1 /*
2  * Copyright (c) 2019-2024, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2019-2023, Intel Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/bl_common.h>
12 #include <drivers/arm/gic_common.h>
13 #include <drivers/arm/gicv3.h>
14 #include <drivers/ti/uart/uart_16550.h>
15 #include <lib/mmio.h>
16 #include <lib/xlat_tables/xlat_mmu_helpers.h>
17 #include <lib/xlat_tables/xlat_tables_v2.h>
18 #include <plat/common/platform.h>
19 
20 #include "agilex5_power_manager.h"
21 #include "ccu/ncore_ccu.h"
22 #include "socfpga_mailbox.h"
23 #include "socfpga_private.h"
24 #include "socfpga_reset_manager.h"
25 
26 /* Get non-secure SPSR for BL33. Zephyr and Linux */
27 uint32_t arm_get_spsr_for_bl33_entry(void);
28 
29 static entry_point_info_t bl32_image_ep_info;
30 static entry_point_info_t bl33_image_ep_info;
31 
32 /* The GICv3 driver only needs to be initialized in EL3 */
33 static uintptr_t rdistif_base_addrs[PLATFORM_CORE_COUNT];
34 
35 #define SMMU_SDMMC
36 
bl31_plat_get_next_image_ep_info(uint32_t type)37 entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
38 {
39 	entry_point_info_t *next_image_info;
40 
41 	next_image_info = (type == NON_SECURE) ?
42 			  &bl33_image_ep_info : &bl32_image_ep_info;
43 
44 	/* None of the images on this platform can have 0x0 as the entrypoint */
45 	if (next_image_info->pc)
46 		return next_image_info;
47 	else
48 		return NULL;
49 }
50 
bl31_early_platform_setup2(u_register_t arg0,u_register_t arg1,u_register_t arg2,u_register_t arg3)51 void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
52 				u_register_t arg2, u_register_t arg3)
53 {
54 	static console_t console;
55 
56 	mmio_write_64(PLAT_SEC_ENTRY, PLAT_SEC_WARM_ENTRY);
57 
58 	console_16550_register(PLAT_INTEL_UART_BASE, PLAT_UART_CLOCK,
59 	PLAT_BAUDRATE, &console);
60 
61 	init_ncore_ccu();
62 	setup_smmu_stream_id();
63 
64 	/*
65 	 * Check params passed from BL31 should not be NULL,
66 	 */
67 	void *from_bl2 = (void *) arg0;
68 
69 #if RESET_TO_BL31
70 	/* There are no parameters from BL2 if BL31 is a reset vector */
71 	assert(from_bl2 == NULL);
72 	void *plat_params_from_bl2 = (void *) arg3;
73 
74 	assert(plat_params_from_bl2 == NULL);
75 
76 	/* Populate entry point information for BL33 */
77 	SET_PARAM_HEAD(&bl33_image_ep_info,
78 				PARAM_EP,
79 				VERSION_1,
80 				0);
81 
82 # if ARM_LINUX_KERNEL_AS_BL33
83 	/*
84 	 * According to the file ``Documentation/arm64/booting.txt`` of the
85 	 * Linux kernel tree, Linux expects the physical address of the device
86 	 * tree blob (DTB) in x0, while x1-x3 are reserved for future use and
87 	 * must be 0.
88 	 */
89 	bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
90 	bl33_image_ep_info.args.arg1 = 0U;
91 	bl33_image_ep_info.args.arg2 = 0U;
92 	bl33_image_ep_info.args.arg3 = 0U;
93 # endif
94 
95 #else /* RESET_TO_BL31 */
96 	bl_params_t *params_from_bl2 = (bl_params_t *)from_bl2;
97 
98 	assert(params_from_bl2 != NULL);
99 
100 	/*
101 	 * Copy BL32 (if populated by BL31) and BL33 entry point information.
102 	 * They are stored in Secure RAM, in BL31's address space.
103 	 */
104 
105 	if (params_from_bl2->h.type == PARAM_BL_PARAMS &&
106 		params_from_bl2->h.version >= VERSION_2) {
107 
108 		bl_params_node_t *bl_params = params_from_bl2->head;
109 
110 		while (bl_params) {
111 			if (bl_params->image_id == BL33_IMAGE_ID) {
112 				bl33_image_ep_info = *bl_params->ep_info;
113 			}
114 				bl_params = bl_params->next_params_info;
115 		}
116 	} else {
117 		struct socfpga_bl31_params *arg_from_bl2 =
118 			(struct socfpga_bl31_params *) from_bl2;
119 
120 		assert(arg_from_bl2->h.type == PARAM_BL31);
121 		assert(arg_from_bl2->h.version >= VERSION_1);
122 
123 		bl32_image_ep_info = *arg_from_bl2->bl32_ep_info;
124 		bl33_image_ep_info = *arg_from_bl2->bl33_ep_info;
125 	}
126 
127 	bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
128 	bl33_image_ep_info.args.arg1 = 0U;
129 	bl33_image_ep_info.args.arg2 = 0U;
130 	bl33_image_ep_info.args.arg3 = 0U;
131 #endif
132 
133 	/*
134 	 * Tell BL31 where the non-trusted software image
135 	 * is located and the entry state information
136 	 */
137 	bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
138 	bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry();
139 
140 	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
141 }
142 
143 static const interrupt_prop_t agx5_interrupt_props[] = {
144 	PLAT_INTEL_SOCFPGA_G1S_IRQ_PROPS(INTR_GROUP1S),
145 	PLAT_INTEL_SOCFPGA_G0_IRQ_PROPS(INTR_GROUP0)
146 };
147 
148 static const gicv3_driver_data_t plat_gicv3_gic_data = {
149 	.gicd_base = PLAT_INTEL_SOCFPGA_GICD_BASE,
150 	.gicr_base = PLAT_INTEL_SOCFPGA_GICR_BASE,
151 	.interrupt_props = agx5_interrupt_props,
152 	.interrupt_props_num = ARRAY_SIZE(agx5_interrupt_props),
153 	.rdistif_num = PLATFORM_CORE_COUNT,
154 	.rdistif_base_addrs = rdistif_base_addrs,
155 };
156 
157 /*******************************************************************************
158  * Perform any BL3-1 platform setup code
159  ******************************************************************************/
bl31_platform_setup(void)160 void bl31_platform_setup(void)
161 {
162 	socfpga_delay_timer_init();
163 
164 	/* Initialize the gic cpu and distributor interfaces */
165 	gicv3_driver_init(&plat_gicv3_gic_data);
166 	gicv3_distif_init();
167 	gicv3_rdistif_init(plat_my_core_pos());
168 	gicv3_cpuif_enable(plat_my_core_pos());
169 	mailbox_hps_stage_notify(HPS_EXECUTION_STATE_SSBL);
170 }
171 
172 const mmap_region_t plat_agilex_mmap[] = {
173 	MAP_REGION_FLAT(DRAM_BASE, DRAM_SIZE, MT_MEMORY | MT_RW | MT_NS),
174 	MAP_REGION_FLAT(PSS_BASE, PSS_SIZE, MT_DEVICE | MT_RW | MT_NS),
175 	MAP_REGION_FLAT(MPFE_BASE, MPFE_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
176 	MAP_REGION_FLAT(OCRAM_BASE, OCRAM_SIZE, MT_NON_CACHEABLE | MT_RW | MT_SECURE),
177 	MAP_REGION_FLAT(CCU_BASE, CCU_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
178 	MAP_REGION_FLAT(MEM64_BASE, MEM64_SIZE, MT_DEVICE | MT_RW | MT_NS),
179 	MAP_REGION_FLAT(GIC_BASE, GIC_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
180 	{0}
181 };
182 
183 /*******************************************************************************
184  * Perform the very early platform specific architectural setup here. At the
185  * moment this is only initializes the mmu in a quick and dirty way.
186  ******************************************************************************/
bl31_plat_arch_setup(void)187 void bl31_plat_arch_setup(void)
188 {
189 	uint32_t boot_core = 0x00;
190 	uint32_t cpuid = 0x00;
191 
192 	cpuid = read_mpidr();
193 	boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00);
194 	NOTICE("BL31: Boot Core = %x\n", boot_core);
195 	NOTICE("BL31: CPU ID = %x\n", cpuid);
196 
197 }
198 
199 /* Get non-secure image entrypoint for BL33. Zephyr and Linux */
plat_get_ns_image_entrypoint(void)200 uintptr_t plat_get_ns_image_entrypoint(void)
201 {
202 #ifdef PRELOADED_BL33_BASE
203 	return PRELOADED_BL33_BASE;
204 #else
205 	return PLAT_NS_IMAGE_OFFSET;
206 #endif
207 }
208 
209 /* Get non-secure SPSR for BL33. Zephyr and Linux */
arm_get_spsr_for_bl33_entry(void)210 uint32_t arm_get_spsr_for_bl33_entry(void)
211 {
212 	unsigned int mode;
213 	uint32_t spsr;
214 
215 	/* Figure out what mode we enter the non-secure world in */
216 	mode = (el_implemented(2) != EL_IMPL_NONE) ? MODE_EL2 : MODE_EL1;
217 
218 	/*
219 	 * TODO: Consider the possibility of specifying the SPSR in
220 	 * the FIP ToC and allowing the platform to have a say as
221 	 * well.
222 	 */
223 	spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
224 	return spsr;
225 }
226 
227 /* SMP: Secondary cores BL31 setup reset vector */
bl31_plat_set_secondary_cpu_entrypoint(unsigned int cpu_id)228 void bl31_plat_set_secondary_cpu_entrypoint(unsigned int cpu_id)
229 {
230 	unsigned int pch_cpu = 0x00;
231 	unsigned int pchctlr_old = 0x00;
232 	unsigned int pchctlr_new = 0x00;
233 	uint32_t boot_core = 0x00;
234 
235 	boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00);
236 	/* Update the p-channel based on cpu id */
237 	pch_cpu = 1 << cpu_id;
238 
239 	if (boot_core == 0x00) {
240 		/* Update reset vector to 0x00 */
241 		mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU2,
242 (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
243 	} else {
244 		/* Update reset vector to 0x00 */
245 		mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU0,
246 (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
247 	}
248 
249 	/* Update reset vector to 0x00 */
250 	mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU1, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
251 	mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU3, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
252 
253 	/* On all cores - temporary */
254 	pchctlr_old = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
255 	pchctlr_new = pchctlr_old | (pch_cpu<<1);
256 	mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pchctlr_new);
257 
258 	/* We will only release the target secondary CPUs */
259 	/* Bit mask for each CPU BIT0-3 */
260 	mmio_write_32(RSTMGR_CPUSTRELEASE_CPUx, pch_cpu);
261 }
262 
bl31_plat_set_secondary_cpu_off(void)263 void bl31_plat_set_secondary_cpu_off(void)
264 {
265 	unsigned int pch_cpu = 0x00;
266 	unsigned int pch_cpu_off = 0x00;
267 	unsigned int cpu_id = plat_my_core_pos();
268 
269 	pch_cpu_off = 1 << cpu_id;
270 
271 	pch_cpu = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
272 	pch_cpu = pch_cpu & ~(pch_cpu_off << 1);
273 
274 	mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pch_cpu);
275 }
276 
bl31_plat_enable_mmu(uint32_t flags)277 void bl31_plat_enable_mmu(uint32_t flags)
278 {
279 	/* TODO: Enable mmu when needed */
280 }
281