1 /*------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2016 The Khronos Group Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file vktSparseResourcesBufferMemoryAliasing.cpp
21 * \brief Sparse buffer memory aliasing tests
22 *//*--------------------------------------------------------------------*/
23
24 #include "vktSparseResourcesBufferMemoryAliasing.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkRefUtil.hpp"
35 #include "vkMemUtil.hpp"
36 #include "vkBarrierUtil.hpp"
37 #include "vkQueryUtil.hpp"
38 #include "vkBuilderUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 #include "vkObjUtil.hpp"
42
43 #include "deStringUtil.hpp"
44 #include "deUniquePtr.hpp"
45
46 #include <string>
47 #include <vector>
48
49 using namespace vk;
50
51 namespace vkt
52 {
53 namespace sparse
54 {
55 namespace
56 {
57
58 enum ShaderParameters
59 {
60 SIZE_OF_UINT_IN_SHADER = 4u,
61 MODULO_DIVISOR = 1024u
62 };
63
computeWorkGroupSize(const uint32_t numInvocations)64 tcu::UVec3 computeWorkGroupSize(const uint32_t numInvocations)
65 {
66 const uint32_t maxComputeWorkGroupInvocations = 128u;
67 const tcu::UVec3 maxComputeWorkGroupSize = tcu::UVec3(128u, 128u, 64u);
68 uint32_t numInvocationsLeft = numInvocations;
69
70 const uint32_t xWorkGroupSize =
71 std::min(std::min(numInvocationsLeft, maxComputeWorkGroupSize.x()), maxComputeWorkGroupInvocations);
72 numInvocationsLeft = numInvocationsLeft / xWorkGroupSize + ((numInvocationsLeft % xWorkGroupSize) ? 1u : 0u);
73
74 const uint32_t yWorkGroupSize = std::min(std::min(numInvocationsLeft, maxComputeWorkGroupSize.y()),
75 maxComputeWorkGroupInvocations / xWorkGroupSize);
76 numInvocationsLeft = numInvocationsLeft / yWorkGroupSize + ((numInvocationsLeft % yWorkGroupSize) ? 1u : 0u);
77
78 const uint32_t zWorkGroupSize = std::min(std::min(numInvocationsLeft, maxComputeWorkGroupSize.z()),
79 maxComputeWorkGroupInvocations / (xWorkGroupSize * yWorkGroupSize));
80 numInvocationsLeft = numInvocationsLeft / zWorkGroupSize + ((numInvocationsLeft % zWorkGroupSize) ? 1u : 0u);
81
82 return tcu::UVec3(xWorkGroupSize, yWorkGroupSize, zWorkGroupSize);
83 }
84
85 class BufferSparseMemoryAliasingCase : public TestCase
86 {
87 public:
88 BufferSparseMemoryAliasingCase(tcu::TestContext &testCtx, const std::string &name, const uint32_t bufferSize,
89 const glu::GLSLVersion glslVersion, const bool useDeviceGroups);
90
91 void initPrograms(SourceCollections &sourceCollections) const;
92 TestInstance *createInstance(Context &context) const;
93 virtual void checkSupport(Context &context) const;
94
95 private:
96 const uint32_t m_bufferSizeInBytes;
97 const glu::GLSLVersion m_glslVersion;
98 const bool m_useDeviceGroups;
99 };
100
BufferSparseMemoryAliasingCase(tcu::TestContext & testCtx,const std::string & name,const uint32_t bufferSize,const glu::GLSLVersion glslVersion,const bool useDeviceGroups)101 BufferSparseMemoryAliasingCase::BufferSparseMemoryAliasingCase(tcu::TestContext &testCtx, const std::string &name,
102 const uint32_t bufferSize,
103 const glu::GLSLVersion glslVersion,
104 const bool useDeviceGroups)
105 : TestCase(testCtx, name)
106 , m_bufferSizeInBytes(bufferSize)
107 , m_glslVersion(glslVersion)
108 , m_useDeviceGroups(useDeviceGroups)
109 {
110 }
111
checkSupport(Context & context) const112 void BufferSparseMemoryAliasingCase::checkSupport(Context &context) const
113 {
114 context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING);
115 context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_RESIDENCY_ALIASED);
116 }
117
initPrograms(SourceCollections & sourceCollections) const118 void BufferSparseMemoryAliasingCase::initPrograms(SourceCollections &sourceCollections) const
119 {
120 // Create compute program
121 const char *const versionDecl = glu::getGLSLVersionDeclaration(m_glslVersion);
122 const uint32_t numInvocations = m_bufferSizeInBytes / SIZE_OF_UINT_IN_SHADER;
123 const tcu::UVec3 workGroupSize = computeWorkGroupSize(numInvocations);
124
125 std::ostringstream src;
126 src << versionDecl << "\n"
127 << "layout (local_size_x = " << workGroupSize.x() << ", local_size_y = " << workGroupSize.y()
128 << ", local_size_z = " << workGroupSize.z() << ") in;\n"
129 << "layout(set = 0, binding = 0, std430) writeonly buffer Output\n"
130 << "{\n"
131 << " uint result[];\n"
132 << "} sb_out;\n"
133 << "\n"
134 << "void main (void)\n"
135 << "{\n"
136 << " uint index = gl_GlobalInvocationID.x + (gl_GlobalInvocationID.y + "
137 "gl_GlobalInvocationID.z*gl_NumWorkGroups.y*gl_WorkGroupSize.y)*gl_NumWorkGroups.x*gl_WorkGroupSize.x;\n"
138 << " if ( index < " << m_bufferSizeInBytes / SIZE_OF_UINT_IN_SHADER << "u )\n"
139 << " {\n"
140 << " sb_out.result[index] = index % " << MODULO_DIVISOR << "u;\n"
141 << " }\n"
142 << "}\n";
143
144 sourceCollections.glslSources.add("comp") << glu::ComputeSource(src.str());
145 }
146
147 class BufferSparseMemoryAliasingInstance : public SparseResourcesBaseInstance
148 {
149 public:
150 BufferSparseMemoryAliasingInstance(Context &context, const uint32_t bufferSize, const bool useDeviceGroups);
151
152 tcu::TestStatus iterate(void);
153
154 private:
155 const uint32_t m_bufferSizeInBytes;
156 const uint32_t m_useDeviceGroups;
157 };
158
BufferSparseMemoryAliasingInstance(Context & context,const uint32_t bufferSize,const bool useDeviceGroups)159 BufferSparseMemoryAliasingInstance::BufferSparseMemoryAliasingInstance(Context &context, const uint32_t bufferSize,
160 const bool useDeviceGroups)
161 : SparseResourcesBaseInstance(context, useDeviceGroups)
162 , m_bufferSizeInBytes(bufferSize)
163 , m_useDeviceGroups(useDeviceGroups)
164 {
165 }
166
iterate(void)167 tcu::TestStatus BufferSparseMemoryAliasingInstance::iterate(void)
168 {
169 const InstanceInterface &instance = m_context.getInstanceInterface();
170 {
171 // Create logical device supporting both sparse and compute operations
172 QueueRequirementsVec queueRequirements;
173 queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
174 queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
175
176 createDeviceSupportingQueues(queueRequirements);
177 }
178 const vk::VkPhysicalDevice &physicalDevice = getPhysicalDevice();
179 const DeviceInterface &deviceInterface = getDeviceInterface();
180 const Queue &sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
181 const Queue &computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
182
183 // Go through all physical devices
184 for (uint32_t physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
185 {
186 const uint32_t firstDeviceID = physDevID;
187 const uint32_t secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices;
188
189 VkBufferCreateInfo bufferCreateInfo = {
190 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType;
191 DE_NULL, // const void* pNext;
192 VK_BUFFER_CREATE_SPARSE_BINDING_BIT | VK_BUFFER_CREATE_SPARSE_ALIASED_BIT, // VkBufferCreateFlags flags;
193 m_bufferSizeInBytes, // VkDeviceSize size;
194 VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, // VkBufferUsageFlags usage;
195 VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode;
196 0u, // uint32_t queueFamilyIndexCount;
197 DE_NULL // const uint32_t* pQueueFamilyIndices;
198 };
199
200 const uint32_t queueFamilyIndices[] = {sparseQueue.queueFamilyIndex, computeQueue.queueFamilyIndex};
201
202 if (sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex)
203 {
204 bufferCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT;
205 bufferCreateInfo.queueFamilyIndexCount = 2u;
206 bufferCreateInfo.pQueueFamilyIndices = queueFamilyIndices;
207 }
208
209 // Create sparse buffers
210 const Unique<VkBuffer> sparseBufferWrite(createBuffer(deviceInterface, getDevice(), &bufferCreateInfo));
211 const Unique<VkBuffer> sparseBufferRead(createBuffer(deviceInterface, getDevice(), &bufferCreateInfo));
212
213 // Create sparse buffers memory bind semaphore
214 const Unique<VkSemaphore> bufferMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
215
216 const VkMemoryRequirements bufferMemRequirements =
217 getBufferMemoryRequirements(deviceInterface, getDevice(), *sparseBufferWrite);
218
219 if (bufferMemRequirements.size >
220 getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
221 TCU_THROW(NotSupportedError, "Required memory size for sparse resources exceeds device limits");
222
223 DE_ASSERT((bufferMemRequirements.size % bufferMemRequirements.alignment) == 0);
224
225 const uint32_t memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID),
226 bufferMemRequirements, MemoryRequirement::Any);
227
228 if (memoryType == NO_MATCH_FOUND)
229 return tcu::TestStatus::fail("No matching memory type found");
230
231 if (firstDeviceID != secondDeviceID)
232 {
233 VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
234 const uint32_t heapIndex =
235 getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
236 deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID,
237 &peerMemoryFeatureFlags);
238
239 if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
240 ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT) == 0))
241 {
242 TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and GENERIC_DST");
243 }
244 }
245
246 const VkSparseMemoryBind sparseMemoryBind =
247 makeSparseMemoryBind(deviceInterface, getDevice(), bufferMemRequirements.size, memoryType, 0u);
248
249 Move<VkDeviceMemory> deviceMemoryPtr(check<VkDeviceMemory>(sparseMemoryBind.memory),
250 Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL));
251
252 {
253 const VkSparseBufferMemoryBindInfo sparseBufferMemoryBindInfo[2] = {
254 makeSparseBufferMemoryBindInfo(*sparseBufferWrite, //VkBuffer buffer;
255 1u, //uint32_t bindCount;
256 &sparseMemoryBind //const VkSparseMemoryBind* Binds;
257 ),
258
259 makeSparseBufferMemoryBindInfo(*sparseBufferRead, //VkBuffer buffer;
260 1u, //uint32_t bindCount;
261 &sparseMemoryBind //const VkSparseMemoryBind* Binds;
262 )};
263
264 const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo = {
265 VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO, //VkStructureType sType;
266 DE_NULL, //const void* pNext;
267 firstDeviceID, //uint32_t resourceDeviceIndex;
268 secondDeviceID, //uint32_t memoryDeviceIndex;
269 };
270
271 const VkBindSparseInfo bindSparseInfo = {
272 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType;
273 m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext;
274 0u, //uint32_t waitSemaphoreCount;
275 DE_NULL, //const VkSemaphore* pWaitSemaphores;
276 2u, //uint32_t bufferBindCount;
277 sparseBufferMemoryBindInfo, //const VkSparseBufferMemoryBindInfo* pBufferBinds;
278 0u, //uint32_t imageOpaqueBindCount;
279 DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
280 0u, //uint32_t imageBindCount;
281 DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds;
282 1u, //uint32_t signalSemaphoreCount;
283 &bufferMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores;
284 };
285
286 // Submit sparse bind commands for execution
287 VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
288 }
289
290 // Create output buffer
291 const VkBufferCreateInfo outputBufferCreateInfo =
292 makeBufferCreateInfo(m_bufferSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
293 const Unique<VkBuffer> outputBuffer(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
294 const de::UniquePtr<Allocation> outputBufferAlloc(
295 bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
296
297 // Create command buffer for compute and data transfer operations
298 const Unique<VkCommandPool> commandPool(
299 makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
300 const Unique<VkCommandBuffer> commandBuffer(
301 allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
302
303 // Start recording commands
304 beginCommandBuffer(deviceInterface, *commandBuffer);
305
306 // Create descriptor set
307 const Unique<VkDescriptorSetLayout> descriptorSetLayout(
308 DescriptorSetLayoutBuilder()
309 .addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT)
310 .build(deviceInterface, getDevice()));
311
312 // Create compute pipeline
313 const Unique<VkShaderModule> shaderModule(
314 createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("comp"), DE_NULL));
315 const Unique<VkPipelineLayout> pipelineLayout(
316 makePipelineLayout(deviceInterface, getDevice(), *descriptorSetLayout));
317 const Unique<VkPipeline> computePipeline(
318 makeComputePipeline(deviceInterface, getDevice(), *pipelineLayout, *shaderModule));
319
320 deviceInterface.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *computePipeline);
321
322 // Create descriptor set
323 const Unique<VkDescriptorPool> descriptorPool(
324 DescriptorPoolBuilder()
325 .addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1u)
326 .build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u));
327
328 const Unique<VkDescriptorSet> descriptorSet(
329 makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout));
330
331 {
332 const VkDescriptorBufferInfo sparseBufferInfo =
333 makeDescriptorBufferInfo(*sparseBufferWrite, 0u, m_bufferSizeInBytes);
334
335 DescriptorSetUpdateBuilder()
336 .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u),
337 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &sparseBufferInfo)
338 .update(deviceInterface, getDevice());
339 }
340
341 deviceInterface.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0u, 1u,
342 &descriptorSet.get(), 0u, DE_NULL);
343
344 {
345 uint32_t numInvocationsLeft = m_bufferSizeInBytes / SIZE_OF_UINT_IN_SHADER;
346 const tcu::UVec3 workGroupSize = computeWorkGroupSize(numInvocationsLeft);
347 const tcu::UVec3 maxComputeWorkGroupCount = tcu::UVec3(65535u, 65535u, 65535u);
348
349 numInvocationsLeft -= workGroupSize.x() * workGroupSize.y() * workGroupSize.z();
350
351 const uint32_t xWorkGroupCount = std::min(numInvocationsLeft, maxComputeWorkGroupCount.x());
352 numInvocationsLeft =
353 numInvocationsLeft / xWorkGroupCount + ((numInvocationsLeft % xWorkGroupCount) ? 1u : 0u);
354 const uint32_t yWorkGroupCount = std::min(numInvocationsLeft, maxComputeWorkGroupCount.y());
355 numInvocationsLeft =
356 numInvocationsLeft / yWorkGroupCount + ((numInvocationsLeft % yWorkGroupCount) ? 1u : 0u);
357 const uint32_t zWorkGroupCount = std::min(numInvocationsLeft, maxComputeWorkGroupCount.z());
358 numInvocationsLeft =
359 numInvocationsLeft / zWorkGroupCount + ((numInvocationsLeft % zWorkGroupCount) ? 1u : 0u);
360
361 if (numInvocationsLeft != 1u)
362 TCU_THROW(NotSupportedError, "Buffer size is not supported");
363
364 deviceInterface.cmdDispatch(*commandBuffer, xWorkGroupCount, yWorkGroupCount, zWorkGroupCount);
365 }
366
367 {
368 const VkBufferMemoryBarrier sparseBufferWriteBarrier = makeBufferMemoryBarrier(
369 VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, *sparseBufferWrite, 0ull, m_bufferSizeInBytes);
370
371 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
372 VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u,
373 &sparseBufferWriteBarrier, 0u, DE_NULL);
374 }
375
376 {
377 const VkBufferCopy bufferCopy = makeBufferCopy(0u, 0u, m_bufferSizeInBytes);
378
379 deviceInterface.cmdCopyBuffer(*commandBuffer, *sparseBufferRead, *outputBuffer, 1u, &bufferCopy);
380 }
381
382 {
383 const VkBufferMemoryBarrier outputBufferHostBarrier = makeBufferMemoryBarrier(
384 VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, *outputBuffer, 0ull, m_bufferSizeInBytes);
385
386 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT,
387 VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u,
388 &outputBufferHostBarrier, 0u, DE_NULL);
389 }
390
391 // End recording commands
392 endCommandBuffer(deviceInterface, *commandBuffer);
393
394 // The stage at which execution is going to wait for finish of sparse binding operations
395 const VkPipelineStageFlags waitStageBits[] = {VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT};
396
397 // Submit commands for execution and wait for completion
398 // In case of device groups, submit on the physical device with the resource
399 submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u,
400 &bufferMemoryBindSemaphore.get(), waitStageBits, 0, DE_NULL, m_useDeviceGroups,
401 firstDeviceID);
402
403 // Retrieve data from output buffer to host memory
404 invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
405
406 const uint8_t *outputData = static_cast<const uint8_t *>(outputBufferAlloc->getHostPtr());
407
408 // Wait for sparse queue to become idle
409 deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
410
411 // Prepare reference data
412 std::vector<uint8_t> referenceData;
413 referenceData.resize(m_bufferSizeInBytes);
414
415 std::vector<uint32_t> referenceDataBlock;
416 referenceDataBlock.resize(MODULO_DIVISOR);
417
418 for (uint32_t valueNdx = 0; valueNdx < MODULO_DIVISOR; ++valueNdx)
419 {
420 referenceDataBlock[valueNdx] = valueNdx % MODULO_DIVISOR;
421 }
422
423 const uint32_t fullBlockSizeInBytes = MODULO_DIVISOR * SIZE_OF_UINT_IN_SHADER;
424 const uint32_t lastBlockSizeInBytes = m_bufferSizeInBytes % fullBlockSizeInBytes;
425 const uint32_t numberOfBlocks = m_bufferSizeInBytes / fullBlockSizeInBytes + (lastBlockSizeInBytes ? 1u : 0u);
426
427 for (uint32_t blockNdx = 0; blockNdx < numberOfBlocks; ++blockNdx)
428 {
429 const uint32_t offset = blockNdx * fullBlockSizeInBytes;
430 deMemcpy(&referenceData[0] + offset, &referenceDataBlock[0],
431 ((offset + fullBlockSizeInBytes) <= m_bufferSizeInBytes) ? fullBlockSizeInBytes :
432 lastBlockSizeInBytes);
433 }
434
435 // Compare reference data with output data
436 if (deMemCmp(&referenceData[0], outputData, m_bufferSizeInBytes) != 0)
437 return tcu::TestStatus::fail("Failed");
438 }
439 return tcu::TestStatus::pass("Passed");
440 }
441
createInstance(Context & context) const442 TestInstance *BufferSparseMemoryAliasingCase::createInstance(Context &context) const
443 {
444 return new BufferSparseMemoryAliasingInstance(context, m_bufferSizeInBytes, m_useDeviceGroups);
445 }
446
447 } // namespace
448
addBufferSparseMemoryAliasingTests(tcu::TestCaseGroup * group,const bool useDeviceGroups)449 void addBufferSparseMemoryAliasingTests(tcu::TestCaseGroup *group, const bool useDeviceGroups)
450 {
451 group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_10", 1 << 10,
452 glu::GLSL_VERSION_440, useDeviceGroups));
453 group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_12", 1 << 12,
454 glu::GLSL_VERSION_440, useDeviceGroups));
455 group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_16", 1 << 16,
456 glu::GLSL_VERSION_440, useDeviceGroups));
457 group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_17", 1 << 17,
458 glu::GLSL_VERSION_440, useDeviceGroups));
459 group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_20", 1 << 20,
460 glu::GLSL_VERSION_440, useDeviceGroups));
461 group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_24", 1 << 24,
462 glu::GLSL_VERSION_440, useDeviceGroups));
463 }
464
465 } // namespace sparse
466 } // namespace vkt
467