1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "aom/aom_image.h"
13 #include "config/aom_config.h"
14 #include "config/aom_scale_rtcd.h"
15
16 #include "aom_dsp/aom_dsp_common.h"
17 #include "aom_dsp/txfm_common.h"
18 #include "aom_mem/aom_mem.h"
19 #include "aom_util/aom_pthread.h"
20 #include "aom_util/aom_thread.h"
21 #include "av1/common/av1_loopfilter.h"
22 #include "av1/common/blockd.h"
23 #include "av1/common/cdef.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/thread_common.h"
27 #include "av1/common/reconinter.h"
28 #include "av1/common/reconintra.h"
29 #include "av1/common/restoration.h"
30
31 // Set up nsync by width.
get_sync_range(int width)32 static inline int get_sync_range(int width) {
33 // nsync numbers are picked by testing. For example, for 4k
34 // video, using 4 gives best performance.
35 if (width < 640)
36 return 1;
37 else if (width <= 1280)
38 return 2;
39 else if (width <= 4096)
40 return 4;
41 else
42 return 8;
43 }
44
45 #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
get_lr_sync_range(int width)46 static inline int get_lr_sync_range(int width) {
47 #if 0
48 // nsync numbers are picked by testing. For example, for 4k
49 // video, using 4 gives best performance.
50 if (width < 640)
51 return 1;
52 else if (width <= 1280)
53 return 2;
54 else if (width <= 4096)
55 return 4;
56 else
57 return 8;
58 #else
59 (void)width;
60 return 1;
61 #endif
62 }
63 #endif // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
64
65 // Allocate memory for lf row synchronization
av1_loop_filter_alloc(AV1LfSync * lf_sync,AV1_COMMON * cm,int rows,int width,int num_workers)66 void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
67 int width, int num_workers) {
68 lf_sync->rows = rows;
69 #if CONFIG_MULTITHREAD
70 {
71 int i, j;
72
73 for (j = 0; j < MAX_MB_PLANE; j++) {
74 CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
75 aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
76 if (lf_sync->mutex_[j]) {
77 for (i = 0; i < rows; ++i) {
78 pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
79 }
80 }
81
82 CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
83 aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
84 if (lf_sync->cond_[j]) {
85 for (i = 0; i < rows; ++i) {
86 pthread_cond_init(&lf_sync->cond_[j][i], NULL);
87 }
88 }
89 }
90
91 CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
92 aom_malloc(sizeof(*(lf_sync->job_mutex))));
93 if (lf_sync->job_mutex) {
94 pthread_mutex_init(lf_sync->job_mutex, NULL);
95 }
96 }
97 #endif // CONFIG_MULTITHREAD
98 CHECK_MEM_ERROR(cm, lf_sync->lfdata,
99 aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
100 lf_sync->num_workers = num_workers;
101
102 for (int j = 0; j < MAX_MB_PLANE; j++) {
103 CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
104 aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
105 }
106 CHECK_MEM_ERROR(
107 cm, lf_sync->job_queue,
108 aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
109 // Set up nsync.
110 lf_sync->sync_range = get_sync_range(width);
111 }
112
113 // Deallocate lf synchronization related mutex and data
av1_loop_filter_dealloc(AV1LfSync * lf_sync)114 void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
115 if (lf_sync != NULL) {
116 int j;
117 #if CONFIG_MULTITHREAD
118 int i;
119 for (j = 0; j < MAX_MB_PLANE; j++) {
120 if (lf_sync->mutex_[j] != NULL) {
121 for (i = 0; i < lf_sync->rows; ++i) {
122 pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
123 }
124 aom_free(lf_sync->mutex_[j]);
125 }
126 if (lf_sync->cond_[j] != NULL) {
127 for (i = 0; i < lf_sync->rows; ++i) {
128 pthread_cond_destroy(&lf_sync->cond_[j][i]);
129 }
130 aom_free(lf_sync->cond_[j]);
131 }
132 }
133 if (lf_sync->job_mutex != NULL) {
134 pthread_mutex_destroy(lf_sync->job_mutex);
135 aom_free(lf_sync->job_mutex);
136 }
137 #endif // CONFIG_MULTITHREAD
138 aom_free(lf_sync->lfdata);
139 for (j = 0; j < MAX_MB_PLANE; j++) {
140 aom_free(lf_sync->cur_sb_col[j]);
141 }
142
143 aom_free(lf_sync->job_queue);
144 // clear the structure as the source of this call may be a resize in which
145 // case this call will be followed by an _alloc() which may fail.
146 av1_zero(*lf_sync);
147 }
148 }
149
av1_alloc_cdef_sync(AV1_COMMON * const cm,AV1CdefSync * cdef_sync,int num_workers)150 void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync,
151 int num_workers) {
152 if (num_workers < 1) return;
153 #if CONFIG_MULTITHREAD
154 if (cdef_sync->mutex_ == NULL) {
155 CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
156 aom_malloc(sizeof(*(cdef_sync->mutex_))));
157 if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
158 }
159 #else
160 (void)cm;
161 (void)cdef_sync;
162 #endif // CONFIG_MULTITHREAD
163 }
164
av1_free_cdef_sync(AV1CdefSync * cdef_sync)165 void av1_free_cdef_sync(AV1CdefSync *cdef_sync) {
166 if (cdef_sync == NULL) return;
167 #if CONFIG_MULTITHREAD
168 if (cdef_sync->mutex_ != NULL) {
169 pthread_mutex_destroy(cdef_sync->mutex_);
170 aom_free(cdef_sync->mutex_);
171 }
172 #endif // CONFIG_MULTITHREAD
173 }
174
cdef_row_mt_sync_read(AV1CdefSync * const cdef_sync,int row)175 static inline void cdef_row_mt_sync_read(AV1CdefSync *const cdef_sync,
176 int row) {
177 if (!row) return;
178 #if CONFIG_MULTITHREAD
179 AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
180 pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_);
181 while (cdef_row_mt[row - 1].is_row_done != 1)
182 pthread_cond_wait(cdef_row_mt[row - 1].row_cond_,
183 cdef_row_mt[row - 1].row_mutex_);
184 cdef_row_mt[row - 1].is_row_done = 0;
185 pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_);
186 #else
187 (void)cdef_sync;
188 #endif // CONFIG_MULTITHREAD
189 }
190
cdef_row_mt_sync_write(AV1CdefSync * const cdef_sync,int row)191 static inline void cdef_row_mt_sync_write(AV1CdefSync *const cdef_sync,
192 int row) {
193 #if CONFIG_MULTITHREAD
194 AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
195 pthread_mutex_lock(cdef_row_mt[row].row_mutex_);
196 pthread_cond_signal(cdef_row_mt[row].row_cond_);
197 cdef_row_mt[row].is_row_done = 1;
198 pthread_mutex_unlock(cdef_row_mt[row].row_mutex_);
199 #else
200 (void)cdef_sync;
201 (void)row;
202 #endif // CONFIG_MULTITHREAD
203 }
204
sync_read(AV1LfSync * const lf_sync,int r,int c,int plane)205 static inline void sync_read(AV1LfSync *const lf_sync, int r, int c,
206 int plane) {
207 #if CONFIG_MULTITHREAD
208 const int nsync = lf_sync->sync_range;
209
210 if (r && !(c & (nsync - 1))) {
211 pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
212 pthread_mutex_lock(mutex);
213
214 while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
215 pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
216 }
217 pthread_mutex_unlock(mutex);
218 }
219 #else
220 (void)lf_sync;
221 (void)r;
222 (void)c;
223 (void)plane;
224 #endif // CONFIG_MULTITHREAD
225 }
226
sync_write(AV1LfSync * const lf_sync,int r,int c,const int sb_cols,int plane)227 static inline void sync_write(AV1LfSync *const lf_sync, int r, int c,
228 const int sb_cols, int plane) {
229 #if CONFIG_MULTITHREAD
230 const int nsync = lf_sync->sync_range;
231 int cur;
232 // Only signal when there are enough filtered SB for next row to run.
233 int sig = 1;
234
235 if (c < sb_cols - 1) {
236 cur = c;
237 if (c % nsync) sig = 0;
238 } else {
239 cur = sb_cols + nsync;
240 }
241
242 if (sig) {
243 pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
244
245 // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum
246 // column number. In this case, the AOMMAX operation here ensures that
247 // cur_sb_col[plane][r] is not overwritten with a smaller value thus
248 // preventing the infinite waiting of threads in the relevant sync_read()
249 // function.
250 lf_sync->cur_sb_col[plane][r] = AOMMAX(lf_sync->cur_sb_col[plane][r], cur);
251
252 pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
253 pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
254 }
255 #else
256 (void)lf_sync;
257 (void)r;
258 (void)c;
259 (void)sb_cols;
260 (void)plane;
261 #endif // CONFIG_MULTITHREAD
262 }
263
264 // One job of row loopfiltering.
av1_thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,int mi_row,int plane,int dir,int lpf_opt_level,AV1LfSync * const lf_sync,struct aom_internal_error_info * error_info,AV1_DEBLOCKING_PARAMETERS * params_buf,TX_SIZE * tx_buf,int num_mis_in_lpf_unit_height_log2)265 void av1_thread_loop_filter_rows(
266 const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
267 struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane,
268 int dir, int lpf_opt_level, AV1LfSync *const lf_sync,
269 struct aom_internal_error_info *error_info,
270 AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf,
271 int num_mis_in_lpf_unit_height_log2) {
272 // TODO(aomedia:3276): Pass error_info to the low-level functions as required
273 // in future to handle error propagation.
274 (void)error_info;
275 const int sb_cols =
276 CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2);
277 const int r = mi_row >> num_mis_in_lpf_unit_height_log2;
278 int mi_col, c;
279
280 const bool joint_filter_chroma = (lpf_opt_level == 2) && plane > AOM_PLANE_Y;
281 const int num_planes = joint_filter_chroma ? 2 : 1;
282 assert(IMPLIES(joint_filter_chroma, plane == AOM_PLANE_U));
283
284 if (dir == 0) {
285 for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
286 c = mi_col >> MAX_MIB_SIZE_LOG2;
287
288 av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
289 mi_row, mi_col, plane, plane + num_planes);
290 if (lpf_opt_level) {
291 if (plane == AOM_PLANE_Y) {
292 av1_filter_block_plane_vert_opt(cm, xd, &planes[plane], mi_row,
293 mi_col, params_buf, tx_buf,
294 num_mis_in_lpf_unit_height_log2);
295 } else {
296 av1_filter_block_plane_vert_opt_chroma(
297 cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane,
298 joint_filter_chroma, num_mis_in_lpf_unit_height_log2);
299 }
300 } else {
301 av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
302 mi_col);
303 }
304 if (lf_sync != NULL) {
305 sync_write(lf_sync, r, c, sb_cols, plane);
306 }
307 }
308 } else if (dir == 1) {
309 for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
310 c = mi_col >> MAX_MIB_SIZE_LOG2;
311
312 if (lf_sync != NULL) {
313 // Wait for vertical edge filtering of the top-right block to be
314 // completed
315 sync_read(lf_sync, r, c, plane);
316
317 // Wait for vertical edge filtering of the right block to be completed
318 sync_read(lf_sync, r + 1, c, plane);
319 }
320
321 #if CONFIG_MULTITHREAD
322 if (lf_sync && lf_sync->num_workers > 1) {
323 pthread_mutex_lock(lf_sync->job_mutex);
324 const bool lf_mt_exit = lf_sync->lf_mt_exit;
325 pthread_mutex_unlock(lf_sync->job_mutex);
326 // Exit in case any worker has encountered an error.
327 if (lf_mt_exit) return;
328 }
329 #endif
330
331 av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
332 mi_row, mi_col, plane, plane + num_planes);
333 if (lpf_opt_level) {
334 if (plane == AOM_PLANE_Y) {
335 av1_filter_block_plane_horz_opt(cm, xd, &planes[plane], mi_row,
336 mi_col, params_buf, tx_buf,
337 num_mis_in_lpf_unit_height_log2);
338 } else {
339 av1_filter_block_plane_horz_opt_chroma(
340 cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane,
341 joint_filter_chroma, num_mis_in_lpf_unit_height_log2);
342 }
343 } else {
344 av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
345 mi_col);
346 }
347 }
348 }
349 }
350
av1_set_vert_loop_filter_done(AV1_COMMON * cm,AV1LfSync * lf_sync,int num_mis_in_lpf_unit_height_log2)351 void av1_set_vert_loop_filter_done(AV1_COMMON *cm, AV1LfSync *lf_sync,
352 int num_mis_in_lpf_unit_height_log2) {
353 int plane, sb_row;
354 const int sb_cols =
355 CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, num_mis_in_lpf_unit_height_log2);
356 const int sb_rows =
357 CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, num_mis_in_lpf_unit_height_log2);
358
359 // In case of loopfilter row-multithreading, the worker on an SB row waits for
360 // the vertical edge filtering of the right and top-right SBs. Hence, in case
361 // a thread (main/worker) encounters an error, update that vertical
362 // loopfiltering of every SB row in the frame is complete in order to avoid
363 // dependent workers waiting indefinitely.
364 for (sb_row = 0; sb_row < sb_rows; ++sb_row)
365 for (plane = 0; plane < MAX_MB_PLANE; ++plane)
366 sync_write(lf_sync, sb_row, sb_cols - 1, sb_cols, plane);
367 }
368
sync_lf_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)369 static inline void sync_lf_workers(AVxWorker *const workers,
370 AV1_COMMON *const cm, int num_workers) {
371 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
372 int had_error = workers[0].had_error;
373 struct aom_internal_error_info error_info;
374
375 // Read the error_info of main thread.
376 if (had_error) {
377 AVxWorker *const worker = &workers[0];
378 error_info = ((LFWorkerData *)worker->data2)->error_info;
379 }
380
381 // Wait till all rows are finished.
382 for (int i = num_workers - 1; i > 0; --i) {
383 AVxWorker *const worker = &workers[i];
384 if (!winterface->sync(worker)) {
385 had_error = 1;
386 error_info = ((LFWorkerData *)worker->data2)->error_info;
387 }
388 }
389 if (had_error) aom_internal_error_copy(cm->error, &error_info);
390 }
391
392 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(void * arg1,void * arg2)393 static int loop_filter_row_worker(void *arg1, void *arg2) {
394 AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
395 LFWorkerData *const lf_data = (LFWorkerData *)arg2;
396 AV1LfMTInfo *cur_job_info;
397
398 #if CONFIG_MULTITHREAD
399 pthread_mutex_t *job_mutex_ = lf_sync->job_mutex;
400 #endif
401
402 struct aom_internal_error_info *const error_info = &lf_data->error_info;
403
404 // The jmp_buf is valid only for the duration of the function that calls
405 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
406 // before it returns.
407 if (setjmp(error_info->jmp)) {
408 error_info->setjmp = 0;
409 #if CONFIG_MULTITHREAD
410 pthread_mutex_lock(job_mutex_);
411 lf_sync->lf_mt_exit = true;
412 pthread_mutex_unlock(job_mutex_);
413 #endif
414 av1_set_vert_loop_filter_done(lf_data->cm, lf_sync, MAX_MIB_SIZE_LOG2);
415 return 0;
416 }
417 error_info->setjmp = 1;
418
419 while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
420 const int lpf_opt_level = cur_job_info->lpf_opt_level;
421 av1_thread_loop_filter_rows(
422 lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
423 cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
424 lpf_opt_level, lf_sync, error_info, lf_data->params_buf,
425 lf_data->tx_buf, MAX_MIB_SIZE_LOG2);
426 }
427 error_info->setjmp = 0;
428 return 1;
429 }
430
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[MAX_MB_PLANE],AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int lpf_opt_level)431 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
432 MACROBLOCKD *xd, int start, int stop,
433 const int planes_to_lf[MAX_MB_PLANE],
434 AVxWorker *workers, int num_workers,
435 AV1LfSync *lf_sync, int lpf_opt_level) {
436 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
437 int i;
438 loop_filter_frame_mt_init(cm, start, stop, planes_to_lf, num_workers, lf_sync,
439 lpf_opt_level, MAX_MIB_SIZE_LOG2);
440
441 // Set up loopfilter thread data.
442 for (i = num_workers - 1; i >= 0; --i) {
443 AVxWorker *const worker = &workers[i];
444 LFWorkerData *const lf_data = &lf_sync->lfdata[i];
445
446 worker->hook = loop_filter_row_worker;
447 worker->data1 = lf_sync;
448 worker->data2 = lf_data;
449
450 // Loopfilter data
451 loop_filter_data_reset(lf_data, frame, cm, xd);
452
453 // Start loopfiltering
454 worker->had_error = 0;
455 if (i == 0) {
456 winterface->execute(worker);
457 } else {
458 winterface->launch(worker);
459 }
460 }
461
462 sync_lf_workers(workers, cm, num_workers);
463 }
464
loop_filter_rows(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[MAX_MB_PLANE],int lpf_opt_level)465 static void loop_filter_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
466 MACROBLOCKD *xd, int start, int stop,
467 const int planes_to_lf[MAX_MB_PLANE],
468 int lpf_opt_level) {
469 // Filter top rows of all planes first, in case the output can be partially
470 // reconstructed row by row.
471 int mi_row, plane, dir;
472
473 AV1_DEBLOCKING_PARAMETERS params_buf[MAX_MIB_SIZE];
474 TX_SIZE tx_buf[MAX_MIB_SIZE];
475 for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
476 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
477 if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) {
478 continue;
479 }
480
481 for (dir = 0; dir < 2; ++dir) {
482 av1_thread_loop_filter_rows(frame, cm, xd->plane, xd, mi_row, plane,
483 dir, lpf_opt_level, /*lf_sync=*/NULL,
484 xd->error_info, params_buf, tx_buf,
485 MAX_MIB_SIZE_LOG2);
486 }
487 }
488 }
489 }
490
av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int plane_start,int plane_end,int partial_frame,AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int lpf_opt_level)491 void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
492 MACROBLOCKD *xd, int plane_start, int plane_end,
493 int partial_frame, AVxWorker *workers,
494 int num_workers, AV1LfSync *lf_sync,
495 int lpf_opt_level) {
496 int start_mi_row, end_mi_row, mi_rows_to_filter;
497 int planes_to_lf[MAX_MB_PLANE];
498
499 if (!check_planes_to_loop_filter(&cm->lf, planes_to_lf, plane_start,
500 plane_end))
501 return;
502
503 start_mi_row = 0;
504 mi_rows_to_filter = cm->mi_params.mi_rows;
505 if (partial_frame && cm->mi_params.mi_rows > 8) {
506 start_mi_row = cm->mi_params.mi_rows >> 1;
507 start_mi_row &= 0xfffffff8;
508 mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
509 }
510 end_mi_row = start_mi_row + mi_rows_to_filter;
511 av1_loop_filter_frame_init(cm, plane_start, plane_end);
512
513 if (num_workers > 1) {
514 // Enqueue and execute loopfiltering jobs.
515 loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
516 workers, num_workers, lf_sync, lpf_opt_level);
517 } else {
518 // Directly filter in the main thread.
519 loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
520 lpf_opt_level);
521 }
522 }
523
524 #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
lr_sync_read(void * const lr_sync,int r,int c,int plane)525 static inline void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
526 #if CONFIG_MULTITHREAD
527 AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
528 const int nsync = loop_res_sync->sync_range;
529
530 if (r && !(c & (nsync - 1))) {
531 pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
532 pthread_mutex_lock(mutex);
533
534 while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
535 pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
536 }
537 pthread_mutex_unlock(mutex);
538 }
539 #else
540 (void)lr_sync;
541 (void)r;
542 (void)c;
543 (void)plane;
544 #endif // CONFIG_MULTITHREAD
545 }
546
lr_sync_write(void * const lr_sync,int r,int c,const int sb_cols,int plane)547 static inline void lr_sync_write(void *const lr_sync, int r, int c,
548 const int sb_cols, int plane) {
549 #if CONFIG_MULTITHREAD
550 AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
551 const int nsync = loop_res_sync->sync_range;
552 int cur;
553 // Only signal when there are enough filtered SB for next row to run.
554 int sig = 1;
555
556 if (c < sb_cols - 1) {
557 cur = c;
558 if (c % nsync) sig = 0;
559 } else {
560 cur = sb_cols + nsync;
561 }
562
563 if (sig) {
564 pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
565
566 // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum
567 // column number. In this case, the AOMMAX operation here ensures that
568 // cur_sb_col[plane][r] is not overwritten with a smaller value thus
569 // preventing the infinite waiting of threads in the relevant sync_read()
570 // function.
571 loop_res_sync->cur_sb_col[plane][r] =
572 AOMMAX(loop_res_sync->cur_sb_col[plane][r], cur);
573
574 pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
575 pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
576 }
577 #else
578 (void)lr_sync;
579 (void)r;
580 (void)c;
581 (void)sb_cols;
582 (void)plane;
583 #endif // CONFIG_MULTITHREAD
584 }
585
586 // Allocate memory for loop restoration row synchronization
av1_loop_restoration_alloc(AV1LrSync * lr_sync,AV1_COMMON * cm,int num_workers,int num_rows_lr,int num_planes,int width)587 void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
588 int num_workers, int num_rows_lr,
589 int num_planes, int width) {
590 lr_sync->rows = num_rows_lr;
591 lr_sync->num_planes = num_planes;
592 #if CONFIG_MULTITHREAD
593 {
594 int i, j;
595
596 for (j = 0; j < num_planes; j++) {
597 CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
598 aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
599 if (lr_sync->mutex_[j]) {
600 for (i = 0; i < num_rows_lr; ++i) {
601 pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
602 }
603 }
604
605 CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
606 aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
607 if (lr_sync->cond_[j]) {
608 for (i = 0; i < num_rows_lr; ++i) {
609 pthread_cond_init(&lr_sync->cond_[j][i], NULL);
610 }
611 }
612 }
613
614 CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
615 aom_malloc(sizeof(*(lr_sync->job_mutex))));
616 if (lr_sync->job_mutex) {
617 pthread_mutex_init(lr_sync->job_mutex, NULL);
618 }
619 }
620 #endif // CONFIG_MULTITHREAD
621 CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
622 aom_calloc(num_workers, sizeof(*(lr_sync->lrworkerdata))));
623 lr_sync->num_workers = num_workers;
624
625 for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
626 if (worker_idx < num_workers - 1) {
627 CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
628 (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
629 CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
630 aom_malloc(sizeof(RestorationLineBuffers)));
631
632 } else {
633 lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
634 lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
635 }
636 }
637
638 for (int j = 0; j < num_planes; j++) {
639 CHECK_MEM_ERROR(
640 cm, lr_sync->cur_sb_col[j],
641 aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
642 }
643 CHECK_MEM_ERROR(
644 cm, lr_sync->job_queue,
645 aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
646 // Set up nsync.
647 lr_sync->sync_range = get_lr_sync_range(width);
648 }
649
650 // Deallocate loop restoration synchronization related mutex and data
av1_loop_restoration_dealloc(AV1LrSync * lr_sync)651 void av1_loop_restoration_dealloc(AV1LrSync *lr_sync) {
652 if (lr_sync != NULL) {
653 int j;
654 #if CONFIG_MULTITHREAD
655 int i;
656 for (j = 0; j < MAX_MB_PLANE; j++) {
657 if (lr_sync->mutex_[j] != NULL) {
658 for (i = 0; i < lr_sync->rows; ++i) {
659 pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
660 }
661 aom_free(lr_sync->mutex_[j]);
662 }
663 if (lr_sync->cond_[j] != NULL) {
664 for (i = 0; i < lr_sync->rows; ++i) {
665 pthread_cond_destroy(&lr_sync->cond_[j][i]);
666 }
667 aom_free(lr_sync->cond_[j]);
668 }
669 }
670 if (lr_sync->job_mutex != NULL) {
671 pthread_mutex_destroy(lr_sync->job_mutex);
672 aom_free(lr_sync->job_mutex);
673 }
674 #endif // CONFIG_MULTITHREAD
675 for (j = 0; j < MAX_MB_PLANE; j++) {
676 aom_free(lr_sync->cur_sb_col[j]);
677 }
678
679 aom_free(lr_sync->job_queue);
680
681 if (lr_sync->lrworkerdata) {
682 for (int worker_idx = 0; worker_idx < lr_sync->num_workers - 1;
683 worker_idx++) {
684 LRWorkerData *const workerdata_data =
685 lr_sync->lrworkerdata + worker_idx;
686
687 aom_free(workerdata_data->rst_tmpbuf);
688 aom_free(workerdata_data->rlbs);
689 }
690 aom_free(lr_sync->lrworkerdata);
691 }
692
693 // clear the structure as the source of this call may be a resize in which
694 // case this call will be followed by an _alloc() which may fail.
695 av1_zero(*lr_sync);
696 }
697 }
698
enqueue_lr_jobs(AV1LrSync * lr_sync,AV1LrStruct * lr_ctxt,AV1_COMMON * cm)699 static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
700 AV1_COMMON *cm) {
701 FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
702
703 const int num_planes = av1_num_planes(cm);
704 AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
705 int32_t lr_job_counter[2], num_even_lr_jobs = 0;
706 lr_sync->jobs_enqueued = 0;
707 lr_sync->jobs_dequeued = 0;
708
709 for (int plane = 0; plane < num_planes; plane++) {
710 if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
711 num_even_lr_jobs =
712 num_even_lr_jobs + ((ctxt[plane].rsi->vert_units + 1) >> 1);
713 }
714 lr_job_counter[0] = 0;
715 lr_job_counter[1] = num_even_lr_jobs;
716
717 for (int plane = 0; plane < num_planes; plane++) {
718 if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
719 const int is_uv = plane > 0;
720 const int ss_y = is_uv && cm->seq_params->subsampling_y;
721 const int unit_size = ctxt[plane].rsi->restoration_unit_size;
722 const int plane_h = ctxt[plane].plane_h;
723 const int ext_size = unit_size * 3 / 2;
724
725 int y0 = 0, i = 0;
726 while (y0 < plane_h) {
727 int remaining_h = plane_h - y0;
728 int h = (remaining_h < ext_size) ? remaining_h : unit_size;
729
730 RestorationTileLimits limits;
731 limits.v_start = y0;
732 limits.v_end = y0 + h;
733 assert(limits.v_end <= plane_h);
734 // Offset upwards to align with the restoration processing stripe
735 const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
736 limits.v_start = AOMMAX(0, limits.v_start - voffset);
737 if (limits.v_end < plane_h) limits.v_end -= voffset;
738
739 assert(lr_job_counter[0] <= num_even_lr_jobs);
740
741 lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
742 lr_job_queue[lr_job_counter[i & 1]].plane = plane;
743 lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
744 lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
745 lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
746 if ((i & 1) == 0) {
747 lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
748 limits.v_start + RESTORATION_BORDER;
749 lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
750 limits.v_end - RESTORATION_BORDER;
751 if (i == 0) {
752 assert(limits.v_start == 0);
753 lr_job_queue[lr_job_counter[i & 1]].v_copy_start = 0;
754 }
755 if (i == (ctxt[plane].rsi->vert_units - 1)) {
756 assert(limits.v_end == plane_h);
757 lr_job_queue[lr_job_counter[i & 1]].v_copy_end = plane_h;
758 }
759 } else {
760 lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
761 AOMMAX(limits.v_start - RESTORATION_BORDER, 0);
762 lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
763 AOMMIN(limits.v_end + RESTORATION_BORDER, plane_h);
764 }
765 lr_job_counter[i & 1]++;
766 lr_sync->jobs_enqueued++;
767
768 y0 += h;
769 ++i;
770 }
771 }
772 }
773
get_lr_job_info(AV1LrSync * lr_sync)774 static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
775 AV1LrMTInfo *cur_job_info = NULL;
776
777 #if CONFIG_MULTITHREAD
778 pthread_mutex_lock(lr_sync->job_mutex);
779
780 if (!lr_sync->lr_mt_exit && lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
781 cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
782 lr_sync->jobs_dequeued++;
783 }
784
785 pthread_mutex_unlock(lr_sync->job_mutex);
786 #else
787 (void)lr_sync;
788 #endif
789
790 return cur_job_info;
791 }
792
set_loop_restoration_done(AV1LrSync * const lr_sync,FilterFrameCtxt * const ctxt)793 static void set_loop_restoration_done(AV1LrSync *const lr_sync,
794 FilterFrameCtxt *const ctxt) {
795 for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
796 if (ctxt[plane].rsi->frame_restoration_type == RESTORE_NONE) continue;
797 int y0 = 0, row_number = 0;
798 const int unit_size = ctxt[plane].rsi->restoration_unit_size;
799 const int plane_h = ctxt[plane].plane_h;
800 const int ext_size = unit_size * 3 / 2;
801 const int hnum_rest_units = ctxt[plane].rsi->horz_units;
802 while (y0 < plane_h) {
803 const int remaining_h = plane_h - y0;
804 const int h = (remaining_h < ext_size) ? remaining_h : unit_size;
805 lr_sync_write(lr_sync, row_number, hnum_rest_units - 1, hnum_rest_units,
806 plane);
807 y0 += h;
808 ++row_number;
809 }
810 }
811 }
812
813 // Implement row loop restoration for each thread.
loop_restoration_row_worker(void * arg1,void * arg2)814 static int loop_restoration_row_worker(void *arg1, void *arg2) {
815 AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
816 LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
817 AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
818 FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
819 int lr_unit_row;
820 int plane;
821 int plane_w;
822 #if CONFIG_MULTITHREAD
823 pthread_mutex_t *job_mutex_ = lr_sync->job_mutex;
824 #endif
825 struct aom_internal_error_info *const error_info = &lrworkerdata->error_info;
826
827 // The jmp_buf is valid only for the duration of the function that calls
828 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
829 // before it returns.
830 if (setjmp(error_info->jmp)) {
831 error_info->setjmp = 0;
832 #if CONFIG_MULTITHREAD
833 pthread_mutex_lock(job_mutex_);
834 lr_sync->lr_mt_exit = true;
835 pthread_mutex_unlock(job_mutex_);
836 #endif
837 // In case of loop restoration multithreading, the worker on an even lr
838 // block row waits for the completion of the filtering of the top-right and
839 // bottom-right blocks. Hence, in case a thread (main/worker) encounters an
840 // error, update that filtering of every row in the frame is complete in
841 // order to avoid the dependent workers from waiting indefinitely.
842 set_loop_restoration_done(lr_sync, lr_ctxt->ctxt);
843 return 0;
844 }
845 error_info->setjmp = 1;
846
847 typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
848 YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
849 int vstart, int vend);
850 static const copy_fun copy_funs[MAX_MB_PLANE] = {
851 aom_yv12_partial_coloc_copy_y, aom_yv12_partial_coloc_copy_u,
852 aom_yv12_partial_coloc_copy_v
853 };
854
855 while (1) {
856 AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
857 if (cur_job_info != NULL) {
858 RestorationTileLimits limits;
859 sync_read_fn_t on_sync_read;
860 sync_write_fn_t on_sync_write;
861 limits.v_start = cur_job_info->v_start;
862 limits.v_end = cur_job_info->v_end;
863 lr_unit_row = cur_job_info->lr_unit_row;
864 plane = cur_job_info->plane;
865 plane_w = ctxt[plane].plane_w;
866
867 // sync_mode == 1 implies only sync read is required in LR Multi-threading
868 // sync_mode == 0 implies only sync write is required.
869 on_sync_read =
870 cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
871 on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
872 : av1_lr_sync_write_dummy;
873
874 av1_foreach_rest_unit_in_row(
875 &limits, plane_w, lr_ctxt->on_rest_unit, lr_unit_row,
876 ctxt[plane].rsi->restoration_unit_size, ctxt[plane].rsi->horz_units,
877 ctxt[plane].rsi->vert_units, plane, &ctxt[plane],
878 lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
879 on_sync_write, lr_sync, error_info);
880
881 copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, 0, plane_w,
882 cur_job_info->v_copy_start, cur_job_info->v_copy_end);
883
884 if (lrworkerdata->do_extend_border) {
885 aom_extend_frame_borders_plane_row(lr_ctxt->frame, plane,
886 cur_job_info->v_copy_start,
887 cur_job_info->v_copy_end);
888 }
889 } else {
890 break;
891 }
892 }
893 error_info->setjmp = 0;
894 return 1;
895 }
896
sync_lr_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)897 static inline void sync_lr_workers(AVxWorker *const workers,
898 AV1_COMMON *const cm, int num_workers) {
899 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
900 int had_error = workers[0].had_error;
901 struct aom_internal_error_info error_info;
902
903 // Read the error_info of main thread.
904 if (had_error) {
905 AVxWorker *const worker = &workers[0];
906 error_info = ((LRWorkerData *)worker->data2)->error_info;
907 }
908
909 // Wait till all rows are finished.
910 for (int i = num_workers - 1; i > 0; --i) {
911 AVxWorker *const worker = &workers[i];
912 if (!winterface->sync(worker)) {
913 had_error = 1;
914 error_info = ((LRWorkerData *)worker->data2)->error_info;
915 }
916 }
917 if (had_error) aom_internal_error_copy(cm->error, &error_info);
918 }
919
foreach_rest_unit_in_planes_mt(AV1LrStruct * lr_ctxt,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,AV1_COMMON * cm,int do_extend_border)920 static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
921 AVxWorker *workers, int num_workers,
922 AV1LrSync *lr_sync, AV1_COMMON *cm,
923 int do_extend_border) {
924 FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
925
926 const int num_planes = av1_num_planes(cm);
927
928 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
929 int num_rows_lr = 0;
930
931 for (int plane = 0; plane < num_planes; plane++) {
932 if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
933
934 const int plane_h = ctxt[plane].plane_h;
935 const int unit_size = cm->rst_info[plane].restoration_unit_size;
936
937 num_rows_lr = AOMMAX(num_rows_lr, av1_lr_count_units(unit_size, plane_h));
938 }
939
940 int i;
941 assert(MAX_MB_PLANE == 3);
942
943 if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
944 num_workers > lr_sync->num_workers || num_planes > lr_sync->num_planes) {
945 av1_loop_restoration_dealloc(lr_sync);
946 av1_loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr,
947 num_planes, cm->width);
948 }
949 lr_sync->lr_mt_exit = false;
950
951 // Initialize cur_sb_col to -1 for all SB rows.
952 for (i = 0; i < num_planes; i++) {
953 memset(lr_sync->cur_sb_col[i], -1,
954 sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
955 }
956
957 enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
958
959 // Set up looprestoration thread data.
960 for (i = num_workers - 1; i >= 0; --i) {
961 AVxWorker *const worker = &workers[i];
962 lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
963 lr_sync->lrworkerdata[i].do_extend_border = do_extend_border;
964 worker->hook = loop_restoration_row_worker;
965 worker->data1 = lr_sync;
966 worker->data2 = &lr_sync->lrworkerdata[i];
967
968 // Start loop restoration
969 worker->had_error = 0;
970 if (i == 0) {
971 winterface->execute(worker);
972 } else {
973 winterface->launch(worker);
974 }
975 }
976
977 sync_lr_workers(workers, cm, num_workers);
978 }
979
av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,int optimized_lr,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,void * lr_ctxt,int do_extend_border)980 void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
981 AV1_COMMON *cm, int optimized_lr,
982 AVxWorker *workers, int num_workers,
983 AV1LrSync *lr_sync, void *lr_ctxt,
984 int do_extend_border) {
985 assert(!cm->features.all_lossless);
986
987 const int num_planes = av1_num_planes(cm);
988
989 AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
990
991 av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
992 optimized_lr, num_planes);
993
994 foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
995 cm, do_extend_border);
996 }
997 #endif // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
998
999 // Initializes cdef_sync parameters.
reset_cdef_job_info(AV1CdefSync * const cdef_sync)1000 static inline void reset_cdef_job_info(AV1CdefSync *const cdef_sync) {
1001 cdef_sync->end_of_frame = 0;
1002 cdef_sync->fbr = 0;
1003 cdef_sync->fbc = 0;
1004 cdef_sync->cdef_mt_exit = false;
1005 }
1006
launch_cdef_workers(AVxWorker * const workers,int num_workers)1007 static inline void launch_cdef_workers(AVxWorker *const workers,
1008 int num_workers) {
1009 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1010 for (int i = num_workers - 1; i >= 0; i--) {
1011 AVxWorker *const worker = &workers[i];
1012 worker->had_error = 0;
1013 if (i == 0)
1014 winterface->execute(worker);
1015 else
1016 winterface->launch(worker);
1017 }
1018 }
1019
sync_cdef_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)1020 static inline void sync_cdef_workers(AVxWorker *const workers,
1021 AV1_COMMON *const cm, int num_workers) {
1022 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1023 int had_error = workers[0].had_error;
1024 struct aom_internal_error_info error_info;
1025
1026 // Read the error_info of main thread.
1027 if (had_error) {
1028 AVxWorker *const worker = &workers[0];
1029 error_info = ((AV1CdefWorkerData *)worker->data2)->error_info;
1030 }
1031
1032 // Wait till all rows are finished.
1033 for (int i = num_workers - 1; i > 0; --i) {
1034 AVxWorker *const worker = &workers[i];
1035 if (!winterface->sync(worker)) {
1036 had_error = 1;
1037 error_info = ((AV1CdefWorkerData *)worker->data2)->error_info;
1038 }
1039 }
1040 if (had_error) aom_internal_error_copy(cm->error, &error_info);
1041 }
1042
1043 // Updates the row index of the next job to be processed.
1044 // Also updates end_of_frame flag when the processing of all rows is complete.
update_cdef_row_next_job_info(AV1CdefSync * const cdef_sync,const int nvfb)1045 static void update_cdef_row_next_job_info(AV1CdefSync *const cdef_sync,
1046 const int nvfb) {
1047 cdef_sync->fbr++;
1048 if (cdef_sync->fbr == nvfb) {
1049 cdef_sync->end_of_frame = 1;
1050 }
1051 }
1052
1053 // Checks if a job is available. If job is available,
1054 // populates next job information and returns 1, else returns 0.
get_cdef_row_next_job(AV1CdefSync * const cdef_sync,volatile int * cur_fbr,const int nvfb)1055 static inline int get_cdef_row_next_job(AV1CdefSync *const cdef_sync,
1056 volatile int *cur_fbr, const int nvfb) {
1057 #if CONFIG_MULTITHREAD
1058 pthread_mutex_lock(cdef_sync->mutex_);
1059 #endif // CONFIG_MULTITHREAD
1060 int do_next_row = 0;
1061 // Populates information needed for current job and update the row
1062 // index of the next row to be processed.
1063 if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) {
1064 do_next_row = 1;
1065 *cur_fbr = cdef_sync->fbr;
1066 update_cdef_row_next_job_info(cdef_sync, nvfb);
1067 }
1068 #if CONFIG_MULTITHREAD
1069 pthread_mutex_unlock(cdef_sync->mutex_);
1070 #endif // CONFIG_MULTITHREAD
1071 return do_next_row;
1072 }
1073
set_cdef_init_fb_row_done(AV1CdefSync * const cdef_sync,int nvfb)1074 static void set_cdef_init_fb_row_done(AV1CdefSync *const cdef_sync, int nvfb) {
1075 for (int fbr = 0; fbr < nvfb; fbr++) cdef_row_mt_sync_write(cdef_sync, fbr);
1076 }
1077
1078 // Hook function for each thread in CDEF multi-threading.
cdef_sb_row_worker_hook(void * arg1,void * arg2)1079 static int cdef_sb_row_worker_hook(void *arg1, void *arg2) {
1080 AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1;
1081 AV1CdefWorkerData *const cdef_worker = (AV1CdefWorkerData *)arg2;
1082 AV1_COMMON *cm = cdef_worker->cm;
1083 const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
1084
1085 #if CONFIG_MULTITHREAD
1086 pthread_mutex_t *job_mutex_ = cdef_sync->mutex_;
1087 #endif
1088 struct aom_internal_error_info *const error_info = &cdef_worker->error_info;
1089
1090 // The jmp_buf is valid only for the duration of the function that calls
1091 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
1092 // before it returns.
1093 if (setjmp(error_info->jmp)) {
1094 error_info->setjmp = 0;
1095 #if CONFIG_MULTITHREAD
1096 pthread_mutex_lock(job_mutex_);
1097 cdef_sync->cdef_mt_exit = true;
1098 pthread_mutex_unlock(job_mutex_);
1099 #endif
1100 // In case of cdef row-multithreading, the worker on a filter block row
1101 // (fbr) waits for the line buffers (top and bottom) copy of the above row.
1102 // Hence, in case a thread (main/worker) encounters an error before copying
1103 // of the line buffers, update that line buffer copy is complete in order to
1104 // avoid dependent workers waiting indefinitely.
1105 set_cdef_init_fb_row_done(cdef_sync, nvfb);
1106 return 0;
1107 }
1108 error_info->setjmp = 1;
1109
1110 volatile int cur_fbr;
1111 const int num_planes = av1_num_planes(cm);
1112 while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) {
1113 MACROBLOCKD *xd = cdef_worker->xd;
1114 av1_cdef_fb_row(cm, xd, cdef_worker->linebuf, cdef_worker->colbuf,
1115 cdef_worker->srcbuf, cur_fbr,
1116 cdef_worker->cdef_init_fb_row_fn, cdef_sync, error_info);
1117 if (cdef_worker->do_extend_border) {
1118 for (int plane = 0; plane < num_planes; ++plane) {
1119 const YV12_BUFFER_CONFIG *ybf = &cm->cur_frame->buf;
1120 const int is_uv = plane > 0;
1121 const int mi_high = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
1122 const int unit_height = MI_SIZE_64X64 << mi_high;
1123 const int v_start = cur_fbr * unit_height;
1124 const int v_end =
1125 AOMMIN(v_start + unit_height, ybf->crop_heights[is_uv]);
1126 aom_extend_frame_borders_plane_row(ybf, plane, v_start, v_end);
1127 }
1128 }
1129 }
1130 error_info->setjmp = 0;
1131 return 1;
1132 }
1133
1134 // Assigns CDEF hook function and thread data to each worker.
prepare_cdef_frame_workers(AV1_COMMON * const cm,MACROBLOCKD * xd,AV1CdefWorkerData * const cdef_worker,AVxWorkerHook hook,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn,int do_extend_border)1135 static void prepare_cdef_frame_workers(
1136 AV1_COMMON *const cm, MACROBLOCKD *xd, AV1CdefWorkerData *const cdef_worker,
1137 AVxWorkerHook hook, AVxWorker *const workers, AV1CdefSync *const cdef_sync,
1138 int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn,
1139 int do_extend_border) {
1140 const int num_planes = av1_num_planes(cm);
1141
1142 cdef_worker[0].srcbuf = cm->cdef_info.srcbuf;
1143 for (int plane = 0; plane < num_planes; plane++)
1144 cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane];
1145 for (int i = num_workers - 1; i >= 0; i--) {
1146 AVxWorker *const worker = &workers[i];
1147 cdef_worker[i].cm = cm;
1148 cdef_worker[i].xd = xd;
1149 cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn;
1150 cdef_worker[i].do_extend_border = do_extend_border;
1151 for (int plane = 0; plane < num_planes; plane++)
1152 cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane];
1153
1154 worker->hook = hook;
1155 worker->data1 = cdef_sync;
1156 worker->data2 = &cdef_worker[i];
1157 }
1158 }
1159
1160 // Initializes row-level parameters for CDEF frame.
av1_cdef_init_fb_row_mt(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,uint16_t ** const linebuf,uint16_t * const src,struct AV1CdefSyncData * const cdef_sync,int fbr)1161 void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm,
1162 const MACROBLOCKD *const xd,
1163 CdefBlockInfo *const fb_info,
1164 uint16_t **const linebuf, uint16_t *const src,
1165 struct AV1CdefSyncData *const cdef_sync, int fbr) {
1166 const int num_planes = av1_num_planes(cm);
1167 const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
1168 const int luma_stride =
1169 ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
1170
1171 // for the current filter block, it's top left corner mi structure (mi_tl)
1172 // is first accessed to check whether the top and left boundaries are
1173 // frame boundaries. Then bottom-left and top-right mi structures are
1174 // accessed to check whether the bottom and right boundaries
1175 // (respectively) are frame boundaries.
1176 //
1177 // Note that we can't just check the bottom-right mi structure - eg. if
1178 // we're at the right-hand edge of the frame but not the bottom, then
1179 // the bottom-right mi is NULL but the bottom-left is not.
1180 fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
1181 if (fbr != nvfb - 1)
1182 fb_info->frame_boundary[BOTTOM] =
1183 (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
1184 else
1185 fb_info->frame_boundary[BOTTOM] = 1;
1186
1187 fb_info->src = src;
1188 fb_info->damping = cm->cdef_info.cdef_damping;
1189 fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
1190 av1_zero(fb_info->dir);
1191 av1_zero(fb_info->var);
1192
1193 for (int plane = 0; plane < num_planes; plane++) {
1194 const int stride = luma_stride >> xd->plane[plane].subsampling_x;
1195 uint16_t *top_linebuf = &linebuf[plane][0];
1196 uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride];
1197 {
1198 const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
1199 const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1200 const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1201
1202 if (fbr != nvfb - 1) // if (fbr != 0) // top line buffer copy
1203 av1_cdef_copy_sb8_16(
1204 cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], stride,
1205 xd->plane[plane].dst.buf, top_offset - CDEF_VBORDER, 0,
1206 xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1207 if (fbr != nvfb - 1) // bottom line buffer copy
1208 av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride],
1209 stride, xd->plane[plane].dst.buf, bot_offset, 0,
1210 xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1211 }
1212
1213 fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride];
1214 fb_info->bot_linebuf[plane] =
1215 &linebuf[plane]
1216 [nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)];
1217 }
1218
1219 cdef_row_mt_sync_write(cdef_sync, fbr);
1220 cdef_row_mt_sync_read(cdef_sync, fbr);
1221 }
1222
1223 // Implements multi-threading for CDEF.
1224 // Perform CDEF on input frame.
1225 // Inputs:
1226 // frame: Pointer to input frame buffer.
1227 // cm: Pointer to common structure.
1228 // xd: Pointer to common current coding block structure.
1229 // Returns:
1230 // Nothing will be returned.
av1_cdef_frame_mt(AV1_COMMON * const cm,MACROBLOCKD * const xd,AV1CdefWorkerData * const cdef_worker,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn,int do_extend_border)1231 void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd,
1232 AV1CdefWorkerData *const cdef_worker,
1233 AVxWorker *const workers, AV1CdefSync *const cdef_sync,
1234 int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn,
1235 int do_extend_border) {
1236 YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf;
1237 const int num_planes = av1_num_planes(cm);
1238
1239 av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
1240 num_planes);
1241
1242 reset_cdef_job_info(cdef_sync);
1243 prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook,
1244 workers, cdef_sync, num_workers,
1245 cdef_init_fb_row_fn, do_extend_border);
1246 launch_cdef_workers(workers, num_workers);
1247 sync_cdef_workers(workers, cm, num_workers);
1248 }
1249
av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON * cm)1250 int av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON *cm) {
1251 // No additional top-right delay when intraBC tool is not enabled.
1252 if (!av1_allow_intrabc(cm)) return 0;
1253 // Due to the hardware constraints on processing the intraBC tool with row
1254 // multithreading, a top-right delay of 3 superblocks of size 128x128 or 5
1255 // superblocks of size 64x64 is mandated. However, a minimum top-right delay
1256 // of 1 superblock is assured with 'sync_range'. Hence return only the
1257 // additional superblock delay when the intraBC tool is enabled.
1258 return cm->seq_params->sb_size == BLOCK_128X128 ? 2 : 4;
1259 }
1260