1 #include <c10/core/impl/alloc_cpu.h>
2 #include <c10/core/Allocator.h>
3
4 #include <torch/csrc/Device.h>
5 #include <c10/core/impl/DeviceGuardImplInterface.h>
6 #include <c10/macros/Macros.h>
7 #include <torch/extension.h>
8
9 #include <ATen/native/cpu/Loops.h>
10 #include <ATen/native/DispatchStub.h>
11 #include <ATen/native/Resize.h>
12 #include <ATen/EmptyTensor.h>
13 #include <ATen/core/GeneratorForPrivateuseone.h>
14
15 static uint64_t op_counter = 0;
16 static uint64_t last_saved_value = 0;
17
18 // register guard
19 namespace at {
20 namespace detail {
21
22 C10_REGISTER_GUARD_IMPL(PrivateUse1, c10::impl::NoOpDeviceGuardImpl<DeviceType::PrivateUse1>);
23
24 }} // namespace at::detail
25
26 // basic dummy add function
custom_add_Tensor(const at::Tensor & self,const at::Tensor & other,const at::Scalar & alpha)27 at::Tensor custom_add_Tensor(const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha) {
28 op_counter += 1;
29 // Since this custom device is just for testing, not bothering to implement kernels.
30 return at::empty(self.sizes(), self.options());
31 }
32
33 // basic dummy mul function
custom_mul_Tensor(const at::Tensor & self,const at::Tensor & other)34 at::Tensor custom_mul_Tensor(const at::Tensor & self, const at::Tensor & other) {
35 op_counter += 1;
36 // Since this custom device is just for testing, not bothering to implement kernels.
37 return at::empty(self.sizes(), self.options());
38 }
39
40 // basic dummy eq function: Only support CPU
custom_to_device(const at::Tensor & self,at::Device device,at::ScalarType dtype,bool non_blocking,bool copy,std::optional<at::MemoryFormat> memory_format)41 at::Tensor custom_to_device(
42 const at::Tensor & self,
43 at::Device device,
44 at::ScalarType dtype,
45 bool non_blocking,
46 bool copy,
47 std::optional<at::MemoryFormat> memory_format) {
48 TORCH_CHECK(self.is_cpu() || self.device().type() == c10::DeviceType::PrivateUse1, "Dummy test only allows copy from cpu -> dummy device.");
49 TORCH_CHECK(device.is_cpu() || device.type() == c10::DeviceType::PrivateUse1, "Dummy test only allows copy from cpu -> dummy device.");
50 // Some dummy asserts for the basic use case: inputs are the same size / dtype, all contiguous.
51 TORCH_CHECK(self.scalar_type() == dtype);
52 TORCH_CHECK(self.is_contiguous());
53
54 op_counter += 1;
55 if (device != at::DeviceType::CPU) {
56 return at::empty(self.sizes(), self.options());
57 }
58
59 auto out = at::empty(self.sizes(), dtype, self.options().layout(), device, false, memory_format);
60 memcpy(out.mutable_data_ptr(), self.mutable_data_ptr(), self.nbytes());
61 // Since this custom device is just for testing, not bothering to implement kernels.
62 return out;
63 }
64
65
66 // A dummy allocator for our custom device, that secretly uses the CPU
67 struct DummyCustomAllocator final : at::Allocator {
68 DummyCustomAllocator() = default;
allocateDummyCustomAllocator69 at::DataPtr allocate(size_t nbytes) override {
70 void* data = c10::alloc_cpu(nbytes);
71 return {data, data, &ReportAndDelete, at::Device(at::DeviceType::PrivateUse1, 0)};
72 }
73
ReportAndDeleteDummyCustomAllocator74 static void ReportAndDelete(void* ptr) {
75 if (!ptr) {
76 return;
77 }
78 c10::free_cpu(ptr);
79 }
80
raw_deleterDummyCustomAllocator81 at::DeleterFnPtr raw_deleter() const override {
82 return &ReportAndDelete;
83 }
84
copy_dataDummyCustomAllocator85 void copy_data(void* dest, const void* src, std::size_t count) const final {
86 default_copy_data(dest, src, count);
87 }
88 };
89
90 // Register our dummy allocator
91 static DummyCustomAllocator global_custom_alloc;
92 REGISTER_ALLOCATOR(c10::DeviceType::PrivateUse1, &global_custom_alloc);
93
custom_fill__scalar(at::Tensor & self,const at::Scalar & value)94 at::Tensor & custom_fill__scalar(at::Tensor & self, const at::Scalar & value) {
95 TORCH_CHECK(self.device().type() == c10::DeviceType::PrivateUse1, "Dummy test only allows dummy device.");
96 TORCH_CHECK(self.is_contiguous());
97 TORCH_CHECK(self.scalar_type() == c10::ScalarType::Float);
98
99 op_counter += 1;
100 auto _data = static_cast<float*>(self.mutable_data_ptr());
101 for (size_t idx = 0; idx < self.numel(); idx++) {
102 _data[idx] = value.toFloat();
103 }
104
105 return self;
106 }
107
108 // basic dummy copy_() function, so we can copy from the custom device to/from CPU
custom__copy_from(const at::Tensor & self,const at::Tensor & dst,bool non_blocking)109 at::Tensor custom__copy_from(const at::Tensor& self, const at::Tensor& dst, bool non_blocking) {
110 TORCH_CHECK(self.is_cpu() || self.device().type() == c10::DeviceType::PrivateUse1, "Dummy test only allows copy from cpu -> dummy device.");
111 TORCH_CHECK(dst.is_cpu() || dst.device().type() == c10::DeviceType::PrivateUse1, "Dummy test only allows copy from cpu -> dummy device.");
112
113 // Some dummy asserts for the basic use case: inputs are the same size / dtype, all contiguous.
114 TORCH_CHECK(self.sizes() == dst.sizes());
115 TORCH_CHECK(self.scalar_type() == dst.scalar_type());
116 TORCH_CHECK(self.is_contiguous() && dst.is_contiguous());
117
118 op_counter += 1;
119 std::memcpy(dst.storage().data_ptr().get(), self.storage().data_ptr().get(), self.storage().nbytes());
120 return dst;
121 }
122
custom_empty_memory_format(at::IntArrayRef size,std::optional<at::ScalarType> dtype,std::optional<at::Layout> layout,std::optional<at::Device> device,std::optional<bool> pin_memory,std::optional<at::MemoryFormat> memory_format)123 at::Tensor custom_empty_memory_format(at::IntArrayRef size,
124 std::optional<at::ScalarType> dtype,
125 std::optional<at::Layout> layout,
126 std::optional<at::Device> device,
127 std::optional<bool> pin_memory,
128 std::optional<at::MemoryFormat> memory_format) {
129 constexpr c10::DispatchKeySet private_use_ks(c10::DispatchKey::PrivateUse1);
130 return at::detail::empty_generic(size,
131 &global_custom_alloc,
132 private_use_ks,
133 c10::dtype_or_default(dtype),
134 memory_format);
135 }
136
custom_empty_strided(c10::IntArrayRef size,c10::IntArrayRef stride,std::optional<at::ScalarType> dtype_opt,std::optional<at::Layout> layout_opt,std::optional<at::Device> device_opt,std::optional<bool> pin_memory_opt)137 at::Tensor custom_empty_strided(c10::IntArrayRef size, c10::IntArrayRef stride, std::optional<at::ScalarType> dtype_opt, std::optional<at::Layout> layout_opt, std::optional<at::Device> device_opt, std::optional<bool> pin_memory_opt) {
138 op_counter += 1;
139
140 constexpr c10::DispatchKeySet private_use_ks(c10::DispatchKey::PrivateUse1);
141 auto dtype = c10::dtype_or_default(dtype_opt);
142 return at::detail::empty_strided_generic(size, stride, &global_custom_alloc, private_use_ks, dtype);
143 }
144
145 // This macro does the heavy lifting.
146 // With TORCH_LIBRARY_IMPL, you can register custom kernels for your backend.
147 // For open registration, we're registering all of our kernels to the PrivateUse1 dispatch key.
148 // Later in this file, we map a custom device to the PrivateUse1 device type,
149 // which allows user code that puts a tensor on your custom_device to eventually get plumbed
150 // into the kernels registered here.
151 //
152 // This macro registers your kernels to the PyTorch Dispatcher.
153 // More details on the dispatcher can be found at http://blog.ezyang.com/2020/09/lets-talk-about-the-pytorch-dispatcher/.
TORCH_LIBRARY_IMPL(aten,PrivateUse1,m)154 TORCH_LIBRARY_IMPL(aten, PrivateUse1, m) {
155 m.impl("add.Tensor", &custom_add_Tensor);
156 m.impl("mul.Tensor", &custom_mul_Tensor);
157 m.impl("to.Device", &custom_to_device);
158 m.impl("fill_.Scalar", &custom_fill__scalar);
159 m.impl("_copy_from", &custom__copy_from);
160 m.impl("empty.memory_format", &custom_empty_memory_format);
161 m.impl("empty_strided", &custom_empty_strided);
162 }
163
164 // This basic implementation doesn't bother dealing with different device indices
165 // (e.g. custom_device:0 vs. custom_device:1).
166 // We could do that by letting the user pass in a device index in our exposed device function.
167 // Note that if you do that, you'll also need to register a device guard to core.
168 // See `c10/core/impl/DeviceGuardImplInterface.h:C10_REGISTER_GUARD_IMPL`.
get_custom_device()169 c10::Device get_custom_device() {
170 return c10::Device(c10::DeviceType::PrivateUse1, 0);
171 }
172
custom_op_called()173 bool custom_op_called() {
174 bool called = false;
175 if (op_counter > last_saved_value) {
176 called = true;
177 last_saved_value = op_counter;
178 }
179 return called;
180 }
181
182 class PrivateGeneratorImpl : public at::CPUGeneratorImpl {
183 public:
184 // Constructors
PrivateGeneratorImpl(c10::DeviceIndex device_index)185 PrivateGeneratorImpl(c10::DeviceIndex device_index) {
186 device_ = c10::Device(c10::DeviceType::PrivateUse1, device_index);
187 key_set_ = c10::DispatchKeySet(c10::DispatchKey::PrivateUse1);
188 }
189 ~PrivateGeneratorImpl() override = default;
190 };
191
192 // this is used to register generator
make_generator_privateuse1(c10::DeviceIndex device_index)193 at::Generator make_generator_privateuse1(c10::DeviceIndex device_index) {
194 return at::make_generator<PrivateGeneratorImpl>(device_index);
195 }
196
register_generator()197 void register_generator() {
198 REGISTER_GENERATOR_PRIVATEUSE1(make_generator_privateuse1)
199 }
200
201 // Here, we're exposing a custom device object that corresponds to our custom backend.
202 // We do this using pybind: exposing an "extension_name.custom_device()" function in python,
203 // that's implemented in C++.
204 // The implementation in this file maps directly to the `PrivateUse1` device type.
PYBIND11_MODULE(TORCH_EXTENSION_NAME,m)205 PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
206 m.def("custom_device", &get_custom_device, "get custom device object");
207 m.def("custom_op_called", &custom_op_called, "check if our custom function was called");
208 m.def("register_generator", ®ister_generator, "register generator for custom device");
209 }
210