xref: /aosp_15_r20/external/libaom/av1/common/thread_common.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "aom/aom_image.h"
13 #include "config/aom_config.h"
14 #include "config/aom_scale_rtcd.h"
15 
16 #include "aom_dsp/aom_dsp_common.h"
17 #include "aom_dsp/txfm_common.h"
18 #include "aom_mem/aom_mem.h"
19 #include "aom_util/aom_pthread.h"
20 #include "aom_util/aom_thread.h"
21 #include "av1/common/av1_loopfilter.h"
22 #include "av1/common/blockd.h"
23 #include "av1/common/cdef.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/thread_common.h"
27 #include "av1/common/reconinter.h"
28 #include "av1/common/reconintra.h"
29 #include "av1/common/restoration.h"
30 
31 // Set up nsync by width.
get_sync_range(int width)32 static inline int get_sync_range(int width) {
33   // nsync numbers are picked by testing. For example, for 4k
34   // video, using 4 gives best performance.
35   if (width < 640)
36     return 1;
37   else if (width <= 1280)
38     return 2;
39   else if (width <= 4096)
40     return 4;
41   else
42     return 8;
43 }
44 
45 #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
get_lr_sync_range(int width)46 static inline int get_lr_sync_range(int width) {
47 #if 0
48   // nsync numbers are picked by testing. For example, for 4k
49   // video, using 4 gives best performance.
50   if (width < 640)
51     return 1;
52   else if (width <= 1280)
53     return 2;
54   else if (width <= 4096)
55     return 4;
56   else
57     return 8;
58 #else
59   (void)width;
60   return 1;
61 #endif
62 }
63 #endif  // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
64 
65 // Allocate memory for lf row synchronization
av1_loop_filter_alloc(AV1LfSync * lf_sync,AV1_COMMON * cm,int rows,int width,int num_workers)66 void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
67                            int width, int num_workers) {
68   lf_sync->rows = rows;
69 #if CONFIG_MULTITHREAD
70   {
71     int i, j;
72 
73     for (j = 0; j < MAX_MB_PLANE; j++) {
74       CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
75                       aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
76       if (lf_sync->mutex_[j]) {
77         for (i = 0; i < rows; ++i) {
78           pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
79         }
80       }
81 
82       CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
83                       aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
84       if (lf_sync->cond_[j]) {
85         for (i = 0; i < rows; ++i) {
86           pthread_cond_init(&lf_sync->cond_[j][i], NULL);
87         }
88       }
89     }
90 
91     CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
92                     aom_malloc(sizeof(*(lf_sync->job_mutex))));
93     if (lf_sync->job_mutex) {
94       pthread_mutex_init(lf_sync->job_mutex, NULL);
95     }
96   }
97 #endif  // CONFIG_MULTITHREAD
98   CHECK_MEM_ERROR(cm, lf_sync->lfdata,
99                   aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
100   lf_sync->num_workers = num_workers;
101 
102   for (int j = 0; j < MAX_MB_PLANE; j++) {
103     CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
104                     aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
105   }
106   CHECK_MEM_ERROR(
107       cm, lf_sync->job_queue,
108       aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
109   // Set up nsync.
110   lf_sync->sync_range = get_sync_range(width);
111 }
112 
113 // Deallocate lf synchronization related mutex and data
av1_loop_filter_dealloc(AV1LfSync * lf_sync)114 void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
115   if (lf_sync != NULL) {
116     int j;
117 #if CONFIG_MULTITHREAD
118     int i;
119     for (j = 0; j < MAX_MB_PLANE; j++) {
120       if (lf_sync->mutex_[j] != NULL) {
121         for (i = 0; i < lf_sync->rows; ++i) {
122           pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
123         }
124         aom_free(lf_sync->mutex_[j]);
125       }
126       if (lf_sync->cond_[j] != NULL) {
127         for (i = 0; i < lf_sync->rows; ++i) {
128           pthread_cond_destroy(&lf_sync->cond_[j][i]);
129         }
130         aom_free(lf_sync->cond_[j]);
131       }
132     }
133     if (lf_sync->job_mutex != NULL) {
134       pthread_mutex_destroy(lf_sync->job_mutex);
135       aom_free(lf_sync->job_mutex);
136     }
137 #endif  // CONFIG_MULTITHREAD
138     aom_free(lf_sync->lfdata);
139     for (j = 0; j < MAX_MB_PLANE; j++) {
140       aom_free(lf_sync->cur_sb_col[j]);
141     }
142 
143     aom_free(lf_sync->job_queue);
144     // clear the structure as the source of this call may be a resize in which
145     // case this call will be followed by an _alloc() which may fail.
146     av1_zero(*lf_sync);
147   }
148 }
149 
av1_alloc_cdef_sync(AV1_COMMON * const cm,AV1CdefSync * cdef_sync,int num_workers)150 void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync,
151                          int num_workers) {
152   if (num_workers < 1) return;
153 #if CONFIG_MULTITHREAD
154   if (cdef_sync->mutex_ == NULL) {
155     CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
156                     aom_malloc(sizeof(*(cdef_sync->mutex_))));
157     if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
158   }
159 #else
160   (void)cm;
161   (void)cdef_sync;
162 #endif  // CONFIG_MULTITHREAD
163 }
164 
av1_free_cdef_sync(AV1CdefSync * cdef_sync)165 void av1_free_cdef_sync(AV1CdefSync *cdef_sync) {
166   if (cdef_sync == NULL) return;
167 #if CONFIG_MULTITHREAD
168   if (cdef_sync->mutex_ != NULL) {
169     pthread_mutex_destroy(cdef_sync->mutex_);
170     aom_free(cdef_sync->mutex_);
171   }
172 #endif  // CONFIG_MULTITHREAD
173 }
174 
cdef_row_mt_sync_read(AV1CdefSync * const cdef_sync,int row)175 static inline void cdef_row_mt_sync_read(AV1CdefSync *const cdef_sync,
176                                          int row) {
177   if (!row) return;
178 #if CONFIG_MULTITHREAD
179   AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
180   pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_);
181   while (cdef_row_mt[row - 1].is_row_done != 1)
182     pthread_cond_wait(cdef_row_mt[row - 1].row_cond_,
183                       cdef_row_mt[row - 1].row_mutex_);
184   cdef_row_mt[row - 1].is_row_done = 0;
185   pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_);
186 #else
187   (void)cdef_sync;
188 #endif  // CONFIG_MULTITHREAD
189 }
190 
cdef_row_mt_sync_write(AV1CdefSync * const cdef_sync,int row)191 static inline void cdef_row_mt_sync_write(AV1CdefSync *const cdef_sync,
192                                           int row) {
193 #if CONFIG_MULTITHREAD
194   AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
195   pthread_mutex_lock(cdef_row_mt[row].row_mutex_);
196   pthread_cond_signal(cdef_row_mt[row].row_cond_);
197   cdef_row_mt[row].is_row_done = 1;
198   pthread_mutex_unlock(cdef_row_mt[row].row_mutex_);
199 #else
200   (void)cdef_sync;
201   (void)row;
202 #endif  // CONFIG_MULTITHREAD
203 }
204 
sync_read(AV1LfSync * const lf_sync,int r,int c,int plane)205 static inline void sync_read(AV1LfSync *const lf_sync, int r, int c,
206                              int plane) {
207 #if CONFIG_MULTITHREAD
208   const int nsync = lf_sync->sync_range;
209 
210   if (r && !(c & (nsync - 1))) {
211     pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
212     pthread_mutex_lock(mutex);
213 
214     while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
215       pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
216     }
217     pthread_mutex_unlock(mutex);
218   }
219 #else
220   (void)lf_sync;
221   (void)r;
222   (void)c;
223   (void)plane;
224 #endif  // CONFIG_MULTITHREAD
225 }
226 
sync_write(AV1LfSync * const lf_sync,int r,int c,const int sb_cols,int plane)227 static inline void sync_write(AV1LfSync *const lf_sync, int r, int c,
228                               const int sb_cols, int plane) {
229 #if CONFIG_MULTITHREAD
230   const int nsync = lf_sync->sync_range;
231   int cur;
232   // Only signal when there are enough filtered SB for next row to run.
233   int sig = 1;
234 
235   if (c < sb_cols - 1) {
236     cur = c;
237     if (c % nsync) sig = 0;
238   } else {
239     cur = sb_cols + nsync;
240   }
241 
242   if (sig) {
243     pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
244 
245     // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum
246     // column number. In this case, the AOMMAX operation here ensures that
247     // cur_sb_col[plane][r] is not overwritten with a smaller value thus
248     // preventing the infinite waiting of threads in the relevant sync_read()
249     // function.
250     lf_sync->cur_sb_col[plane][r] = AOMMAX(lf_sync->cur_sb_col[plane][r], cur);
251 
252     pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
253     pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
254   }
255 #else
256   (void)lf_sync;
257   (void)r;
258   (void)c;
259   (void)sb_cols;
260   (void)plane;
261 #endif  // CONFIG_MULTITHREAD
262 }
263 
264 // One job of row loopfiltering.
av1_thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,int mi_row,int plane,int dir,int lpf_opt_level,AV1LfSync * const lf_sync,struct aom_internal_error_info * error_info,AV1_DEBLOCKING_PARAMETERS * params_buf,TX_SIZE * tx_buf,int num_mis_in_lpf_unit_height_log2)265 void av1_thread_loop_filter_rows(
266     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
267     struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane,
268     int dir, int lpf_opt_level, AV1LfSync *const lf_sync,
269     struct aom_internal_error_info *error_info,
270     AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf,
271     int num_mis_in_lpf_unit_height_log2) {
272   // TODO(aomedia:3276): Pass error_info to the low-level functions as required
273   // in future to handle error propagation.
274   (void)error_info;
275   const int sb_cols =
276       CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2);
277   const int r = mi_row >> num_mis_in_lpf_unit_height_log2;
278   int mi_col, c;
279 
280   const bool joint_filter_chroma = (lpf_opt_level == 2) && plane > AOM_PLANE_Y;
281   const int num_planes = joint_filter_chroma ? 2 : 1;
282   assert(IMPLIES(joint_filter_chroma, plane == AOM_PLANE_U));
283 
284   if (dir == 0) {
285     for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
286       c = mi_col >> MAX_MIB_SIZE_LOG2;
287 
288       av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
289                            mi_row, mi_col, plane, plane + num_planes);
290       if (lpf_opt_level) {
291         if (plane == AOM_PLANE_Y) {
292           av1_filter_block_plane_vert_opt(cm, xd, &planes[plane], mi_row,
293                                           mi_col, params_buf, tx_buf,
294                                           num_mis_in_lpf_unit_height_log2);
295         } else {
296           av1_filter_block_plane_vert_opt_chroma(
297               cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane,
298               joint_filter_chroma, num_mis_in_lpf_unit_height_log2);
299         }
300       } else {
301         av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
302                                     mi_col);
303       }
304       if (lf_sync != NULL) {
305         sync_write(lf_sync, r, c, sb_cols, plane);
306       }
307     }
308   } else if (dir == 1) {
309     for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
310       c = mi_col >> MAX_MIB_SIZE_LOG2;
311 
312       if (lf_sync != NULL) {
313         // Wait for vertical edge filtering of the top-right block to be
314         // completed
315         sync_read(lf_sync, r, c, plane);
316 
317         // Wait for vertical edge filtering of the right block to be completed
318         sync_read(lf_sync, r + 1, c, plane);
319       }
320 
321 #if CONFIG_MULTITHREAD
322       if (lf_sync && lf_sync->num_workers > 1) {
323         pthread_mutex_lock(lf_sync->job_mutex);
324         const bool lf_mt_exit = lf_sync->lf_mt_exit;
325         pthread_mutex_unlock(lf_sync->job_mutex);
326         // Exit in case any worker has encountered an error.
327         if (lf_mt_exit) return;
328       }
329 #endif
330 
331       av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
332                            mi_row, mi_col, plane, plane + num_planes);
333       if (lpf_opt_level) {
334         if (plane == AOM_PLANE_Y) {
335           av1_filter_block_plane_horz_opt(cm, xd, &planes[plane], mi_row,
336                                           mi_col, params_buf, tx_buf,
337                                           num_mis_in_lpf_unit_height_log2);
338         } else {
339           av1_filter_block_plane_horz_opt_chroma(
340               cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane,
341               joint_filter_chroma, num_mis_in_lpf_unit_height_log2);
342         }
343       } else {
344         av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
345                                     mi_col);
346       }
347     }
348   }
349 }
350 
av1_set_vert_loop_filter_done(AV1_COMMON * cm,AV1LfSync * lf_sync,int num_mis_in_lpf_unit_height_log2)351 void av1_set_vert_loop_filter_done(AV1_COMMON *cm, AV1LfSync *lf_sync,
352                                    int num_mis_in_lpf_unit_height_log2) {
353   int plane, sb_row;
354   const int sb_cols =
355       CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, num_mis_in_lpf_unit_height_log2);
356   const int sb_rows =
357       CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, num_mis_in_lpf_unit_height_log2);
358 
359   // In case of loopfilter row-multithreading, the worker on an SB row waits for
360   // the vertical edge filtering of the right and top-right SBs. Hence, in case
361   // a thread (main/worker) encounters an error, update that vertical
362   // loopfiltering of every SB row in the frame is complete in order to avoid
363   // dependent workers waiting indefinitely.
364   for (sb_row = 0; sb_row < sb_rows; ++sb_row)
365     for (plane = 0; plane < MAX_MB_PLANE; ++plane)
366       sync_write(lf_sync, sb_row, sb_cols - 1, sb_cols, plane);
367 }
368 
sync_lf_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)369 static inline void sync_lf_workers(AVxWorker *const workers,
370                                    AV1_COMMON *const cm, int num_workers) {
371   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
372   int had_error = workers[0].had_error;
373   struct aom_internal_error_info error_info;
374 
375   // Read the error_info of main thread.
376   if (had_error) {
377     AVxWorker *const worker = &workers[0];
378     error_info = ((LFWorkerData *)worker->data2)->error_info;
379   }
380 
381   // Wait till all rows are finished.
382   for (int i = num_workers - 1; i > 0; --i) {
383     AVxWorker *const worker = &workers[i];
384     if (!winterface->sync(worker)) {
385       had_error = 1;
386       error_info = ((LFWorkerData *)worker->data2)->error_info;
387     }
388   }
389   if (had_error) aom_internal_error_copy(cm->error, &error_info);
390 }
391 
392 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(void * arg1,void * arg2)393 static int loop_filter_row_worker(void *arg1, void *arg2) {
394   AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
395   LFWorkerData *const lf_data = (LFWorkerData *)arg2;
396   AV1LfMTInfo *cur_job_info;
397 
398 #if CONFIG_MULTITHREAD
399   pthread_mutex_t *job_mutex_ = lf_sync->job_mutex;
400 #endif
401 
402   struct aom_internal_error_info *const error_info = &lf_data->error_info;
403 
404   // The jmp_buf is valid only for the duration of the function that calls
405   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
406   // before it returns.
407   if (setjmp(error_info->jmp)) {
408     error_info->setjmp = 0;
409 #if CONFIG_MULTITHREAD
410     pthread_mutex_lock(job_mutex_);
411     lf_sync->lf_mt_exit = true;
412     pthread_mutex_unlock(job_mutex_);
413 #endif
414     av1_set_vert_loop_filter_done(lf_data->cm, lf_sync, MAX_MIB_SIZE_LOG2);
415     return 0;
416   }
417   error_info->setjmp = 1;
418 
419   while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
420     const int lpf_opt_level = cur_job_info->lpf_opt_level;
421     av1_thread_loop_filter_rows(
422         lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
423         cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
424         lpf_opt_level, lf_sync, error_info, lf_data->params_buf,
425         lf_data->tx_buf, MAX_MIB_SIZE_LOG2);
426   }
427   error_info->setjmp = 0;
428   return 1;
429 }
430 
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[MAX_MB_PLANE],AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int lpf_opt_level)431 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
432                                 MACROBLOCKD *xd, int start, int stop,
433                                 const int planes_to_lf[MAX_MB_PLANE],
434                                 AVxWorker *workers, int num_workers,
435                                 AV1LfSync *lf_sync, int lpf_opt_level) {
436   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
437   int i;
438   loop_filter_frame_mt_init(cm, start, stop, planes_to_lf, num_workers, lf_sync,
439                             lpf_opt_level, MAX_MIB_SIZE_LOG2);
440 
441   // Set up loopfilter thread data.
442   for (i = num_workers - 1; i >= 0; --i) {
443     AVxWorker *const worker = &workers[i];
444     LFWorkerData *const lf_data = &lf_sync->lfdata[i];
445 
446     worker->hook = loop_filter_row_worker;
447     worker->data1 = lf_sync;
448     worker->data2 = lf_data;
449 
450     // Loopfilter data
451     loop_filter_data_reset(lf_data, frame, cm, xd);
452 
453     // Start loopfiltering
454     worker->had_error = 0;
455     if (i == 0) {
456       winterface->execute(worker);
457     } else {
458       winterface->launch(worker);
459     }
460   }
461 
462   sync_lf_workers(workers, cm, num_workers);
463 }
464 
loop_filter_rows(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[MAX_MB_PLANE],int lpf_opt_level)465 static void loop_filter_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
466                              MACROBLOCKD *xd, int start, int stop,
467                              const int planes_to_lf[MAX_MB_PLANE],
468                              int lpf_opt_level) {
469   // Filter top rows of all planes first, in case the output can be partially
470   // reconstructed row by row.
471   int mi_row, plane, dir;
472 
473   AV1_DEBLOCKING_PARAMETERS params_buf[MAX_MIB_SIZE];
474   TX_SIZE tx_buf[MAX_MIB_SIZE];
475   for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
476     for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
477       if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) {
478         continue;
479       }
480 
481       for (dir = 0; dir < 2; ++dir) {
482         av1_thread_loop_filter_rows(frame, cm, xd->plane, xd, mi_row, plane,
483                                     dir, lpf_opt_level, /*lf_sync=*/NULL,
484                                     xd->error_info, params_buf, tx_buf,
485                                     MAX_MIB_SIZE_LOG2);
486       }
487     }
488   }
489 }
490 
av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int plane_start,int plane_end,int partial_frame,AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int lpf_opt_level)491 void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
492                               MACROBLOCKD *xd, int plane_start, int plane_end,
493                               int partial_frame, AVxWorker *workers,
494                               int num_workers, AV1LfSync *lf_sync,
495                               int lpf_opt_level) {
496   int start_mi_row, end_mi_row, mi_rows_to_filter;
497   int planes_to_lf[MAX_MB_PLANE];
498 
499   if (!check_planes_to_loop_filter(&cm->lf, planes_to_lf, plane_start,
500                                    plane_end))
501     return;
502 
503   start_mi_row = 0;
504   mi_rows_to_filter = cm->mi_params.mi_rows;
505   if (partial_frame && cm->mi_params.mi_rows > 8) {
506     start_mi_row = cm->mi_params.mi_rows >> 1;
507     start_mi_row &= 0xfffffff8;
508     mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
509   }
510   end_mi_row = start_mi_row + mi_rows_to_filter;
511   av1_loop_filter_frame_init(cm, plane_start, plane_end);
512 
513   if (num_workers > 1) {
514     // Enqueue and execute loopfiltering jobs.
515     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
516                         workers, num_workers, lf_sync, lpf_opt_level);
517   } else {
518     // Directly filter in the main thread.
519     loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
520                      lpf_opt_level);
521   }
522 }
523 
524 #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
lr_sync_read(void * const lr_sync,int r,int c,int plane)525 static inline void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
526 #if CONFIG_MULTITHREAD
527   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
528   const int nsync = loop_res_sync->sync_range;
529 
530   if (r && !(c & (nsync - 1))) {
531     pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
532     pthread_mutex_lock(mutex);
533 
534     while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
535       pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
536     }
537     pthread_mutex_unlock(mutex);
538   }
539 #else
540   (void)lr_sync;
541   (void)r;
542   (void)c;
543   (void)plane;
544 #endif  // CONFIG_MULTITHREAD
545 }
546 
lr_sync_write(void * const lr_sync,int r,int c,const int sb_cols,int plane)547 static inline void lr_sync_write(void *const lr_sync, int r, int c,
548                                  const int sb_cols, int plane) {
549 #if CONFIG_MULTITHREAD
550   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
551   const int nsync = loop_res_sync->sync_range;
552   int cur;
553   // Only signal when there are enough filtered SB for next row to run.
554   int sig = 1;
555 
556   if (c < sb_cols - 1) {
557     cur = c;
558     if (c % nsync) sig = 0;
559   } else {
560     cur = sb_cols + nsync;
561   }
562 
563   if (sig) {
564     pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
565 
566     // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum
567     // column number. In this case, the AOMMAX operation here ensures that
568     // cur_sb_col[plane][r] is not overwritten with a smaller value thus
569     // preventing the infinite waiting of threads in the relevant sync_read()
570     // function.
571     loop_res_sync->cur_sb_col[plane][r] =
572         AOMMAX(loop_res_sync->cur_sb_col[plane][r], cur);
573 
574     pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
575     pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
576   }
577 #else
578   (void)lr_sync;
579   (void)r;
580   (void)c;
581   (void)sb_cols;
582   (void)plane;
583 #endif  // CONFIG_MULTITHREAD
584 }
585 
586 // Allocate memory for loop restoration row synchronization
av1_loop_restoration_alloc(AV1LrSync * lr_sync,AV1_COMMON * cm,int num_workers,int num_rows_lr,int num_planes,int width)587 void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
588                                 int num_workers, int num_rows_lr,
589                                 int num_planes, int width) {
590   lr_sync->rows = num_rows_lr;
591   lr_sync->num_planes = num_planes;
592 #if CONFIG_MULTITHREAD
593   {
594     int i, j;
595 
596     for (j = 0; j < num_planes; j++) {
597       CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
598                       aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
599       if (lr_sync->mutex_[j]) {
600         for (i = 0; i < num_rows_lr; ++i) {
601           pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
602         }
603       }
604 
605       CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
606                       aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
607       if (lr_sync->cond_[j]) {
608         for (i = 0; i < num_rows_lr; ++i) {
609           pthread_cond_init(&lr_sync->cond_[j][i], NULL);
610         }
611       }
612     }
613 
614     CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
615                     aom_malloc(sizeof(*(lr_sync->job_mutex))));
616     if (lr_sync->job_mutex) {
617       pthread_mutex_init(lr_sync->job_mutex, NULL);
618     }
619   }
620 #endif  // CONFIG_MULTITHREAD
621   CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
622                   aom_calloc(num_workers, sizeof(*(lr_sync->lrworkerdata))));
623   lr_sync->num_workers = num_workers;
624 
625   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
626     if (worker_idx < num_workers - 1) {
627       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
628                       (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
629       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
630                       aom_malloc(sizeof(RestorationLineBuffers)));
631 
632     } else {
633       lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
634       lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
635     }
636   }
637 
638   for (int j = 0; j < num_planes; j++) {
639     CHECK_MEM_ERROR(
640         cm, lr_sync->cur_sb_col[j],
641         aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
642   }
643   CHECK_MEM_ERROR(
644       cm, lr_sync->job_queue,
645       aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
646   // Set up nsync.
647   lr_sync->sync_range = get_lr_sync_range(width);
648 }
649 
650 // Deallocate loop restoration synchronization related mutex and data
av1_loop_restoration_dealloc(AV1LrSync * lr_sync)651 void av1_loop_restoration_dealloc(AV1LrSync *lr_sync) {
652   if (lr_sync != NULL) {
653     int j;
654 #if CONFIG_MULTITHREAD
655     int i;
656     for (j = 0; j < MAX_MB_PLANE; j++) {
657       if (lr_sync->mutex_[j] != NULL) {
658         for (i = 0; i < lr_sync->rows; ++i) {
659           pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
660         }
661         aom_free(lr_sync->mutex_[j]);
662       }
663       if (lr_sync->cond_[j] != NULL) {
664         for (i = 0; i < lr_sync->rows; ++i) {
665           pthread_cond_destroy(&lr_sync->cond_[j][i]);
666         }
667         aom_free(lr_sync->cond_[j]);
668       }
669     }
670     if (lr_sync->job_mutex != NULL) {
671       pthread_mutex_destroy(lr_sync->job_mutex);
672       aom_free(lr_sync->job_mutex);
673     }
674 #endif  // CONFIG_MULTITHREAD
675     for (j = 0; j < MAX_MB_PLANE; j++) {
676       aom_free(lr_sync->cur_sb_col[j]);
677     }
678 
679     aom_free(lr_sync->job_queue);
680 
681     if (lr_sync->lrworkerdata) {
682       for (int worker_idx = 0; worker_idx < lr_sync->num_workers - 1;
683            worker_idx++) {
684         LRWorkerData *const workerdata_data =
685             lr_sync->lrworkerdata + worker_idx;
686 
687         aom_free(workerdata_data->rst_tmpbuf);
688         aom_free(workerdata_data->rlbs);
689       }
690       aom_free(lr_sync->lrworkerdata);
691     }
692 
693     // clear the structure as the source of this call may be a resize in which
694     // case this call will be followed by an _alloc() which may fail.
695     av1_zero(*lr_sync);
696   }
697 }
698 
enqueue_lr_jobs(AV1LrSync * lr_sync,AV1LrStruct * lr_ctxt,AV1_COMMON * cm)699 static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
700                             AV1_COMMON *cm) {
701   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
702 
703   const int num_planes = av1_num_planes(cm);
704   AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
705   int32_t lr_job_counter[2], num_even_lr_jobs = 0;
706   lr_sync->jobs_enqueued = 0;
707   lr_sync->jobs_dequeued = 0;
708 
709   for (int plane = 0; plane < num_planes; plane++) {
710     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
711     num_even_lr_jobs =
712         num_even_lr_jobs + ((ctxt[plane].rsi->vert_units + 1) >> 1);
713   }
714   lr_job_counter[0] = 0;
715   lr_job_counter[1] = num_even_lr_jobs;
716 
717   for (int plane = 0; plane < num_planes; plane++) {
718     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
719     const int is_uv = plane > 0;
720     const int ss_y = is_uv && cm->seq_params->subsampling_y;
721     const int unit_size = ctxt[plane].rsi->restoration_unit_size;
722     const int plane_h = ctxt[plane].plane_h;
723     const int ext_size = unit_size * 3 / 2;
724 
725     int y0 = 0, i = 0;
726     while (y0 < plane_h) {
727       int remaining_h = plane_h - y0;
728       int h = (remaining_h < ext_size) ? remaining_h : unit_size;
729 
730       RestorationTileLimits limits;
731       limits.v_start = y0;
732       limits.v_end = y0 + h;
733       assert(limits.v_end <= plane_h);
734       // Offset upwards to align with the restoration processing stripe
735       const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
736       limits.v_start = AOMMAX(0, limits.v_start - voffset);
737       if (limits.v_end < plane_h) limits.v_end -= voffset;
738 
739       assert(lr_job_counter[0] <= num_even_lr_jobs);
740 
741       lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
742       lr_job_queue[lr_job_counter[i & 1]].plane = plane;
743       lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
744       lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
745       lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
746       if ((i & 1) == 0) {
747         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
748             limits.v_start + RESTORATION_BORDER;
749         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
750             limits.v_end - RESTORATION_BORDER;
751         if (i == 0) {
752           assert(limits.v_start == 0);
753           lr_job_queue[lr_job_counter[i & 1]].v_copy_start = 0;
754         }
755         if (i == (ctxt[plane].rsi->vert_units - 1)) {
756           assert(limits.v_end == plane_h);
757           lr_job_queue[lr_job_counter[i & 1]].v_copy_end = plane_h;
758         }
759       } else {
760         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
761             AOMMAX(limits.v_start - RESTORATION_BORDER, 0);
762         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
763             AOMMIN(limits.v_end + RESTORATION_BORDER, plane_h);
764       }
765       lr_job_counter[i & 1]++;
766       lr_sync->jobs_enqueued++;
767 
768       y0 += h;
769       ++i;
770     }
771   }
772 }
773 
get_lr_job_info(AV1LrSync * lr_sync)774 static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
775   AV1LrMTInfo *cur_job_info = NULL;
776 
777 #if CONFIG_MULTITHREAD
778   pthread_mutex_lock(lr_sync->job_mutex);
779 
780   if (!lr_sync->lr_mt_exit && lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
781     cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
782     lr_sync->jobs_dequeued++;
783   }
784 
785   pthread_mutex_unlock(lr_sync->job_mutex);
786 #else
787   (void)lr_sync;
788 #endif
789 
790   return cur_job_info;
791 }
792 
set_loop_restoration_done(AV1LrSync * const lr_sync,FilterFrameCtxt * const ctxt)793 static void set_loop_restoration_done(AV1LrSync *const lr_sync,
794                                       FilterFrameCtxt *const ctxt) {
795   for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
796     if (ctxt[plane].rsi->frame_restoration_type == RESTORE_NONE) continue;
797     int y0 = 0, row_number = 0;
798     const int unit_size = ctxt[plane].rsi->restoration_unit_size;
799     const int plane_h = ctxt[plane].plane_h;
800     const int ext_size = unit_size * 3 / 2;
801     const int hnum_rest_units = ctxt[plane].rsi->horz_units;
802     while (y0 < plane_h) {
803       const int remaining_h = plane_h - y0;
804       const int h = (remaining_h < ext_size) ? remaining_h : unit_size;
805       lr_sync_write(lr_sync, row_number, hnum_rest_units - 1, hnum_rest_units,
806                     plane);
807       y0 += h;
808       ++row_number;
809     }
810   }
811 }
812 
813 // Implement row loop restoration for each thread.
loop_restoration_row_worker(void * arg1,void * arg2)814 static int loop_restoration_row_worker(void *arg1, void *arg2) {
815   AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
816   LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
817   AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
818   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
819   int lr_unit_row;
820   int plane;
821   int plane_w;
822 #if CONFIG_MULTITHREAD
823   pthread_mutex_t *job_mutex_ = lr_sync->job_mutex;
824 #endif
825   struct aom_internal_error_info *const error_info = &lrworkerdata->error_info;
826 
827   // The jmp_buf is valid only for the duration of the function that calls
828   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
829   // before it returns.
830   if (setjmp(error_info->jmp)) {
831     error_info->setjmp = 0;
832 #if CONFIG_MULTITHREAD
833     pthread_mutex_lock(job_mutex_);
834     lr_sync->lr_mt_exit = true;
835     pthread_mutex_unlock(job_mutex_);
836 #endif
837     // In case of loop restoration multithreading, the worker on an even lr
838     // block row waits for the completion of the filtering of the top-right and
839     // bottom-right blocks. Hence, in case a thread (main/worker) encounters an
840     // error, update that filtering of every row in the frame is complete in
841     // order to avoid the dependent workers from waiting indefinitely.
842     set_loop_restoration_done(lr_sync, lr_ctxt->ctxt);
843     return 0;
844   }
845   error_info->setjmp = 1;
846 
847   typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
848                            YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
849                            int vstart, int vend);
850   static const copy_fun copy_funs[MAX_MB_PLANE] = {
851     aom_yv12_partial_coloc_copy_y, aom_yv12_partial_coloc_copy_u,
852     aom_yv12_partial_coloc_copy_v
853   };
854 
855   while (1) {
856     AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
857     if (cur_job_info != NULL) {
858       RestorationTileLimits limits;
859       sync_read_fn_t on_sync_read;
860       sync_write_fn_t on_sync_write;
861       limits.v_start = cur_job_info->v_start;
862       limits.v_end = cur_job_info->v_end;
863       lr_unit_row = cur_job_info->lr_unit_row;
864       plane = cur_job_info->plane;
865       plane_w = ctxt[plane].plane_w;
866 
867       // sync_mode == 1 implies only sync read is required in LR Multi-threading
868       // sync_mode == 0 implies only sync write is required.
869       on_sync_read =
870           cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
871       on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
872                                                    : av1_lr_sync_write_dummy;
873 
874       av1_foreach_rest_unit_in_row(
875           &limits, plane_w, lr_ctxt->on_rest_unit, lr_unit_row,
876           ctxt[plane].rsi->restoration_unit_size, ctxt[plane].rsi->horz_units,
877           ctxt[plane].rsi->vert_units, plane, &ctxt[plane],
878           lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
879           on_sync_write, lr_sync, error_info);
880 
881       copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, 0, plane_w,
882                        cur_job_info->v_copy_start, cur_job_info->v_copy_end);
883 
884       if (lrworkerdata->do_extend_border) {
885         aom_extend_frame_borders_plane_row(lr_ctxt->frame, plane,
886                                            cur_job_info->v_copy_start,
887                                            cur_job_info->v_copy_end);
888       }
889     } else {
890       break;
891     }
892   }
893   error_info->setjmp = 0;
894   return 1;
895 }
896 
sync_lr_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)897 static inline void sync_lr_workers(AVxWorker *const workers,
898                                    AV1_COMMON *const cm, int num_workers) {
899   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
900   int had_error = workers[0].had_error;
901   struct aom_internal_error_info error_info;
902 
903   // Read the error_info of main thread.
904   if (had_error) {
905     AVxWorker *const worker = &workers[0];
906     error_info = ((LRWorkerData *)worker->data2)->error_info;
907   }
908 
909   // Wait till all rows are finished.
910   for (int i = num_workers - 1; i > 0; --i) {
911     AVxWorker *const worker = &workers[i];
912     if (!winterface->sync(worker)) {
913       had_error = 1;
914       error_info = ((LRWorkerData *)worker->data2)->error_info;
915     }
916   }
917   if (had_error) aom_internal_error_copy(cm->error, &error_info);
918 }
919 
foreach_rest_unit_in_planes_mt(AV1LrStruct * lr_ctxt,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,AV1_COMMON * cm,int do_extend_border)920 static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
921                                            AVxWorker *workers, int num_workers,
922                                            AV1LrSync *lr_sync, AV1_COMMON *cm,
923                                            int do_extend_border) {
924   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
925 
926   const int num_planes = av1_num_planes(cm);
927 
928   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
929   int num_rows_lr = 0;
930 
931   for (int plane = 0; plane < num_planes; plane++) {
932     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
933 
934     const int plane_h = ctxt[plane].plane_h;
935     const int unit_size = cm->rst_info[plane].restoration_unit_size;
936 
937     num_rows_lr = AOMMAX(num_rows_lr, av1_lr_count_units(unit_size, plane_h));
938   }
939 
940   int i;
941   assert(MAX_MB_PLANE == 3);
942 
943   if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
944       num_workers > lr_sync->num_workers || num_planes > lr_sync->num_planes) {
945     av1_loop_restoration_dealloc(lr_sync);
946     av1_loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr,
947                                num_planes, cm->width);
948   }
949   lr_sync->lr_mt_exit = false;
950 
951   // Initialize cur_sb_col to -1 for all SB rows.
952   for (i = 0; i < num_planes; i++) {
953     memset(lr_sync->cur_sb_col[i], -1,
954            sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
955   }
956 
957   enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
958 
959   // Set up looprestoration thread data.
960   for (i = num_workers - 1; i >= 0; --i) {
961     AVxWorker *const worker = &workers[i];
962     lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
963     lr_sync->lrworkerdata[i].do_extend_border = do_extend_border;
964     worker->hook = loop_restoration_row_worker;
965     worker->data1 = lr_sync;
966     worker->data2 = &lr_sync->lrworkerdata[i];
967 
968     // Start loop restoration
969     worker->had_error = 0;
970     if (i == 0) {
971       winterface->execute(worker);
972     } else {
973       winterface->launch(worker);
974     }
975   }
976 
977   sync_lr_workers(workers, cm, num_workers);
978 }
979 
av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,int optimized_lr,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,void * lr_ctxt,int do_extend_border)980 void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
981                                           AV1_COMMON *cm, int optimized_lr,
982                                           AVxWorker *workers, int num_workers,
983                                           AV1LrSync *lr_sync, void *lr_ctxt,
984                                           int do_extend_border) {
985   assert(!cm->features.all_lossless);
986 
987   const int num_planes = av1_num_planes(cm);
988 
989   AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
990 
991   av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
992                                          optimized_lr, num_planes);
993 
994   foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
995                                  cm, do_extend_border);
996 }
997 #endif  // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
998 
999 // Initializes cdef_sync parameters.
reset_cdef_job_info(AV1CdefSync * const cdef_sync)1000 static inline void reset_cdef_job_info(AV1CdefSync *const cdef_sync) {
1001   cdef_sync->end_of_frame = 0;
1002   cdef_sync->fbr = 0;
1003   cdef_sync->fbc = 0;
1004   cdef_sync->cdef_mt_exit = false;
1005 }
1006 
launch_cdef_workers(AVxWorker * const workers,int num_workers)1007 static inline void launch_cdef_workers(AVxWorker *const workers,
1008                                        int num_workers) {
1009   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1010   for (int i = num_workers - 1; i >= 0; i--) {
1011     AVxWorker *const worker = &workers[i];
1012     worker->had_error = 0;
1013     if (i == 0)
1014       winterface->execute(worker);
1015     else
1016       winterface->launch(worker);
1017   }
1018 }
1019 
sync_cdef_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)1020 static inline void sync_cdef_workers(AVxWorker *const workers,
1021                                      AV1_COMMON *const cm, int num_workers) {
1022   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1023   int had_error = workers[0].had_error;
1024   struct aom_internal_error_info error_info;
1025 
1026   // Read the error_info of main thread.
1027   if (had_error) {
1028     AVxWorker *const worker = &workers[0];
1029     error_info = ((AV1CdefWorkerData *)worker->data2)->error_info;
1030   }
1031 
1032   // Wait till all rows are finished.
1033   for (int i = num_workers - 1; i > 0; --i) {
1034     AVxWorker *const worker = &workers[i];
1035     if (!winterface->sync(worker)) {
1036       had_error = 1;
1037       error_info = ((AV1CdefWorkerData *)worker->data2)->error_info;
1038     }
1039   }
1040   if (had_error) aom_internal_error_copy(cm->error, &error_info);
1041 }
1042 
1043 // Updates the row index of the next job to be processed.
1044 // Also updates end_of_frame flag when the processing of all rows is complete.
update_cdef_row_next_job_info(AV1CdefSync * const cdef_sync,const int nvfb)1045 static void update_cdef_row_next_job_info(AV1CdefSync *const cdef_sync,
1046                                           const int nvfb) {
1047   cdef_sync->fbr++;
1048   if (cdef_sync->fbr == nvfb) {
1049     cdef_sync->end_of_frame = 1;
1050   }
1051 }
1052 
1053 // Checks if a job is available. If job is available,
1054 // populates next job information and returns 1, else returns 0.
get_cdef_row_next_job(AV1CdefSync * const cdef_sync,volatile int * cur_fbr,const int nvfb)1055 static inline int get_cdef_row_next_job(AV1CdefSync *const cdef_sync,
1056                                         volatile int *cur_fbr, const int nvfb) {
1057 #if CONFIG_MULTITHREAD
1058   pthread_mutex_lock(cdef_sync->mutex_);
1059 #endif  // CONFIG_MULTITHREAD
1060   int do_next_row = 0;
1061   // Populates information needed for current job and update the row
1062   // index of the next row to be processed.
1063   if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) {
1064     do_next_row = 1;
1065     *cur_fbr = cdef_sync->fbr;
1066     update_cdef_row_next_job_info(cdef_sync, nvfb);
1067   }
1068 #if CONFIG_MULTITHREAD
1069   pthread_mutex_unlock(cdef_sync->mutex_);
1070 #endif  // CONFIG_MULTITHREAD
1071   return do_next_row;
1072 }
1073 
set_cdef_init_fb_row_done(AV1CdefSync * const cdef_sync,int nvfb)1074 static void set_cdef_init_fb_row_done(AV1CdefSync *const cdef_sync, int nvfb) {
1075   for (int fbr = 0; fbr < nvfb; fbr++) cdef_row_mt_sync_write(cdef_sync, fbr);
1076 }
1077 
1078 // Hook function for each thread in CDEF multi-threading.
cdef_sb_row_worker_hook(void * arg1,void * arg2)1079 static int cdef_sb_row_worker_hook(void *arg1, void *arg2) {
1080   AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1;
1081   AV1CdefWorkerData *const cdef_worker = (AV1CdefWorkerData *)arg2;
1082   AV1_COMMON *cm = cdef_worker->cm;
1083   const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
1084 
1085 #if CONFIG_MULTITHREAD
1086   pthread_mutex_t *job_mutex_ = cdef_sync->mutex_;
1087 #endif
1088   struct aom_internal_error_info *const error_info = &cdef_worker->error_info;
1089 
1090   // The jmp_buf is valid only for the duration of the function that calls
1091   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
1092   // before it returns.
1093   if (setjmp(error_info->jmp)) {
1094     error_info->setjmp = 0;
1095 #if CONFIG_MULTITHREAD
1096     pthread_mutex_lock(job_mutex_);
1097     cdef_sync->cdef_mt_exit = true;
1098     pthread_mutex_unlock(job_mutex_);
1099 #endif
1100     // In case of cdef row-multithreading, the worker on a filter block row
1101     // (fbr) waits for the line buffers (top and bottom) copy of the above row.
1102     // Hence, in case a thread (main/worker) encounters an error before copying
1103     // of the line buffers, update that line buffer copy is complete in order to
1104     // avoid dependent workers waiting indefinitely.
1105     set_cdef_init_fb_row_done(cdef_sync, nvfb);
1106     return 0;
1107   }
1108   error_info->setjmp = 1;
1109 
1110   volatile int cur_fbr;
1111   const int num_planes = av1_num_planes(cm);
1112   while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) {
1113     MACROBLOCKD *xd = cdef_worker->xd;
1114     av1_cdef_fb_row(cm, xd, cdef_worker->linebuf, cdef_worker->colbuf,
1115                     cdef_worker->srcbuf, cur_fbr,
1116                     cdef_worker->cdef_init_fb_row_fn, cdef_sync, error_info);
1117     if (cdef_worker->do_extend_border) {
1118       for (int plane = 0; plane < num_planes; ++plane) {
1119         const YV12_BUFFER_CONFIG *ybf = &cm->cur_frame->buf;
1120         const int is_uv = plane > 0;
1121         const int mi_high = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
1122         const int unit_height = MI_SIZE_64X64 << mi_high;
1123         const int v_start = cur_fbr * unit_height;
1124         const int v_end =
1125             AOMMIN(v_start + unit_height, ybf->crop_heights[is_uv]);
1126         aom_extend_frame_borders_plane_row(ybf, plane, v_start, v_end);
1127       }
1128     }
1129   }
1130   error_info->setjmp = 0;
1131   return 1;
1132 }
1133 
1134 // Assigns CDEF hook function and thread data to each worker.
prepare_cdef_frame_workers(AV1_COMMON * const cm,MACROBLOCKD * xd,AV1CdefWorkerData * const cdef_worker,AVxWorkerHook hook,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn,int do_extend_border)1135 static void prepare_cdef_frame_workers(
1136     AV1_COMMON *const cm, MACROBLOCKD *xd, AV1CdefWorkerData *const cdef_worker,
1137     AVxWorkerHook hook, AVxWorker *const workers, AV1CdefSync *const cdef_sync,
1138     int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn,
1139     int do_extend_border) {
1140   const int num_planes = av1_num_planes(cm);
1141 
1142   cdef_worker[0].srcbuf = cm->cdef_info.srcbuf;
1143   for (int plane = 0; plane < num_planes; plane++)
1144     cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane];
1145   for (int i = num_workers - 1; i >= 0; i--) {
1146     AVxWorker *const worker = &workers[i];
1147     cdef_worker[i].cm = cm;
1148     cdef_worker[i].xd = xd;
1149     cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn;
1150     cdef_worker[i].do_extend_border = do_extend_border;
1151     for (int plane = 0; plane < num_planes; plane++)
1152       cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane];
1153 
1154     worker->hook = hook;
1155     worker->data1 = cdef_sync;
1156     worker->data2 = &cdef_worker[i];
1157   }
1158 }
1159 
1160 // Initializes row-level parameters for CDEF frame.
av1_cdef_init_fb_row_mt(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,uint16_t ** const linebuf,uint16_t * const src,struct AV1CdefSyncData * const cdef_sync,int fbr)1161 void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm,
1162                              const MACROBLOCKD *const xd,
1163                              CdefBlockInfo *const fb_info,
1164                              uint16_t **const linebuf, uint16_t *const src,
1165                              struct AV1CdefSyncData *const cdef_sync, int fbr) {
1166   const int num_planes = av1_num_planes(cm);
1167   const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
1168   const int luma_stride =
1169       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
1170 
1171   // for the current filter block, it's top left corner mi structure (mi_tl)
1172   // is first accessed to check whether the top and left boundaries are
1173   // frame boundaries. Then bottom-left and top-right mi structures are
1174   // accessed to check whether the bottom and right boundaries
1175   // (respectively) are frame boundaries.
1176   //
1177   // Note that we can't just check the bottom-right mi structure - eg. if
1178   // we're at the right-hand edge of the frame but not the bottom, then
1179   // the bottom-right mi is NULL but the bottom-left is not.
1180   fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
1181   if (fbr != nvfb - 1)
1182     fb_info->frame_boundary[BOTTOM] =
1183         (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
1184   else
1185     fb_info->frame_boundary[BOTTOM] = 1;
1186 
1187   fb_info->src = src;
1188   fb_info->damping = cm->cdef_info.cdef_damping;
1189   fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
1190   av1_zero(fb_info->dir);
1191   av1_zero(fb_info->var);
1192 
1193   for (int plane = 0; plane < num_planes; plane++) {
1194     const int stride = luma_stride >> xd->plane[plane].subsampling_x;
1195     uint16_t *top_linebuf = &linebuf[plane][0];
1196     uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride];
1197     {
1198       const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
1199       const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1200       const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1201 
1202       if (fbr != nvfb - 1)  // if (fbr != 0)  // top line buffer copy
1203         av1_cdef_copy_sb8_16(
1204             cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], stride,
1205             xd->plane[plane].dst.buf, top_offset - CDEF_VBORDER, 0,
1206             xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1207       if (fbr != nvfb - 1)  // bottom line buffer copy
1208         av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride],
1209                              stride, xd->plane[plane].dst.buf, bot_offset, 0,
1210                              xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1211     }
1212 
1213     fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride];
1214     fb_info->bot_linebuf[plane] =
1215         &linebuf[plane]
1216                 [nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)];
1217   }
1218 
1219   cdef_row_mt_sync_write(cdef_sync, fbr);
1220   cdef_row_mt_sync_read(cdef_sync, fbr);
1221 }
1222 
1223 // Implements multi-threading for CDEF.
1224 // Perform CDEF on input frame.
1225 // Inputs:
1226 //   frame: Pointer to input frame buffer.
1227 //   cm: Pointer to common structure.
1228 //   xd: Pointer to common current coding block structure.
1229 // Returns:
1230 //   Nothing will be returned.
av1_cdef_frame_mt(AV1_COMMON * const cm,MACROBLOCKD * const xd,AV1CdefWorkerData * const cdef_worker,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn,int do_extend_border)1231 void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd,
1232                        AV1CdefWorkerData *const cdef_worker,
1233                        AVxWorker *const workers, AV1CdefSync *const cdef_sync,
1234                        int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn,
1235                        int do_extend_border) {
1236   YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf;
1237   const int num_planes = av1_num_planes(cm);
1238 
1239   av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
1240                        num_planes);
1241 
1242   reset_cdef_job_info(cdef_sync);
1243   prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook,
1244                              workers, cdef_sync, num_workers,
1245                              cdef_init_fb_row_fn, do_extend_border);
1246   launch_cdef_workers(workers, num_workers);
1247   sync_cdef_workers(workers, cm, num_workers);
1248 }
1249 
av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON * cm)1250 int av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON *cm) {
1251   // No additional top-right delay when intraBC tool is not enabled.
1252   if (!av1_allow_intrabc(cm)) return 0;
1253   // Due to the hardware constraints on processing the intraBC tool with row
1254   // multithreading, a top-right delay of 3 superblocks of size 128x128 or 5
1255   // superblocks of size 64x64 is mandated. However, a minimum top-right delay
1256   // of 1 superblock is assured with 'sync_range'. Hence return only the
1257   // additional superblock delay when the intraBC tool is enabled.
1258   return cm->seq_params->sb_size == BLOCK_128X128 ? 2 : 4;
1259 }
1260