return SrcReg;
1204 }
1205 }
1206
1207 /// Check if we can use a basic COPY instruction between the two types.
1208 ///
1209 /// We're currently building on top of the infrastructure using MVT, which loses
1210 /// pointer information in the CCValAssign. We accept copies from physical
1211 /// registers that have been reported as integers if it's to an equivalent sized
1212 /// pointer LLT.
isCopyCompatibleType(LLT SrcTy,LLT DstTy)1213 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1214 if (SrcTy == DstTy)
1215 return true;
1216
1217 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1218 return false;
1219
1220 SrcTy = SrcTy.getScalarType();
1221 DstTy = DstTy.getScalarType();
1222
1223 return (SrcTy.isPointer() && DstTy.isScalar()) ||
1224 (DstTy.isPointer() && SrcTy.isScalar());
1225 }
1226
assignValueToReg(Register ValVReg,Register PhysReg,CCValAssign VA)1227 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1228 Register PhysReg,
1229 CCValAssign VA) {
1230 const MVT LocVT = VA.getLocVT();
1231 const LLT LocTy(LocVT);
1232 const LLT RegTy = MRI.getType(ValVReg);
1233
1234 if (isCopyCompatibleType(RegTy, LocTy)) {
1235 MIRBuilder.buildCopy(ValVReg, PhysReg);
1236 return;
1237 }
1238
1239 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1240 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1241 MIRBuilder.buildTrunc(ValVReg, Hint);
1242 }
1243