xref: /aosp_15_r20/external/libaom/av1/common/x86/cdef_block_avx2.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "aom_dsp/aom_simd.h"
13 #define SIMD_FUNC(name) name##_avx2
14 #include "av1/common/cdef_block_simd.h"
15 
16 /* partial A is a 16-bit vector of the form:
17 [x8 - - x1 | x16 - - x9] and partial B has the form:
18 [0  y1 - y7 | 0 y9 - y15].
19 This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ...
20 (x7^2+y2^7)*C7 + (x8^2+0^2)*C8 on each 128-bit lane. Here the C1..C8 constants
21 are in const1 and const2. */
fold_mul_and_sum_avx2(__m256i * partiala,__m256i * partialb,const __m256i * const1,const __m256i * const2)22 static inline __m256i fold_mul_and_sum_avx2(__m256i *partiala,
23                                             __m256i *partialb,
24                                             const __m256i *const1,
25                                             const __m256i *const2) {
26   // Mask used to shuffle the elements present in 256bit register.
27   static const int shuffle_reg_256bit[8] = { 0x0b0a0d0c, 0x07060908, 0x03020504,
28                                              0x0f0e0100, 0x0b0a0d0c, 0x07060908,
29                                              0x03020504, 0x0f0e0100 };
30   __m256i tmp;
31   /* Reverse partial B. */
32   *partialb = _mm256_shuffle_epi8(
33       *partialb, _mm256_loadu_si256((const __m256i *)shuffle_reg_256bit));
34 
35   /* Interleave the x and y values of identical indices and pair x8 with 0. */
36   tmp = *partiala;
37   *partiala = _mm256_unpacklo_epi16(*partiala, *partialb);
38   *partialb = _mm256_unpackhi_epi16(tmp, *partialb);
39 
40   /* Square and add the corresponding x and y values. */
41   *partiala = _mm256_madd_epi16(*partiala, *partiala);
42   *partialb = _mm256_madd_epi16(*partialb, *partialb);
43   /* Multiply by constant. */
44   *partiala = _mm256_mullo_epi32(*partiala, *const1);
45   *partialb = _mm256_mullo_epi32(*partialb, *const2);
46   /* Sum all results. */
47   *partiala = _mm256_add_epi32(*partiala, *partialb);
48   return *partiala;
49 }
50 
hsum4_avx2(__m256i * x0,__m256i * x1,__m256i * x2,__m256i * x3)51 static inline __m256i hsum4_avx2(__m256i *x0, __m256i *x1, __m256i *x2,
52                                  __m256i *x3) {
53   const __m256i t0 = _mm256_unpacklo_epi32(*x0, *x1);
54   const __m256i t1 = _mm256_unpacklo_epi32(*x2, *x3);
55   const __m256i t2 = _mm256_unpackhi_epi32(*x0, *x1);
56   const __m256i t3 = _mm256_unpackhi_epi32(*x2, *x3);
57 
58   *x0 = _mm256_unpacklo_epi64(t0, t1);
59   *x1 = _mm256_unpackhi_epi64(t0, t1);
60   *x2 = _mm256_unpacklo_epi64(t2, t3);
61   *x3 = _mm256_unpackhi_epi64(t2, t3);
62   return _mm256_add_epi32(_mm256_add_epi32(*x0, *x1),
63                           _mm256_add_epi32(*x2, *x3));
64 }
65 
66 /* Computes cost for directions 0, 5, 6 and 7. We can call this function again
67 to compute the remaining directions. */
compute_directions_avx2(__m256i * lines,int32_t cost_frist_8x8[4],int32_t cost_second_8x8[4])68 static inline __m256i compute_directions_avx2(__m256i *lines,
69                                               int32_t cost_frist_8x8[4],
70                                               int32_t cost_second_8x8[4]) {
71   __m256i partial4a, partial4b, partial5a, partial5b, partial7a, partial7b;
72   __m256i partial6;
73   __m256i tmp;
74   /* Partial sums for lines 0 and 1. */
75   partial4a = _mm256_slli_si256(lines[0], 14);
76   partial4b = _mm256_srli_si256(lines[0], 2);
77   partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[1], 12));
78   partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[1], 4));
79   tmp = _mm256_add_epi16(lines[0], lines[1]);
80   partial5a = _mm256_slli_si256(tmp, 10);
81   partial5b = _mm256_srli_si256(tmp, 6);
82   partial7a = _mm256_slli_si256(tmp, 4);
83   partial7b = _mm256_srli_si256(tmp, 12);
84   partial6 = tmp;
85 
86   /* Partial sums for lines 2 and 3. */
87   partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[2], 10));
88   partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[2], 6));
89   partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[3], 8));
90   partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[3], 8));
91   tmp = _mm256_add_epi16(lines[2], lines[3]);
92   partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 8));
93   partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 8));
94   partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 6));
95   partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 10));
96   partial6 = _mm256_add_epi16(partial6, tmp);
97 
98   /* Partial sums for lines 4 and 5. */
99   partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[4], 6));
100   partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[4], 10));
101   partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[5], 4));
102   partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[5], 12));
103   tmp = _mm256_add_epi16(lines[4], lines[5]);
104   partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 6));
105   partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 10));
106   partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 8));
107   partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 8));
108   partial6 = _mm256_add_epi16(partial6, tmp);
109 
110   /* Partial sums for lines 6 and 7. */
111   partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[6], 2));
112   partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[6], 14));
113   partial4a = _mm256_add_epi16(partial4a, lines[7]);
114   tmp = _mm256_add_epi16(lines[6], lines[7]);
115   partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 4));
116   partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 12));
117   partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 10));
118   partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 6));
119   partial6 = _mm256_add_epi16(partial6, tmp);
120 
121   const __m256i const_reg_1 =
122       _mm256_set_epi32(210, 280, 420, 840, 210, 280, 420, 840);
123   const __m256i const_reg_2 =
124       _mm256_set_epi32(105, 120, 140, 168, 105, 120, 140, 168);
125   const __m256i const_reg_3 = _mm256_set_epi32(210, 420, 0, 0, 210, 420, 0, 0);
126   const __m256i const_reg_4 =
127       _mm256_set_epi32(105, 105, 105, 140, 105, 105, 105, 140);
128 
129   /* Compute costs in terms of partial sums. */
130   partial4a =
131       fold_mul_and_sum_avx2(&partial4a, &partial4b, &const_reg_1, &const_reg_2);
132   partial7a =
133       fold_mul_and_sum_avx2(&partial7a, &partial7b, &const_reg_3, &const_reg_4);
134   partial5a =
135       fold_mul_and_sum_avx2(&partial5a, &partial5b, &const_reg_3, &const_reg_4);
136   partial6 = _mm256_madd_epi16(partial6, partial6);
137   partial6 = _mm256_mullo_epi32(partial6, _mm256_set1_epi32(105));
138 
139   partial4a = hsum4_avx2(&partial4a, &partial5a, &partial6, &partial7a);
140   _mm_storeu_si128((__m128i *)cost_frist_8x8,
141                    _mm256_castsi256_si128(partial4a));
142   _mm_storeu_si128((__m128i *)cost_second_8x8,
143                    _mm256_extractf128_si256(partial4a, 1));
144 
145   return partial4a;
146 }
147 
148 /* transpose and reverse the order of the lines -- equivalent to a 90-degree
149 counter-clockwise rotation of the pixels. */
array_reverse_transpose_8x8_avx2(__m256i * in,__m256i * res)150 static inline void array_reverse_transpose_8x8_avx2(__m256i *in, __m256i *res) {
151   const __m256i tr0_0 = _mm256_unpacklo_epi16(in[0], in[1]);
152   const __m256i tr0_1 = _mm256_unpacklo_epi16(in[2], in[3]);
153   const __m256i tr0_2 = _mm256_unpackhi_epi16(in[0], in[1]);
154   const __m256i tr0_3 = _mm256_unpackhi_epi16(in[2], in[3]);
155   const __m256i tr0_4 = _mm256_unpacklo_epi16(in[4], in[5]);
156   const __m256i tr0_5 = _mm256_unpacklo_epi16(in[6], in[7]);
157   const __m256i tr0_6 = _mm256_unpackhi_epi16(in[4], in[5]);
158   const __m256i tr0_7 = _mm256_unpackhi_epi16(in[6], in[7]);
159 
160   const __m256i tr1_0 = _mm256_unpacklo_epi32(tr0_0, tr0_1);
161   const __m256i tr1_1 = _mm256_unpacklo_epi32(tr0_4, tr0_5);
162   const __m256i tr1_2 = _mm256_unpackhi_epi32(tr0_0, tr0_1);
163   const __m256i tr1_3 = _mm256_unpackhi_epi32(tr0_4, tr0_5);
164   const __m256i tr1_4 = _mm256_unpacklo_epi32(tr0_2, tr0_3);
165   const __m256i tr1_5 = _mm256_unpacklo_epi32(tr0_6, tr0_7);
166   const __m256i tr1_6 = _mm256_unpackhi_epi32(tr0_2, tr0_3);
167   const __m256i tr1_7 = _mm256_unpackhi_epi32(tr0_6, tr0_7);
168 
169   res[7] = _mm256_unpacklo_epi64(tr1_0, tr1_1);
170   res[6] = _mm256_unpackhi_epi64(tr1_0, tr1_1);
171   res[5] = _mm256_unpacklo_epi64(tr1_2, tr1_3);
172   res[4] = _mm256_unpackhi_epi64(tr1_2, tr1_3);
173   res[3] = _mm256_unpacklo_epi64(tr1_4, tr1_5);
174   res[2] = _mm256_unpackhi_epi64(tr1_4, tr1_5);
175   res[1] = _mm256_unpacklo_epi64(tr1_6, tr1_7);
176   res[0] = _mm256_unpackhi_epi64(tr1_6, tr1_7);
177 }
178 
cdef_find_dir_dual_avx2(const uint16_t * img1,const uint16_t * img2,int stride,int32_t * var_out_1st,int32_t * var_out_2nd,int coeff_shift,int * out_dir_1st_8x8,int * out_dir_2nd_8x8)179 void cdef_find_dir_dual_avx2(const uint16_t *img1, const uint16_t *img2,
180                              int stride, int32_t *var_out_1st,
181                              int32_t *var_out_2nd, int coeff_shift,
182                              int *out_dir_1st_8x8, int *out_dir_2nd_8x8) {
183   int32_t cost_first_8x8[8];
184   int32_t cost_second_8x8[8];
185   // Used to store the best cost for 2 8x8's.
186   int32_t best_cost[2] = { 0 };
187   // Best direction for 2 8x8's.
188   int best_dir[2] = { 0 };
189 
190   const __m128i const_coeff_shift_reg = _mm_cvtsi32_si128(coeff_shift);
191   const __m256i const_128_reg = _mm256_set1_epi16(128);
192   __m256i lines[8];
193   for (int i = 0; i < 8; i++) {
194     const __m128i src_1 = _mm_loadu_si128((const __m128i *)&img1[i * stride]);
195     const __m128i src_2 = _mm_loadu_si128((const __m128i *)&img2[i * stride]);
196 
197     lines[i] = _mm256_insertf128_si256(_mm256_castsi128_si256(src_1), src_2, 1);
198     lines[i] = _mm256_sub_epi16(
199         _mm256_sra_epi16(lines[i], const_coeff_shift_reg), const_128_reg);
200   }
201 
202   /* Compute "mostly vertical" directions. */
203   const __m256i dir47 =
204       compute_directions_avx2(lines, cost_first_8x8 + 4, cost_second_8x8 + 4);
205 
206   /* Transpose and reverse the order of the lines. */
207   array_reverse_transpose_8x8_avx2(lines, lines);
208 
209   /* Compute "mostly horizontal" directions. */
210   const __m256i dir03 =
211       compute_directions_avx2(lines, cost_first_8x8, cost_second_8x8);
212 
213   __m256i max = _mm256_max_epi32(dir03, dir47);
214   max =
215       _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 8),
216                                             _mm256_slli_si256(max, 16 - (8))));
217   max =
218       _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 4),
219                                             _mm256_slli_si256(max, 16 - (4))));
220 
221   const __m128i first_8x8_output = _mm256_castsi256_si128(max);
222   const __m128i second_8x8_output = _mm256_extractf128_si256(max, 1);
223   const __m128i cmpeg_res_00 =
224       _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir47));
225   const __m128i cmpeg_res_01 =
226       _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir03));
227   const __m128i cmpeg_res_10 =
228       _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir47, 1));
229   const __m128i cmpeg_res_11 =
230       _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir03, 1));
231   const __m128i t_first_8x8 = _mm_packs_epi32(cmpeg_res_01, cmpeg_res_00);
232   const __m128i t_second_8x8 = _mm_packs_epi32(cmpeg_res_11, cmpeg_res_10);
233 
234   best_cost[0] = _mm_cvtsi128_si32(_mm256_castsi256_si128(max));
235   best_cost[1] = _mm_cvtsi128_si32(second_8x8_output);
236   best_dir[0] = _mm_movemask_epi8(_mm_packs_epi16(t_first_8x8, t_first_8x8));
237   best_dir[0] =
238       get_msb(best_dir[0] ^ (best_dir[0] - 1));  // Count trailing zeros
239   best_dir[1] = _mm_movemask_epi8(_mm_packs_epi16(t_second_8x8, t_second_8x8));
240   best_dir[1] =
241       get_msb(best_dir[1] ^ (best_dir[1] - 1));  // Count trailing zeros
242 
243   /* Difference between the optimal variance and the variance along the
244      orthogonal direction. Again, the sum(x^2) terms cancel out. */
245   *var_out_1st = best_cost[0] - cost_first_8x8[(best_dir[0] + 4) & 7];
246   *var_out_2nd = best_cost[1] - cost_second_8x8[(best_dir[1] + 4) & 7];
247 
248   /* We'd normally divide by 840, but dividing by 1024 is close enough
249   for what we're going to do with this. */
250   *var_out_1st >>= 10;
251   *var_out_2nd >>= 10;
252   *out_dir_1st_8x8 = best_dir[0];
253   *out_dir_2nd_8x8 = best_dir[1];
254 }
255 
cdef_copy_rect8_8bit_to_16bit_avx2(uint16_t * dst,int dstride,const uint8_t * src,int sstride,int width,int height)256 void cdef_copy_rect8_8bit_to_16bit_avx2(uint16_t *dst, int dstride,
257                                         const uint8_t *src, int sstride,
258                                         int width, int height) {
259   int j = 0;
260   int remaining_width = width;
261   assert(height % 2 == 0);
262   assert(height > 0);
263   assert(width > 0);
264 
265   // Process multiple 32 pixels at a time.
266   if (remaining_width > 31) {
267     int i = 0;
268     do {
269       j = 0;
270       do {
271         __m128i row00 =
272             _mm_loadu_si128((const __m128i *)&src[(i + 0) * sstride + (j + 0)]);
273         __m128i row01 = _mm_loadu_si128(
274             (const __m128i *)&src[(i + 0) * sstride + (j + 16)]);
275         __m128i row10 =
276             _mm_loadu_si128((const __m128i *)&src[(i + 1) * sstride + (j + 0)]);
277         __m128i row11 = _mm_loadu_si128(
278             (const __m128i *)&src[(i + 1) * sstride + (j + 16)]);
279         _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + (j + 0)],
280                             _mm256_cvtepu8_epi16(row00));
281         _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + (j + 16)],
282                             _mm256_cvtepu8_epi16(row01));
283         _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + (j + 0)],
284                             _mm256_cvtepu8_epi16(row10));
285         _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + (j + 16)],
286                             _mm256_cvtepu8_epi16(row11));
287         j += 32;
288       } while (j <= width - 32);
289       i += 2;
290     } while (i < height);
291     remaining_width = width & 31;
292   }
293 
294   // Process 16 pixels at a time.
295   if (remaining_width > 15) {
296     int i = 0;
297     do {
298       __m128i row0 =
299           _mm_loadu_si128((const __m128i *)&src[(i + 0) * sstride + j]);
300       __m128i row1 =
301           _mm_loadu_si128((const __m128i *)&src[(i + 1) * sstride + j]);
302       _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + j],
303                           _mm256_cvtepu8_epi16(row0));
304       _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + j],
305                           _mm256_cvtepu8_epi16(row1));
306       i += 2;
307     } while (i < height);
308     remaining_width = width & 15;
309     j += 16;
310   }
311 
312   // Process 8 pixels at a time.
313   if (remaining_width > 7) {
314     int i = 0;
315     do {
316       __m128i row0 =
317           _mm_loadl_epi64((const __m128i *)&src[(i + 0) * sstride + j]);
318       __m128i row1 =
319           _mm_loadl_epi64((const __m128i *)&src[(i + 1) * sstride + j]);
320       _mm_storeu_si128((__m128i *)&dst[(i + 0) * dstride + j],
321                        _mm_unpacklo_epi8(row0, _mm_setzero_si128()));
322       _mm_storeu_si128((__m128i *)&dst[(i + 1) * dstride + j],
323                        _mm_unpacklo_epi8(row1, _mm_setzero_si128()));
324       i += 2;
325     } while (i < height);
326     remaining_width = width & 7;
327     j += 8;
328   }
329 
330   // Process 4 pixels at a time.
331   if (remaining_width > 3) {
332     int i = 0;
333     do {
334       __m128i row0 =
335           _mm_cvtsi32_si128(*((const int32_t *)&src[(i + 0) * sstride + j]));
336       __m128i row1 =
337           _mm_cvtsi32_si128(*((const int32_t *)&src[(i + 1) * sstride + j]));
338       _mm_storel_epi64((__m128i *)&dst[(i + 0) * dstride + j],
339                        _mm_unpacklo_epi8(row0, _mm_setzero_si128()));
340       _mm_storel_epi64((__m128i *)&dst[(i + 1) * dstride + j],
341                        _mm_unpacklo_epi8(row1, _mm_setzero_si128()));
342       i += 2;
343     } while (i < height);
344     remaining_width = width & 3;
345     j += 4;
346   }
347 
348   // Process the remaining pixels.
349   if (remaining_width) {
350     for (int i = 0; i < height; i++) {
351       for (int k = j; k < width; k++) {
352         dst[i * dstride + k] = src[i * sstride + k];
353       }
354     }
355   }
356 }
357