1 /*
2  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_depthwise_separable_conv_HWC_q7.c
22  * Description:  Q7 depthwise separable convolution function
23  *
24  * $Date:        17. January 2018
25  * $Revision:    V.1.0.0
26  *
27  * Target Processor:  Cortex-M cores
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_math.h"
32 #include "arm_nnfunctions.h"
33 
34 /**
35  *  @ingroup groupNN
36  */
37 
38 /**
39  * @addtogroup NNConv
40  * @{
41  */
42 
43 /**
44  * @brief Q7 depthwise separable convolution function
45  * @param[in]       Im_in       pointer to input tensor
46  * @param[in]       dim_im_in   input tensor dimention
47  * @param[in]       ch_im_in    number of input tensor channels
48  * @param[in]       wt          pointer to kernel weights
49  * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
50  * @param[in]       dim_kernel  filter kernel size
51  * @param[in]       padding     padding sizes
52  * @param[in]       stride      convolution stride
53  * @param[in]       bias        pointer to bias
54  * @param[in]       bias_shift  amount of left-shift for bias
55  * @param[in]       out_shift   amount of right-shift for output
56  * @param[in,out]   Im_out      pointer to output tensor
57  * @param[in]       dim_im_out  output tensor dimension
58  * @param[in,out]   bufferA     pointer to buffer space for input
59  * @param[in,out]   bufferB     pointer to buffer space for output
60  * @return     The function returns either
61  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
62  *
63  * @details
64  *
65  * <b>Buffer size:</b>
66  *
67  * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
68  *
69  * bufferB size: 0
70  *
71  * <b>Input dimension constraints:</b>
72  *
73  * ch_im_in equals ch_im_out
74  *
75  * Implementation:
76  * There are 3 nested loop here:
77  * Inner loop: calculate each output value with MAC instruction over an accumulator
78  * Mid   loop: loop over different output channel
79  * Outer loop: loop over different output (x, y)
80  */
81 
arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,const uint16_t dim_im_in,const uint16_t ch_im_in,const q7_t * wt,const uint16_t ch_im_out,const uint16_t dim_kernel,const uint16_t padding,const uint16_t stride,const q7_t * bias,const uint16_t bias_shift,const uint16_t out_shift,q7_t * Im_out,const uint16_t dim_im_out,q15_t * bufferA,q7_t * bufferB)82 arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
83                                                const uint16_t dim_im_in,
84                                                const uint16_t ch_im_in,
85                                                const q7_t * wt,
86                                                const uint16_t ch_im_out,
87                                                const uint16_t dim_kernel,
88                                                const uint16_t padding,
89                                                const uint16_t stride,
90                                                const q7_t * bias,
91                                                const uint16_t bias_shift,
92                                                const uint16_t out_shift,
93                                                q7_t * Im_out,
94                                                const uint16_t dim_im_out,
95                                                q15_t * bufferA,
96                                                q7_t * bufferB)
97 {
98 
99 #if defined (ARM_MATH_DSP)
100     /* Run the following code for Cortex-M4 and Cortex-M7 */
101 
102     int16_t   i_out_y, i_out_x;
103     int16_t   i_ker_y, i_ker_x;
104     q7_t     *colBuffer = (q7_t *) bufferA;
105     q7_t     *pBuffer = colBuffer;
106     const q7_t *pBias = bias;
107     q7_t     *pOut = Im_out;
108     uint16_t  rowCnt;
109     uint16_t  row_shift;
110 
111     /* do some checking here, basically ch_im_in == ch_im_out */
112     if (ch_im_in != ch_im_out)
113     {
114         return ARM_MATH_SIZE_MISMATCH;
115     }
116 
117     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
118     {
119         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
120         {
121             /* we first do im2col here */
122             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
123             {
124                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
125                 {
126                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
127                     {
128                         /* arm_fill_q7(0, pBuffer, ch_im_in); */
129                         memset(pBuffer, 0, ch_im_in);
130                     } else
131                     {
132                         /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
133                         memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in);
134                     }
135                     pBuffer += ch_im_in;
136                 }
137             }
138 
139             /* we will do the computation here for each channel */
140             rowCnt = ch_im_out >> 2;
141             row_shift = 0;
142             pBias = bias;
143 
144             while (rowCnt)
145             {
146                 q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
147                 q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
148                 q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
149                 q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
150 
151                 uint16_t  colCnt = (dim_kernel * dim_kernel) >> 1;
152                 q7_t     *pB = colBuffer + row_shift;
153                 const q7_t *pA = wt + row_shift;
154                 row_shift += 4;
155 
156 #ifdef USE_INTRINSIC
157 
158 #ifndef ARM_MATH_BIG_ENDIAN
159 
160                 while (colCnt)
161                 {
162                     q31_t     inA1, inA2, inB1, inB2, opA, opB;
163 
164                     inB1 = *__SIMD32(pB);
165                     pB += ch_im_in;
166                     opB = *__SIMD32(pB);
167                     pB += ch_im_in;
168                     inB2 = __PKHTB(opB, inB1, 16);
169                     inB1 = __PKHBT(inB1, opB, 16);
170                     inA1 = *__SIMD32(pA);
171                     pA += ch_im_in;
172                     opB = *__SIMD32(pA);
173                     pA += ch_im_in;
174                     inA2 = __PKHTB(opB, inA1, 16);
175                     inA1 = __PKHBT(inA1, opB, 16);
176                     opA = __SXTB16(inA1);
177                     opB = __SXTB16(inB1);
178                     sum = __SMLAD(opA, opB, sum);
179                     opA = __SXTB16(__ROR(inA1, 8));
180                     opB = __SXTB16(__ROR(inB1, 8));
181                     sum2 = __SMLAD(opA, opB, sum2);
182                     opA = __SXTB16(inA2);
183                     opB = __SXTB16(inB2);
184                     sum3 = __SMLAD(opA, opB, sum3);
185                     opA = __SXTB16(__ROR(inA2, 8));
186                     opB = __SXTB16(__ROR(inB2, 8));
187                     sum4 = __SMLAD(opA, opB, sum4);
188                     colCnt--;
189                 }
190 #else
191 
192                 while (colCnt)
193                 {
194                     q31_t     inA1, inA2, inB1, inB2, opA, opB;
195 
196                     inB1 = *__SIMD32(pB);
197                     pB += ch_im_in;
198                     opB = *__SIMD32(pB);
199                     pB += ch_im_in;
200                     inB2 = __PKHBT(opB, inB1, 16);
201                     inB1 = __PKHTB(inB1, opB, 16);
202                     inA1 = *__SIMD32(pA);
203                     pA += ch_im_in;
204                     opB = *__SIMD32(pA);
205                     pA += ch_im_in;
206                     inA2 = __PKHBT(opB, inA1, 16);
207                     inA1 = __PKHTB(inA1, opB, 16);
208                     opA = __SXTB16(inA1);
209                     opB = __SXTB16(inB1);
210                     sum2 = __SMLAD(opA, opB, sum2);
211                     opA = __SXTB16(__ROR(inA1, 8));
212                     opB = __SXTB16(__ROR(inB1, 8));
213                     sum = __SMLAD(opA, opB, sum);
214                     opA = __SXTB16(inA2);
215                     opB = __SXTB16(inB2);
216                     sum4 = __SMLAD(opA, opB, sum4);
217                     opA = __SXTB16(__ROR(inA2, 8));
218                     opB = __SXTB16(__ROR(inB2, 8));
219                     sum3 = __SMLAD(opA, opB, sum3);
220                     colCnt--;
221                 }
222 
223 #endif                          /* ARM_MATH_BIG_ENDIAN */
224 
225 #else
226 
227 #ifndef ARM_MATH_BIG_ENDIAN
228                 /*
229                  *   r0    r1    r2    r3    r4   r5
230                  *  inA1, inA2, inB1, inB2, opA, opB
231                  */
232 
233                 asm volatile ("COL_LOOP_%=:\n"
234                               "ldr.w r2, [%[pB], #0]\n"
235                               "add.w %[pB], %[pB], %[ch_im_in]\n"
236                               "ldr.w r5, [%[pB], #0]\n"
237                               "add.w %[pB], %[pB], %[ch_im_in]\n"
238                               "pkhtb r3, r5, r2, ASR #16\n"
239                               "pkhbt r2, r2, r5, LSL #16\n"
240                               "ldr.w r0, [%[pA], #0]\n"
241                               "add.w %[pA], %[pA], %[ch_im_in]\n"
242                               "ldr.w r5, [%[pA], #0]\n"
243                               "add.w %[pA], %[pA], %[ch_im_in]\n"
244                               "pkhtb r1, r5, r0, ASR #16\n"
245                               "pkhbt r0, r0, r5, LSL #16\n"
246                               "sxtb16 r4, r0\n"
247                               "sxtb16 r5, r2\n"
248                               "smlad %[sum], r4, r5, %[sum]\n"
249                               "mov.w r4, r0, ror #8\n"
250                               "mov.w r5, r2, ror #8\n"
251                               "sxtb16 r4, r4\n"
252                               "sxtb16 r5, r5\n"
253                               "smlad %[sum2], r4, r5, %[sum2]\n"
254                               "sxtb16 r4, r1\n"
255                               "sxtb16 r5, r3\n"
256                               "smlad %[sum3], r4, r5, %[sum3]\n"
257                               "mov.w r4, r1, ror #8\n"
258                               "mov.w r5, r3, ror #8\n"
259                               "sxtb16 r4, r4\n"
260                               "sxtb16 r5, r5\n"
261                               "smlad %[sum4], r4, r5, %[sum4]\n"
262                               "subs %[colCnt], #1\n"
263                               "bne COL_LOOP_%=\n":[sum]
264                               "+r"(sum),[sum2] "+r"(sum2),
265                               [sum3] "+r"(sum3),
266                               [sum4] "+r"(sum4),[pB] "+r"(pB),
267                               [pA] "+r"(pA):[colCnt]
268                               "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
269 #else
270                 /*
271                  *  r0    r1    r2    r3    r4   r5
272                  * inA1, inA2, inB1, inB2, opA, opB
273                  */
274                 asm volatile ("COL_LOOP_%=:\n"
275                               "ldr.w r2, [%[pB], #0]\n"
276                               "add.w %[pB], %[pB], %[ch_im_in]\n"
277                               "ldr.w r5, [%[pB], #0]\n"
278                               "add.w %[pB], %[pB], %[ch_im_in]\n"
279                               "pkhbt r3, r5, r2, LSL #16\n"
280                               "pkhtb r2, r2, r5, ASR #16\n"
281                               "ldr.w r0, [%[pA], #0]\n"
282                               "add.w %[pA], %[pA], %[ch_im_in]\n"
283                               "ldr.w r5, [%[pA], #0]\n"
284                               "add.w %[pA], %[pA], %[ch_im_in]\n"
285                               "pkhbt r1, r5, r0, LSL #16\n"
286                               "pkhtb r0, r0, r5, ASR #16\n"
287                               "sxtb16 r4, r0\n"
288                               "sxtb16 r5, r2\n"
289                               "smlad %[sum2], r4, r5, %[sum2]\n"
290                               "mov.w r4, r0, ror #8\n"
291                               "mov.w r5, r2, ror #8\n"
292                               "sxtb16 r4, r4\n"
293                               "sxtb16 r5, r5\n"
294                               "smlad %[sum], r4, r5, %[sum]\n"
295                               "sxtb16 r4, r1\n"
296                               "sxtb16 r5, r3\n"
297                               "smlad %[sum4], r4, r5, %[sum4]\n"
298                               "mov.w r4, r1, ror #8\n"
299                               "mov.w r5, r3, ror #8\n"
300                               "sxtb16 r4, r4\n"
301                               "sxtb16 r5, r5\n"
302                               "smlad %[sum3], r4, r5, %[sum3]\n"
303                               "subs %[colCnt], #1\n"
304                               "bne COL_LOOP_%=\n":[sum]
305                               "+r"(sum),[sum2] "+r"(sum2),
306                               [sum3] "+r"(sum3),
307                               [sum4] "+r"(sum4),[pB] "+r"(pB),
308                               [pA] "+r"(pA):[colCnt]
309                               "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
310 
311 #endif                          /* ARM_MATH_BIG_ENDIAN */
312 
313 #endif                          /* USE_INTRINSIC */
314 
315                 colCnt = (dim_kernel * dim_kernel) & 0x1;
316                 while (colCnt)
317                 {
318                     union arm_nnword inA, inB;
319                     inA.word = *__SIMD32(pA);
320                     pA += ch_im_in;
321                     inB.word = *__SIMD32(pB);
322                     pB += ch_im_in;
323                     sum += inA.bytes[0] * inB.bytes[0];
324                     sum2 += inA.bytes[1] * inB.bytes[1];
325                     sum3 += inA.bytes[2] * inB.bytes[2];
326                     sum4 += inA.bytes[3] * inB.bytes[3];
327                     colCnt--;
328                 }
329 
330                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
331                 *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
332                 *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
333                 *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
334 
335                 rowCnt--;
336             }
337 
338             rowCnt = ch_im_out & 0x3;
339             while (rowCnt)
340             {
341                 q7_t     *pB = colBuffer + row_shift;
342                 const q7_t *pA = wt + row_shift;
343                 q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
344                 uint16_t  colCnt = (dim_kernel * dim_kernel);
345 
346                 row_shift += 1;
347 
348                 while (colCnt)
349                 {
350                     q7_t      A1 = *pA;
351                     q7_t      B1 = *pB;
352                     pA += ch_im_in;
353                     pB += ch_im_in;
354                     sum += A1 * B1;
355 
356                     colCnt--;
357                 }
358                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
359                 rowCnt--;
360             }
361 
362             /* clear counter and pointers */
363             pBuffer = colBuffer;
364         }
365     }
366 
367 #else
368     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
369     int       i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y;
370     int       conv_out;
371 
372     /* do some checking here, basically ch_im_in == ch_im_out */
373     if (ch_im_in != ch_im_out)
374     {
375         return ARM_MATH_SIZE_MISMATCH;
376     }
377 
378     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
379     {
380         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
381         {
382             for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
383             {
384                 // for each output
385                 conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
386                 for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++)
387                 {
388                     for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++)
389                     {
390                         int       in_row = stride * i_out_y + i_ker_y - padding;
391                         int       in_col = stride * i_out_x + i_ker_x - padding;
392                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
393                         {
394                             conv_out +=
395                                 Im_in[(in_row *
396                                        dim_im_in +
397                                        in_col) *
398                                       ch_im_in +
399                                       i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out];
400                         }
401                     }
402                 }
403                 Im_out[(i_out_y * dim_im_out +
404                         i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
405             }
406         }
407     }
408 
409 #endif                          /* ARM_MATH_DSP */
410 
411     /* Return to application */
412     return ARM_MATH_SUCCESS;
413 
414 }
415 
416 /**
417  * @} end of NNConv group
418  */
419