xref: /aosp_15_r20/external/libaom/av1/common/cdef.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <stddef.h>
14 #include <string.h>
15 
16 #include "config/aom_scale_rtcd.h"
17 
18 #include "aom/aom_integer.h"
19 #include "aom_util/aom_pthread.h"
20 #include "av1/common/av1_common_int.h"
21 #include "av1/common/cdef.h"
22 #include "av1/common/cdef_block.h"
23 #include "av1/common/common.h"
24 #include "av1/common/common_data.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/reconinter.h"
27 #include "av1/common/thread_common.h"
28 
is_8x8_block_skip(MB_MODE_INFO ** grid,int mi_row,int mi_col,int mi_stride)29 static int is_8x8_block_skip(MB_MODE_INFO **grid, int mi_row, int mi_col,
30                              int mi_stride) {
31   MB_MODE_INFO **mbmi = grid + mi_row * mi_stride + mi_col;
32   for (int r = 0; r < mi_size_high[BLOCK_8X8]; ++r, mbmi += mi_stride) {
33     for (int c = 0; c < mi_size_wide[BLOCK_8X8]; ++c) {
34       if (!mbmi[c]->skip_txfm) return 0;
35     }
36   }
37 
38   return 1;
39 }
40 
av1_cdef_compute_sb_list(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col,cdef_list * dlist,BLOCK_SIZE bs)41 int av1_cdef_compute_sb_list(const CommonModeInfoParams *const mi_params,
42                              int mi_row, int mi_col, cdef_list *dlist,
43                              BLOCK_SIZE bs) {
44   MB_MODE_INFO **grid = mi_params->mi_grid_base;
45   int maxc = mi_params->mi_cols - mi_col;
46   int maxr = mi_params->mi_rows - mi_row;
47 
48   if (bs == BLOCK_128X128 || bs == BLOCK_128X64)
49     maxc = AOMMIN(maxc, MI_SIZE_128X128);
50   else
51     maxc = AOMMIN(maxc, MI_SIZE_64X64);
52   if (bs == BLOCK_128X128 || bs == BLOCK_64X128)
53     maxr = AOMMIN(maxr, MI_SIZE_128X128);
54   else
55     maxr = AOMMIN(maxr, MI_SIZE_64X64);
56 
57   const int r_step = 2;  // mi_size_high[BLOCK_8X8]
58   const int c_step = 2;  // mi_size_wide[BLOCK_8X8]
59   const int r_shift = 1;
60   const int c_shift = 1;
61   int count = 0;
62   for (int r = 0; r < maxr; r += r_step) {
63     for (int c = 0; c < maxc; c += c_step) {
64       if (!is_8x8_block_skip(grid, mi_row + r, mi_col + c,
65                              mi_params->mi_stride)) {
66         dlist[count].by = r >> r_shift;
67         dlist[count].bx = c >> c_shift;
68         count++;
69       }
70     }
71   }
72   return count;
73 }
74 
cdef_copy_rect8_8bit_to_16bit_c(uint16_t * dst,int dstride,const uint8_t * src,int sstride,int width,int height)75 void cdef_copy_rect8_8bit_to_16bit_c(uint16_t *dst, int dstride,
76                                      const uint8_t *src, int sstride, int width,
77                                      int height) {
78   for (int i = 0; i < height; i++) {
79     for (int j = 0; j < width; j++) {
80       dst[i * dstride + j] = src[i * sstride + j];
81     }
82   }
83 }
84 
85 #if CONFIG_AV1_HIGHBITDEPTH
cdef_copy_rect8_16bit_to_16bit_c(uint16_t * dst,int dstride,const uint16_t * src,int sstride,int width,int height)86 void cdef_copy_rect8_16bit_to_16bit_c(uint16_t *dst, int dstride,
87                                       const uint16_t *src, int sstride,
88                                       int width, int height) {
89   for (int i = 0; i < height; i++) {
90     for (int j = 0; j < width; j++) {
91       dst[i * dstride + j] = src[i * sstride + j];
92     }
93   }
94 }
95 #endif  // CONFIG_AV1_HIGHBITDEPTH
96 
av1_cdef_copy_sb8_16_lowbd(uint16_t * const dst,int dstride,const uint8_t * src,int src_voffset,int src_hoffset,int sstride,int vsize,int hsize)97 void av1_cdef_copy_sb8_16_lowbd(uint16_t *const dst, int dstride,
98                                 const uint8_t *src, int src_voffset,
99                                 int src_hoffset, int sstride, int vsize,
100                                 int hsize) {
101   const uint8_t *base = &src[src_voffset * (ptrdiff_t)sstride + src_hoffset];
102   cdef_copy_rect8_8bit_to_16bit(dst, dstride, base, sstride, hsize, vsize);
103 }
104 
105 #if CONFIG_AV1_HIGHBITDEPTH
av1_cdef_copy_sb8_16_highbd(uint16_t * const dst,int dstride,const uint8_t * src,int src_voffset,int src_hoffset,int sstride,int vsize,int hsize)106 void av1_cdef_copy_sb8_16_highbd(uint16_t *const dst, int dstride,
107                                  const uint8_t *src, int src_voffset,
108                                  int src_hoffset, int sstride, int vsize,
109                                  int hsize) {
110   const uint16_t *base =
111       &CONVERT_TO_SHORTPTR(src)[src_voffset * (ptrdiff_t)sstride + src_hoffset];
112   cdef_copy_rect8_16bit_to_16bit(dst, dstride, base, sstride, hsize, vsize);
113 }
114 #endif  // CONFIG_AV1_HIGHBITDEPTH
115 
av1_cdef_copy_sb8_16(const AV1_COMMON * const cm,uint16_t * const dst,int dstride,const uint8_t * src,int src_voffset,int src_hoffset,int sstride,int vsize,int hsize)116 void av1_cdef_copy_sb8_16(const AV1_COMMON *const cm, uint16_t *const dst,
117                           int dstride, const uint8_t *src, int src_voffset,
118                           int src_hoffset, int sstride, int vsize, int hsize) {
119 #if CONFIG_AV1_HIGHBITDEPTH
120   if (cm->seq_params->use_highbitdepth) {
121     av1_cdef_copy_sb8_16_highbd(dst, dstride, src, src_voffset, src_hoffset,
122                                 sstride, vsize, hsize);
123     return;
124   }
125 #else
126   (void)cm;
127 #endif  // CONFIG_AV1_HIGHBITDEPTH
128   av1_cdef_copy_sb8_16_lowbd(dst, dstride, src, src_voffset, src_hoffset,
129                              sstride, vsize, hsize);
130 }
131 
copy_rect(uint16_t * dst,int dstride,const uint16_t * src,int sstride,int v,int h)132 static inline void copy_rect(uint16_t *dst, int dstride, const uint16_t *src,
133                              int sstride, int v, int h) {
134   for (int i = 0; i < v; i++) {
135     for (int j = 0; j < h; j++) {
136       dst[i * dstride + j] = src[i * sstride + j];
137     }
138   }
139 }
140 
141 // Prepares intermediate input buffer for CDEF.
142 // Inputs:
143 //   cm: Pointer to common structure.
144 //   fb_info: Pointer to the CDEF block-level parameter structure.
145 //   colbuf: Left column buffer for CDEF.
146 //   cdef_left: Left block is filtered or not.
147 //   fbc, fbr: col and row index of a block.
148 //   plane: plane index Y/CB/CR.
149 // Returns:
150 //   Nothing will be returned.
cdef_prepare_fb(const AV1_COMMON * const cm,CdefBlockInfo * fb_info,uint16_t ** const colbuf,const int cdef_left,int fbc,int fbr,int plane)151 static void cdef_prepare_fb(const AV1_COMMON *const cm, CdefBlockInfo *fb_info,
152                             uint16_t **const colbuf, const int cdef_left,
153                             int fbc, int fbr, int plane) {
154   const CommonModeInfoParams *const mi_params = &cm->mi_params;
155   uint16_t *src = fb_info->src;
156   const int luma_stride =
157       ALIGN_POWER_OF_TWO(mi_params->mi_cols << MI_SIZE_LOG2, 4);
158   const int nvfb = (mi_params->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
159   const int nhfb = (mi_params->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
160   int cstart = 0;
161   if (!cdef_left) cstart = -CDEF_HBORDER;
162   int rend, cend;
163   const int nhb =
164       AOMMIN(MI_SIZE_64X64, mi_params->mi_cols - MI_SIZE_64X64 * fbc);
165   const int nvb =
166       AOMMIN(MI_SIZE_64X64, mi_params->mi_rows - MI_SIZE_64X64 * fbr);
167   const int hsize = nhb << fb_info->mi_wide_l2;
168   const int vsize = nvb << fb_info->mi_high_l2;
169   const uint16_t *top_linebuf = fb_info->top_linebuf[plane];
170   const uint16_t *bot_linebuf = fb_info->bot_linebuf[plane];
171   const int bot_offset = (vsize + CDEF_VBORDER) * CDEF_BSTRIDE;
172   const int stride =
173       luma_stride >> (plane == AOM_PLANE_Y ? 0 : cm->seq_params->subsampling_x);
174 
175   if (fbc == nhfb - 1)
176     cend = hsize;
177   else
178     cend = hsize + CDEF_HBORDER;
179 
180   if (fbr == nvfb - 1)
181     rend = vsize;
182   else
183     rend = vsize + CDEF_VBORDER;
184 
185   /* Copy in the pixels we need from the current superblock for
186   deringing.*/
187   av1_cdef_copy_sb8_16(
188       cm, &src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER + cstart],
189       CDEF_BSTRIDE, fb_info->dst, fb_info->roffset, fb_info->coffset + cstart,
190       fb_info->dst_stride, vsize, cend - cstart);
191 
192   /* Copy in the pixels we need for the current superblock from bottom buffer.*/
193   if (fbr < nvfb - 1) {
194     copy_rect(&src[bot_offset + CDEF_HBORDER], CDEF_BSTRIDE,
195               &bot_linebuf[fb_info->coffset], stride, CDEF_VBORDER, hsize);
196   } else {
197     fill_rect(&src[bot_offset + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER,
198               hsize, CDEF_VERY_LARGE);
199   }
200   if (fbr < nvfb - 1 && fbc > 0) {
201     copy_rect(&src[bot_offset], CDEF_BSTRIDE,
202               &bot_linebuf[fb_info->coffset - CDEF_HBORDER], stride,
203               CDEF_VBORDER, CDEF_HBORDER);
204   } else {
205     fill_rect(&src[bot_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER,
206               CDEF_VERY_LARGE);
207   }
208   if (fbr < nvfb - 1 && fbc < nhfb - 1) {
209     copy_rect(&src[bot_offset + hsize + CDEF_HBORDER], CDEF_BSTRIDE,
210               &bot_linebuf[fb_info->coffset + hsize], stride, CDEF_VBORDER,
211               CDEF_HBORDER);
212   } else {
213     fill_rect(&src[bot_offset + hsize + CDEF_HBORDER], CDEF_BSTRIDE,
214               CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
215   }
216 
217   /* Copy in the pixels we need from the current superblock from top buffer.*/
218   if (fbr > 0) {
219     copy_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, &top_linebuf[fb_info->coffset],
220               stride, CDEF_VBORDER, hsize);
221   } else {
222     fill_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, hsize,
223               CDEF_VERY_LARGE);
224   }
225   if (fbr > 0 && fbc > 0) {
226     copy_rect(src, CDEF_BSTRIDE, &top_linebuf[fb_info->coffset - CDEF_HBORDER],
227               stride, CDEF_VBORDER, CDEF_HBORDER);
228   } else {
229     fill_rect(src, CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
230   }
231   if (fbr > 0 && fbc < nhfb - 1) {
232     copy_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE,
233               &top_linebuf[fb_info->coffset + hsize], stride, CDEF_VBORDER,
234               CDEF_HBORDER);
235   } else {
236     fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER,
237               CDEF_HBORDER, CDEF_VERY_LARGE);
238   }
239   if (cdef_left) {
240     /* If we deringed the superblock on the left then we need to copy in
241     saved pixels. */
242     copy_rect(src, CDEF_BSTRIDE, colbuf[plane], CDEF_HBORDER,
243               rend + CDEF_VBORDER, CDEF_HBORDER);
244   }
245   /* Saving pixels in case we need to dering the superblock on the
246   right. */
247   copy_rect(colbuf[plane], CDEF_HBORDER, src + hsize, CDEF_BSTRIDE,
248             rend + CDEF_VBORDER, CDEF_HBORDER);
249 
250   if (fb_info->frame_boundary[LEFT]) {
251     fill_rect(src, CDEF_BSTRIDE, vsize + 2 * CDEF_VBORDER, CDEF_HBORDER,
252               CDEF_VERY_LARGE);
253   }
254   if (fb_info->frame_boundary[RIGHT]) {
255     fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE,
256               vsize + 2 * CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
257   }
258 }
259 
cdef_filter_fb(CdefBlockInfo * const fb_info,int plane,uint8_t use_highbitdepth)260 static inline void cdef_filter_fb(CdefBlockInfo *const fb_info, int plane,
261                                   uint8_t use_highbitdepth) {
262   ptrdiff_t offset =
263       (ptrdiff_t)fb_info->dst_stride * fb_info->roffset + fb_info->coffset;
264   if (use_highbitdepth) {
265     av1_cdef_filter_fb(
266         NULL, CONVERT_TO_SHORTPTR(fb_info->dst + offset), fb_info->dst_stride,
267         &fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER],
268         fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane,
269         fb_info->dlist, fb_info->cdef_count, fb_info->level,
270         fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift);
271   } else {
272     av1_cdef_filter_fb(
273         fb_info->dst + offset, NULL, fb_info->dst_stride,
274         &fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER],
275         fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane,
276         fb_info->dlist, fb_info->cdef_count, fb_info->level,
277         fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift);
278   }
279 }
280 
281 // Initializes block-level parameters for CDEF.
cdef_init_fb_col(const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,int * level,int * sec_strength,int fbc,int fbr,int plane)282 static inline void cdef_init_fb_col(const MACROBLOCKD *const xd,
283                                     CdefBlockInfo *const fb_info, int *level,
284                                     int *sec_strength, int fbc, int fbr,
285                                     int plane) {
286   const PLANE_TYPE plane_type = get_plane_type(plane);
287   fb_info->level = level[plane_type];
288   fb_info->sec_strength = sec_strength[plane_type];
289   fb_info->dst = xd->plane[plane].dst.buf;
290   fb_info->dst_stride = xd->plane[plane].dst.stride;
291 
292   fb_info->xdec = xd->plane[plane].subsampling_x;
293   fb_info->ydec = xd->plane[plane].subsampling_y;
294   fb_info->mi_wide_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_x;
295   fb_info->mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
296   fb_info->roffset = MI_SIZE_64X64 * fbr << fb_info->mi_high_l2;
297   fb_info->coffset = MI_SIZE_64X64 * fbc << fb_info->mi_wide_l2;
298 }
299 
cdef_fb_col(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,uint16_t ** const colbuf,int * cdef_left,int fbc,int fbr)300 static void cdef_fb_col(const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
301                         CdefBlockInfo *const fb_info, uint16_t **const colbuf,
302                         int *cdef_left, int fbc, int fbr) {
303   const CommonModeInfoParams *const mi_params = &cm->mi_params;
304   const int mbmi_cdef_strength =
305       mi_params
306           ->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
307                          MI_SIZE_64X64 * fbc]
308           ->cdef_strength;
309   const int num_planes = av1_num_planes(cm);
310   int is_zero_level[PLANE_TYPES] = { 1, 1 };
311   int level[PLANE_TYPES] = { 0 };
312   int sec_strength[PLANE_TYPES] = { 0 };
313   const CdefInfo *const cdef_info = &cm->cdef_info;
314 
315   if (mi_params->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
316                               MI_SIZE_64X64 * fbc] == NULL ||
317       mbmi_cdef_strength == -1) {
318     av1_zero_array(cdef_left, num_planes);
319     return;
320   }
321 
322   // Compute level and secondary strength for planes
323   level[PLANE_TYPE_Y] =
324       cdef_info->cdef_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
325   sec_strength[PLANE_TYPE_Y] =
326       cdef_info->cdef_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
327   sec_strength[PLANE_TYPE_Y] += sec_strength[PLANE_TYPE_Y] == 3;
328   is_zero_level[PLANE_TYPE_Y] =
329       (level[PLANE_TYPE_Y] == 0) && (sec_strength[PLANE_TYPE_Y] == 0);
330 
331   if (num_planes > 1) {
332     level[PLANE_TYPE_UV] =
333         cdef_info->cdef_uv_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
334     sec_strength[PLANE_TYPE_UV] =
335         cdef_info->cdef_uv_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
336     sec_strength[PLANE_TYPE_UV] += sec_strength[PLANE_TYPE_UV] == 3;
337     is_zero_level[PLANE_TYPE_UV] =
338         (level[PLANE_TYPE_UV] == 0) && (sec_strength[PLANE_TYPE_UV] == 0);
339   }
340 
341   if (is_zero_level[PLANE_TYPE_Y] && is_zero_level[PLANE_TYPE_UV]) {
342     av1_zero_array(cdef_left, num_planes);
343     return;
344   }
345 
346   fb_info->cdef_count = av1_cdef_compute_sb_list(mi_params, fbr * MI_SIZE_64X64,
347                                                  fbc * MI_SIZE_64X64,
348                                                  fb_info->dlist, BLOCK_64X64);
349   if (!fb_info->cdef_count) {
350     av1_zero_array(cdef_left, num_planes);
351     return;
352   }
353 
354   for (int plane = 0; plane < num_planes; plane++) {
355     // Do not skip cdef filtering for luma plane as filter direction is
356     // computed based on luma.
357     if (plane && is_zero_level[get_plane_type(plane)]) {
358       cdef_left[plane] = 0;
359       continue;
360     }
361     cdef_init_fb_col(xd, fb_info, level, sec_strength, fbc, fbr, plane);
362     cdef_prepare_fb(cm, fb_info, colbuf, cdef_left[plane], fbc, fbr, plane);
363     cdef_filter_fb(fb_info, plane, cm->seq_params->use_highbitdepth);
364     cdef_left[plane] = 1;
365   }
366 }
367 
368 // Initializes row-level parameters for CDEF frame.
av1_cdef_init_fb_row(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,uint16_t ** const linebuf,uint16_t * const src,struct AV1CdefSyncData * const cdef_sync,int fbr)369 void av1_cdef_init_fb_row(const AV1_COMMON *const cm,
370                           const MACROBLOCKD *const xd,
371                           CdefBlockInfo *const fb_info,
372                           uint16_t **const linebuf, uint16_t *const src,
373                           struct AV1CdefSyncData *const cdef_sync, int fbr) {
374   (void)cdef_sync;
375   const int num_planes = av1_num_planes(cm);
376   const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
377   const int luma_stride =
378       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
379   const bool ping_pong = fbr & 1;
380   // for the current filter block, it's top left corner mi structure (mi_tl)
381   // is first accessed to check whether the top and left boundaries are
382   // frame boundaries. Then bottom-left and top-right mi structures are
383   // accessed to check whether the bottom and right boundaries
384   // (respectively) are frame boundaries.
385   //
386   // Note that we can't just check the bottom-right mi structure - eg. if
387   // we're at the right-hand edge of the frame but not the bottom, then
388   // the bottom-right mi is NULL but the bottom-left is not.
389   fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
390   if (fbr != nvfb - 1)
391     fb_info->frame_boundary[BOTTOM] =
392         (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
393   else
394     fb_info->frame_boundary[BOTTOM] = 1;
395 
396   fb_info->src = src;
397   fb_info->damping = cm->cdef_info.cdef_damping;
398   fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
399   av1_zero(fb_info->dir);
400   av1_zero(fb_info->var);
401 
402   for (int plane = 0; plane < num_planes; plane++) {
403     const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
404     const int offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
405     const int stride = luma_stride >> xd->plane[plane].subsampling_x;
406     // here ping-pong buffers are maintained for top linebuf
407     // to avoid linebuf over-write by consecutive row.
408     uint16_t *const top_linebuf =
409         &linebuf[plane][ping_pong * CDEF_VBORDER * stride];
410     fb_info->bot_linebuf[plane] = &linebuf[plane][(CDEF_VBORDER << 1) * stride];
411 
412     if (fbr != nvfb - 1)  // top line buffer copy
413       av1_cdef_copy_sb8_16(cm, top_linebuf, stride, xd->plane[plane].dst.buf,
414                            offset - CDEF_VBORDER, 0,
415                            xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
416     fb_info->top_linebuf[plane] =
417         &linebuf[plane][(!ping_pong) * CDEF_VBORDER * stride];
418 
419     if (fbr != nvfb - 1)  // bottom line buffer copy
420       av1_cdef_copy_sb8_16(cm, fb_info->bot_linebuf[plane], stride,
421                            xd->plane[plane].dst.buf, offset, 0,
422                            xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
423   }
424 }
425 
av1_cdef_fb_row(const AV1_COMMON * const cm,MACROBLOCKD * xd,uint16_t ** const linebuf,uint16_t ** const colbuf,uint16_t * const src,int fbr,cdef_init_fb_row_t cdef_init_fb_row_fn,struct AV1CdefSyncData * const cdef_sync,struct aom_internal_error_info * error_info)426 void av1_cdef_fb_row(const AV1_COMMON *const cm, MACROBLOCKD *xd,
427                      uint16_t **const linebuf, uint16_t **const colbuf,
428                      uint16_t *const src, int fbr,
429                      cdef_init_fb_row_t cdef_init_fb_row_fn,
430                      struct AV1CdefSyncData *const cdef_sync,
431                      struct aom_internal_error_info *error_info) {
432   // TODO(aomedia:3276): Pass error_info to the low-level functions as required
433   // in future to handle error propagation.
434   (void)error_info;
435   CdefBlockInfo fb_info;
436   int cdef_left[MAX_MB_PLANE] = { 1, 1, 1 };
437   const int nhfb = (cm->mi_params.mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
438 
439   cdef_init_fb_row_fn(cm, xd, &fb_info, linebuf, src, cdef_sync, fbr);
440 #if CONFIG_MULTITHREAD
441   if (cdef_sync && cm->cdef_info.allocated_num_workers > 1) {
442     pthread_mutex_lock(cdef_sync->mutex_);
443     const bool cdef_mt_exit = cdef_sync->cdef_mt_exit;
444     pthread_mutex_unlock(cdef_sync->mutex_);
445     // Exit in case any worker has encountered an error.
446     if (cdef_mt_exit) return;
447   }
448 #endif
449   for (int fbc = 0; fbc < nhfb; fbc++) {
450     fb_info.frame_boundary[LEFT] = (MI_SIZE_64X64 * fbc == 0) ? 1 : 0;
451     if (fbc != nhfb - 1)
452       fb_info.frame_boundary[RIGHT] =
453           (MI_SIZE_64X64 * (fbc + 1) == cm->mi_params.mi_cols) ? 1 : 0;
454     else
455       fb_info.frame_boundary[RIGHT] = 1;
456     cdef_fb_col(cm, xd, &fb_info, colbuf, &cdef_left[0], fbc, fbr);
457   }
458 }
459 
460 // Perform CDEF on input frame.
461 // Inputs:
462 //   frame: Pointer to input frame buffer.
463 //   cm: Pointer to common structure.
464 //   xd: Pointer to common current coding block structure.
465 // Returns:
466 //   Nothing will be returned.
av1_cdef_frame(YV12_BUFFER_CONFIG * frame,AV1_COMMON * const cm,MACROBLOCKD * xd,cdef_init_fb_row_t cdef_init_fb_row_fn)467 void av1_cdef_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *const cm,
468                     MACROBLOCKD *xd, cdef_init_fb_row_t cdef_init_fb_row_fn) {
469   const int num_planes = av1_num_planes(cm);
470   const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
471 
472   av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
473                        num_planes);
474 
475   for (int fbr = 0; fbr < nvfb; fbr++)
476     av1_cdef_fb_row(cm, xd, cm->cdef_info.linebuf, cm->cdef_info.colbuf,
477                     cm->cdef_info.srcbuf, fbr, cdef_init_fb_row_fn, NULL,
478                     xd->error_info);
479 }
480