1# cython: language_level=3 2# distutils: define_macros=CYTHON_TRACE_NOGIL=1 3 4# Copyright 2015 Google Inc. All Rights Reserved. 5# 6# Licensed under the Apache License, Version 2.0 (the "License"); 7# you may not use this file except in compliance with the License. 8# You may obtain a copy of the License at 9# 10# http://www.apache.org/licenses/LICENSE-2.0 11# 12# Unless required by applicable law or agreed to in writing, software 13# distributed under the License is distributed on an "AS IS" BASIS, 14# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15# See the License for the specific language governing permissions and 16# limitations under the License. 17 18try: 19 import cython 20 21 COMPILED = cython.compiled 22except (AttributeError, ImportError): 23 # if cython not installed, use mock module with no-op decorators and types 24 from fontTools.misc import cython 25 26 COMPILED = False 27 28import math 29 30from .errors import Error as Cu2QuError, ApproxNotFoundError 31 32 33__all__ = ["curve_to_quadratic", "curves_to_quadratic"] 34 35MAX_N = 100 36 37NAN = float("NaN") 38 39 40@cython.cfunc 41@cython.inline 42@cython.returns(cython.double) 43@cython.locals(v1=cython.complex, v2=cython.complex) 44def dot(v1, v2): 45 """Return the dot product of two vectors. 46 47 Args: 48 v1 (complex): First vector. 49 v2 (complex): Second vector. 50 51 Returns: 52 double: Dot product. 53 """ 54 return (v1 * v2.conjugate()).real 55 56 57@cython.cfunc 58@cython.inline 59@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex) 60@cython.locals( 61 _1=cython.complex, _2=cython.complex, _3=cython.complex, _4=cython.complex 62) 63def calc_cubic_points(a, b, c, d): 64 _1 = d 65 _2 = (c / 3.0) + d 66 _3 = (b + c) / 3.0 + _2 67 _4 = a + d + c + b 68 return _1, _2, _3, _4 69 70 71@cython.cfunc 72@cython.inline 73@cython.locals( 74 p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex 75) 76@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex) 77def calc_cubic_parameters(p0, p1, p2, p3): 78 c = (p1 - p0) * 3.0 79 b = (p2 - p1) * 3.0 - c 80 d = p0 81 a = p3 - d - c - b 82 return a, b, c, d 83 84 85@cython.cfunc 86@cython.inline 87@cython.locals( 88 p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex 89) 90def split_cubic_into_n_iter(p0, p1, p2, p3, n): 91 """Split a cubic Bezier into n equal parts. 92 93 Splits the curve into `n` equal parts by curve time. 94 (t=0..1/n, t=1/n..2/n, ...) 95 96 Args: 97 p0 (complex): Start point of curve. 98 p1 (complex): First handle of curve. 99 p2 (complex): Second handle of curve. 100 p3 (complex): End point of curve. 101 102 Returns: 103 An iterator yielding the control points (four complex values) of the 104 subcurves. 105 """ 106 # Hand-coded special-cases 107 if n == 2: 108 return iter(split_cubic_into_two(p0, p1, p2, p3)) 109 if n == 3: 110 return iter(split_cubic_into_three(p0, p1, p2, p3)) 111 if n == 4: 112 a, b = split_cubic_into_two(p0, p1, p2, p3) 113 return iter( 114 split_cubic_into_two(a[0], a[1], a[2], a[3]) 115 + split_cubic_into_two(b[0], b[1], b[2], b[3]) 116 ) 117 if n == 6: 118 a, b = split_cubic_into_two(p0, p1, p2, p3) 119 return iter( 120 split_cubic_into_three(a[0], a[1], a[2], a[3]) 121 + split_cubic_into_three(b[0], b[1], b[2], b[3]) 122 ) 123 124 return _split_cubic_into_n_gen(p0, p1, p2, p3, n) 125 126 127@cython.locals( 128 p0=cython.complex, 129 p1=cython.complex, 130 p2=cython.complex, 131 p3=cython.complex, 132 n=cython.int, 133) 134@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex) 135@cython.locals( 136 dt=cython.double, delta_2=cython.double, delta_3=cython.double, i=cython.int 137) 138@cython.locals( 139 a1=cython.complex, b1=cython.complex, c1=cython.complex, d1=cython.complex 140) 141def _split_cubic_into_n_gen(p0, p1, p2, p3, n): 142 a, b, c, d = calc_cubic_parameters(p0, p1, p2, p3) 143 dt = 1 / n 144 delta_2 = dt * dt 145 delta_3 = dt * delta_2 146 for i in range(n): 147 t1 = i * dt 148 t1_2 = t1 * t1 149 # calc new a, b, c and d 150 a1 = a * delta_3 151 b1 = (3 * a * t1 + b) * delta_2 152 c1 = (2 * b * t1 + c + 3 * a * t1_2) * dt 153 d1 = a * t1 * t1_2 + b * t1_2 + c * t1 + d 154 yield calc_cubic_points(a1, b1, c1, d1) 155 156 157@cython.cfunc 158@cython.inline 159@cython.locals( 160 p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex 161) 162@cython.locals(mid=cython.complex, deriv3=cython.complex) 163def split_cubic_into_two(p0, p1, p2, p3): 164 """Split a cubic Bezier into two equal parts. 165 166 Splits the curve into two equal parts at t = 0.5 167 168 Args: 169 p0 (complex): Start point of curve. 170 p1 (complex): First handle of curve. 171 p2 (complex): Second handle of curve. 172 p3 (complex): End point of curve. 173 174 Returns: 175 tuple: Two cubic Beziers (each expressed as a tuple of four complex 176 values). 177 """ 178 mid = (p0 + 3 * (p1 + p2) + p3) * 0.125 179 deriv3 = (p3 + p2 - p1 - p0) * 0.125 180 return ( 181 (p0, (p0 + p1) * 0.5, mid - deriv3, mid), 182 (mid, mid + deriv3, (p2 + p3) * 0.5, p3), 183 ) 184 185 186@cython.cfunc 187@cython.inline 188@cython.locals( 189 p0=cython.complex, 190 p1=cython.complex, 191 p2=cython.complex, 192 p3=cython.complex, 193) 194@cython.locals( 195 mid1=cython.complex, 196 deriv1=cython.complex, 197 mid2=cython.complex, 198 deriv2=cython.complex, 199) 200def split_cubic_into_three(p0, p1, p2, p3): 201 """Split a cubic Bezier into three equal parts. 202 203 Splits the curve into three equal parts at t = 1/3 and t = 2/3 204 205 Args: 206 p0 (complex): Start point of curve. 207 p1 (complex): First handle of curve. 208 p2 (complex): Second handle of curve. 209 p3 (complex): End point of curve. 210 211 Returns: 212 tuple: Three cubic Beziers (each expressed as a tuple of four complex 213 values). 214 """ 215 mid1 = (8 * p0 + 12 * p1 + 6 * p2 + p3) * (1 / 27) 216 deriv1 = (p3 + 3 * p2 - 4 * p0) * (1 / 27) 217 mid2 = (p0 + 6 * p1 + 12 * p2 + 8 * p3) * (1 / 27) 218 deriv2 = (4 * p3 - 3 * p1 - p0) * (1 / 27) 219 return ( 220 (p0, (2 * p0 + p1) / 3.0, mid1 - deriv1, mid1), 221 (mid1, mid1 + deriv1, mid2 - deriv2, mid2), 222 (mid2, mid2 + deriv2, (p2 + 2 * p3) / 3.0, p3), 223 ) 224 225 226@cython.cfunc 227@cython.inline 228@cython.returns(cython.complex) 229@cython.locals( 230 t=cython.double, 231 p0=cython.complex, 232 p1=cython.complex, 233 p2=cython.complex, 234 p3=cython.complex, 235) 236@cython.locals(_p1=cython.complex, _p2=cython.complex) 237def cubic_approx_control(t, p0, p1, p2, p3): 238 """Approximate a cubic Bezier using a quadratic one. 239 240 Args: 241 t (double): Position of control point. 242 p0 (complex): Start point of curve. 243 p1 (complex): First handle of curve. 244 p2 (complex): Second handle of curve. 245 p3 (complex): End point of curve. 246 247 Returns: 248 complex: Location of candidate control point on quadratic curve. 249 """ 250 _p1 = p0 + (p1 - p0) * 1.5 251 _p2 = p3 + (p2 - p3) * 1.5 252 return _p1 + (_p2 - _p1) * t 253 254 255@cython.cfunc 256@cython.inline 257@cython.returns(cython.complex) 258@cython.locals(a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex) 259@cython.locals(ab=cython.complex, cd=cython.complex, p=cython.complex, h=cython.double) 260def calc_intersect(a, b, c, d): 261 """Calculate the intersection of two lines. 262 263 Args: 264 a (complex): Start point of first line. 265 b (complex): End point of first line. 266 c (complex): Start point of second line. 267 d (complex): End point of second line. 268 269 Returns: 270 complex: Location of intersection if one present, ``complex(NaN,NaN)`` 271 if no intersection was found. 272 """ 273 ab = b - a 274 cd = d - c 275 p = ab * 1j 276 try: 277 h = dot(p, a - c) / dot(p, cd) 278 except ZeroDivisionError: 279 return complex(NAN, NAN) 280 return c + cd * h 281 282 283@cython.cfunc 284@cython.returns(cython.int) 285@cython.locals( 286 tolerance=cython.double, 287 p0=cython.complex, 288 p1=cython.complex, 289 p2=cython.complex, 290 p3=cython.complex, 291) 292@cython.locals(mid=cython.complex, deriv3=cython.complex) 293def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance): 294 """Check if a cubic Bezier lies within a given distance of the origin. 295 296 "Origin" means *the* origin (0,0), not the start of the curve. Note that no 297 checks are made on the start and end positions of the curve; this function 298 only checks the inside of the curve. 299 300 Args: 301 p0 (complex): Start point of curve. 302 p1 (complex): First handle of curve. 303 p2 (complex): Second handle of curve. 304 p3 (complex): End point of curve. 305 tolerance (double): Distance from origin. 306 307 Returns: 308 bool: True if the cubic Bezier ``p`` entirely lies within a distance 309 ``tolerance`` of the origin, False otherwise. 310 """ 311 # First check p2 then p1, as p2 has higher error early on. 312 if abs(p2) <= tolerance and abs(p1) <= tolerance: 313 return True 314 315 # Split. 316 mid = (p0 + 3 * (p1 + p2) + p3) * 0.125 317 if abs(mid) > tolerance: 318 return False 319 deriv3 = (p3 + p2 - p1 - p0) * 0.125 320 return cubic_farthest_fit_inside( 321 p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance 322 ) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance) 323 324 325@cython.cfunc 326@cython.inline 327@cython.locals(tolerance=cython.double) 328@cython.locals( 329 q1=cython.complex, 330 c0=cython.complex, 331 c1=cython.complex, 332 c2=cython.complex, 333 c3=cython.complex, 334) 335def cubic_approx_quadratic(cubic, tolerance): 336 """Approximate a cubic Bezier with a single quadratic within a given tolerance. 337 338 Args: 339 cubic (sequence): Four complex numbers representing control points of 340 the cubic Bezier curve. 341 tolerance (double): Permitted deviation from the original curve. 342 343 Returns: 344 Three complex numbers representing control points of the quadratic 345 curve if it fits within the given tolerance, or ``None`` if no suitable 346 curve could be calculated. 347 """ 348 349 q1 = calc_intersect(cubic[0], cubic[1], cubic[2], cubic[3]) 350 if math.isnan(q1.imag): 351 return None 352 c0 = cubic[0] 353 c3 = cubic[3] 354 c1 = c0 + (q1 - c0) * (2 / 3) 355 c2 = c3 + (q1 - c3) * (2 / 3) 356 if not cubic_farthest_fit_inside(0, c1 - cubic[1], c2 - cubic[2], 0, tolerance): 357 return None 358 return c0, q1, c3 359 360 361@cython.cfunc 362@cython.locals(n=cython.int, tolerance=cython.double) 363@cython.locals(i=cython.int) 364@cython.locals(all_quadratic=cython.int) 365@cython.locals( 366 c0=cython.complex, c1=cython.complex, c2=cython.complex, c3=cython.complex 367) 368@cython.locals( 369 q0=cython.complex, 370 q1=cython.complex, 371 next_q1=cython.complex, 372 q2=cython.complex, 373 d1=cython.complex, 374) 375def cubic_approx_spline(cubic, n, tolerance, all_quadratic): 376 """Approximate a cubic Bezier curve with a spline of n quadratics. 377 378 Args: 379 cubic (sequence): Four complex numbers representing control points of 380 the cubic Bezier curve. 381 n (int): Number of quadratic Bezier curves in the spline. 382 tolerance (double): Permitted deviation from the original curve. 383 384 Returns: 385 A list of ``n+2`` complex numbers, representing control points of the 386 quadratic spline if it fits within the given tolerance, or ``None`` if 387 no suitable spline could be calculated. 388 """ 389 390 if n == 1: 391 return cubic_approx_quadratic(cubic, tolerance) 392 if n == 2 and all_quadratic == False: 393 return cubic 394 395 cubics = split_cubic_into_n_iter(cubic[0], cubic[1], cubic[2], cubic[3], n) 396 397 # calculate the spline of quadratics and check errors at the same time. 398 next_cubic = next(cubics) 399 next_q1 = cubic_approx_control( 400 0, next_cubic[0], next_cubic[1], next_cubic[2], next_cubic[3] 401 ) 402 q2 = cubic[0] 403 d1 = 0j 404 spline = [cubic[0], next_q1] 405 for i in range(1, n + 1): 406 # Current cubic to convert 407 c0, c1, c2, c3 = next_cubic 408 409 # Current quadratic approximation of current cubic 410 q0 = q2 411 q1 = next_q1 412 if i < n: 413 next_cubic = next(cubics) 414 next_q1 = cubic_approx_control( 415 i / (n - 1), next_cubic[0], next_cubic[1], next_cubic[2], next_cubic[3] 416 ) 417 spline.append(next_q1) 418 q2 = (q1 + next_q1) * 0.5 419 else: 420 q2 = c3 421 422 # End-point deltas 423 d0 = d1 424 d1 = q2 - c3 425 426 if abs(d1) > tolerance or not cubic_farthest_fit_inside( 427 d0, 428 q0 + (q1 - q0) * (2 / 3) - c1, 429 q2 + (q1 - q2) * (2 / 3) - c2, 430 d1, 431 tolerance, 432 ): 433 return None 434 spline.append(cubic[3]) 435 436 return spline 437 438 439@cython.locals(max_err=cython.double) 440@cython.locals(n=cython.int) 441@cython.locals(all_quadratic=cython.int) 442def curve_to_quadratic(curve, max_err, all_quadratic=True): 443 """Approximate a cubic Bezier curve with a spline of n quadratics. 444 445 Args: 446 cubic (sequence): Four 2D tuples representing control points of 447 the cubic Bezier curve. 448 max_err (double): Permitted deviation from the original curve. 449 all_quadratic (bool): If True (default) returned value is a 450 quadratic spline. If False, it's either a single quadratic 451 curve or a single cubic curve. 452 453 Returns: 454 If all_quadratic is True: A list of 2D tuples, representing 455 control points of the quadratic spline if it fits within the 456 given tolerance, or ``None`` if no suitable spline could be 457 calculated. 458 459 If all_quadratic is False: Either a quadratic curve (if length 460 of output is 3), or a cubic curve (if length of output is 4). 461 """ 462 463 curve = [complex(*p) for p in curve] 464 465 for n in range(1, MAX_N + 1): 466 spline = cubic_approx_spline(curve, n, max_err, all_quadratic) 467 if spline is not None: 468 # done. go home 469 return [(s.real, s.imag) for s in spline] 470 471 raise ApproxNotFoundError(curve) 472 473 474@cython.locals(l=cython.int, last_i=cython.int, i=cython.int) 475@cython.locals(all_quadratic=cython.int) 476def curves_to_quadratic(curves, max_errors, all_quadratic=True): 477 """Return quadratic Bezier splines approximating the input cubic Beziers. 478 479 Args: 480 curves: A sequence of *n* curves, each curve being a sequence of four 481 2D tuples. 482 max_errors: A sequence of *n* floats representing the maximum permissible 483 deviation from each of the cubic Bezier curves. 484 all_quadratic (bool): If True (default) returned values are a 485 quadratic spline. If False, they are either a single quadratic 486 curve or a single cubic curve. 487 488 Example:: 489 490 >>> curves_to_quadratic( [ 491 ... [ (50,50), (100,100), (150,100), (200,50) ], 492 ... [ (75,50), (120,100), (150,75), (200,60) ] 493 ... ], [1,1] ) 494 [[(50.0, 50.0), (75.0, 75.0), (125.0, 91.66666666666666), (175.0, 75.0), (200.0, 50.0)], [(75.0, 50.0), (97.5, 75.0), (135.41666666666666, 82.08333333333333), (175.0, 67.5), (200.0, 60.0)]] 495 496 The returned splines have "implied oncurve points" suitable for use in 497 TrueType ``glif`` outlines - i.e. in the first spline returned above, 498 the first quadratic segment runs from (50,50) to 499 ( (75 + 125)/2 , (120 + 91.666..)/2 ) = (100, 83.333...). 500 501 Returns: 502 If all_quadratic is True, a list of splines, each spline being a list 503 of 2D tuples. 504 505 If all_quadratic is False, a list of curves, each curve being a quadratic 506 (length 3), or cubic (length 4). 507 508 Raises: 509 fontTools.cu2qu.Errors.ApproxNotFoundError: if no suitable approximation 510 can be found for all curves with the given parameters. 511 """ 512 513 curves = [[complex(*p) for p in curve] for curve in curves] 514 assert len(max_errors) == len(curves) 515 516 l = len(curves) 517 splines = [None] * l 518 last_i = i = 0 519 n = 1 520 while True: 521 spline = cubic_approx_spline(curves[i], n, max_errors[i], all_quadratic) 522 if spline is None: 523 if n == MAX_N: 524 break 525 n += 1 526 last_i = i 527 continue 528 splines[i] = spline 529 i = (i + 1) % l 530 if i == last_i: 531 # done. go home 532 return [[(s.real, s.imag) for s in spline] for spline in splines] 533 534 raise ApproxNotFoundError(curves) 535