xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/DepthConcatenateLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "DepthConcatenateLayer.h"
25 
26 #include "tests/validation/Helpers.h"
27 
28 namespace arm_compute
29 {
30 namespace test
31 {
32 namespace validation
33 {
34 namespace reference
35 {
36 template <typename T>
depthconcatenate_layer(const std::vector<SimpleTensor<T>> & srcs,SimpleTensor<T> & dst)37 SimpleTensor<T> depthconcatenate_layer(const std::vector<SimpleTensor<T>> &srcs, SimpleTensor<T> &dst)
38 {
39     // Create reference
40     std::vector<TensorShape> shapes;
41     shapes.reserve(srcs.size());
42     for(const auto &src : srcs)
43     {
44         shapes.emplace_back(src.shape());
45     }
46 
47     // Compute reference
48     int       depth_offset                = 0;
49     const int width_out                   = dst.shape().x();
50     const int height_out                  = dst.shape().y();
51     const int depth_out                   = dst.shape().z();
52     const int out_stride_z                = width_out * height_out;
53     const int batches                     = dst.shape().total_size_upper(3);
54     auto have_different_quantization_info = [&](const SimpleTensor<T> &tensor)
55     {
56         return tensor.quantization_info() != dst.quantization_info();
57     };
58 
59     if(srcs[0].data_type() == DataType::QASYMM8 && std::any_of(srcs.cbegin(), srcs.cend(), have_different_quantization_info))
60     {
61 #if defined(_OPENMP)
62         #pragma omp parallel for
63 #endif /* _OPENMP */
64         for(int b = 0; b < batches; ++b)
65         {
66             // input tensors can have smaller width and height than the output, so for each output's slice we need to requantize 0 (as this is the value
67             // used in NEFillBorderKernel by NEDepthConcatenateLayer) using the corresponding quantization info for that particular slice/input tensor.
68             int slice = 0;
69             for(const auto &src : srcs)
70             {
71                 auto                          ptr_slice = static_cast<T *>(dst(Coordinates(0, 0, slice, b)));
72                 const auto                    num_elems_in_slice((dst.num_elements() / depth_out) * src.shape().z());
73                 const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
74                 const UniformQuantizationInfo oq_info = dst.quantization_info().uniform();
75 
76                 std::transform(ptr_slice, ptr_slice + num_elems_in_slice, ptr_slice, [&](T)
77                 {
78                     return quantize_qasymm8(dequantize_qasymm8(0, iq_info), oq_info);
79                 });
80                 slice += src.shape().z();
81             }
82         }
83     }
84     else
85     {
86         std::fill_n(dst.data(), dst.num_elements(), 0);
87     }
88 
89     for(const auto &src : srcs)
90     {
91         ARM_COMPUTE_ERROR_ON(depth_offset >= depth_out);
92         ARM_COMPUTE_ERROR_ON(batches != static_cast<int>(src.shape().total_size_upper(3)));
93 
94         const int width  = src.shape().x();
95         const int height = src.shape().y();
96         const int depth  = src.shape().z();
97         const int x_diff = (width_out - width) / 2;
98         const int y_diff = (height_out - height) / 2;
99 
100         const T *src_ptr = src.data();
101 
102         for(int b = 0; b < batches; ++b)
103         {
104             const size_t offset_to_first_element = b * out_stride_z * depth_out + depth_offset * out_stride_z + y_diff * width_out + x_diff;
105 
106             for(int d = 0; d < depth; ++d)
107             {
108                 for(int r = 0; r < height; ++r)
109                 {
110                     if(src.data_type() == DataType::QASYMM8 && src.quantization_info() != dst.quantization_info())
111                     {
112                         const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
113                         const UniformQuantizationInfo oq_info = dst.quantization_info().uniform();
114                         std::transform(src_ptr, src_ptr + width, dst.data() + offset_to_first_element + d * out_stride_z + r * width_out, [&](T t)
115                         {
116                             const float dequantized_input = dequantize_qasymm8(t, iq_info);
117                             return quantize_qasymm8(dequantized_input, oq_info);
118                         });
119                         src_ptr += width;
120                     }
121                     else
122                     {
123                         std::copy(src_ptr, src_ptr + width, dst.data() + offset_to_first_element + d * out_stride_z + r * width_out);
124                         src_ptr += width;
125                     }
126                 }
127             }
128         }
129 
130         depth_offset += depth;
131     }
132 
133     return dst;
134 }
135 
136 template SimpleTensor<uint8_t> depthconcatenate_layer(const std::vector<SimpleTensor<uint8_t>> &srcs, SimpleTensor<uint8_t> &dst);
137 template SimpleTensor<float> depthconcatenate_layer(const std::vector<SimpleTensor<float>> &srcs, SimpleTensor<float> &dst);
138 template SimpleTensor<half> depthconcatenate_layer(const std::vector<SimpleTensor<half>> &srcs, SimpleTensor<half> &dst);
139 } // namespace reference
140 } // namespace validation
141 } // namespace test
142 } // namespace arm_compute
143