1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <float.h>
13 #include <math.h>
14 #include <limits.h>
15
16 #include "config/aom_config.h"
17 #include "config/aom_scale_rtcd.h"
18
19 #include "aom_dsp/aom_dsp_common.h"
20 #include "aom_dsp/mathutils.h"
21 #include "aom_dsp/odintrin.h"
22 #include "aom_mem/aom_mem.h"
23 #include "aom_ports/aom_timer.h"
24 #include "aom_ports/mem.h"
25 #include "av1/common/alloccommon.h"
26 #include "av1/common/av1_common_int.h"
27 #include "av1/common/quant_common.h"
28 #include "av1/common/reconinter.h"
29 #include "av1/encoder/av1_quantize.h"
30 #include "av1/encoder/encodeframe.h"
31 #include "av1/encoder/encoder.h"
32 #include "av1/encoder/ethread.h"
33 #include "av1/encoder/extend.h"
34 #include "av1/encoder/firstpass.h"
35 #include "av1/encoder/gop_structure.h"
36 #include "av1/encoder/intra_mode_search_utils.h"
37 #include "av1/encoder/mcomp.h"
38 #include "av1/encoder/motion_search_facade.h"
39 #include "av1/encoder/pass2_strategy.h"
40 #include "av1/encoder/ratectrl.h"
41 #include "av1/encoder/reconinter_enc.h"
42 #include "av1/encoder/segmentation.h"
43 #include "av1/encoder/temporal_filter.h"
44
45 /*!\cond */
46
47 // NOTE: All `tf` in this file means `temporal filtering`.
48
49 // Forward Declaration.
50 static void tf_determine_block_partition(const MV block_mv, const int block_mse,
51 MV *subblock_mvs, int *subblock_mses);
52
53 // This function returns the minimum and maximum log variances for 4x4 sub
54 // blocks in the current block.
get_log_var_4x4sub_blk(AV1_COMP * cpi,const YV12_BUFFER_CONFIG * const frame_to_filter,int mb_row,int mb_col,BLOCK_SIZE block_size,double * blk_4x4_var_min,double * blk_4x4_var_max,int is_hbd)55 static inline void get_log_var_4x4sub_blk(
56 AV1_COMP *cpi, const YV12_BUFFER_CONFIG *const frame_to_filter, int mb_row,
57 int mb_col, BLOCK_SIZE block_size, double *blk_4x4_var_min,
58 double *blk_4x4_var_max, int is_hbd) {
59 const int mb_height = block_size_high[block_size];
60 const int mb_width = block_size_wide[block_size];
61 int var_min = INT_MAX;
62 int var_max = 0;
63
64 // Derive the source buffer.
65 const int src_stride = frame_to_filter->y_stride;
66 const int y_offset = mb_row * mb_height * src_stride + mb_col * mb_width;
67 const uint8_t *src_buf = frame_to_filter->y_buffer + y_offset;
68
69 for (int i = 0; i < mb_height; i += MI_SIZE) {
70 for (int j = 0; j < mb_width; j += MI_SIZE) {
71 // Calculate the 4x4 sub-block variance.
72 const int var = av1_calc_normalized_variance(
73 cpi->ppi->fn_ptr[BLOCK_4X4].vf, src_buf + (i * src_stride) + j,
74 src_stride, is_hbd);
75
76 // Record min and max for over-arching block
77 var_min = AOMMIN(var_min, var);
78 var_max = AOMMAX(var_max, var);
79 }
80 }
81
82 *blk_4x4_var_min = log1p(var_min / 16.0);
83 *blk_4x4_var_max = log1p(var_max / 16.0);
84 }
85
86 // Helper function to get `q` used for encoding.
get_q(const AV1_COMP * cpi)87 static int get_q(const AV1_COMP *cpi) {
88 const GF_GROUP *gf_group = &cpi->ppi->gf_group;
89 const FRAME_TYPE frame_type = gf_group->frame_type[cpi->gf_frame_index];
90 const int q =
91 (int)av1_convert_qindex_to_q(cpi->ppi->p_rc.avg_frame_qindex[frame_type],
92 cpi->common.seq_params->bit_depth);
93 return q;
94 }
95
96 /*!\endcond */
97 /*!\brief Does motion search for blocks in temporal filtering. This is
98 * the first step for temporal filtering. More specifically, given a frame to
99 * be filtered and another frame as reference, this function searches the
100 * reference frame to find out the most similar block as that from the frame
101 * to be filtered. This found block will be further used for weighted
102 * averaging.
103 *
104 * NOTE: Besides doing motion search for the entire block, this function will
105 * also do motion search for each 1/4 sub-block to get more precise
106 * predictions. Then, this function will determines whether to use 4
107 * sub-blocks to replace the entire block. If we do need to split the
108 * entire block, 4 elements in `subblock_mvs` and `subblock_mses` refer to
109 * the searched motion vector and search error (MSE) w.r.t. each sub-block
110 * respectively. Otherwise, the 4 elements will be the same, all of which
111 * are assigned as the searched motion vector and search error (MSE) for
112 * the entire block.
113 *
114 * \ingroup src_frame_proc
115 * \param[in] cpi Top level encoder instance structure
116 * \param[in] mb Pointer to macroblock
117 * \param[in] frame_to_filter Pointer to the frame to be filtered
118 * \param[in] ref_frame Pointer to the reference frame
119 * \param[in] block_size Block size used for motion search
120 * \param[in] mb_row Row index of the block in the frame
121 * \param[in] mb_col Column index of the block in the frame
122 * \param[in] ref_mv Reference motion vector, which is commonly
123 * inherited from the motion search result of
124 * previous frame.
125 * \param[in] allow_me_for_sub_blks Flag to indicate whether motion search at
126 * 16x16 sub-block level is needed or not.
127 * \param[out] subblock_mvs Pointer to the motion vectors for
128 * 4 sub-blocks
129 * \param[out] subblock_mses Pointer to the search errors (MSE) for
130 * 4 sub-blocks
131 *
132 * \remark Nothing will be returned. Results are saved in subblock_mvs and
133 * subblock_mses
134 */
tf_motion_search(AV1_COMP * cpi,MACROBLOCK * mb,const YV12_BUFFER_CONFIG * frame_to_filter,const YV12_BUFFER_CONFIG * ref_frame,const BLOCK_SIZE block_size,const int mb_row,const int mb_col,MV * ref_mv,bool allow_me_for_sub_blks,MV * subblock_mvs,int * subblock_mses)135 static void tf_motion_search(AV1_COMP *cpi, MACROBLOCK *mb,
136 const YV12_BUFFER_CONFIG *frame_to_filter,
137 const YV12_BUFFER_CONFIG *ref_frame,
138 const BLOCK_SIZE block_size, const int mb_row,
139 const int mb_col, MV *ref_mv,
140 bool allow_me_for_sub_blks, MV *subblock_mvs,
141 int *subblock_mses) {
142 // Frame information
143 const int min_frame_size = AOMMIN(cpi->common.width, cpi->common.height);
144
145 // Block information (ONLY Y-plane is used for motion search).
146 const int mb_height = block_size_high[block_size];
147 const int mb_width = block_size_wide[block_size];
148 const int mb_pels = mb_height * mb_width;
149 const int y_stride = frame_to_filter->y_stride;
150 const int src_width = frame_to_filter->y_width;
151 const int ref_width = ref_frame->y_width;
152 assert(y_stride == ref_frame->y_stride);
153 assert(src_width == ref_width);
154 const int y_offset = mb_row * mb_height * y_stride + mb_col * mb_width;
155
156 // Save input state.
157 MACROBLOCKD *const mbd = &mb->e_mbd;
158 const struct buf_2d ori_src_buf = mb->plane[0].src;
159 const struct buf_2d ori_pre_buf = mbd->plane[0].pre[0];
160
161 // Parameters used for motion search.
162 FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
163 SUBPEL_MOTION_SEARCH_PARAMS ms_params;
164 const int step_param = av1_init_search_range(
165 AOMMAX(frame_to_filter->y_crop_width, frame_to_filter->y_crop_height));
166 const SUBPEL_SEARCH_TYPE subpel_search_type = USE_8_TAPS;
167 const int force_integer_mv = cpi->common.features.cur_frame_force_integer_mv;
168 const MV_COST_TYPE mv_cost_type =
169 min_frame_size >= 720
170 ? MV_COST_L1_HDRES
171 : (min_frame_size >= 480 ? MV_COST_L1_MIDRES : MV_COST_L1_LOWRES);
172
173 // Starting position for motion search.
174 FULLPEL_MV start_mv = get_fullmv_from_mv(ref_mv);
175 // Baseline position for motion search (used for rate distortion comparison).
176 const MV baseline_mv = kZeroMv;
177
178 // Setup.
179 mb->plane[0].src.buf = frame_to_filter->y_buffer + y_offset;
180 mb->plane[0].src.stride = y_stride;
181 mb->plane[0].src.width = src_width;
182 mbd->plane[0].pre[0].buf = ref_frame->y_buffer + y_offset;
183 mbd->plane[0].pre[0].stride = y_stride;
184 mbd->plane[0].pre[0].width = ref_width;
185
186 const SEARCH_METHODS search_method = NSTEP;
187 const search_site_config *search_site_cfg =
188 av1_get_search_site_config(cpi, mb, search_method);
189
190 // Unused intermediate results for motion search.
191 unsigned int sse, error;
192 int distortion;
193 int cost_list[5];
194
195 // Do motion search.
196 int_mv best_mv; // Searched motion vector.
197 FULLPEL_MV_STATS best_mv_stats;
198 int block_mse = INT_MAX;
199 MV block_mv = kZeroMv;
200 const int q = get_q(cpi);
201
202 av1_make_default_fullpel_ms_params(&full_ms_params, cpi, mb, block_size,
203 &baseline_mv, start_mv, search_site_cfg,
204 search_method,
205 /*fine_search_interval=*/0);
206 full_ms_params.run_mesh_search = 1;
207 full_ms_params.mv_cost_params.mv_cost_type = mv_cost_type;
208
209 if (cpi->sf.mv_sf.prune_mesh_search == PRUNE_MESH_SEARCH_LVL_1) {
210 // Enable prune_mesh_search based on q for PRUNE_MESH_SEARCH_LVL_1.
211 full_ms_params.prune_mesh_search = (q <= 20) ? 0 : 1;
212 full_ms_params.mesh_search_mv_diff_threshold = 2;
213 }
214
215 av1_full_pixel_search(start_mv, &full_ms_params, step_param,
216 cond_cost_list(cpi, cost_list), &best_mv.as_fullmv,
217 &best_mv_stats, NULL);
218
219 if (force_integer_mv == 1) { // Only do full search on the entire block.
220 const int mv_row = best_mv.as_mv.row;
221 const int mv_col = best_mv.as_mv.col;
222 best_mv.as_mv.row = GET_MV_SUBPEL(mv_row);
223 best_mv.as_mv.col = GET_MV_SUBPEL(mv_col);
224 const int mv_offset = mv_row * y_stride + mv_col;
225 error = cpi->ppi->fn_ptr[block_size].vf(
226 ref_frame->y_buffer + y_offset + mv_offset, y_stride,
227 frame_to_filter->y_buffer + y_offset, y_stride, &sse);
228 block_mse = DIVIDE_AND_ROUND(error, mb_pels);
229 block_mv = best_mv.as_mv;
230 } else { // Do fractional search on the entire block and all sub-blocks.
231 av1_make_default_subpel_ms_params(&ms_params, cpi, mb, block_size,
232 &baseline_mv, cost_list);
233 ms_params.forced_stop = EIGHTH_PEL;
234 ms_params.var_params.subpel_search_type = subpel_search_type;
235 // Since we are merely refining the result from full pixel search, we don't
236 // need regularization for subpel search
237 ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
238 best_mv_stats.err_cost = 0;
239
240 MV subpel_start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
241 assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
242 error = cpi->mv_search_params.find_fractional_mv_step(
243 &mb->e_mbd, &cpi->common, &ms_params, subpel_start_mv, &best_mv_stats,
244 &best_mv.as_mv, &distortion, &sse, NULL);
245 block_mse = DIVIDE_AND_ROUND(error, mb_pels);
246 block_mv = best_mv.as_mv;
247 *ref_mv = best_mv.as_mv;
248
249 if (allow_me_for_sub_blks) {
250 // On 4 sub-blocks.
251 const BLOCK_SIZE subblock_size = av1_ss_size_lookup[block_size][1][1];
252 const int subblock_height = block_size_high[subblock_size];
253 const int subblock_width = block_size_wide[subblock_size];
254 const int subblock_pels = subblock_height * subblock_width;
255 start_mv = get_fullmv_from_mv(ref_mv);
256
257 int subblock_idx = 0;
258 for (int i = 0; i < mb_height; i += subblock_height) {
259 for (int j = 0; j < mb_width; j += subblock_width) {
260 const int offset = i * y_stride + j;
261 mb->plane[0].src.buf = frame_to_filter->y_buffer + y_offset + offset;
262 mbd->plane[0].pre[0].buf = ref_frame->y_buffer + y_offset + offset;
263 av1_make_default_fullpel_ms_params(
264 &full_ms_params, cpi, mb, subblock_size, &baseline_mv, start_mv,
265 search_site_cfg, search_method,
266 /*fine_search_interval=*/0);
267 full_ms_params.run_mesh_search = 1;
268 full_ms_params.mv_cost_params.mv_cost_type = mv_cost_type;
269
270 if (cpi->sf.mv_sf.prune_mesh_search == PRUNE_MESH_SEARCH_LVL_1) {
271 // Enable prune_mesh_search based on q for PRUNE_MESH_SEARCH_LVL_1.
272 full_ms_params.prune_mesh_search = (q <= 20) ? 0 : 1;
273 full_ms_params.mesh_search_mv_diff_threshold = 2;
274 }
275 av1_full_pixel_search(start_mv, &full_ms_params, step_param,
276 cond_cost_list(cpi, cost_list),
277 &best_mv.as_fullmv, &best_mv_stats, NULL);
278
279 av1_make_default_subpel_ms_params(&ms_params, cpi, mb, subblock_size,
280 &baseline_mv, cost_list);
281 ms_params.forced_stop = EIGHTH_PEL;
282 ms_params.var_params.subpel_search_type = subpel_search_type;
283 // Since we are merely refining the result from full pixel search, we
284 // don't need regularization for subpel search
285 ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
286 best_mv_stats.err_cost = 0;
287
288 subpel_start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
289 assert(
290 av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
291 error = cpi->mv_search_params.find_fractional_mv_step(
292 &mb->e_mbd, &cpi->common, &ms_params, subpel_start_mv,
293 &best_mv_stats, &best_mv.as_mv, &distortion, &sse, NULL);
294 subblock_mses[subblock_idx] = DIVIDE_AND_ROUND(error, subblock_pels);
295 subblock_mvs[subblock_idx] = best_mv.as_mv;
296 ++subblock_idx;
297 }
298 }
299 }
300 }
301
302 // Restore input state.
303 mb->plane[0].src = ori_src_buf;
304 mbd->plane[0].pre[0] = ori_pre_buf;
305
306 // Make partition decision.
307 if (allow_me_for_sub_blks) {
308 tf_determine_block_partition(block_mv, block_mse, subblock_mvs,
309 subblock_mses);
310 } else {
311 // Copy 32X32 block mv and mse values to sub blocks
312 for (int i = 0; i < 4; ++i) {
313 subblock_mvs[i] = block_mv;
314 subblock_mses[i] = block_mse;
315 }
316 }
317 // Do not pass down the reference motion vector if error is too large.
318 const int thresh = (min_frame_size >= 720) ? 12 : 3;
319 if (block_mse > (thresh << (mbd->bd - 8))) {
320 *ref_mv = kZeroMv;
321 }
322 }
323 /*!\cond */
324
325 // Determines whether to split the entire block to 4 sub-blocks for filtering.
326 // In particular, this decision is made based on the comparison between the
327 // motion search error of the entire block and the errors of all sub-blocks.
328 // Inputs:
329 // block_mv: Motion vector for the entire block (ONLY as reference).
330 // block_mse: Motion search error (MSE) for the entire block (ONLY as
331 // reference).
332 // subblock_mvs: Pointer to the motion vectors for 4 sub-blocks (will be
333 // modified based on the partition decision).
334 // subblock_mses: Pointer to the search errors (MSE) for 4 sub-blocks (will
335 // be modified based on the partition decision).
336 // Returns:
337 // Nothing will be returned. Results are saved in `subblock_mvs` and
338 // `subblock_mses`.
tf_determine_block_partition(const MV block_mv,const int block_mse,MV * subblock_mvs,int * subblock_mses)339 static void tf_determine_block_partition(const MV block_mv, const int block_mse,
340 MV *subblock_mvs, int *subblock_mses) {
341 int min_subblock_mse = INT_MAX;
342 int max_subblock_mse = INT_MIN;
343 int64_t sum_subblock_mse = 0;
344 for (int i = 0; i < 4; ++i) {
345 sum_subblock_mse += subblock_mses[i];
346 min_subblock_mse = AOMMIN(min_subblock_mse, subblock_mses[i]);
347 max_subblock_mse = AOMMAX(max_subblock_mse, subblock_mses[i]);
348 }
349
350 // TODO(any): The following magic numbers may be tuned to improve the
351 // performance OR find a way to get rid of these magic numbers.
352 if (((block_mse * 15 < sum_subblock_mse * 4) &&
353 max_subblock_mse - min_subblock_mse < 48) ||
354 ((block_mse * 14 < sum_subblock_mse * 4) &&
355 max_subblock_mse - min_subblock_mse < 24)) { // No split.
356 for (int i = 0; i < 4; ++i) {
357 subblock_mvs[i] = block_mv;
358 subblock_mses[i] = block_mse;
359 }
360 }
361 }
362
363 // Helper function to determine whether a frame is encoded with high bit-depth.
is_frame_high_bitdepth(const YV12_BUFFER_CONFIG * frame)364 static inline int is_frame_high_bitdepth(const YV12_BUFFER_CONFIG *frame) {
365 return (frame->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
366 }
367
368 /*!\endcond */
369 /*!\brief Builds predictor for blocks in temporal filtering. This is the
370 * second step for temporal filtering, which is to construct predictions from
371 * all reference frames INCLUDING the frame to be filtered itself. These
372 * predictors are built based on the motion search results (motion vector is
373 * set as 0 for the frame to be filtered), and will be futher used for
374 * weighted averaging.
375 *
376 * \ingroup src_frame_proc
377 * \param[in] ref_frame Pointer to the reference frame (or the frame
378 * to be filtered)
379 * \param[in] mbd Pointer to the block for filtering. Besides
380 * containing the subsampling information of all
381 * planes, this field also gives the searched
382 * motion vector for the entire block, i.e.,
383 * `mbd->mi[0]->mv[0]`. This vector should be 0
384 * if the `ref_frame` itself is the frame to be
385 * filtered.
386 * \param[in] block_size Size of the block
387 * \param[in] mb_row Row index of the block in the frame
388 * \param[in] mb_col Column index of the block in the frame
389 * \param[in] num_planes Number of planes in the frame
390 * \param[in] scale Scaling factor
391 * \param[in] subblock_mvs The motion vectors for each sub-block (row-major
392 * order)
393 * \param[out] pred Pointer to the predictor to be built
394 *
395 * \remark Nothing returned, But the contents of `pred` will be modified
396 */
tf_build_predictor(const YV12_BUFFER_CONFIG * ref_frame,const MACROBLOCKD * mbd,const BLOCK_SIZE block_size,const int mb_row,const int mb_col,const int num_planes,const struct scale_factors * scale,const MV * subblock_mvs,uint8_t * pred)397 static void tf_build_predictor(const YV12_BUFFER_CONFIG *ref_frame,
398 const MACROBLOCKD *mbd,
399 const BLOCK_SIZE block_size, const int mb_row,
400 const int mb_col, const int num_planes,
401 const struct scale_factors *scale,
402 const MV *subblock_mvs, uint8_t *pred) {
403 // Information of the entire block.
404 const int mb_height = block_size_high[block_size]; // Height.
405 const int mb_width = block_size_wide[block_size]; // Width.
406 const int mb_y = mb_height * mb_row; // Y-coord (Top-left).
407 const int mb_x = mb_width * mb_col; // X-coord (Top-left).
408 const int bit_depth = mbd->bd; // Bit depth.
409 const int is_intrabc = 0; // Is intra-copied?
410 const int is_high_bitdepth = is_frame_high_bitdepth(ref_frame);
411
412 // Default interpolation filters.
413 const int_interpfilters interp_filters =
414 av1_broadcast_interp_filter(MULTITAP_SHARP2);
415
416 // Handle Y-plane, U-plane and V-plane (if needed) in sequence.
417 int plane_offset = 0;
418 for (int plane = 0; plane < num_planes; ++plane) {
419 const int subsampling_y = mbd->plane[plane].subsampling_y;
420 const int subsampling_x = mbd->plane[plane].subsampling_x;
421 // Information of each sub-block in current plane.
422 const int plane_h = mb_height >> subsampling_y; // Plane height.
423 const int plane_w = mb_width >> subsampling_x; // Plane width.
424 const int plane_y = mb_y >> subsampling_y; // Y-coord (Top-left).
425 const int plane_x = mb_x >> subsampling_x; // X-coord (Top-left).
426 const int h = plane_h >> 1; // Sub-block height.
427 const int w = plane_w >> 1; // Sub-block width.
428 const int is_y_plane = (plane == 0); // Is Y-plane?
429
430 const struct buf_2d ref_buf = { NULL, ref_frame->buffers[plane],
431 ref_frame->widths[is_y_plane ? 0 : 1],
432 ref_frame->heights[is_y_plane ? 0 : 1],
433 ref_frame->strides[is_y_plane ? 0 : 1] };
434
435 // Handle each subblock.
436 int subblock_idx = 0;
437 for (int i = 0; i < plane_h; i += h) {
438 for (int j = 0; j < plane_w; j += w) {
439 // Choose proper motion vector.
440 const MV mv = subblock_mvs[subblock_idx++];
441 assert(mv.row >= INT16_MIN && mv.row <= INT16_MAX &&
442 mv.col >= INT16_MIN && mv.col <= INT16_MAX);
443
444 const int y = plane_y + i;
445 const int x = plane_x + j;
446
447 // Build predictior for each sub-block on current plane.
448 InterPredParams inter_pred_params;
449 av1_init_inter_params(&inter_pred_params, w, h, y, x, subsampling_x,
450 subsampling_y, bit_depth, is_high_bitdepth,
451 is_intrabc, scale, &ref_buf, interp_filters);
452 inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
453 av1_enc_build_one_inter_predictor(&pred[plane_offset + i * plane_w + j],
454 plane_w, &mv, &inter_pred_params);
455 }
456 }
457 plane_offset += plane_h * plane_w;
458 }
459 }
460 /*!\cond */
461
462 // Computes temporal filter weights and accumulators for the frame to be
463 // filtered. More concretely, the filter weights for all pixels are the same.
464 // Inputs:
465 // mbd: Pointer to the block for filtering, which is ONLY used to get
466 // subsampling information of all planes as well as the bit-depth.
467 // block_size: Size of the block.
468 // num_planes: Number of planes in the frame.
469 // pred: Pointer to the well-built predictors.
470 // accum: Pointer to the pixel-wise accumulator for filtering.
471 // count: Pointer to the pixel-wise counter fot filtering.
472 // Returns:
473 // Nothing will be returned. But the content to which `accum` and `pred`
474 // point will be modified.
tf_apply_temporal_filter_self(const YV12_BUFFER_CONFIG * ref_frame,const MACROBLOCKD * mbd,const BLOCK_SIZE block_size,const int mb_row,const int mb_col,const int num_planes,uint32_t * accum,uint16_t * count)475 static void tf_apply_temporal_filter_self(const YV12_BUFFER_CONFIG *ref_frame,
476 const MACROBLOCKD *mbd,
477 const BLOCK_SIZE block_size,
478 const int mb_row, const int mb_col,
479 const int num_planes, uint32_t *accum,
480 uint16_t *count) {
481 // Block information.
482 const int mb_height = block_size_high[block_size];
483 const int mb_width = block_size_wide[block_size];
484 const int is_high_bitdepth = is_cur_buf_hbd(mbd);
485
486 int plane_offset = 0;
487 for (int plane = 0; plane < num_planes; ++plane) {
488 const int subsampling_y = mbd->plane[plane].subsampling_y;
489 const int subsampling_x = mbd->plane[plane].subsampling_x;
490 const int h = mb_height >> subsampling_y; // Plane height.
491 const int w = mb_width >> subsampling_x; // Plane width.
492
493 const int frame_stride = ref_frame->strides[plane == AOM_PLANE_Y ? 0 : 1];
494 const uint8_t *buf8 = ref_frame->buffers[plane];
495 const uint16_t *buf16 = CONVERT_TO_SHORTPTR(buf8);
496 const int frame_offset = mb_row * h * frame_stride + mb_col * w;
497
498 int pred_idx = 0;
499 int pixel_idx = 0;
500 for (int i = 0; i < h; ++i) {
501 for (int j = 0; j < w; ++j) {
502 const int idx = plane_offset + pred_idx; // Index with plane shift.
503 const int pred_value = is_high_bitdepth
504 ? buf16[frame_offset + pixel_idx]
505 : buf8[frame_offset + pixel_idx];
506 accum[idx] += TF_WEIGHT_SCALE * pred_value;
507 count[idx] += TF_WEIGHT_SCALE;
508 ++pred_idx;
509 ++pixel_idx;
510 }
511 pixel_idx += (frame_stride - w);
512 }
513 plane_offset += h * w;
514 }
515 }
516
517 // Function to compute pixel-wise squared difference between two buffers.
518 // Inputs:
519 // ref: Pointer to reference buffer.
520 // ref_offset: Start position of reference buffer for computation.
521 // ref_stride: Stride for reference buffer.
522 // tgt: Pointer to target buffer.
523 // tgt_offset: Start position of target buffer for computation.
524 // tgt_stride: Stride for target buffer.
525 // height: Height of block for computation.
526 // width: Width of block for computation.
527 // is_high_bitdepth: Whether the two buffers point to high bit-depth frames.
528 // square_diff: Pointer to save the squared differces.
529 // Returns:
530 // Nothing will be returned. But the content to which `square_diff` points
531 // will be modified.
compute_square_diff(const uint8_t * ref,const int ref_offset,const int ref_stride,const uint8_t * tgt,const int tgt_offset,const int tgt_stride,const int height,const int width,const int is_high_bitdepth,uint32_t * square_diff)532 static inline void compute_square_diff(const uint8_t *ref, const int ref_offset,
533 const int ref_stride, const uint8_t *tgt,
534 const int tgt_offset,
535 const int tgt_stride, const int height,
536 const int width,
537 const int is_high_bitdepth,
538 uint32_t *square_diff) {
539 const uint16_t *ref16 = CONVERT_TO_SHORTPTR(ref);
540 const uint16_t *tgt16 = CONVERT_TO_SHORTPTR(tgt);
541
542 int ref_idx = 0;
543 int tgt_idx = 0;
544 int idx = 0;
545 for (int i = 0; i < height; ++i) {
546 for (int j = 0; j < width; ++j) {
547 const uint16_t ref_value = is_high_bitdepth ? ref16[ref_offset + ref_idx]
548 : ref[ref_offset + ref_idx];
549 const uint16_t tgt_value = is_high_bitdepth ? tgt16[tgt_offset + tgt_idx]
550 : tgt[tgt_offset + tgt_idx];
551 const uint32_t diff = (ref_value > tgt_value) ? (ref_value - tgt_value)
552 : (tgt_value - ref_value);
553 square_diff[idx] = diff * diff;
554
555 ++ref_idx;
556 ++tgt_idx;
557 ++idx;
558 }
559 ref_idx += (ref_stride - width);
560 tgt_idx += (tgt_stride - width);
561 }
562 }
563
564 // Function to accumulate pixel-wise squared difference between two luma buffers
565 // to be consumed while filtering the chroma planes.
566 // Inputs:
567 // square_diff: Pointer to squared differences from luma plane.
568 // luma_sse_sum: Pointer to save the sum of luma squared differences.
569 // block_height: Height of block for computation.
570 // block_width: Width of block for computation.
571 // ss_x_shift: Chroma subsampling shift in 'X' direction
572 // ss_y_shift: Chroma subsampling shift in 'Y' direction
573 // Returns:
574 // Nothing will be returned. But the content to which `luma_sse_sum` points
575 // will be modified.
compute_luma_sq_error_sum(uint32_t * square_diff,uint32_t * luma_sse_sum,int block_height,int block_width,int ss_x_shift,int ss_y_shift)576 static void compute_luma_sq_error_sum(uint32_t *square_diff,
577 uint32_t *luma_sse_sum, int block_height,
578 int block_width, int ss_x_shift,
579 int ss_y_shift) {
580 for (int i = 0; i < block_height; ++i) {
581 for (int j = 0; j < block_width; ++j) {
582 for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
583 for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
584 const int yy = (i << ss_y_shift) + ii; // Y-coord on Y-plane.
585 const int xx = (j << ss_x_shift) + jj; // X-coord on Y-plane.
586 const int ww = block_width << ss_x_shift; // Width of Y-plane.
587 luma_sse_sum[i * block_width + j] += square_diff[yy * ww + xx];
588 }
589 }
590 }
591 }
592 }
593
594 /*!\endcond */
595 /*!\brief Applies temporal filtering. NOTE that there are various optimised
596 * versions of this function called where the appropriate instruction set is
597 * supported.
598 *
599 * \ingroup src_frame_proc
600 * \param[in] frame_to_filter Pointer to the frame to be filtered, which is
601 * used as reference to compute squared
602 * difference from the predictor.
603 * \param[in] mbd Pointer to the block for filtering, ONLY used
604 * to get subsampling information for the planes
605 * \param[in] block_size Size of the block
606 * \param[in] mb_row Row index of the block in the frame
607 * \param[in] mb_col Column index of the block in the frame
608 * \param[in] num_planes Number of planes in the frame
609 * \param[in] noise_levels Estimated noise levels for each plane
610 * in the frame (Y,U,V)
611 * \param[in] subblock_mvs Pointer to the motion vectors for 4 sub-blocks
612 * \param[in] subblock_mses Pointer to the search errors (MSE) for 4
613 * sub-blocks
614 * \param[in] q_factor Quantization factor. This is actually the `q`
615 * defined in libaom, converted from `qindex`
616 * \param[in] filter_strength Filtering strength. This value lies in range
617 * [0, 6] where 6 is the maximum strength.
618 * \param[in] tf_wgt_calc_lvl Controls the weight calculation method during
619 * temporal filtering
620 * \param[out] pred Pointer to the well-built predictors
621 * \param[out] accum Pointer to the pixel-wise accumulator for
622 * filtering
623 * \param[out] count Pointer to the pixel-wise counter for
624 * filtering
625 *
626 * \remark Nothing returned, But the contents of `accum`, `pred` and 'count'
627 * will be modified
628 */
av1_apply_temporal_filter_c(const YV12_BUFFER_CONFIG * frame_to_filter,const MACROBLOCKD * mbd,const BLOCK_SIZE block_size,const int mb_row,const int mb_col,const int num_planes,const double * noise_levels,const MV * subblock_mvs,const int * subblock_mses,const int q_factor,const int filter_strength,int tf_wgt_calc_lvl,const uint8_t * pred,uint32_t * accum,uint16_t * count)629 void av1_apply_temporal_filter_c(
630 const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
631 const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
632 const int num_planes, const double *noise_levels, const MV *subblock_mvs,
633 const int *subblock_mses, const int q_factor, const int filter_strength,
634 int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum,
635 uint16_t *count) {
636 // Block information.
637 const int mb_height = block_size_high[block_size];
638 const int mb_width = block_size_wide[block_size];
639 const int mb_pels = mb_height * mb_width;
640 const int is_high_bitdepth = is_frame_high_bitdepth(frame_to_filter);
641 const uint16_t *pred16 = CONVERT_TO_SHORTPTR(pred);
642 // Frame information.
643 const int frame_height = frame_to_filter->y_crop_height;
644 const int frame_width = frame_to_filter->y_crop_width;
645 const int min_frame_size = AOMMIN(frame_height, frame_width);
646 // Variables to simplify combined error calculation.
647 const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) *
648 TF_SEARCH_ERROR_NORM_WEIGHT);
649 const double weight_factor =
650 (double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor;
651 // Decay factors for non-local mean approach.
652 double decay_factor[MAX_MB_PLANE] = { 0 };
653 // Adjust filtering based on q.
654 // Larger q -> stronger filtering -> larger weight.
655 // Smaller q -> weaker filtering -> smaller weight.
656 double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2);
657 q_decay = CLIP(q_decay, 1e-5, 1);
658 if (q_factor >= TF_QINDEX_CUTOFF) {
659 // Max q_factor is 255, therefore the upper bound of q_decay is 8.
660 // We do not need a clip here.
661 q_decay = 0.5 * pow((double)q_factor / 64, 2);
662 }
663 // Smaller strength -> smaller filtering weight.
664 double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2);
665 s_decay = CLIP(s_decay, 1e-5, 1);
666 for (int plane = 0; plane < num_planes; plane++) {
667 // Larger noise -> larger filtering weight.
668 const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0);
669 decay_factor[plane] = 1 / (n_decay * q_decay * s_decay);
670 }
671 double d_factor[4] = { 0 };
672 for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) {
673 // Larger motion vector -> smaller filtering weight.
674 const MV mv = subblock_mvs[subblock_idx];
675 const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2));
676 double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD;
677 distance_threshold = AOMMAX(distance_threshold, 1);
678 d_factor[subblock_idx] = distance / distance_threshold;
679 d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1);
680 }
681
682 // Allocate memory for pixel-wise squared differences. They,
683 // regardless of the subsampling, are assigned with memory of size `mb_pels`.
684 uint32_t *square_diff = aom_memalign(16, mb_pels * sizeof(uint32_t));
685 if (!square_diff) {
686 aom_internal_error(mbd->error_info, AOM_CODEC_MEM_ERROR,
687 "Error allocating temporal filter data");
688 }
689 memset(square_diff, 0, mb_pels * sizeof(square_diff[0]));
690
691 // Allocate memory for accumulated luma squared error. This value will be
692 // consumed while filtering the chroma planes.
693 uint32_t *luma_sse_sum = aom_memalign(32, mb_pels * sizeof(uint32_t));
694 if (!luma_sse_sum) {
695 aom_free(square_diff);
696 aom_internal_error(mbd->error_info, AOM_CODEC_MEM_ERROR,
697 "Error allocating temporal filter data");
698 }
699 memset(luma_sse_sum, 0, mb_pels * sizeof(luma_sse_sum[0]));
700
701 // Get window size for pixel-wise filtering.
702 assert(TF_WINDOW_LENGTH % 2 == 1);
703 const int half_window = TF_WINDOW_LENGTH >> 1;
704
705 // Handle planes in sequence.
706 int plane_offset = 0;
707 for (int plane = 0; plane < num_planes; ++plane) {
708 // Locate pixel on reference frame.
709 const int subsampling_y = mbd->plane[plane].subsampling_y;
710 const int subsampling_x = mbd->plane[plane].subsampling_x;
711 const int h = mb_height >> subsampling_y; // Plane height.
712 const int w = mb_width >> subsampling_x; // Plane width.
713 const int frame_stride =
714 frame_to_filter->strides[plane == AOM_PLANE_Y ? 0 : 1];
715 const int frame_offset = mb_row * h * frame_stride + mb_col * w;
716 const uint8_t *ref = frame_to_filter->buffers[plane];
717 const int ss_y_shift =
718 subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y;
719 const int ss_x_shift =
720 subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x;
721 const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH +
722 ((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0);
723 const double inv_num_ref_pixels = 1.0 / num_ref_pixels;
724
725 // Filter U-plane and V-plane using Y-plane. This is because motion
726 // search is only done on Y-plane, so the information from Y-plane will
727 // be more accurate. The luma sse sum is reused in both chroma planes.
728 if (plane == AOM_PLANE_U)
729 compute_luma_sq_error_sum(square_diff, luma_sse_sum, h, w, ss_x_shift,
730 ss_y_shift);
731 compute_square_diff(ref, frame_offset, frame_stride, pred, plane_offset, w,
732 h, w, is_high_bitdepth, square_diff);
733
734 // Perform filtering.
735 int pred_idx = 0;
736 for (int i = 0; i < h; ++i) {
737 for (int j = 0; j < w; ++j) {
738 // non-local mean approach
739 uint64_t sum_square_diff = 0;
740
741 for (int wi = -half_window; wi <= half_window; ++wi) {
742 for (int wj = -half_window; wj <= half_window; ++wj) {
743 const int y = CLIP(i + wi, 0, h - 1); // Y-coord on current plane.
744 const int x = CLIP(j + wj, 0, w - 1); // X-coord on current plane.
745 sum_square_diff += square_diff[y * w + x];
746 }
747 }
748
749 sum_square_diff += luma_sse_sum[i * w + j];
750
751 // Scale down the difference for high bit depth input.
752 if (mbd->bd > 8) sum_square_diff >>= ((mbd->bd - 8) * 2);
753
754 // Combine window error and block error, and normalize it.
755 const double window_error = sum_square_diff * inv_num_ref_pixels;
756 const int subblock_idx = (i >= h / 2) * 2 + (j >= w / 2);
757 const double block_error = (double)subblock_mses[subblock_idx];
758 const double combined_error =
759 weight_factor * window_error + block_error * inv_factor;
760
761 // Compute filter weight.
762 double scaled_error =
763 combined_error * d_factor[subblock_idx] * decay_factor[plane];
764 scaled_error = AOMMIN(scaled_error, 7);
765 int weight;
766 if (tf_wgt_calc_lvl == 0) {
767 weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE);
768 } else {
769 const float fweight =
770 approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE;
771 weight = iroundpf(fweight);
772 }
773
774 const int idx = plane_offset + pred_idx; // Index with plane shift.
775 const int pred_value = is_high_bitdepth ? pred16[idx] : pred[idx];
776 accum[idx] += weight * pred_value;
777 count[idx] += weight;
778
779 ++pred_idx;
780 }
781 }
782 plane_offset += h * w;
783 }
784
785 aom_free(square_diff);
786 aom_free(luma_sse_sum);
787 }
788 #if CONFIG_AV1_HIGHBITDEPTH
789 // Calls High bit-depth temporal filter
av1_highbd_apply_temporal_filter_c(const YV12_BUFFER_CONFIG * frame_to_filter,const MACROBLOCKD * mbd,const BLOCK_SIZE block_size,const int mb_row,const int mb_col,const int num_planes,const double * noise_levels,const MV * subblock_mvs,const int * subblock_mses,const int q_factor,const int filter_strength,int tf_wgt_calc_lvl,const uint8_t * pred,uint32_t * accum,uint16_t * count)790 void av1_highbd_apply_temporal_filter_c(
791 const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
792 const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
793 const int num_planes, const double *noise_levels, const MV *subblock_mvs,
794 const int *subblock_mses, const int q_factor, const int filter_strength,
795 int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum,
796 uint16_t *count) {
797 av1_apply_temporal_filter_c(frame_to_filter, mbd, block_size, mb_row, mb_col,
798 num_planes, noise_levels, subblock_mvs,
799 subblock_mses, q_factor, filter_strength,
800 tf_wgt_calc_lvl, pred, accum, count);
801 }
802 #endif // CONFIG_AV1_HIGHBITDEPTH
803 /*!\brief Normalizes the accumulated filtering result to produce the filtered
804 * frame
805 *
806 * \ingroup src_frame_proc
807 * \param[in] mbd Pointer to the block for filtering, which is
808 * ONLY used to get subsampling information for
809 * all the planes
810 * \param[in] block_size Size of the block
811 * \param[in] mb_row Row index of the block in the frame
812 * \param[in] mb_col Column index of the block in the frame
813 * \param[in] num_planes Number of planes in the frame
814 * \param[in] accum Pointer to the pre-computed accumulator
815 * \param[in] count Pointer to the pre-computed count
816 * \param[out] result_buffer Pointer to result buffer
817 *
818 * \remark Nothing returned, but the content to which `result_buffer` pointer
819 * will be modified
820 */
tf_normalize_filtered_frame(const MACROBLOCKD * mbd,const BLOCK_SIZE block_size,const int mb_row,const int mb_col,const int num_planes,const uint32_t * accum,const uint16_t * count,YV12_BUFFER_CONFIG * result_buffer)821 static void tf_normalize_filtered_frame(
822 const MACROBLOCKD *mbd, const BLOCK_SIZE block_size, const int mb_row,
823 const int mb_col, const int num_planes, const uint32_t *accum,
824 const uint16_t *count, YV12_BUFFER_CONFIG *result_buffer) {
825 // Block information.
826 const int mb_height = block_size_high[block_size];
827 const int mb_width = block_size_wide[block_size];
828 const int is_high_bitdepth = is_frame_high_bitdepth(result_buffer);
829
830 int plane_offset = 0;
831 for (int plane = 0; plane < num_planes; ++plane) {
832 const int plane_h = mb_height >> mbd->plane[plane].subsampling_y;
833 const int plane_w = mb_width >> mbd->plane[plane].subsampling_x;
834 const int frame_stride = result_buffer->strides[plane == 0 ? 0 : 1];
835 const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;
836 uint8_t *const buf = result_buffer->buffers[plane];
837 uint16_t *const buf16 = CONVERT_TO_SHORTPTR(buf);
838
839 int plane_idx = 0; // Pixel index on current plane (block-base).
840 int frame_idx = frame_offset; // Pixel index on the entire frame.
841 for (int i = 0; i < plane_h; ++i) {
842 for (int j = 0; j < plane_w; ++j) {
843 const int idx = plane_idx + plane_offset;
844 const uint16_t rounding = count[idx] >> 1;
845 if (is_high_bitdepth) {
846 buf16[frame_idx] =
847 (uint16_t)OD_DIVU(accum[idx] + rounding, count[idx]);
848 } else {
849 buf[frame_idx] = (uint8_t)OD_DIVU(accum[idx] + rounding, count[idx]);
850 }
851 ++plane_idx;
852 ++frame_idx;
853 }
854 frame_idx += (frame_stride - plane_w);
855 }
856 plane_offset += plane_h * plane_w;
857 }
858 }
859
av1_tf_do_filtering_row(AV1_COMP * cpi,ThreadData * td,int mb_row)860 void av1_tf_do_filtering_row(AV1_COMP *cpi, ThreadData *td, int mb_row) {
861 TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
862 YV12_BUFFER_CONFIG **frames = tf_ctx->frames;
863 const int num_frames = tf_ctx->num_frames;
864 const int filter_frame_idx = tf_ctx->filter_frame_idx;
865 const int compute_frame_diff = tf_ctx->compute_frame_diff;
866 const struct scale_factors *scale = &tf_ctx->sf;
867 const double *noise_levels = tf_ctx->noise_levels;
868 const int num_pels = tf_ctx->num_pels;
869 const int q_factor = tf_ctx->q_factor;
870 const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
871 const YV12_BUFFER_CONFIG *const frame_to_filter = frames[filter_frame_idx];
872 MACROBLOCK *const mb = &td->mb;
873 MACROBLOCKD *const mbd = &mb->e_mbd;
874 TemporalFilterData *const tf_data = &td->tf_data;
875 const int mb_height = block_size_high[block_size];
876 const int mb_width = block_size_wide[block_size];
877 const int mi_h = mi_size_high_log2[block_size];
878 const int mi_w = mi_size_wide_log2[block_size];
879 const int num_planes = av1_num_planes(&cpi->common);
880 const int weight_calc_level_in_tf = cpi->sf.hl_sf.weight_calc_level_in_tf;
881 uint32_t *accum = tf_data->accum;
882 uint16_t *count = tf_data->count;
883 uint8_t *pred = tf_data->pred;
884
885 // Factor to control the filering strength.
886 const int filter_strength = cpi->oxcf.algo_cfg.arnr_strength;
887
888 // Do filtering.
889 FRAME_DIFF *diff = &td->tf_data.diff;
890 av1_set_mv_row_limits(&cpi->common.mi_params, &mb->mv_limits,
891 (mb_row << mi_h), (mb_height >> MI_SIZE_LOG2),
892 cpi->oxcf.border_in_pixels);
893 for (int mb_col = 0; mb_col < tf_ctx->mb_cols; mb_col++) {
894 av1_set_mv_col_limits(&cpi->common.mi_params, &mb->mv_limits,
895 (mb_col << mi_w), (mb_width >> MI_SIZE_LOG2),
896 cpi->oxcf.border_in_pixels);
897 memset(accum, 0, num_pels * sizeof(accum[0]));
898 memset(count, 0, num_pels * sizeof(count[0]));
899 MV ref_mv = kZeroMv; // Reference motion vector passed down along frames.
900 // Perform temporal filtering frame by frame.
901
902 // Decide whether to perform motion search at 16x16 sub-block level or not
903 // based on 4x4 sub-blocks source variance. Allow motion search for split
904 // partition only if the difference between max and min source variance of
905 // 4x4 blocks is greater than a threshold (which is derived empirically).
906 bool allow_me_for_sub_blks = true;
907 if (cpi->sf.hl_sf.allow_sub_blk_me_in_tf) {
908 const int is_hbd = is_frame_high_bitdepth(frame_to_filter);
909 // Initialize minimum variance to a large value and maximum variance to 0.
910 double blk_4x4_var_min = DBL_MAX;
911 double blk_4x4_var_max = 0;
912 get_log_var_4x4sub_blk(cpi, frame_to_filter, mb_row, mb_col,
913 TF_BLOCK_SIZE, &blk_4x4_var_min, &blk_4x4_var_max,
914 is_hbd);
915 // TODO([email protected]): Experiment and adjust the
916 // threshold for high bit depth.
917 if ((blk_4x4_var_max - blk_4x4_var_min) <= 4.0)
918 allow_me_for_sub_blks = false;
919 }
920
921 for (int frame = 0; frame < num_frames; frame++) {
922 if (frames[frame] == NULL) continue;
923
924 // Motion search.
925 MV subblock_mvs[4] = { kZeroMv, kZeroMv, kZeroMv, kZeroMv };
926 int subblock_mses[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
927 if (frame ==
928 filter_frame_idx) { // Frame to be filtered.
929 // Change ref_mv sign for following frames.
930 ref_mv.row *= -1;
931 ref_mv.col *= -1;
932 } else { // Other reference frames.
933 tf_motion_search(cpi, mb, frame_to_filter, frames[frame], block_size,
934 mb_row, mb_col, &ref_mv, allow_me_for_sub_blks,
935 subblock_mvs, subblock_mses);
936 }
937
938 // Perform weighted averaging.
939 if (frame == filter_frame_idx) { // Frame to be filtered.
940 tf_apply_temporal_filter_self(frames[frame], mbd, block_size, mb_row,
941 mb_col, num_planes, accum, count);
942 } else { // Other reference frames.
943 tf_build_predictor(frames[frame], mbd, block_size, mb_row, mb_col,
944 num_planes, scale, subblock_mvs, pred);
945
946 // All variants of av1_apply_temporal_filter() contain floating point
947 // operations. Hence, clear the system state.
948
949 // TODO(any): avx2/sse2 version should be changed to align with C
950 // function before using. In particular, current avx2/sse2 function
951 // only supports 32x32 block size and 5x5 filtering window.
952 if (is_frame_high_bitdepth(frame_to_filter)) { // for high bit-depth
953 #if CONFIG_AV1_HIGHBITDEPTH
954 if (TF_BLOCK_SIZE == BLOCK_32X32 && TF_WINDOW_LENGTH == 5) {
955 av1_highbd_apply_temporal_filter(
956 frame_to_filter, mbd, block_size, mb_row, mb_col, num_planes,
957 noise_levels, subblock_mvs, subblock_mses, q_factor,
958 filter_strength, weight_calc_level_in_tf, pred, accum, count);
959 } else {
960 #endif // CONFIG_AV1_HIGHBITDEPTH
961 av1_apply_temporal_filter_c(
962 frame_to_filter, mbd, block_size, mb_row, mb_col, num_planes,
963 noise_levels, subblock_mvs, subblock_mses, q_factor,
964 filter_strength, weight_calc_level_in_tf, pred, accum, count);
965 #if CONFIG_AV1_HIGHBITDEPTH
966 }
967 #endif // CONFIG_AV1_HIGHBITDEPTH
968 } else {
969 // for 8-bit
970 if (TF_BLOCK_SIZE == BLOCK_32X32 && TF_WINDOW_LENGTH == 5) {
971 av1_apply_temporal_filter(
972 frame_to_filter, mbd, block_size, mb_row, mb_col, num_planes,
973 noise_levels, subblock_mvs, subblock_mses, q_factor,
974 filter_strength, weight_calc_level_in_tf, pred, accum, count);
975 } else {
976 av1_apply_temporal_filter_c(
977 frame_to_filter, mbd, block_size, mb_row, mb_col, num_planes,
978 noise_levels, subblock_mvs, subblock_mses, q_factor,
979 filter_strength, weight_calc_level_in_tf, pred, accum, count);
980 }
981 }
982 }
983 }
984 tf_normalize_filtered_frame(mbd, block_size, mb_row, mb_col, num_planes,
985 accum, count, tf_ctx->output_frame);
986
987 if (compute_frame_diff) {
988 const int y_height = mb_height >> mbd->plane[0].subsampling_y;
989 const int y_width = mb_width >> mbd->plane[0].subsampling_x;
990 const int source_y_stride = frame_to_filter->y_stride;
991 const int filter_y_stride = tf_ctx->output_frame->y_stride;
992 const int source_offset =
993 mb_row * y_height * source_y_stride + mb_col * y_width;
994 const int filter_offset =
995 mb_row * y_height * filter_y_stride + mb_col * y_width;
996 unsigned int sse = 0;
997 cpi->ppi->fn_ptr[block_size].vf(
998 frame_to_filter->y_buffer + source_offset, source_y_stride,
999 tf_ctx->output_frame->y_buffer + filter_offset, filter_y_stride,
1000 &sse);
1001 diff->sum += sse;
1002 diff->sse += sse * (int64_t)sse;
1003 }
1004 }
1005 }
1006
1007 /*!\brief Does temporal filter for a given frame.
1008 *
1009 * \ingroup src_frame_proc
1010 * \param[in] cpi Top level encoder instance structure
1011 *
1012 * \remark Nothing will be returned, but the contents of td->diff will be
1013 modified.
1014 */
tf_do_filtering(AV1_COMP * cpi)1015 static void tf_do_filtering(AV1_COMP *cpi) {
1016 // Basic information.
1017 ThreadData *td = &cpi->td;
1018 TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
1019 const struct scale_factors *scale = &tf_ctx->sf;
1020 const int num_planes = av1_num_planes(&cpi->common);
1021 assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
1022
1023 MACROBLOCKD *mbd = &td->mb.e_mbd;
1024 uint8_t *input_buffer[MAX_MB_PLANE];
1025 MB_MODE_INFO **input_mb_mode_info;
1026 tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes);
1027 tf_setup_macroblockd(mbd, &td->tf_data, scale);
1028
1029 // Perform temporal filtering for each row.
1030 for (int mb_row = 0; mb_row < tf_ctx->mb_rows; mb_row++)
1031 av1_tf_do_filtering_row(cpi, td, mb_row);
1032
1033 tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes);
1034 }
1035
1036 /*!\brief Setups the frame buffer for temporal filtering. This fuction
1037 * determines how many frames will be used for temporal filtering and then
1038 * groups them into a buffer. This function will also estimate the noise level
1039 * of the to-filter frame.
1040 *
1041 * \ingroup src_frame_proc
1042 * \param[in] cpi Top level encoder instance structure
1043 * \param[in] filter_frame_lookahead_idx The index of the to-filter frame
1044 * in the lookahead buffer cpi->lookahead
1045 * \param[in] gf_frame_index GOP index
1046 *
1047 * \remark Nothing will be returned. But the fields `frames`, `num_frames`,
1048 * `filter_frame_idx` and `noise_levels` will be updated in cpi->tf_ctx.
1049 */
tf_setup_filtering_buffer(AV1_COMP * cpi,int filter_frame_lookahead_idx,int gf_frame_index)1050 static void tf_setup_filtering_buffer(AV1_COMP *cpi,
1051 int filter_frame_lookahead_idx,
1052 int gf_frame_index) {
1053 const GF_GROUP *gf_group = &cpi->ppi->gf_group;
1054 const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_frame_index];
1055 const FRAME_TYPE frame_type = gf_group->frame_type[gf_frame_index];
1056 const int is_forward_keyframe =
1057 av1_gop_check_forward_keyframe(gf_group, gf_frame_index);
1058
1059 TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
1060 YV12_BUFFER_CONFIG **frames = tf_ctx->frames;
1061 // Number of frames used for filtering. Set `arnr_max_frames` as 1 to disable
1062 // temporal filtering.
1063 int num_frames = AOMMAX(cpi->oxcf.algo_cfg.arnr_max_frames, 1);
1064 int num_before = 0; // Number of filtering frames before the to-filter frame.
1065 int num_after = 0; // Number of filtering frames after the to-filer frame.
1066 const int lookahead_depth =
1067 av1_lookahead_depth(cpi->ppi->lookahead, cpi->compressor_stage);
1068
1069 // Temporal filtering should not go beyond key frames
1070 const int key_to_curframe =
1071 AOMMAX(cpi->rc.frames_since_key + filter_frame_lookahead_idx, 0);
1072 const int curframe_to_key =
1073 AOMMAX(cpi->rc.frames_to_key - filter_frame_lookahead_idx - 1, 0);
1074
1075 // Number of buffered frames before the to-filter frame.
1076 int max_before = AOMMIN(filter_frame_lookahead_idx, key_to_curframe);
1077
1078 // Number of buffered frames after the to-filter frame.
1079 int max_after =
1080 AOMMIN(lookahead_depth - filter_frame_lookahead_idx - 1, curframe_to_key);
1081
1082 // Estimate noises for each plane.
1083 const struct lookahead_entry *to_filter_buf = av1_lookahead_peek(
1084 cpi->ppi->lookahead, filter_frame_lookahead_idx, cpi->compressor_stage);
1085 assert(to_filter_buf != NULL);
1086 const YV12_BUFFER_CONFIG *to_filter_frame = &to_filter_buf->img;
1087 const int num_planes = av1_num_planes(&cpi->common);
1088 double *noise_levels = tf_ctx->noise_levels;
1089 av1_estimate_noise_level(to_filter_frame, noise_levels, AOM_PLANE_Y,
1090 num_planes - 1, cpi->common.seq_params->bit_depth,
1091 NOISE_ESTIMATION_EDGE_THRESHOLD);
1092 // Get quantization factor.
1093 const int q = get_q(cpi);
1094 // Get correlation estimates from first-pass;
1095 const FIRSTPASS_STATS *stats =
1096 cpi->twopass_frame.stats_in - (cpi->rc.frames_since_key == 0);
1097 double accu_coeff0 = 1.0, accu_coeff1 = 1.0;
1098 for (int i = 1; i <= max_after; i++) {
1099 if (stats + filter_frame_lookahead_idx + i >=
1100 cpi->ppi->twopass.stats_buf_ctx->stats_in_end) {
1101 max_after = i - 1;
1102 break;
1103 }
1104 accu_coeff1 *=
1105 AOMMAX(stats[filter_frame_lookahead_idx + i].cor_coeff, 0.001);
1106 }
1107 if (max_after >= 1) {
1108 accu_coeff1 = pow(accu_coeff1, 1.0 / (double)max_after);
1109 }
1110 for (int i = 1; i <= max_before; i++) {
1111 if (stats + filter_frame_lookahead_idx - i + 1 <=
1112 cpi->ppi->twopass.stats_buf_ctx->stats_in_start) {
1113 max_before = i - 1;
1114 break;
1115 }
1116 accu_coeff0 *=
1117 AOMMAX(stats[filter_frame_lookahead_idx - i + 1].cor_coeff, 0.001);
1118 }
1119 if (max_before >= 1) {
1120 accu_coeff0 = pow(accu_coeff0, 1.0 / (double)max_before);
1121 }
1122
1123 // Adjust number of filtering frames based on quantization factor. When the
1124 // quantization factor is small enough (lossless compression), we will not
1125 // change the number of frames for key frame filtering, which is to avoid
1126 // visual quality drop.
1127 int adjust_num = 6;
1128 const int adjust_num_frames_for_arf_filtering =
1129 cpi->sf.hl_sf.adjust_num_frames_for_arf_filtering;
1130 if (num_frames == 1) { // `arnr_max_frames = 1` is used to disable filtering.
1131 adjust_num = 0;
1132 } else if ((update_type == KF_UPDATE) && q <= 10) {
1133 adjust_num = 0;
1134 } else if (adjust_num_frames_for_arf_filtering > 0 &&
1135 update_type != KF_UPDATE && (cpi->rc.frames_since_key > 0)) {
1136 // Since screen content detection happens after temporal filtering,
1137 // 'frames_since_key' check is added to ensure the sf is disabled for the
1138 // first alt-ref frame.
1139 // Adjust number of frames to be considered for filtering based on noise
1140 // level of the current frame. For low-noise frame, use more frames to
1141 // filter such that the filtered frame can provide better predictions for
1142 // subsequent frames and vice versa.
1143 const uint8_t av1_adjust_num_using_noise_lvl[2][3] = { { 6, 4, 2 },
1144 { 4, 2, 0 } };
1145 const uint8_t *adjust_num_frames =
1146 av1_adjust_num_using_noise_lvl[adjust_num_frames_for_arf_filtering - 1];
1147
1148 if (noise_levels[AOM_PLANE_Y] < 0.5)
1149 adjust_num = adjust_num_frames[0];
1150 else if (noise_levels[AOM_PLANE_Y] < 1.0)
1151 adjust_num = adjust_num_frames[1];
1152 else
1153 adjust_num = adjust_num_frames[2];
1154 }
1155 num_frames = AOMMIN(num_frames + adjust_num, lookahead_depth);
1156
1157 if (frame_type == KEY_FRAME) {
1158 num_before = AOMMIN(is_forward_keyframe ? num_frames / 2 : 0, max_before);
1159 num_after = AOMMIN(num_frames - 1, max_after);
1160 } else {
1161 int gfu_boost = av1_calc_arf_boost(&cpi->ppi->twopass, &cpi->twopass_frame,
1162 &cpi->ppi->p_rc, &cpi->frame_info,
1163 filter_frame_lookahead_idx, max_before,
1164 max_after, NULL, NULL, 0);
1165
1166 num_frames = AOMMIN(num_frames, gfu_boost / 150);
1167 num_frames += !(num_frames & 1); // Make the number odd.
1168
1169 // Only use 2 neighbours for the second ARF.
1170 if (update_type == INTNL_ARF_UPDATE) num_frames = AOMMIN(num_frames, 3);
1171 if (AOMMIN(max_after, max_before) >= num_frames / 2) {
1172 // just use half half
1173 num_before = num_frames / 2;
1174 num_after = num_frames / 2;
1175 } else {
1176 if (max_after < num_frames / 2) {
1177 num_after = max_after;
1178 num_before = AOMMIN(num_frames - 1 - num_after, max_before);
1179 } else {
1180 num_before = max_before;
1181 num_after = AOMMIN(num_frames - 1 - num_before, max_after);
1182 }
1183 // Adjust insymmetry based on frame-level correlation
1184 if (max_after > 0 && max_before > 0) {
1185 if (num_after < num_before) {
1186 const int insym = (int)(0.4 / AOMMAX(1 - accu_coeff1, 0.01));
1187 num_before = AOMMIN(num_before, num_after + insym);
1188 } else {
1189 const int insym = (int)(0.4 / AOMMAX(1 - accu_coeff0, 0.01));
1190 num_after = AOMMIN(num_after, num_before + insym);
1191 }
1192 }
1193 }
1194 }
1195 num_frames = num_before + 1 + num_after;
1196
1197 // Setup the frame buffer.
1198 for (int frame = 0; frame < num_frames; ++frame) {
1199 const int lookahead_idx = frame - num_before + filter_frame_lookahead_idx;
1200 struct lookahead_entry *buf = av1_lookahead_peek(
1201 cpi->ppi->lookahead, lookahead_idx, cpi->compressor_stage);
1202 assert(buf != NULL);
1203 frames[frame] = &buf->img;
1204 }
1205 tf_ctx->num_frames = num_frames;
1206 tf_ctx->filter_frame_idx = num_before;
1207 assert(frames[tf_ctx->filter_frame_idx] == to_filter_frame);
1208
1209 av1_setup_src_planes(&cpi->td.mb, &to_filter_buf->img, 0, 0, num_planes,
1210 cpi->common.seq_params->sb_size);
1211 av1_setup_block_planes(&cpi->td.mb.e_mbd,
1212 cpi->common.seq_params->subsampling_x,
1213 cpi->common.seq_params->subsampling_y, num_planes);
1214 }
1215
1216 /*!\cond */
1217
av1_estimate_noise_from_single_plane_c(const uint8_t * src,int height,int width,int stride,int edge_thresh)1218 double av1_estimate_noise_from_single_plane_c(const uint8_t *src, int height,
1219 int width, int stride,
1220 int edge_thresh) {
1221 int64_t accum = 0;
1222 int count = 0;
1223
1224 for (int i = 1; i < height - 1; ++i) {
1225 for (int j = 1; j < width - 1; ++j) {
1226 // Setup a small 3x3 matrix.
1227 const int center_idx = i * stride + j;
1228 int mat[3][3];
1229 for (int ii = -1; ii <= 1; ++ii) {
1230 for (int jj = -1; jj <= 1; ++jj) {
1231 const int idx = center_idx + ii * stride + jj;
1232 mat[ii + 1][jj + 1] = src[idx];
1233 }
1234 }
1235 // Compute sobel gradients.
1236 const int Gx = (mat[0][0] - mat[0][2]) + (mat[2][0] - mat[2][2]) +
1237 2 * (mat[1][0] - mat[1][2]);
1238 const int Gy = (mat[0][0] - mat[2][0]) + (mat[0][2] - mat[2][2]) +
1239 2 * (mat[0][1] - mat[2][1]);
1240 const int Ga = ROUND_POWER_OF_TWO(abs(Gx) + abs(Gy), 0);
1241 // Accumulate Laplacian.
1242 if (Ga < edge_thresh) { // Only count smooth pixels.
1243 const int v = 4 * mat[1][1] -
1244 2 * (mat[0][1] + mat[2][1] + mat[1][0] + mat[1][2]) +
1245 (mat[0][0] + mat[0][2] + mat[2][0] + mat[2][2]);
1246 accum += ROUND_POWER_OF_TWO(abs(v), 0);
1247 ++count;
1248 }
1249 }
1250 }
1251
1252 // Return -1.0 (unreliable estimation) if there are too few smooth pixels.
1253 return (count < 16) ? -1.0 : (double)accum / (6 * count) * SQRT_PI_BY_2;
1254 }
1255
1256 #if CONFIG_AV1_HIGHBITDEPTH
av1_highbd_estimate_noise_from_single_plane_c(const uint16_t * src16,int height,int width,const int stride,int bit_depth,int edge_thresh)1257 double av1_highbd_estimate_noise_from_single_plane_c(const uint16_t *src16,
1258 int height, int width,
1259 const int stride,
1260 int bit_depth,
1261 int edge_thresh) {
1262 int64_t accum = 0;
1263 int count = 0;
1264 for (int i = 1; i < height - 1; ++i) {
1265 for (int j = 1; j < width - 1; ++j) {
1266 // Setup a small 3x3 matrix.
1267 const int center_idx = i * stride + j;
1268 int mat[3][3];
1269 for (int ii = -1; ii <= 1; ++ii) {
1270 for (int jj = -1; jj <= 1; ++jj) {
1271 const int idx = center_idx + ii * stride + jj;
1272 mat[ii + 1][jj + 1] = src16[idx];
1273 }
1274 }
1275 // Compute sobel gradients.
1276 const int Gx = (mat[0][0] - mat[0][2]) + (mat[2][0] - mat[2][2]) +
1277 2 * (mat[1][0] - mat[1][2]);
1278 const int Gy = (mat[0][0] - mat[2][0]) + (mat[0][2] - mat[2][2]) +
1279 2 * (mat[0][1] - mat[2][1]);
1280 const int Ga = ROUND_POWER_OF_TWO(abs(Gx) + abs(Gy), bit_depth - 8);
1281 // Accumulate Laplacian.
1282 if (Ga < edge_thresh) { // Only count smooth pixels.
1283 const int v = 4 * mat[1][1] -
1284 2 * (mat[0][1] + mat[2][1] + mat[1][0] + mat[1][2]) +
1285 (mat[0][0] + mat[0][2] + mat[2][0] + mat[2][2]);
1286 accum += ROUND_POWER_OF_TWO(abs(v), bit_depth - 8);
1287 ++count;
1288 }
1289 }
1290 }
1291
1292 // Return -1.0 (unreliable estimation) if there are too few smooth pixels.
1293 return (count < 16) ? -1.0 : (double)accum / (6 * count) * SQRT_PI_BY_2;
1294 }
1295 #endif
1296
av1_estimate_noise_level(const YV12_BUFFER_CONFIG * frame,double * noise_level,int plane_from,int plane_to,int bit_depth,int edge_thresh)1297 void av1_estimate_noise_level(const YV12_BUFFER_CONFIG *frame,
1298 double *noise_level, int plane_from, int plane_to,
1299 int bit_depth, int edge_thresh) {
1300 for (int plane = plane_from; plane <= plane_to; plane++) {
1301 const bool is_uv_plane = (plane != AOM_PLANE_Y);
1302 const int height = frame->crop_heights[is_uv_plane];
1303 const int width = frame->crop_widths[is_uv_plane];
1304 const int stride = frame->strides[is_uv_plane];
1305 const uint8_t *src = frame->buffers[plane];
1306
1307 #if CONFIG_AV1_HIGHBITDEPTH
1308 const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
1309 const int is_high_bitdepth = is_frame_high_bitdepth(frame);
1310 if (is_high_bitdepth) {
1311 noise_level[plane] = av1_highbd_estimate_noise_from_single_plane(
1312 src16, height, width, stride, bit_depth, edge_thresh);
1313 } else {
1314 noise_level[plane] = av1_estimate_noise_from_single_plane(
1315 src, height, width, stride, edge_thresh);
1316 }
1317 #else
1318 (void)bit_depth;
1319 noise_level[plane] = av1_estimate_noise_from_single_plane(
1320 src, height, width, stride, edge_thresh);
1321 #endif
1322 }
1323 }
1324
1325 // Initializes the members of TemporalFilterCtx
1326 // Inputs:
1327 // cpi: Top level encoder instance structure
1328 // check_show_existing: If 1, check whether the filtered frame is similar
1329 // to the original frame.
1330 // filter_frame_lookahead_idx: The index of the frame to be filtered in the
1331 // lookahead buffer cpi->lookahead.
1332 // Returns:
1333 // Nothing will be returned. But the contents of cpi->tf_ctx will be modified.
init_tf_ctx(AV1_COMP * cpi,int filter_frame_lookahead_idx,int gf_frame_index,int compute_frame_diff,YV12_BUFFER_CONFIG * output_frame)1334 static void init_tf_ctx(AV1_COMP *cpi, int filter_frame_lookahead_idx,
1335 int gf_frame_index, int compute_frame_diff,
1336 YV12_BUFFER_CONFIG *output_frame) {
1337 TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
1338 // Setup frame buffer for filtering.
1339 YV12_BUFFER_CONFIG **frames = tf_ctx->frames;
1340 tf_ctx->num_frames = 0;
1341 tf_ctx->filter_frame_idx = -1;
1342 tf_ctx->output_frame = output_frame;
1343 tf_ctx->compute_frame_diff = compute_frame_diff;
1344 tf_setup_filtering_buffer(cpi, filter_frame_lookahead_idx, gf_frame_index);
1345 assert(tf_ctx->num_frames > 0);
1346 assert(tf_ctx->filter_frame_idx < tf_ctx->num_frames);
1347
1348 // Setup scaling factors. Scaling on each of the arnr frames is not
1349 // supported.
1350 // ARF is produced at the native frame size and resized when coded.
1351 struct scale_factors *sf = &tf_ctx->sf;
1352 av1_setup_scale_factors_for_frame(
1353 sf, frames[0]->y_crop_width, frames[0]->y_crop_height,
1354 frames[0]->y_crop_width, frames[0]->y_crop_height);
1355
1356 // Initialize temporal filter parameters.
1357 MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
1358 const int filter_frame_idx = tf_ctx->filter_frame_idx;
1359 const YV12_BUFFER_CONFIG *const frame_to_filter = frames[filter_frame_idx];
1360 const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
1361 const int frame_height = frame_to_filter->y_crop_height;
1362 const int frame_width = frame_to_filter->y_crop_width;
1363 const int mb_width = block_size_wide[block_size];
1364 const int mb_height = block_size_high[block_size];
1365 const int mb_rows = get_num_blocks(frame_height, mb_height);
1366 const int mb_cols = get_num_blocks(frame_width, mb_width);
1367 const int mb_pels = mb_width * mb_height;
1368 const int is_highbitdepth = is_frame_high_bitdepth(frame_to_filter);
1369 const int num_planes = av1_num_planes(&cpi->common);
1370 int num_pels = 0;
1371 for (int i = 0; i < num_planes; i++) {
1372 const int subsampling_x = mbd->plane[i].subsampling_x;
1373 const int subsampling_y = mbd->plane[i].subsampling_y;
1374 num_pels += mb_pels >> (subsampling_x + subsampling_y);
1375 }
1376 tf_ctx->num_pels = num_pels;
1377 tf_ctx->mb_rows = mb_rows;
1378 tf_ctx->mb_cols = mb_cols;
1379 tf_ctx->is_highbitdepth = is_highbitdepth;
1380 tf_ctx->q_factor = get_q(cpi);
1381 }
1382
av1_check_show_filtered_frame(const YV12_BUFFER_CONFIG * frame,const FRAME_DIFF * frame_diff,int q_index,aom_bit_depth_t bit_depth)1383 int av1_check_show_filtered_frame(const YV12_BUFFER_CONFIG *frame,
1384 const FRAME_DIFF *frame_diff, int q_index,
1385 aom_bit_depth_t bit_depth) {
1386 const int frame_height = frame->y_crop_height;
1387 const int frame_width = frame->y_crop_width;
1388 const int block_height = block_size_high[TF_BLOCK_SIZE];
1389 const int block_width = block_size_wide[TF_BLOCK_SIZE];
1390 const int mb_rows = get_num_blocks(frame_height, block_height);
1391 const int mb_cols = get_num_blocks(frame_width, block_width);
1392 const int num_mbs = AOMMAX(1, mb_rows * mb_cols);
1393 const float mean = (float)frame_diff->sum / num_mbs;
1394 const float std = (float)sqrt((float)frame_diff->sse / num_mbs - mean * mean);
1395
1396 const int ac_q_step = av1_ac_quant_QTX(q_index, 0, bit_depth);
1397 const float threshold = 0.7f * ac_q_step * ac_q_step;
1398
1399 if (mean < threshold && std < mean * 1.2) {
1400 return 1;
1401 }
1402 return 0;
1403 }
1404
av1_temporal_filter(AV1_COMP * cpi,const int filter_frame_lookahead_idx,int gf_frame_index,FRAME_DIFF * frame_diff,YV12_BUFFER_CONFIG * output_frame)1405 void av1_temporal_filter(AV1_COMP *cpi, const int filter_frame_lookahead_idx,
1406 int gf_frame_index, FRAME_DIFF *frame_diff,
1407 YV12_BUFFER_CONFIG *output_frame) {
1408 MultiThreadInfo *const mt_info = &cpi->mt_info;
1409 // Basic informaton of the current frame.
1410 TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
1411 TemporalFilterData *tf_data = &cpi->td.tf_data;
1412 const int compute_frame_diff = frame_diff != NULL;
1413 // TODO(anyone): Currently, we enforce the filtering strength on internal
1414 // ARFs except the second ARF to be zero. We should investigate in which case
1415 // it is more beneficial to use non-zero strength filtering.
1416 // Only parallel level 0 frames go through temporal filtering.
1417 assert(cpi->ppi->gf_group.frame_parallel_level[gf_frame_index] == 0);
1418
1419 // Initialize temporal filter context structure.
1420 init_tf_ctx(cpi, filter_frame_lookahead_idx, gf_frame_index,
1421 compute_frame_diff, output_frame);
1422
1423 // Allocate and reset temporal filter buffers.
1424 const int is_highbitdepth = tf_ctx->is_highbitdepth;
1425 if (!tf_alloc_and_reset_data(tf_data, tf_ctx->num_pels, is_highbitdepth)) {
1426 aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
1427 "Error allocating temporal filter data");
1428 }
1429
1430 // Perform temporal filtering process.
1431 if (mt_info->num_workers > 1)
1432 av1_tf_do_filtering_mt(cpi);
1433 else
1434 tf_do_filtering(cpi);
1435
1436 if (compute_frame_diff) {
1437 *frame_diff = tf_data->diff;
1438 }
1439 // Deallocate temporal filter buffers.
1440 tf_dealloc_data(tf_data, is_highbitdepth);
1441 }
1442
av1_is_temporal_filter_on(const AV1EncoderConfig * oxcf)1443 int av1_is_temporal_filter_on(const AV1EncoderConfig *oxcf) {
1444 return oxcf->algo_cfg.arnr_max_frames > 0 && oxcf->gf_cfg.lag_in_frames > 1;
1445 }
1446
av1_tf_info_alloc(TEMPORAL_FILTER_INFO * tf_info,const AV1_COMP * cpi)1447 bool av1_tf_info_alloc(TEMPORAL_FILTER_INFO *tf_info, const AV1_COMP *cpi) {
1448 const AV1EncoderConfig *oxcf = &cpi->oxcf;
1449 tf_info->is_temporal_filter_on = av1_is_temporal_filter_on(oxcf);
1450 if (tf_info->is_temporal_filter_on == 0) return true;
1451
1452 const AV1_COMMON *cm = &cpi->common;
1453 const SequenceHeader *const seq_params = cm->seq_params;
1454 for (int i = 0; i < TF_INFO_BUF_COUNT; ++i) {
1455 if (aom_realloc_frame_buffer(
1456 &tf_info->tf_buf[i], oxcf->frm_dim_cfg.width,
1457 oxcf->frm_dim_cfg.height, seq_params->subsampling_x,
1458 seq_params->subsampling_y, seq_params->use_highbitdepth,
1459 cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
1460 NULL, cpi->alloc_pyramid, 0)) {
1461 return false;
1462 }
1463 }
1464 return true;
1465 }
1466
av1_tf_info_free(TEMPORAL_FILTER_INFO * tf_info)1467 void av1_tf_info_free(TEMPORAL_FILTER_INFO *tf_info) {
1468 if (tf_info->is_temporal_filter_on == 0) return;
1469 for (int i = 0; i < TF_INFO_BUF_COUNT; ++i) {
1470 aom_free_frame_buffer(&tf_info->tf_buf[i]);
1471 }
1472 aom_free_frame_buffer(&tf_info->tf_buf_second_arf);
1473 }
1474
av1_tf_info_reset(TEMPORAL_FILTER_INFO * tf_info)1475 void av1_tf_info_reset(TEMPORAL_FILTER_INFO *tf_info) {
1476 av1_zero(tf_info->tf_buf_valid);
1477 av1_zero(tf_info->tf_buf_gf_index);
1478 av1_zero(tf_info->tf_buf_display_index_offset);
1479 }
1480
av1_tf_info_filtering(TEMPORAL_FILTER_INFO * tf_info,AV1_COMP * cpi,const GF_GROUP * gf_group)1481 void av1_tf_info_filtering(TEMPORAL_FILTER_INFO *tf_info, AV1_COMP *cpi,
1482 const GF_GROUP *gf_group) {
1483 if (tf_info->is_temporal_filter_on == 0) return;
1484 const AV1_COMMON *const cm = &cpi->common;
1485 for (int gf_index = 0; gf_index < gf_group->size; ++gf_index) {
1486 int update_type = gf_group->update_type[gf_index];
1487 if (update_type == KF_UPDATE || update_type == ARF_UPDATE) {
1488 int buf_idx = gf_group->frame_type[gf_index] == INTER_FRAME;
1489 int lookahead_idx = gf_group->arf_src_offset[gf_index] +
1490 gf_group->cur_frame_idx[gf_index];
1491 // This function is designed to be called multiple times after
1492 // av1_tf_info_reset(). It will only generate the filtered frame that does
1493 // not exist yet.
1494 if (tf_info->tf_buf_valid[buf_idx] == 0 ||
1495 tf_info->tf_buf_display_index_offset[buf_idx] != lookahead_idx) {
1496 YV12_BUFFER_CONFIG *out_buf = &tf_info->tf_buf[buf_idx];
1497 av1_temporal_filter(cpi, lookahead_idx, gf_index,
1498 &tf_info->frame_diff[buf_idx], out_buf);
1499 aom_extend_frame_borders(out_buf, av1_num_planes(cm));
1500 tf_info->tf_buf_gf_index[buf_idx] = gf_index;
1501 tf_info->tf_buf_display_index_offset[buf_idx] = lookahead_idx;
1502 tf_info->tf_buf_valid[buf_idx] = 1;
1503 }
1504 }
1505 }
1506 }
1507
av1_tf_info_get_filtered_buf(TEMPORAL_FILTER_INFO * tf_info,int gf_index,FRAME_DIFF * frame_diff)1508 YV12_BUFFER_CONFIG *av1_tf_info_get_filtered_buf(TEMPORAL_FILTER_INFO *tf_info,
1509 int gf_index,
1510 FRAME_DIFF *frame_diff) {
1511 if (tf_info->is_temporal_filter_on == 0) return NULL;
1512 YV12_BUFFER_CONFIG *out_buf = NULL;
1513 for (int i = 0; i < TF_INFO_BUF_COUNT; ++i) {
1514 if (tf_info->tf_buf_valid[i] && tf_info->tf_buf_gf_index[i] == gf_index) {
1515 out_buf = &tf_info->tf_buf[i];
1516 *frame_diff = tf_info->frame_diff[i];
1517 }
1518 }
1519 return out_buf;
1520 }
1521 /*!\endcond */
1522