1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <xnnpack/aarch64-assembler.h>
7 #include <xnnpack/common.h>
8 #include <xnnpack/math.h>
9
10 #include <cmath>
11
12 namespace xnnpack {
13 namespace aarch64 {
14 // Min and max values for the imm7 for ldp, will be shifted right by 3 when encoding.
15 constexpr int32_t kImm7Min = -512;
16 constexpr int32_t kImm7Max = 504;
17 constexpr uint32_t kImm7Mask = 0x7F;
18 // Max value for imm12, will be shifted right by 3 when encoding.
19 constexpr int32_t kImm12Max = 32760;
20 constexpr uint32_t kUint12Max = 4095;
21
22 constexpr int32_t kInt9Max = 255;
23 constexpr int32_t kInt9Min = -256;
24 constexpr uint32_t kImm9Mask = 0x1FF;
25
26 // Constants used for checking branch offset bounds.
27 // Conditional bounds are +/-1MB.
28 constexpr ptrdiff_t kConditionalBranchImmMax = 1048572;
29 constexpr ptrdiff_t kConditionalBranchImmMin = -1048576;
30 // TBZ and TBNZ bounds are +/-32KB.
31 constexpr ptrdiff_t kTbxzImmMax = 32764;
32 constexpr ptrdiff_t kTbxzImmMin = -32768;
33 // Unconditional bounds are +/-128MB.
34 constexpr ptrdiff_t kUnconditionalBranchImmMax = 134217727;
35 constexpr ptrdiff_t kUnconditionalBranchImmMin = -134217728;
36
37 constexpr uint32_t kConditionalImmMask = 0x0007FFFF;
38 constexpr uint32_t kTbxzImmMask = 0x3FFF;
39 constexpr uint32_t kUnconditionalImmMask = 0x03FFFFFF;
40
rd(Reg rn)41 template <typename Reg> inline uint32_t rd(Reg rn) { return rn.code; }
rt(Reg rn)42 template <typename Reg> inline uint32_t rt(Reg rn) { return rn.code; }
rt2(Reg rn)43 template <typename Reg> inline uint32_t rt2(Reg rn) { return rn.code << 10; }
rm(Reg rn)44 template <typename Reg> inline uint32_t rm(Reg rn) { return rn.code << 16; }
rn(Reg rn)45 template <typename Reg> inline uint32_t rn(Reg rn) { return rn.code << 5; }
q(VRegister vt)46 inline uint32_t q(VRegister vt) { return vt.q << 30; }
size(VRegister vt)47 inline uint32_t size(VRegister vt) { return vt.size << 10; }
fp_sz(VRegister vn)48 inline uint32_t fp_sz(VRegister vn) { return vn.is_s() ? 0 : 1 << 22; }
postindex(MemOperand op)49 inline uint32_t postindex(MemOperand op) { return (op.mode == AddressingMode::kPostIndex) ? 0 : 1 << 24; }
wb(MemOperand op)50 inline uint32_t wb(MemOperand op) { return op.mode == AddressingMode::kOffset ? 0 : 1 << 23; }
51
imm9(int32_t imm)52 inline uint32_t imm9(int32_t imm) {
53 assert(!(imm < kInt9Min || imm > kInt9Max));
54 return (imm & kImm9Mask) << 12;
55 }
56
is_same_shape(VRegister vt1,VRegister vt2)57 inline bool is_same_shape(VRegister vt1, VRegister vt2) {
58 return vt1.size == vt2.size && vt1.q == vt2.q;
59 }
60
61 template <typename Reg, typename... Regs>
is_same_shape(Reg reg1,Reg reg2,Regs...regs)62 inline bool is_same_shape(Reg reg1, Reg reg2, Regs... regs) {
63 return is_same_shape(reg1, reg2) && is_same_shape(reg2, regs...);
64 }
65
is_same_shape(VRegisterList vs)66 inline bool is_same_shape(VRegisterList vs) {
67 switch (vs.length) {
68 case 1:
69 return true;
70 case 2:
71 return is_same_shape(vs.vt1, vs.vt2);
72 case 3:
73 return is_same_shape(vs.vt1, vs.vt2, vs.vt3);
74 case 4:
75 return is_same_shape(vs.vt1, vs.vt2, vs.vt3, vs.vt4);
76 default:
77 XNN_UNREACHABLE;
78 }
79 }
80
is_same_data_type(VRegister vt1,VRegisterLane vt2)81 inline bool is_same_data_type(VRegister vt1, VRegisterLane vt2) {
82 return vt1.size == vt2.size;
83 }
84
is_consecutive(VRegister vt1,VRegister vt2)85 inline bool is_consecutive(VRegister vt1, VRegister vt2) {
86 return (vt1.code + 1) % 32 == vt2.code;
87 }
88
89 template <typename Reg, typename... Regs>
is_consecutive(Reg reg1,Reg reg2,Regs...regs)90 inline bool is_consecutive(Reg reg1, Reg reg2, Regs... regs) {
91 return is_consecutive(reg1, reg2) && is_consecutive(reg2, regs...);
92 }
93
is_consecutive(VRegisterList vs)94 inline bool is_consecutive(VRegisterList vs) {
95 switch (vs.length) {
96 case 1:
97 return true;
98 case 2:
99 return is_consecutive(vs.vt1, vs.vt2);
100 case 3:
101 return is_consecutive(vs.vt1, vs.vt2, vs.vt3);
102 case 4:
103 return is_consecutive(vs.vt1, vs.vt2, vs.vt3, vs.vt4);
104 default:
105 XNN_UNREACHABLE;
106 }
107 }
108
109 // Check if a branch offset is valid, it must fit in 19 bits.
branch_offset_valid(ptrdiff_t offset,BranchType branch_type)110 inline bool branch_offset_valid(ptrdiff_t offset, BranchType branch_type) {
111 switch (branch_type) {
112 case BranchType::kConditional:
113 return offset < kConditionalBranchImmMax && offset > kConditionalBranchImmMin;
114 case BranchType::kTbxz:
115 return offset < kTbxzImmMax && offset > kTbxzImmMin;
116 case BranchType::kUnconditional:
117 return offset < kUnconditionalBranchImmMax && offset > kUnconditionalBranchImmMin;
118 default:
119 XNN_UNREACHABLE;
120 }
121 return false;
122 }
123
instruction_branch_type(uint32_t instr)124 inline BranchType instruction_branch_type(uint32_t instr) {
125 const uint32_t masked = instr & 0xFE000000;
126 switch (masked) {
127 case 0xB6000000:
128 case 0x36000000:
129 return BranchType::kTbxz;
130 case 0x54000000:
131 return BranchType::kConditional;
132 case 0x14000000:
133 case 0x16000000:
134 return BranchType::kUnconditional;
135 default:
136 XNN_UNREACHABLE;
137 }
138 }
139
mask(BranchType branch_type)140 inline uint32_t mask(BranchType branch_type) {
141 switch (branch_type) {
142 case BranchType::kConditional:
143 return kConditionalImmMask;
144 case BranchType::kTbxz:
145 return kTbxzImmMask;
146 case BranchType::kUnconditional:
147 return kUnconditionalImmMask;
148 default:
149 XNN_UNREACHABLE;
150 }
151 }
152
shift(BranchType branch_type)153 inline uint8_t shift(BranchType branch_type) {
154 switch (branch_type) {
155 case BranchType::kConditional:
156 return 5;
157 case BranchType::kTbxz:
158 return 5;
159 case BranchType::kUnconditional:
160 return 0;
161 default:
162 XNN_UNREACHABLE;
163 }
164 }
165
branch_imm(ptrdiff_t offset,BranchType bt)166 inline uint32_t branch_imm(ptrdiff_t offset, BranchType bt) {
167 return ((offset >> kInstructionSizeInBytesLog2) & mask(bt)) << shift(bt);
168 }
169
hl(VRegisterLane vl)170 inline uint32_t hl(VRegisterLane vl) {
171 if (vl.is_s()) {
172 return (vl.lane & 1) << 21 | ((vl.lane & 2) << 10);
173 } else {
174 return (vl.lane & 1) << 11;
175 }
176 }
177
lane_index_valid(uint8_t q,uint8_t size,uint8_t lane)178 inline bool lane_index_valid(uint8_t q, uint8_t size, uint8_t lane) {
179 // The logic here is something like:
180 // if (q && size == 0) {
181 // return lane < 16;
182 // } else if (q && size == 1) {
183 // return lane < 8;
184 // } else if (q && size == 2) {
185 // return lane < 4;
186 // } else if (q && size == 3) {
187 // return lane < 2;
188 // }
189 // then repeat for !q with maximum lane size halved.
190 // translated into this formula.
191 return lane < ((q + 1) << (3 - size));
192 }
193
load_store_opcode(uint8_t register_length)194 inline uint8_t load_store_opcode(uint8_t register_length) {
195 switch (register_length) {
196 case 1:
197 return 0x7;
198 case 2:
199 return 0xA;
200 case 3:
201 return 0x6;
202 case 4:
203 return 0x2;
204 default:
205 XNN_UNREACHABLE;
206 }
207 }
208
imm7_offset_valid(int32_t imm,XRegister)209 inline bool imm7_offset_valid(int32_t imm, XRegister) {
210 return imm >= kImm7Min && imm <= kImm7Max && (imm & 0x7) == 0;
211 }
212
imm7_offset_valid(int32_t imm,DRegister)213 inline bool imm7_offset_valid(int32_t imm, DRegister) {
214 return imm >= kImm7Min && imm <= kImm7Max && (imm & 0x7) == 0;
215 }
216
imm7_offset_valid(int32_t imm,QRegister)217 inline bool imm7_offset_valid(int32_t imm, QRegister) {
218 return imm >= (kImm7Min * 2) && imm <= (kImm7Max * 2) && (imm & 0xF) == 0;
219 }
220
221 // Base instructions.
222
add(XRegister xd,XRegister xn,uint16_t imm12)223 void Assembler::add(XRegister xd, XRegister xn, uint16_t imm12) {
224 // The instruction supports larger numbers using the shift by (left shift by 12), but that's unused in kernels.
225 if (imm12 > kUint12Max) {
226 error_ = Error::kInvalidOperand;
227 return;
228 }
229
230 emit32(0x91000000 | imm12 << 10 | rn(xn) | rd(xd));
231 }
232
add(XRegister xd,XRegister xn,XRegister xm)233 void Assembler::add(XRegister xd, XRegister xn, XRegister xm) {
234 emit32(0x8B000000 | rd(xd) | rn(xn) | rm(xm));
235 }
236
b(Label & l)237 void Assembler::b(Label& l) {
238 return branch_to_label(0x14000000, BranchType::kUnconditional, l);
239 }
240
cmp(XRegister xn,uint16_t imm12)241 void Assembler::cmp(XRegister xn, uint16_t imm12) {
242 if (imm12 > kUint12Max) {
243 error_ = Error::kInvalidOperand;
244 return;
245 }
246 emit32(0xF100001F | imm12 << 10 | rn(xn));
247 }
248
cmp(XRegister xn,XRegister xm)249 void Assembler::cmp(XRegister xn, XRegister xm) {
250 emit32(0xEB00001F | rm(xm) | rn(xn));
251 }
252
csel(XRegister xd,XRegister xn,XRegister xm,Condition c)253 void Assembler::csel(XRegister xd, XRegister xn, XRegister xm, Condition c) {
254 emit32(0x9A800000 | rm(xm) | c << 12 | rn(xn) | rd(xd));
255 }
256
hlt()257 void Assembler::hlt() {
258 emit32(0xD4400000);
259 }
260
ldp(XRegister xt1,XRegister xt2,MemOperand xn)261 void Assembler::ldp(XRegister xt1, XRegister xt2, MemOperand xn) {
262 if (!imm7_offset_valid(xn.offset, xt1)) {
263 error_ = Error::kInvalidOperand;
264 return;
265 }
266
267 const uint32_t offset = (xn.offset >> 3) & kImm7Mask;
268
269 emit32(0xA8400000 | postindex(xn) | wb(xn) | offset << 15 | rt2(xt2) | rn(xn.base) | xt1.code);
270 }
271
ldp(XRegister xt1,XRegister xt2,MemOperand xn,int32_t imm)272 void Assembler::ldp(XRegister xt1, XRegister xt2, MemOperand xn, int32_t imm) {
273 if (xn.offset != 0) {
274 error_ = Error::kInvalidOperand;
275 return;
276 }
277 return ldp(xt1, xt2, {xn.base, imm, AddressingMode::kPostIndex});
278 }
279
ldr(XRegister xt,MemOperand xn)280 void Assembler::ldr(XRegister xt, MemOperand xn) {
281 const int32_t imm = xn.offset;
282 if (xn.mode != AddressingMode::kOffset || imm < 0 || imm > (kUint12Max << 3) || (imm & 7) != 0) {
283 error_ = Error::kInvalidOperand;
284 return;
285 }
286
287 emit32(0xF9400000 | imm >> 3 << 10 | rn(xn.base) | xt.code);
288 }
289
ldr(XRegister xt,MemOperand xn,int32_t imm)290 void Assembler::ldr(XRegister xt, MemOperand xn, int32_t imm) {
291 if (imm < kInt9Min || imm > kInt9Max) {
292 error_ = Error::kInvalidOperand;
293 return;
294 }
295
296 emit32(0xF8400400 | imm9(imm) | rn(xn.base) | rt(xt));
297 }
298
mov(XRegister xd,XRegister xn)299 void Assembler::mov(XRegister xd, XRegister xn) {
300 emit32(0xAA0003E0 | rm(xn) | rd(xd));
301 }
302
nop()303 void Assembler::nop() {
304 emit32(0xD503201F);
305 }
306
prfm(PrefetchOp prfop,MemOperand xn)307 void Assembler::prfm(PrefetchOp prfop, MemOperand xn) {
308 if (xn.offset < 0 || xn.offset > kImm12Max) {
309 error_ = Error::kInvalidOperand;
310 return;
311 }
312
313 emit32(0xF9800000 | xn.offset >> 3 << 10 | rn(xn.base) | prfop);
314 }
315
ret()316 void Assembler::ret() {
317 emit32(0xD65F0000 | rn(x30));
318 }
319
stp(XRegister xt1,XRegister xt2,MemOperand xn)320 void Assembler::stp(XRegister xt1, XRegister xt2, MemOperand xn) {
321 if (!imm7_offset_valid(xn.offset, xt1)) {
322 error_ = Error::kInvalidOperand;
323 return;
324 }
325
326 const uint32_t offset = (xn.offset >> 3) & kImm7Mask;
327 emit32(0xA9000000 | wb(xn) | offset << 15 | rt2(xt2) | rn(xn.base) | rt(xt1));
328 }
329
str(XRegister xt1,MemOperand xn)330 void Assembler::str(XRegister xt1, MemOperand xn) {
331 const int32_t offset = xn.offset;
332 if (xn.mode == AddressingMode::kPreIndex) {
333 if (offset < kInt9Min || offset > kInt9Max) {
334 error_ = Error::kInvalidOperand;
335 return;
336 }
337 emit32(0xF8000C00 | imm9(offset) | rn(xn.base) | rt(xt1));
338 } else if (xn.mode == AddressingMode::kOffset) {
339 if (offset < 0 || offset > kImm12Max || offset % 8 != 0) {
340 error_ = Error::kInvalidOperand;
341 return;
342 }
343 emit32(0xF9000000 | offset >> 3 << 10 | rn(xn.base) | rt(xt1));
344 } else {
345 XNN_UNREACHABLE;
346 }
347 }
348
sub(XRegister xd,XRegister xn,XRegister xm)349 void Assembler::sub(XRegister xd, XRegister xn, XRegister xm) {
350 emit32(0xCB000000 | rm(xm) | rn(xn) | rd(xd));
351 }
352
subs(XRegister xd,XRegister xn,uint16_t imm12)353 void Assembler::subs(XRegister xd, XRegister xn, uint16_t imm12) {
354 if (imm12 > kUint12Max) {
355 error_ = Error::kInvalidOperand;
356 return;
357 }
358
359 emit32(0xF1000000 | imm12 << 10 | rn(xn) | rd(xd));
360 }
361
tbnz(XRegister xd,uint8_t bit,Label & l)362 void Assembler::tbnz(XRegister xd, uint8_t bit, Label& l) {
363 return tb_helper(0x37000000, xd, bit, l);
364 }
365
tbz(XRegister xd,uint8_t bit,Label & l)366 void Assembler::tbz(XRegister xd, uint8_t bit, Label& l) {
367 return tb_helper(0x36000000, xd, bit, l);
368 }
369
tst(XRegister xn,uint8_t imm)370 void Assembler::tst(XRegister xn, uint8_t imm) {
371 // Encoding of immediate is quite complicated, we only support po2-1, which is what assembly microkernel uses.
372 uint32_t imm_po2 = imm + 1;
373 if (!is_po2(imm_po2)) {
374 error_ = Error::kUnimplemented;
375 return;
376 }
377
378 const uint32_t imm_s = (math_ctz_u32(imm_po2) - 1) << 10;
379 emit32(0xF240001F | imm_s | rn(xn));
380 }
381
382 // SIMD instructions.
383
dup(DRegister dd,VRegisterLane vn)384 void Assembler::dup(DRegister dd, VRegisterLane vn) {
385 if (vn.size != 3 || vn.lane > 1) {
386 error_ = Error::kInvalidOperand;
387 return;
388 }
389 const uint8_t imm5 = 0b1000 | (vn.lane & 1) << 4;
390 emit32(0x5E000400 | imm5 << 16 | rn(vn) | rd(dd));
391 }
392
fabs(VRegister vd,VRegister vn)393 void Assembler::fabs(VRegister vd, VRegister vn) {
394 if (!is_same_shape(vd, vn)) {
395 error_ = Error::kInvalidOperand;
396 return;
397 }
398
399 emit32(0x0EA0F800 | q(vd) | fp_sz(vn) | rn(vn) | rd(vd));
400 }
401
fadd(VRegister vd,VRegister vn,VRegister vm)402 void Assembler::fadd(VRegister vd, VRegister vn, VRegister vm) {
403 if (!is_same_shape(vd, vn, vm)) {
404 error_ = Error::kInvalidOperand;
405 return;
406 }
407
408 emit32(0x0E20D400 | q(vd) | fp_sz(vn) | rm(vm) | rn(vn) | rd(vd));
409 }
410
fmax(VRegister vd,VRegister vn,VRegister vm)411 void Assembler::fmax(VRegister vd, VRegister vn, VRegister vm) {
412 if (!is_same_shape(vd, vn, vm)) {
413 error_ = Error::kInvalidOperand;
414 return;
415 }
416
417 emit32(0x0E20F400 | q(vd) | fp_sz(vn) | rm(vm) | rn(vn) | rd(vd));
418 }
419
fmin(VRegister vd,VRegister vn,VRegister vm)420 void Assembler::fmin(VRegister vd, VRegister vn, VRegister vm) {
421 if (!is_same_shape(vd, vn, vm)) {
422 error_ = Error::kInvalidOperand;
423 return;
424 }
425
426 emit32(0x0EA0F400 | q(vd) | fp_sz(vn) | rm(vm) | rn(vn) | rd(vd));
427 }
428
fmla(VRegister vd,VRegister vn,VRegisterLane vm)429 void Assembler::fmla(VRegister vd, VRegister vn, VRegisterLane vm) {
430 if (!is_same_shape(vd, vn) || !is_same_data_type(vd, vm)) {
431 error_ = Error::kInvalidOperand;
432 return;
433 }
434 if (!lane_index_valid(vd.q, vm.size, vm.lane)) {
435 error_ = Error::kInvalidLaneIndex;
436 return;
437 }
438
439 emit32(0x0F801000 | q(vd) | fp_sz(vd) | hl(vm) | rm(vm) | rn(vn) | rd(vd));
440 }
441
fmul(VRegister vd,VRegister vn,VRegister vm)442 void Assembler::fmul(VRegister vd, VRegister vn, VRegister vm) {
443 if (!is_same_shape(vd, vn, vm)) {
444 error_ = Error::kInvalidOperand;
445 return;
446 }
447
448 emit32(0x2E20DC00 | q(vd) | fp_sz(vn) | rm(vm) | rn(vn) | rd(vd));
449 }
450
fneg(VRegister vd,VRegister vn)451 void Assembler::fneg(VRegister vd, VRegister vn) {
452 if (!is_same_shape(vd, vn)) {
453 error_ = Error::kInvalidOperand;
454 return;
455 }
456
457 emit32(0x2EA0F800 | q(vd) | fp_sz(vn) | rn(vn) | rd(vd));
458 }
459
ld1(VRegisterList vs,MemOperand xn,int32_t imm)460 void Assembler::ld1(VRegisterList vs, MemOperand xn, int32_t imm) {
461 VRegister vt = vs.vt1;
462
463 if (!is_same_shape(vs) || !is_consecutive(vs)) {
464 error_ = Error::kInvalidOperand;
465 return;
466 }
467
468 // imm must match number of bytes loaded.
469 if ((vt.q + 1) * 8 * vs.length != imm) {
470 error_ = Error::kInvalidOperand;
471 return;
472 }
473
474 const uint8_t opcode = load_store_opcode(vs.length);
475
476 emit32(0x0CDF0000 | q(vt) | opcode << 12 | size(vt) | rn(xn.base) | rt(vt));
477 }
478
ld1r(VRegisterList xs,MemOperand xn)479 void Assembler::ld1r(VRegisterList xs, MemOperand xn) {
480 if (xs.length != 1 || xn.offset != 0) {
481 error_ = Error::kInvalidOperand;
482 return;
483 }
484
485 emit32(0x0D40C000 | q(xs.vt1) | size(xs.vt1) | rn(xn.base) | xs.vt1.code);
486 }
487
ld2r(VRegisterList xs,MemOperand xn)488 void Assembler::ld2r(VRegisterList xs, MemOperand xn) {
489 if (xs.length != 2 || !is_same_shape(xs.vt1, xs.vt2) || xn.offset != 0 || !is_consecutive(xs)) {
490 error_ = Error::kInvalidOperand;
491 return;
492 }
493
494 emit32(0x0D60C000 | q(xs.vt1) | size(xs.vt1) | rn(xn.base) | xs.vt1.code);
495 }
496
ld3r(VRegisterList xs,MemOperand xn)497 void Assembler::ld3r(VRegisterList xs, MemOperand xn) {
498 if (xs.length != 3 || !is_same_shape(xs.vt1, xs.vt2, xs.vt3) || xn.offset != 0 || !is_consecutive(xs)) {
499 error_ = Error::kInvalidOperand;
500 return;
501 }
502
503 emit32(0x0D40E000 | q(xs.vt1) | size(xs.vt1) | rn(xn.base) | xs.vt1.code);
504 }
505
ldp(DRegister dt1,DRegister dt2,MemOperand xn)506 void Assembler::ldp(DRegister dt1, DRegister dt2, MemOperand xn) {
507 if (!imm7_offset_valid(xn.offset, dt1)) {
508 error_ = Error::kInvalidOperand;
509 return;
510 }
511
512 const uint32_t offset = (xn.offset >> 3) & kImm7Mask;
513 emit32(0x6C400000 | postindex(xn) | wb(xn) | offset << 15 | rt2(dt2) | rn(xn.base) | rt(dt1));
514 }
515
ldp(DRegister dt1,DRegister dt2,MemOperand xn,int32_t imm)516 void Assembler::ldp(DRegister dt1, DRegister dt2, MemOperand xn, int32_t imm) {
517 return ldp(dt1, dt2, {xn.base, imm, AddressingMode::kPostIndex});
518 }
519
ldp(QRegister qt1,QRegister qt2,MemOperand xn,int32_t imm)520 void Assembler::ldp(QRegister qt1, QRegister qt2, MemOperand xn, int32_t imm) {
521 if (!imm7_offset_valid(imm, qt1)) {
522 error_ = Error::kInvalidOperand;
523 return;
524 }
525 const uint32_t offset = (imm >> 4) & kImm7Mask;
526
527 emit32(0xACC00000 | offset << 15 | rt2(qt2) | rn(xn.base) | qt1.code);
528 }
529
ldr(DRegister dt,MemOperand xn,int32_t imm)530 void Assembler::ldr(DRegister dt, MemOperand xn, int32_t imm) {
531 return ldr(/*size=*/3, /*opc=*/1, xn, imm, dt.code);
532 }
533
ldr(QRegister qt,MemOperand xn,int32_t imm)534 void Assembler::ldr(QRegister qt, MemOperand xn, int32_t imm) {
535 return ldr(/*size=*/0, /*opc=*/3, xn, imm, qt.code);
536 }
537
ldr(SRegister st,MemOperand xn,int32_t imm)538 void Assembler::ldr(SRegister st, MemOperand xn, int32_t imm) {
539 return ldr(/*size=*/2, /*opc=*/1, xn, imm, st.code);
540 }
541
mov(VRegister vd,VRegister vn)542 void Assembler::mov(VRegister vd, VRegister vn) {
543 if (!is_same_shape(vd, vn)) {
544 error_ = Error::kInvalidOperand;
545 return;
546 }
547 emit32(0x0EA01C00 | q(vd) | rm(vn) | rn(vn) | rd(vd));
548 }
549
movi(VRegister vd,uint8_t imm)550 void Assembler::movi(VRegister vd, uint8_t imm) {
551 if (imm != 0) {
552 error_ = Error::kUnimplemented;
553 return;
554 }
555
556 uint32_t cmode = 0;
557 switch (vd.size) {
558 case 0:
559 cmode = 0xE;
560 break;
561 case 1:
562 cmode = 0x8;
563 break;
564 case 2:
565 cmode = 0x0;
566 break;
567 default:
568 error_ = Error::kUnimplemented;
569 return;
570 }
571
572 emit32(0x0F000400 | q(vd) | cmode << 12 | vd.code);
573 }
574
st1(VRegisterList vs,MemOperand xn,XRegister xm)575 void Assembler::st1(VRegisterList vs, MemOperand xn, XRegister xm) {
576 if (!is_same_shape(vs) || !is_consecutive(vs)) {
577 error_ = Error::kInvalidOperand;
578 return;
579 }
580
581 VRegister vt = vs.vt1;
582
583 const uint8_t opcode = load_store_opcode(vs.length);
584 emit32(0x0C800000 | q(vt) | rm(xm) | opcode << 12 | size(vt) | rn(xn.base) | rt(vt));
585 }
586
stp(DRegister dt1,DRegister dt2,MemOperand xn)587 void Assembler::stp(DRegister dt1, DRegister dt2, MemOperand xn) {
588 if (!imm7_offset_valid(xn.offset, dt1)) {
589 error_ = Error::kInvalidOperand;
590 return;
591 }
592
593 const uint32_t offset = (xn.offset >> 3) & kImm7Mask;
594 emit32(0x6D000000 | wb(xn) | offset << 15 | rt2(dt2) | rn(xn.base) | rt(dt1));
595 }
596
stp(QRegister qt1,QRegister qt2,MemOperand xn)597 void Assembler::stp(QRegister qt1, QRegister qt2, MemOperand xn) {
598 if (!imm7_offset_valid(xn.offset, qt1)) {
599 error_ = Error::kInvalidOperand;
600 return;
601 }
602
603 const uint32_t offset = (xn.offset >> 4) & kImm7Mask;
604 emit32(0xAD000000 | wb(xn) | offset << 15 | rt2(qt2) | rn(xn.base) | rt(qt1));
605 }
606
stp(QRegister qt1,QRegister qt2,MemOperand xn,int32_t imm)607 void Assembler::stp(QRegister qt1, QRegister qt2, MemOperand xn, int32_t imm) {
608 if (!imm7_offset_valid(imm, qt1)) {
609 error_ = Error::kInvalidOperand;
610 return;
611 }
612
613 const uint32_t offset = (imm >> 4) & kImm7Mask;
614 emit32(0xAC800000 | offset << 15 | rt2(qt2) | rn(xn.base) | rt(qt1));
615 }
616
str(DRegister dt,MemOperand xn,int32_t imm)617 void Assembler::str(DRegister dt, MemOperand xn, int32_t imm) {
618 return str(/*size=*/3, /*opc=*/0, xn, imm, dt.code);
619 }
620
str(QRegister qt,MemOperand xn,int32_t imm)621 void Assembler::str(QRegister qt, MemOperand xn, int32_t imm) {
622 return str(/*size=*/0, /*opc=*/2, xn, imm, qt.code);
623 }
624
str(SRegister st,MemOperand xn)625 void Assembler::str(SRegister st, MemOperand xn) {
626 const int32_t imm = xn.offset;
627 if (imm < 0 || imm > (kUint12Max << 2) || (imm & 0x3) != 0) {
628 error_ = Error::kInvalidOperand;
629 return;
630 }
631
632 emit32(0xBD000000 | imm >> 2 << 10 | rn(xn.base) | rt(st));
633 }
634
str(SRegister st,MemOperand xn,int32_t imm)635 void Assembler::str(SRegister st, MemOperand xn, int32_t imm) {
636 return str(/*size=*/2, /*opc=*/0, xn, imm, st.code);
637 }
638
align(uint8_t n,AlignInstruction instr)639 void Assembler::align(uint8_t n, AlignInstruction instr) {
640 if (!is_po2(n) || (n % kInstructionSizeInBytes != 0)) {
641 error_ = Error::kInvalidOperand;
642 return;
643 }
644
645 uintptr_t cursor = reinterpret_cast<uintptr_t>(cursor_);
646 const uintptr_t target = round_up_po2(cursor, n);
647 while (cursor < target) {
648 switch (instr) {
649 case AlignInstruction::kHlt:
650 hlt();
651 break;
652 case AlignInstruction::kNop:
653 nop();
654 break;
655 default:
656 XNN_UNREACHABLE;
657 }
658 cursor += kInstructionSizeInBytes;
659 }
660 }
661
bind(Label & l)662 void Assembler::bind(Label& l) {
663 if (error_ != Error::kNoError) {
664 return;
665 }
666
667 if (l.bound) {
668 error_ = Error::kLabelAlreadyBound;
669 return;
670 }
671
672 l.bound = true;
673 l.offset = cursor_;
674
675 // Patch all users.
676 for (size_t i = 0; i < l.num_users; i++) {
677 byte* user = l.users[i];
678 const ptrdiff_t offset = l.offset - user;
679 uint32_t* instr = reinterpret_cast<uint32_t*>(user);
680
681 const BranchType bt = instruction_branch_type(*instr);
682 if (!branch_offset_valid(offset, bt)) {
683 error_ = Error::kLabelOffsetOutOfBounds;
684 return;
685 }
686
687 *instr |= branch_imm(offset, bt);
688 }
689 }
690
b(Condition c,Label & l)691 void Assembler::b(Condition c, Label& l) {
692 return branch_to_label(0x54000000 | c, BranchType::kConditional, l);
693 }
694
branch_to_label(uint32_t opcode,BranchType bt,Label & l)695 void Assembler::branch_to_label(uint32_t opcode, BranchType bt, Label& l) {
696 if (l.bound) {
697 const ptrdiff_t offset = l.offset - cursor_;
698 if (!branch_offset_valid(offset, bt)) {
699 error_ = Error::kLabelOffsetOutOfBounds;
700 return;
701 }
702 emit32(opcode | branch_imm(offset, bt));
703 } else {
704 if (!l.add_use(cursor_)) {
705 error_ = Error::kLabelHasTooManyUsers;
706 return;
707 }
708 emit32(opcode);
709 }
710 }
711
ldr(uint32_t size,uint32_t opc,MemOperand xn,int32_t imm,uint8_t rt_code)712 void Assembler::ldr(uint32_t size, uint32_t opc, MemOperand xn, int32_t imm, uint8_t rt_code) {
713 if (xn.mode != AddressingMode::kOffset || xn.offset != 0 || imm < kInt9Min || imm > kInt9Max) {
714 error_ = Error::kInvalidOperand;
715 return;
716 }
717
718 emit32(0x3C400400 | size << 30 | opc << 22 | imm9(imm) | rn(xn.base) | rt_code);
719 }
720
str(uint32_t size,uint32_t opc,MemOperand xn,int32_t imm,uint8_t rt_code)721 void Assembler::str(uint32_t size, uint32_t opc, MemOperand xn, int32_t imm, uint8_t rt_code) {
722 if (imm < kInt9Min || imm > kInt9Max) {
723 error_ = Error::kInvalidOperand;
724 return;
725 }
726
727 emit32(0x3C000400 | size << 30 | opc << 22 | imm9(imm) | rn(xn.base) | rt_code);
728 }
729
tb_helper(uint32_t op,XRegister xd,uint8_t bit,Label & l)730 void Assembler::tb_helper(uint32_t op, XRegister xd, uint8_t bit, Label& l) {
731 if (bit > 63) {
732 error_ = Error::kInvalidOperand;
733 return;
734 }
735
736 const uint32_t bit_pos = (bit & 0x20) >> 5 << 31 | (bit & 0x1F) << 19;
737 return branch_to_label(op | bit_pos | xd.code, BranchType::kTbxz, l);
738 }
739
740 } // namespace aarch64
741 } // namespace xnnpack
742