xref: /aosp_15_r20/external/swiftshader/third_party/llvm-16.0/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/Sequence.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ProfDataUtils.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <map>
84 #include <optional>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
97 
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool>
117     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
118                 cl::desc("Hoist common instructions up to the parent block"));
119 
120 static cl::opt<unsigned>
121     HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
122                          cl::init(20),
123                          cl::desc("Allow reordering across at most this many "
124                                   "instructions when hoisting"));
125 
126 static cl::opt<bool>
127     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
128                cl::desc("Sink common instructions down to the end block"));
129 
130 static cl::opt<bool> HoistCondStores(
131     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
132     cl::desc("Hoist conditional stores if an unconditional store precedes"));
133 
134 static cl::opt<bool> MergeCondStores(
135     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
136     cl::desc("Hoist conditional stores even if an unconditional store does not "
137              "precede - hoist multiple conditional stores into a single "
138              "predicated store"));
139 
140 static cl::opt<bool> MergeCondStoresAggressively(
141     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
142     cl::desc("When merging conditional stores, do so even if the resultant "
143              "basic blocks are unlikely to be if-converted as a result"));
144 
145 static cl::opt<bool> SpeculateOneExpensiveInst(
146     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
147     cl::desc("Allow exactly one expensive instruction to be speculatively "
148              "executed"));
149 
150 static cl::opt<unsigned> MaxSpeculationDepth(
151     "max-speculation-depth", cl::Hidden, cl::init(10),
152     cl::desc("Limit maximum recursion depth when calculating costs of "
153              "speculatively executed instructions"));
154 
155 static cl::opt<int>
156     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
157                       cl::init(10),
158                       cl::desc("Max size of a block which is still considered "
159                                "small enough to thread through"));
160 
161 // Two is chosen to allow one negation and a logical combine.
162 static cl::opt<unsigned>
163     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
164                         cl::init(2),
165                         cl::desc("Maximum cost of combining conditions when "
166                                  "folding branches"));
167 
168 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
169     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
170     cl::init(2),
171     cl::desc("Multiplier to apply to threshold when determining whether or not "
172              "to fold branch to common destination when vector operations are "
173              "present"));
174 
175 static cl::opt<bool> EnableMergeCompatibleInvokes(
176     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
177     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
178 
179 static cl::opt<unsigned> MaxSwitchCasesPerResult(
180     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
181     cl::desc("Limit cases to analyze when converting a switch to select"));
182 
183 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
184 STATISTIC(NumLinearMaps,
185           "Number of switch instructions turned into linear mapping");
186 STATISTIC(NumLookupTables,
187           "Number of switch instructions turned into lookup tables");
188 STATISTIC(
189     NumLookupTablesHoles,
190     "Number of switch instructions turned into lookup tables (holes checked)");
191 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
192 STATISTIC(NumFoldValueComparisonIntoPredecessors,
193           "Number of value comparisons folded into predecessor basic blocks");
194 STATISTIC(NumFoldBranchToCommonDest,
195           "Number of branches folded into predecessor basic block");
196 STATISTIC(
197     NumHoistCommonCode,
198     "Number of common instruction 'blocks' hoisted up to the begin block");
199 STATISTIC(NumHoistCommonInstrs,
200           "Number of common instructions hoisted up to the begin block");
201 STATISTIC(NumSinkCommonCode,
202           "Number of common instruction 'blocks' sunk down to the end block");
203 STATISTIC(NumSinkCommonInstrs,
204           "Number of common instructions sunk down to the end block");
205 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
206 STATISTIC(NumInvokes,
207           "Number of invokes with empty resume blocks simplified into calls");
208 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
209 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
210 
211 namespace {
212 
213 // The first field contains the value that the switch produces when a certain
214 // case group is selected, and the second field is a vector containing the
215 // cases composing the case group.
216 using SwitchCaseResultVectorTy =
217     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
218 
219 // The first field contains the phi node that generates a result of the switch
220 // and the second field contains the value generated for a certain case in the
221 // switch for that PHI.
222 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
223 
224 /// ValueEqualityComparisonCase - Represents a case of a switch.
225 struct ValueEqualityComparisonCase {
226   ConstantInt *Value;
227   BasicBlock *Dest;
228 
ValueEqualityComparisonCase__anon7001eb4b0111::ValueEqualityComparisonCase229   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
230       : Value(Value), Dest(Dest) {}
231 
operator <__anon7001eb4b0111::ValueEqualityComparisonCase232   bool operator<(ValueEqualityComparisonCase RHS) const {
233     // Comparing pointers is ok as we only rely on the order for uniquing.
234     return Value < RHS.Value;
235   }
236 
operator ==__anon7001eb4b0111::ValueEqualityComparisonCase237   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
238 };
239 
240 class SimplifyCFGOpt {
241   const TargetTransformInfo &TTI;
242   DomTreeUpdater *DTU;
243   const DataLayout &DL;
244   ArrayRef<WeakVH> LoopHeaders;
245   const SimplifyCFGOptions &Options;
246   bool Resimplify;
247 
248   Value *isValueEqualityComparison(Instruction *TI);
249   BasicBlock *GetValueEqualityComparisonCases(
250       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
251   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
252                                                      BasicBlock *Pred,
253                                                      IRBuilder<> &Builder);
254   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
255                                                     Instruction *PTI,
256                                                     IRBuilder<> &Builder);
257   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
258                                            IRBuilder<> &Builder);
259 
260   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
261   bool simplifySingleResume(ResumeInst *RI);
262   bool simplifyCommonResume(ResumeInst *RI);
263   bool simplifyCleanupReturn(CleanupReturnInst *RI);
264   bool simplifyUnreachable(UnreachableInst *UI);
265   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
266   bool simplifyIndirectBr(IndirectBrInst *IBI);
267   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
268   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
269   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
270 
271   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
272                                              IRBuilder<> &Builder);
273 
274   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
275                              bool EqTermsOnly);
276   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
277                               const TargetTransformInfo &TTI);
278   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
279                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
280                                   uint32_t TrueWeight, uint32_t FalseWeight);
281   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
282                                  const DataLayout &DL);
283   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
284   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
285   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
286 
287 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const DataLayout & DL,ArrayRef<WeakVH> LoopHeaders,const SimplifyCFGOptions & Opts)288   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
289                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
290                  const SimplifyCFGOptions &Opts)
291       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
292     assert((!DTU || !DTU->hasPostDomTree()) &&
293            "SimplifyCFG is not yet capable of maintaining validity of a "
294            "PostDomTree, so don't ask for it.");
295   }
296 
297   bool simplifyOnce(BasicBlock *BB);
298   bool run(BasicBlock *BB);
299 
300   // Helper to set Resimplify and return change indication.
requestResimplify()301   bool requestResimplify() {
302     Resimplify = true;
303     return true;
304   }
305 };
306 
307 } // end anonymous namespace
308 
309 /// Return true if all the PHI nodes in the basic block \p BB
310 /// receive compatible (identical) incoming values when coming from
311 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
312 ///
313 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
314 /// is provided, and *both* of the values are present in the set,
315 /// then they are considered equal.
IncomingValuesAreCompatible(BasicBlock * BB,ArrayRef<BasicBlock * > IncomingBlocks,SmallPtrSetImpl<Value * > * EquivalenceSet=nullptr)316 static bool IncomingValuesAreCompatible(
317     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
318     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
319   assert(IncomingBlocks.size() == 2 &&
320          "Only for a pair of incoming blocks at the time!");
321 
322   // FIXME: it is okay if one of the incoming values is an `undef` value,
323   //        iff the other incoming value is guaranteed to be a non-poison value.
324   // FIXME: it is okay if one of the incoming values is a `poison` value.
325   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
326     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
327     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
328     if (IV0 == IV1)
329       return true;
330     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
331         EquivalenceSet->contains(IV1))
332       return true;
333     return false;
334   });
335 }
336 
337 /// Return true if it is safe to merge these two
338 /// terminator instructions together.
339 static bool
SafeToMergeTerminators(Instruction * SI1,Instruction * SI2,SmallSetVector<BasicBlock *,4> * FailBlocks=nullptr)340 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
341                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
342   if (SI1 == SI2)
343     return false; // Can't merge with self!
344 
345   // It is not safe to merge these two switch instructions if they have a common
346   // successor, and if that successor has a PHI node, and if *that* PHI node has
347   // conflicting incoming values from the two switch blocks.
348   BasicBlock *SI1BB = SI1->getParent();
349   BasicBlock *SI2BB = SI2->getParent();
350 
351   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
352   bool Fail = false;
353   for (BasicBlock *Succ : successors(SI2BB)) {
354     if (!SI1Succs.count(Succ))
355       continue;
356     if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
357       continue;
358     Fail = true;
359     if (FailBlocks)
360       FailBlocks->insert(Succ);
361     else
362       break;
363   }
364 
365   return !Fail;
366 }
367 
368 /// Update PHI nodes in Succ to indicate that there will now be entries in it
369 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
370 /// will be the same as those coming in from ExistPred, an existing predecessor
371 /// of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred,MemorySSAUpdater * MSSAU=nullptr)372 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
373                                   BasicBlock *ExistPred,
374                                   MemorySSAUpdater *MSSAU = nullptr) {
375   for (PHINode &PN : Succ->phis())
376     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
377   if (MSSAU)
378     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
379       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
380 }
381 
382 /// Compute an abstract "cost" of speculating the given instruction,
383 /// which is assumed to be safe to speculate. TCC_Free means cheap,
384 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
385 /// expensive.
computeSpeculationCost(const User * I,const TargetTransformInfo & TTI)386 static InstructionCost computeSpeculationCost(const User *I,
387                                               const TargetTransformInfo &TTI) {
388   assert((!isa<Instruction>(I) ||
389           isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
390          "Instruction is not safe to speculatively execute!");
391   return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
392 }
393 
394 /// If we have a merge point of an "if condition" as accepted above,
395 /// return true if the specified value dominates the block.  We
396 /// don't handle the true generality of domination here, just a special case
397 /// which works well enough for us.
398 ///
399 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
400 /// see if V (which must be an instruction) and its recursive operands
401 /// that do not dominate BB have a combined cost lower than Budget and
402 /// are non-trapping.  If both are true, the instruction is inserted into the
403 /// set and true is returned.
404 ///
405 /// The cost for most non-trapping instructions is defined as 1 except for
406 /// Select whose cost is 2.
407 ///
408 /// After this function returns, Cost is increased by the cost of
409 /// V plus its non-dominating operands.  If that cost is greater than
410 /// Budget, false is returned and Cost is undefined.
dominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSetImpl<Instruction * > & AggressiveInsts,InstructionCost & Cost,InstructionCost Budget,const TargetTransformInfo & TTI,unsigned Depth=0)411 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
412                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
413                                 InstructionCost &Cost,
414                                 InstructionCost Budget,
415                                 const TargetTransformInfo &TTI,
416                                 unsigned Depth = 0) {
417   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
418   // so limit the recursion depth.
419   // TODO: While this recursion limit does prevent pathological behavior, it
420   // would be better to track visited instructions to avoid cycles.
421   if (Depth == MaxSpeculationDepth)
422     return false;
423 
424   Instruction *I = dyn_cast<Instruction>(V);
425   if (!I) {
426     // Non-instructions dominate all instructions and can be executed
427     // unconditionally.
428     return true;
429   }
430   BasicBlock *PBB = I->getParent();
431 
432   // We don't want to allow weird loops that might have the "if condition" in
433   // the bottom of this block.
434   if (PBB == BB)
435     return false;
436 
437   // If this instruction is defined in a block that contains an unconditional
438   // branch to BB, then it must be in the 'conditional' part of the "if
439   // statement".  If not, it definitely dominates the region.
440   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
441   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
442     return true;
443 
444   // If we have seen this instruction before, don't count it again.
445   if (AggressiveInsts.count(I))
446     return true;
447 
448   // Okay, it looks like the instruction IS in the "condition".  Check to
449   // see if it's a cheap instruction to unconditionally compute, and if it
450   // only uses stuff defined outside of the condition.  If so, hoist it out.
451   if (!isSafeToSpeculativelyExecute(I))
452     return false;
453 
454   Cost += computeSpeculationCost(I, TTI);
455 
456   // Allow exactly one instruction to be speculated regardless of its cost
457   // (as long as it is safe to do so).
458   // This is intended to flatten the CFG even if the instruction is a division
459   // or other expensive operation. The speculation of an expensive instruction
460   // is expected to be undone in CodeGenPrepare if the speculation has not
461   // enabled further IR optimizations.
462   if (Cost > Budget &&
463       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
464        !Cost.isValid()))
465     return false;
466 
467   // Okay, we can only really hoist these out if their operands do
468   // not take us over the cost threshold.
469   for (Use &Op : I->operands())
470     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
471                              Depth + 1))
472       return false;
473   // Okay, it's safe to do this!  Remember this instruction.
474   AggressiveInsts.insert(I);
475   return true;
476 }
477 
478 /// Extract ConstantInt from value, looking through IntToPtr
479 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout & DL)480 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
481   // Normal constant int.
482   ConstantInt *CI = dyn_cast<ConstantInt>(V);
483   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
484       DL.isNonIntegralPointerType(V->getType()))
485     return CI;
486 
487   // This is some kind of pointer constant. Turn it into a pointer-sized
488   // ConstantInt if possible.
489   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
490 
491   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
492   if (isa<ConstantPointerNull>(V))
493     return ConstantInt::get(PtrTy, 0);
494 
495   // IntToPtr const int.
496   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
497     if (CE->getOpcode() == Instruction::IntToPtr)
498       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
499         // The constant is very likely to have the right type already.
500         if (CI->getType() == PtrTy)
501           return CI;
502         else
503           return cast<ConstantInt>(
504               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
505       }
506   return nullptr;
507 }
508 
509 namespace {
510 
511 /// Given a chain of or (||) or and (&&) comparison of a value against a
512 /// constant, this will try to recover the information required for a switch
513 /// structure.
514 /// It will depth-first traverse the chain of comparison, seeking for patterns
515 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
516 /// representing the different cases for the switch.
517 /// Note that if the chain is composed of '||' it will build the set of elements
518 /// that matches the comparisons (i.e. any of this value validate the chain)
519 /// while for a chain of '&&' it will build the set elements that make the test
520 /// fail.
521 struct ConstantComparesGatherer {
522   const DataLayout &DL;
523 
524   /// Value found for the switch comparison
525   Value *CompValue = nullptr;
526 
527   /// Extra clause to be checked before the switch
528   Value *Extra = nullptr;
529 
530   /// Set of integers to match in switch
531   SmallVector<ConstantInt *, 8> Vals;
532 
533   /// Number of comparisons matched in the and/or chain
534   unsigned UsedICmps = 0;
535 
536   /// Construct and compute the result for the comparison instruction Cond
ConstantComparesGatherer__anon7001eb4b0311::ConstantComparesGatherer537   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
538     gather(Cond);
539   }
540 
541   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
542   ConstantComparesGatherer &
543   operator=(const ConstantComparesGatherer &) = delete;
544 
545 private:
546   /// Try to set the current value used for the comparison, it succeeds only if
547   /// it wasn't set before or if the new value is the same as the old one
setValueOnce__anon7001eb4b0311::ConstantComparesGatherer548   bool setValueOnce(Value *NewVal) {
549     if (CompValue && CompValue != NewVal)
550       return false;
551     CompValue = NewVal;
552     return (CompValue != nullptr);
553   }
554 
555   /// Try to match Instruction "I" as a comparison against a constant and
556   /// populates the array Vals with the set of values that match (or do not
557   /// match depending on isEQ).
558   /// Return false on failure. On success, the Value the comparison matched
559   /// against is placed in CompValue.
560   /// If CompValue is already set, the function is expected to fail if a match
561   /// is found but the value compared to is different.
matchInstruction__anon7001eb4b0311::ConstantComparesGatherer562   bool matchInstruction(Instruction *I, bool isEQ) {
563     // If this is an icmp against a constant, handle this as one of the cases.
564     ICmpInst *ICI;
565     ConstantInt *C;
566     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
567           (C = GetConstantInt(I->getOperand(1), DL)))) {
568       return false;
569     }
570 
571     Value *RHSVal;
572     const APInt *RHSC;
573 
574     // Pattern match a special case
575     // (x & ~2^z) == y --> x == y || x == y|2^z
576     // This undoes a transformation done by instcombine to fuse 2 compares.
577     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
578       // It's a little bit hard to see why the following transformations are
579       // correct. Here is a CVC3 program to verify them for 64-bit values:
580 
581       /*
582          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
583          x    : BITVECTOR(64);
584          y    : BITVECTOR(64);
585          z    : BITVECTOR(64);
586          mask : BITVECTOR(64) = BVSHL(ONE, z);
587          QUERY( (y & ~mask = y) =>
588                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
589          );
590          QUERY( (y |  mask = y) =>
591                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
592          );
593       */
594 
595       // Please note that each pattern must be a dual implication (<--> or
596       // iff). One directional implication can create spurious matches. If the
597       // implication is only one-way, an unsatisfiable condition on the left
598       // side can imply a satisfiable condition on the right side. Dual
599       // implication ensures that satisfiable conditions are transformed to
600       // other satisfiable conditions and unsatisfiable conditions are
601       // transformed to other unsatisfiable conditions.
602 
603       // Here is a concrete example of a unsatisfiable condition on the left
604       // implying a satisfiable condition on the right:
605       //
606       // mask = (1 << z)
607       // (x & ~mask) == y  --> (x == y || x == (y | mask))
608       //
609       // Substituting y = 3, z = 0 yields:
610       // (x & -2) == 3 --> (x == 3 || x == 2)
611 
612       // Pattern match a special case:
613       /*
614         QUERY( (y & ~mask = y) =>
615                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
616         );
617       */
618       if (match(ICI->getOperand(0),
619                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
620         APInt Mask = ~*RHSC;
621         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
622           // If we already have a value for the switch, it has to match!
623           if (!setValueOnce(RHSVal))
624             return false;
625 
626           Vals.push_back(C);
627           Vals.push_back(
628               ConstantInt::get(C->getContext(),
629                                C->getValue() | Mask));
630           UsedICmps++;
631           return true;
632         }
633       }
634 
635       // Pattern match a special case:
636       /*
637         QUERY( (y |  mask = y) =>
638                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
639         );
640       */
641       if (match(ICI->getOperand(0),
642                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
643         APInt Mask = *RHSC;
644         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
645           // If we already have a value for the switch, it has to match!
646           if (!setValueOnce(RHSVal))
647             return false;
648 
649           Vals.push_back(C);
650           Vals.push_back(ConstantInt::get(C->getContext(),
651                                           C->getValue() & ~Mask));
652           UsedICmps++;
653           return true;
654         }
655       }
656 
657       // If we already have a value for the switch, it has to match!
658       if (!setValueOnce(ICI->getOperand(0)))
659         return false;
660 
661       UsedICmps++;
662       Vals.push_back(C);
663       return ICI->getOperand(0);
664     }
665 
666     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
667     ConstantRange Span =
668         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
669 
670     // Shift the range if the compare is fed by an add. This is the range
671     // compare idiom as emitted by instcombine.
672     Value *CandidateVal = I->getOperand(0);
673     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
674       Span = Span.subtract(*RHSC);
675       CandidateVal = RHSVal;
676     }
677 
678     // If this is an and/!= check, then we are looking to build the set of
679     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
680     // x != 0 && x != 1.
681     if (!isEQ)
682       Span = Span.inverse();
683 
684     // If there are a ton of values, we don't want to make a ginormous switch.
685     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
686       return false;
687     }
688 
689     // If we already have a value for the switch, it has to match!
690     if (!setValueOnce(CandidateVal))
691       return false;
692 
693     // Add all values from the range to the set
694     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
695       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
696 
697     UsedICmps++;
698     return true;
699   }
700 
701   /// Given a potentially 'or'd or 'and'd together collection of icmp
702   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
703   /// the value being compared, and stick the list constants into the Vals
704   /// vector.
705   /// One "Extra" case is allowed to differ from the other.
gather__anon7001eb4b0311::ConstantComparesGatherer706   void gather(Value *V) {
707     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
708 
709     // Keep a stack (SmallVector for efficiency) for depth-first traversal
710     SmallVector<Value *, 8> DFT;
711     SmallPtrSet<Value *, 8> Visited;
712 
713     // Initialize
714     Visited.insert(V);
715     DFT.push_back(V);
716 
717     while (!DFT.empty()) {
718       V = DFT.pop_back_val();
719 
720       if (Instruction *I = dyn_cast<Instruction>(V)) {
721         // If it is a || (or && depending on isEQ), process the operands.
722         Value *Op0, *Op1;
723         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
724                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
725           if (Visited.insert(Op1).second)
726             DFT.push_back(Op1);
727           if (Visited.insert(Op0).second)
728             DFT.push_back(Op0);
729 
730           continue;
731         }
732 
733         // Try to match the current instruction
734         if (matchInstruction(I, isEQ))
735           // Match succeed, continue the loop
736           continue;
737       }
738 
739       // One element of the sequence of || (or &&) could not be match as a
740       // comparison against the same value as the others.
741       // We allow only one "Extra" case to be checked before the switch
742       if (!Extra) {
743         Extra = V;
744         continue;
745       }
746       // Failed to parse a proper sequence, abort now
747       CompValue = nullptr;
748       break;
749     }
750   }
751 };
752 
753 } // end anonymous namespace
754 
EraseTerminatorAndDCECond(Instruction * TI,MemorySSAUpdater * MSSAU=nullptr)755 static void EraseTerminatorAndDCECond(Instruction *TI,
756                                       MemorySSAUpdater *MSSAU = nullptr) {
757   Instruction *Cond = nullptr;
758   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
759     Cond = dyn_cast<Instruction>(SI->getCondition());
760   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
761     if (BI->isConditional())
762       Cond = dyn_cast<Instruction>(BI->getCondition());
763   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
764     Cond = dyn_cast<Instruction>(IBI->getAddress());
765   }
766 
767   TI->eraseFromParent();
768   if (Cond)
769     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
770 }
771 
772 /// Return true if the specified terminator checks
773 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(Instruction * TI)774 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
775   Value *CV = nullptr;
776   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
777     // Do not permit merging of large switch instructions into their
778     // predecessors unless there is only one predecessor.
779     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
780       CV = SI->getCondition();
781   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
782     if (BI->isConditional() && BI->getCondition()->hasOneUse())
783       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
784         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
785           CV = ICI->getOperand(0);
786       }
787 
788   // Unwrap any lossless ptrtoint cast.
789   if (CV) {
790     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
791       Value *Ptr = PTII->getPointerOperand();
792       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
793         CV = Ptr;
794     }
795   }
796   return CV;
797 }
798 
799 /// Given a value comparison instruction,
800 /// decode all of the 'cases' that it represents and return the 'default' block.
GetValueEqualityComparisonCases(Instruction * TI,std::vector<ValueEqualityComparisonCase> & Cases)801 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
802     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
803   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
804     Cases.reserve(SI->getNumCases());
805     for (auto Case : SI->cases())
806       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
807                                                   Case.getCaseSuccessor()));
808     return SI->getDefaultDest();
809   }
810 
811   BranchInst *BI = cast<BranchInst>(TI);
812   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
813   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
814   Cases.push_back(ValueEqualityComparisonCase(
815       GetConstantInt(ICI->getOperand(1), DL), Succ));
816   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
817 }
818 
819 /// Given a vector of bb/value pairs, remove any entries
820 /// in the list that match the specified block.
821 static void
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)822 EliminateBlockCases(BasicBlock *BB,
823                     std::vector<ValueEqualityComparisonCase> &Cases) {
824   llvm::erase_value(Cases, BB);
825 }
826 
827 /// Return true if there are any keys in C1 that exist in C2 as well.
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)828 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
829                           std::vector<ValueEqualityComparisonCase> &C2) {
830   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
831 
832   // Make V1 be smaller than V2.
833   if (V1->size() > V2->size())
834     std::swap(V1, V2);
835 
836   if (V1->empty())
837     return false;
838   if (V1->size() == 1) {
839     // Just scan V2.
840     ConstantInt *TheVal = (*V1)[0].Value;
841     for (const ValueEqualityComparisonCase &VECC : *V2)
842       if (TheVal == VECC.Value)
843         return true;
844   }
845 
846   // Otherwise, just sort both lists and compare element by element.
847   array_pod_sort(V1->begin(), V1->end());
848   array_pod_sort(V2->begin(), V2->end());
849   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
850   while (i1 != e1 && i2 != e2) {
851     if ((*V1)[i1].Value == (*V2)[i2].Value)
852       return true;
853     if ((*V1)[i1].Value < (*V2)[i2].Value)
854       ++i1;
855     else
856       ++i2;
857   }
858   return false;
859 }
860 
861 // Set branch weights on SwitchInst. This sets the metadata if there is at
862 // least one non-zero weight.
setBranchWeights(SwitchInst * SI,ArrayRef<uint32_t> Weights)863 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
864   // Check that there is at least one non-zero weight. Otherwise, pass
865   // nullptr to setMetadata which will erase the existing metadata.
866   MDNode *N = nullptr;
867   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
868     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
869   SI->setMetadata(LLVMContext::MD_prof, N);
870 }
871 
872 // Similar to the above, but for branch and select instructions that take
873 // exactly 2 weights.
setBranchWeights(Instruction * I,uint32_t TrueWeight,uint32_t FalseWeight)874 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
875                              uint32_t FalseWeight) {
876   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
877   // Check that there is at least one non-zero weight. Otherwise, pass
878   // nullptr to setMetadata which will erase the existing metadata.
879   MDNode *N = nullptr;
880   if (TrueWeight || FalseWeight)
881     N = MDBuilder(I->getParent()->getContext())
882             .createBranchWeights(TrueWeight, FalseWeight);
883   I->setMetadata(LLVMContext::MD_prof, N);
884 }
885 
886 /// If TI is known to be a terminator instruction and its block is known to
887 /// only have a single predecessor block, check to see if that predecessor is
888 /// also a value comparison with the same value, and if that comparison
889 /// determines the outcome of this comparison. If so, simplify TI. This does a
890 /// very limited form of jump threading.
SimplifyEqualityComparisonWithOnlyPredecessor(Instruction * TI,BasicBlock * Pred,IRBuilder<> & Builder)891 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
892     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
893   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
894   if (!PredVal)
895     return false; // Not a value comparison in predecessor.
896 
897   Value *ThisVal = isValueEqualityComparison(TI);
898   assert(ThisVal && "This isn't a value comparison!!");
899   if (ThisVal != PredVal)
900     return false; // Different predicates.
901 
902   // TODO: Preserve branch weight metadata, similarly to how
903   // FoldValueComparisonIntoPredecessors preserves it.
904 
905   // Find out information about when control will move from Pred to TI's block.
906   std::vector<ValueEqualityComparisonCase> PredCases;
907   BasicBlock *PredDef =
908       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
909   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
910 
911   // Find information about how control leaves this block.
912   std::vector<ValueEqualityComparisonCase> ThisCases;
913   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
914   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
915 
916   // If TI's block is the default block from Pred's comparison, potentially
917   // simplify TI based on this knowledge.
918   if (PredDef == TI->getParent()) {
919     // If we are here, we know that the value is none of those cases listed in
920     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
921     // can simplify TI.
922     if (!ValuesOverlap(PredCases, ThisCases))
923       return false;
924 
925     if (isa<BranchInst>(TI)) {
926       // Okay, one of the successors of this condbr is dead.  Convert it to a
927       // uncond br.
928       assert(ThisCases.size() == 1 && "Branch can only have one case!");
929       // Insert the new branch.
930       Instruction *NI = Builder.CreateBr(ThisDef);
931       (void)NI;
932 
933       // Remove PHI node entries for the dead edge.
934       ThisCases[0].Dest->removePredecessor(PredDef);
935 
936       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
937                         << "Through successor TI: " << *TI << "Leaving: " << *NI
938                         << "\n");
939 
940       EraseTerminatorAndDCECond(TI);
941 
942       if (DTU)
943         DTU->applyUpdates(
944             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
945 
946       return true;
947     }
948 
949     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
950     // Okay, TI has cases that are statically dead, prune them away.
951     SmallPtrSet<Constant *, 16> DeadCases;
952     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
953       DeadCases.insert(PredCases[i].Value);
954 
955     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
956                       << "Through successor TI: " << *TI);
957 
958     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
959     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
960       --i;
961       auto *Successor = i->getCaseSuccessor();
962       if (DTU)
963         ++NumPerSuccessorCases[Successor];
964       if (DeadCases.count(i->getCaseValue())) {
965         Successor->removePredecessor(PredDef);
966         SI.removeCase(i);
967         if (DTU)
968           --NumPerSuccessorCases[Successor];
969       }
970     }
971 
972     if (DTU) {
973       std::vector<DominatorTree::UpdateType> Updates;
974       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
975         if (I.second == 0)
976           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
977       DTU->applyUpdates(Updates);
978     }
979 
980     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
981     return true;
982   }
983 
984   // Otherwise, TI's block must correspond to some matched value.  Find out
985   // which value (or set of values) this is.
986   ConstantInt *TIV = nullptr;
987   BasicBlock *TIBB = TI->getParent();
988   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
989     if (PredCases[i].Dest == TIBB) {
990       if (TIV)
991         return false; // Cannot handle multiple values coming to this block.
992       TIV = PredCases[i].Value;
993     }
994   assert(TIV && "No edge from pred to succ?");
995 
996   // Okay, we found the one constant that our value can be if we get into TI's
997   // BB.  Find out which successor will unconditionally be branched to.
998   BasicBlock *TheRealDest = nullptr;
999   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
1000     if (ThisCases[i].Value == TIV) {
1001       TheRealDest = ThisCases[i].Dest;
1002       break;
1003     }
1004 
1005   // If not handled by any explicit cases, it is handled by the default case.
1006   if (!TheRealDest)
1007     TheRealDest = ThisDef;
1008 
1009   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1010 
1011   // Remove PHI node entries for dead edges.
1012   BasicBlock *CheckEdge = TheRealDest;
1013   for (BasicBlock *Succ : successors(TIBB))
1014     if (Succ != CheckEdge) {
1015       if (Succ != TheRealDest)
1016         RemovedSuccs.insert(Succ);
1017       Succ->removePredecessor(TIBB);
1018     } else
1019       CheckEdge = nullptr;
1020 
1021   // Insert the new branch.
1022   Instruction *NI = Builder.CreateBr(TheRealDest);
1023   (void)NI;
1024 
1025   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1026                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1027                     << "\n");
1028 
1029   EraseTerminatorAndDCECond(TI);
1030   if (DTU) {
1031     SmallVector<DominatorTree::UpdateType, 2> Updates;
1032     Updates.reserve(RemovedSuccs.size());
1033     for (auto *RemovedSucc : RemovedSuccs)
1034       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1035     DTU->applyUpdates(Updates);
1036   }
1037   return true;
1038 }
1039 
1040 namespace {
1041 
1042 /// This class implements a stable ordering of constant
1043 /// integers that does not depend on their address.  This is important for
1044 /// applications that sort ConstantInt's to ensure uniqueness.
1045 struct ConstantIntOrdering {
operator ()__anon7001eb4b0511::ConstantIntOrdering1046   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1047     return LHS->getValue().ult(RHS->getValue());
1048   }
1049 };
1050 
1051 } // end anonymous namespace
1052 
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)1053 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1054                                     ConstantInt *const *P2) {
1055   const ConstantInt *LHS = *P1;
1056   const ConstantInt *RHS = *P2;
1057   if (LHS == RHS)
1058     return 0;
1059   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1060 }
1061 
1062 /// Get Weights of a given terminator, the default weight is at the front
1063 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1064 /// metadata.
GetBranchWeights(Instruction * TI,SmallVectorImpl<uint64_t> & Weights)1065 static void GetBranchWeights(Instruction *TI,
1066                              SmallVectorImpl<uint64_t> &Weights) {
1067   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1068   assert(MD);
1069   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1070     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1071     Weights.push_back(CI->getValue().getZExtValue());
1072   }
1073 
1074   // If TI is a conditional eq, the default case is the false case,
1075   // and the corresponding branch-weight data is at index 2. We swap the
1076   // default weight to be the first entry.
1077   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1078     assert(Weights.size() == 2);
1079     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1080     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1081       std::swap(Weights.front(), Weights.back());
1082   }
1083 }
1084 
1085 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1087   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1088   if (Max > UINT_MAX) {
1089     unsigned Offset = 32 - countLeadingZeros(Max);
1090     for (uint64_t &I : Weights)
1091       I >>= Offset;
1092   }
1093 }
1094 
CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BasicBlock * BB,BasicBlock * PredBlock,ValueToValueMapTy & VMap)1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1096     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1097   Instruction *PTI = PredBlock->getTerminator();
1098 
1099   // If we have bonus instructions, clone them into the predecessor block.
1100   // Note that there may be multiple predecessor blocks, so we cannot move
1101   // bonus instructions to a predecessor block.
1102   for (Instruction &BonusInst : *BB) {
1103     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1104       continue;
1105 
1106     Instruction *NewBonusInst = BonusInst.clone();
1107 
1108     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1109       // Unless the instruction has the same !dbg location as the original
1110       // branch, drop it. When we fold the bonus instructions we want to make
1111       // sure we reset their debug locations in order to avoid stepping on
1112       // dead code caused by folding dead branches.
1113       NewBonusInst->setDebugLoc(DebugLoc());
1114     }
1115 
1116     RemapInstruction(NewBonusInst, VMap,
1117                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1118     VMap[&BonusInst] = NewBonusInst;
1119 
1120     // If we moved a load, we cannot any longer claim any knowledge about
1121     // its potential value. The previous information might have been valid
1122     // only given the branch precondition.
1123     // For an analogous reason, we must also drop all the metadata whose
1124     // semantics we don't understand. We *can* preserve !annotation, because
1125     // it is tied to the instruction itself, not the value or position.
1126     // Similarly strip attributes on call parameters that may cause UB in
1127     // location the call is moved to.
1128     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1129         LLVMContext::MD_annotation);
1130 
1131     NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1132     NewBonusInst->takeName(&BonusInst);
1133     BonusInst.setName(NewBonusInst->getName() + ".old");
1134 
1135     // Update (liveout) uses of bonus instructions,
1136     // now that the bonus instruction has been cloned into predecessor.
1137     // Note that we expect to be in a block-closed SSA form for this to work!
1138     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1139       auto *UI = cast<Instruction>(U.getUser());
1140       auto *PN = dyn_cast<PHINode>(UI);
1141       if (!PN) {
1142         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1143                "If the user is not a PHI node, then it should be in the same "
1144                "block as, and come after, the original bonus instruction.");
1145         continue; // Keep using the original bonus instruction.
1146       }
1147       // Is this the block-closed SSA form PHI node?
1148       if (PN->getIncomingBlock(U) == BB)
1149         continue; // Great, keep using the original bonus instruction.
1150       // The only other alternative is an "use" when coming from
1151       // the predecessor block - here we should refer to the cloned bonus instr.
1152       assert(PN->getIncomingBlock(U) == PredBlock &&
1153              "Not in block-closed SSA form?");
1154       U.set(NewBonusInst);
1155     }
1156   }
1157 }
1158 
PerformValueComparisonIntoPredecessorFolding(Instruction * TI,Value * & CV,Instruction * PTI,IRBuilder<> & Builder)1159 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1160     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1161   BasicBlock *BB = TI->getParent();
1162   BasicBlock *Pred = PTI->getParent();
1163 
1164   SmallVector<DominatorTree::UpdateType, 32> Updates;
1165 
1166   // Figure out which 'cases' to copy from SI to PSI.
1167   std::vector<ValueEqualityComparisonCase> BBCases;
1168   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1169 
1170   std::vector<ValueEqualityComparisonCase> PredCases;
1171   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1172 
1173   // Based on whether the default edge from PTI goes to BB or not, fill in
1174   // PredCases and PredDefault with the new switch cases we would like to
1175   // build.
1176   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1177 
1178   // Update the branch weight metadata along the way
1179   SmallVector<uint64_t, 8> Weights;
1180   bool PredHasWeights = hasBranchWeightMD(*PTI);
1181   bool SuccHasWeights = hasBranchWeightMD(*TI);
1182 
1183   if (PredHasWeights) {
1184     GetBranchWeights(PTI, Weights);
1185     // branch-weight metadata is inconsistent here.
1186     if (Weights.size() != 1 + PredCases.size())
1187       PredHasWeights = SuccHasWeights = false;
1188   } else if (SuccHasWeights)
1189     // If there are no predecessor weights but there are successor weights,
1190     // populate Weights with 1, which will later be scaled to the sum of
1191     // successor's weights
1192     Weights.assign(1 + PredCases.size(), 1);
1193 
1194   SmallVector<uint64_t, 8> SuccWeights;
1195   if (SuccHasWeights) {
1196     GetBranchWeights(TI, SuccWeights);
1197     // branch-weight metadata is inconsistent here.
1198     if (SuccWeights.size() != 1 + BBCases.size())
1199       PredHasWeights = SuccHasWeights = false;
1200   } else if (PredHasWeights)
1201     SuccWeights.assign(1 + BBCases.size(), 1);
1202 
1203   if (PredDefault == BB) {
1204     // If this is the default destination from PTI, only the edges in TI
1205     // that don't occur in PTI, or that branch to BB will be activated.
1206     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1207     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1208       if (PredCases[i].Dest != BB)
1209         PTIHandled.insert(PredCases[i].Value);
1210       else {
1211         // The default destination is BB, we don't need explicit targets.
1212         std::swap(PredCases[i], PredCases.back());
1213 
1214         if (PredHasWeights || SuccHasWeights) {
1215           // Increase weight for the default case.
1216           Weights[0] += Weights[i + 1];
1217           std::swap(Weights[i + 1], Weights.back());
1218           Weights.pop_back();
1219         }
1220 
1221         PredCases.pop_back();
1222         --i;
1223         --e;
1224       }
1225 
1226     // Reconstruct the new switch statement we will be building.
1227     if (PredDefault != BBDefault) {
1228       PredDefault->removePredecessor(Pred);
1229       if (DTU && PredDefault != BB)
1230         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1231       PredDefault = BBDefault;
1232       ++NewSuccessors[BBDefault];
1233     }
1234 
1235     unsigned CasesFromPred = Weights.size();
1236     uint64_t ValidTotalSuccWeight = 0;
1237     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1239         PredCases.push_back(BBCases[i]);
1240         ++NewSuccessors[BBCases[i].Dest];
1241         if (SuccHasWeights || PredHasWeights) {
1242           // The default weight is at index 0, so weight for the ith case
1243           // should be at index i+1. Scale the cases from successor by
1244           // PredDefaultWeight (Weights[0]).
1245           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1246           ValidTotalSuccWeight += SuccWeights[i + 1];
1247         }
1248       }
1249 
1250     if (SuccHasWeights || PredHasWeights) {
1251       ValidTotalSuccWeight += SuccWeights[0];
1252       // Scale the cases from predecessor by ValidTotalSuccWeight.
1253       for (unsigned i = 1; i < CasesFromPred; ++i)
1254         Weights[i] *= ValidTotalSuccWeight;
1255       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1256       Weights[0] *= SuccWeights[0];
1257     }
1258   } else {
1259     // If this is not the default destination from PSI, only the edges
1260     // in SI that occur in PSI with a destination of BB will be
1261     // activated.
1262     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1263     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1264     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1265       if (PredCases[i].Dest == BB) {
1266         PTIHandled.insert(PredCases[i].Value);
1267 
1268         if (PredHasWeights || SuccHasWeights) {
1269           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1270           std::swap(Weights[i + 1], Weights.back());
1271           Weights.pop_back();
1272         }
1273 
1274         std::swap(PredCases[i], PredCases.back());
1275         PredCases.pop_back();
1276         --i;
1277         --e;
1278       }
1279 
1280     // Okay, now we know which constants were sent to BB from the
1281     // predecessor.  Figure out where they will all go now.
1282     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1283       if (PTIHandled.count(BBCases[i].Value)) {
1284         // If this is one we are capable of getting...
1285         if (PredHasWeights || SuccHasWeights)
1286           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1287         PredCases.push_back(BBCases[i]);
1288         ++NewSuccessors[BBCases[i].Dest];
1289         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1290       }
1291 
1292     // If there are any constants vectored to BB that TI doesn't handle,
1293     // they must go to the default destination of TI.
1294     for (ConstantInt *I : PTIHandled) {
1295       if (PredHasWeights || SuccHasWeights)
1296         Weights.push_back(WeightsForHandled[I]);
1297       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1298       ++NewSuccessors[BBDefault];
1299     }
1300   }
1301 
1302   // Okay, at this point, we know which new successor Pred will get.  Make
1303   // sure we update the number of entries in the PHI nodes for these
1304   // successors.
1305   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1306   if (DTU) {
1307     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1308     Updates.reserve(Updates.size() + NewSuccessors.size());
1309   }
1310   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1311        NewSuccessors) {
1312     for (auto I : seq(0, NewSuccessor.second)) {
1313       (void)I;
1314       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1315     }
1316     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1317       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1318   }
1319 
1320   Builder.SetInsertPoint(PTI);
1321   // Convert pointer to int before we switch.
1322   if (CV->getType()->isPointerTy()) {
1323     CV =
1324         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1325   }
1326 
1327   // Now that the successors are updated, create the new Switch instruction.
1328   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1329   NewSI->setDebugLoc(PTI->getDebugLoc());
1330   for (ValueEqualityComparisonCase &V : PredCases)
1331     NewSI->addCase(V.Value, V.Dest);
1332 
1333   if (PredHasWeights || SuccHasWeights) {
1334     // Halve the weights if any of them cannot fit in an uint32_t
1335     FitWeights(Weights);
1336 
1337     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1338 
1339     setBranchWeights(NewSI, MDWeights);
1340   }
1341 
1342   EraseTerminatorAndDCECond(PTI);
1343 
1344   // Okay, last check.  If BB is still a successor of PSI, then we must
1345   // have an infinite loop case.  If so, add an infinitely looping block
1346   // to handle the case to preserve the behavior of the code.
1347   BasicBlock *InfLoopBlock = nullptr;
1348   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1349     if (NewSI->getSuccessor(i) == BB) {
1350       if (!InfLoopBlock) {
1351         // Insert it at the end of the function, because it's either code,
1352         // or it won't matter if it's hot. :)
1353         InfLoopBlock =
1354             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1355         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1356         if (DTU)
1357           Updates.push_back(
1358               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1359       }
1360       NewSI->setSuccessor(i, InfLoopBlock);
1361     }
1362 
1363   if (DTU) {
1364     if (InfLoopBlock)
1365       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1366 
1367     Updates.push_back({DominatorTree::Delete, Pred, BB});
1368 
1369     DTU->applyUpdates(Updates);
1370   }
1371 
1372   ++NumFoldValueComparisonIntoPredecessors;
1373   return true;
1374 }
1375 
1376 /// The specified terminator is a value equality comparison instruction
1377 /// (either a switch or a branch on "X == c").
1378 /// See if any of the predecessors of the terminator block are value comparisons
1379 /// on the same value.  If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(Instruction * TI,IRBuilder<> & Builder)1380 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1381                                                          IRBuilder<> &Builder) {
1382   BasicBlock *BB = TI->getParent();
1383   Value *CV = isValueEqualityComparison(TI); // CondVal
1384   assert(CV && "Not a comparison?");
1385 
1386   bool Changed = false;
1387 
1388   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1389   while (!Preds.empty()) {
1390     BasicBlock *Pred = Preds.pop_back_val();
1391     Instruction *PTI = Pred->getTerminator();
1392 
1393     // Don't try to fold into itself.
1394     if (Pred == BB)
1395       continue;
1396 
1397     // See if the predecessor is a comparison with the same value.
1398     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1399     if (PCV != CV)
1400       continue;
1401 
1402     SmallSetVector<BasicBlock *, 4> FailBlocks;
1403     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1404       for (auto *Succ : FailBlocks) {
1405         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1406           return false;
1407       }
1408     }
1409 
1410     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1411     Changed = true;
1412   }
1413   return Changed;
1414 }
1415 
1416 // If we would need to insert a select that uses the value of this invoke
1417 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1418 // can't hoist the invoke, as there is nowhere to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1419 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1420                                 Instruction *I1, Instruction *I2) {
1421   for (BasicBlock *Succ : successors(BB1)) {
1422     for (const PHINode &PN : Succ->phis()) {
1423       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1424       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1425       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1426         return false;
1427       }
1428     }
1429   }
1430   return true;
1431 }
1432 
1433 // Get interesting characteristics of instructions that `HoistThenElseCodeToIf`
1434 // didn't hoist. They restrict what kind of instructions can be reordered
1435 // across.
1436 enum SkipFlags {
1437   SkipReadMem = 1,
1438   SkipSideEffect = 2,
1439   SkipImplicitControlFlow = 4
1440 };
1441 
skippedInstrFlags(Instruction * I)1442 static unsigned skippedInstrFlags(Instruction *I) {
1443   unsigned Flags = 0;
1444   if (I->mayReadFromMemory())
1445     Flags |= SkipReadMem;
1446   // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1447   // inalloca) across stacksave/stackrestore boundaries.
1448   if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1449     Flags |= SkipSideEffect;
1450   if (!isGuaranteedToTransferExecutionToSuccessor(I))
1451     Flags |= SkipImplicitControlFlow;
1452   return Flags;
1453 }
1454 
1455 // Returns true if it is safe to reorder an instruction across preceding
1456 // instructions in a basic block.
isSafeToHoistInstr(Instruction * I,unsigned Flags)1457 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1458   // Don't reorder a store over a load.
1459   if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1460     return false;
1461 
1462   // If we have seen an instruction with side effects, it's unsafe to reorder an
1463   // instruction which reads memory or itself has side effects.
1464   if ((Flags & SkipSideEffect) &&
1465       (I->mayReadFromMemory() || I->mayHaveSideEffects()))
1466     return false;
1467 
1468   // Reordering across an instruction which does not necessarily transfer
1469   // control to the next instruction is speculation.
1470   if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1471     return false;
1472 
1473   // Hoisting of llvm.deoptimize is only legal together with the next return
1474   // instruction, which this pass is not always able to do.
1475   if (auto *CB = dyn_cast<CallBase>(I))
1476     if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1477       return false;
1478 
1479   // It's also unsafe/illegal to hoist an instruction above its instruction
1480   // operands
1481   BasicBlock *BB = I->getParent();
1482   for (Value *Op : I->operands()) {
1483     if (auto *J = dyn_cast<Instruction>(Op))
1484       if (J->getParent() == BB)
1485         return false;
1486   }
1487 
1488   return true;
1489 }
1490 
1491 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1492 
1493 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1494 /// in the two blocks up into the branch block. The caller of this function
1495 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1496 /// only perform hoisting in case both blocks only contain a terminator. In that
1497 /// case, only the original BI will be replaced and selects for PHIs are added.
HoistThenElseCodeToIf(BranchInst * BI,const TargetTransformInfo & TTI,bool EqTermsOnly)1498 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1499                                            const TargetTransformInfo &TTI,
1500                                            bool EqTermsOnly) {
1501   // This does very trivial matching, with limited scanning, to find identical
1502   // instructions in the two blocks.  In particular, we don't want to get into
1503   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1504   // such, we currently just scan for obviously identical instructions in an
1505   // identical order, possibly separated by the same number of non-identical
1506   // instructions.
1507   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1508   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1509 
1510   // If either of the blocks has it's address taken, then we can't do this fold,
1511   // because the code we'd hoist would no longer run when we jump into the block
1512   // by it's address.
1513   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1514     return false;
1515 
1516   BasicBlock::iterator BB1_Itr = BB1->begin();
1517   BasicBlock::iterator BB2_Itr = BB2->begin();
1518 
1519   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1520   // Skip debug info if it is not identical.
1521   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1522   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1523   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1524     while (isa<DbgInfoIntrinsic>(I1))
1525       I1 = &*BB1_Itr++;
1526     while (isa<DbgInfoIntrinsic>(I2))
1527       I2 = &*BB2_Itr++;
1528   }
1529   if (isa<PHINode>(I1))
1530     return false;
1531 
1532   BasicBlock *BIParent = BI->getParent();
1533 
1534   bool Changed = false;
1535 
1536   auto _ = make_scope_exit([&]() {
1537     if (Changed)
1538       ++NumHoistCommonCode;
1539   });
1540 
1541   // Check if only hoisting terminators is allowed. This does not add new
1542   // instructions to the hoist location.
1543   if (EqTermsOnly) {
1544     // Skip any debug intrinsics, as they are free to hoist.
1545     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1546     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1547     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1548       return false;
1549     if (!I1NonDbg->isTerminator())
1550       return false;
1551     // Now we know that we only need to hoist debug intrinsics and the
1552     // terminator. Let the loop below handle those 2 cases.
1553   }
1554 
1555   // Count how many instructions were not hoisted so far. There's a limit on how
1556   // many instructions we skip, serving as a compilation time control as well as
1557   // preventing excessive increase of life ranges.
1558   unsigned NumSkipped = 0;
1559 
1560   // Record any skipped instuctions that may read memory, write memory or have
1561   // side effects, or have implicit control flow.
1562   unsigned SkipFlagsBB1 = 0;
1563   unsigned SkipFlagsBB2 = 0;
1564 
1565   for (;;) {
1566     // If we are hoisting the terminator instruction, don't move one (making a
1567     // broken BB), instead clone it, and remove BI.
1568     if (I1->isTerminator() || I2->isTerminator()) {
1569       // If any instructions remain in the block, we cannot hoist terminators.
1570       if (NumSkipped || !I1->isIdenticalToWhenDefined(I2))
1571         return Changed;
1572       goto HoistTerminator;
1573     }
1574 
1575     if (I1->isIdenticalToWhenDefined(I2)) {
1576       // Even if the instructions are identical, it may not be safe to hoist
1577       // them if we have skipped over instructions with side effects or their
1578       // operands weren't hoisted.
1579       if (!isSafeToHoistInstr(I1, SkipFlagsBB1) ||
1580           !isSafeToHoistInstr(I2, SkipFlagsBB2))
1581         return Changed;
1582 
1583       // If we're going to hoist a call, make sure that the two instructions
1584       // we're commoning/hoisting are both marked with musttail, or neither of
1585       // them is marked as such. Otherwise, we might end up in a situation where
1586       // we hoist from a block where the terminator is a `ret` to a block where
1587       // the terminator is a `br`, and `musttail` calls expect to be followed by
1588       // a return.
1589       auto *C1 = dyn_cast<CallInst>(I1);
1590       auto *C2 = dyn_cast<CallInst>(I2);
1591       if (C1 && C2)
1592         if (C1->isMustTailCall() != C2->isMustTailCall())
1593           return Changed;
1594 
1595       if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1596         return Changed;
1597 
1598       // If any of the two call sites has nomerge attribute, stop hoisting.
1599       if (const auto *CB1 = dyn_cast<CallBase>(I1))
1600         if (CB1->cannotMerge())
1601           return Changed;
1602       if (const auto *CB2 = dyn_cast<CallBase>(I2))
1603         if (CB2->cannotMerge())
1604           return Changed;
1605 
1606       if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1607         assert(isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1608         // The debug location is an integral part of a debug info intrinsic
1609         // and can't be separated from it or replaced.  Instead of attempting
1610         // to merge locations, simply hoist both copies of the intrinsic.
1611         BIParent->splice(BI->getIterator(), BB1, I1->getIterator());
1612         BIParent->splice(BI->getIterator(), BB2, I2->getIterator());
1613       } else {
1614         // For a normal instruction, we just move one to right before the
1615         // branch, then replace all uses of the other with the first.  Finally,
1616         // we remove the now redundant second instruction.
1617         BIParent->splice(BI->getIterator(), BB1, I1->getIterator());
1618         if (!I2->use_empty())
1619           I2->replaceAllUsesWith(I1);
1620         I1->andIRFlags(I2);
1621         unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1622                                LLVMContext::MD_range,
1623                                LLVMContext::MD_fpmath,
1624                                LLVMContext::MD_invariant_load,
1625                                LLVMContext::MD_nonnull,
1626                                LLVMContext::MD_invariant_group,
1627                                LLVMContext::MD_align,
1628                                LLVMContext::MD_dereferenceable,
1629                                LLVMContext::MD_dereferenceable_or_null,
1630                                LLVMContext::MD_mem_parallel_loop_access,
1631                                LLVMContext::MD_access_group,
1632                                LLVMContext::MD_preserve_access_index};
1633         combineMetadata(I1, I2, KnownIDs, true);
1634 
1635         // I1 and I2 are being combined into a single instruction.  Its debug
1636         // location is the merged locations of the original instructions.
1637         I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1638 
1639         I2->eraseFromParent();
1640       }
1641       Changed = true;
1642       ++NumHoistCommonInstrs;
1643     } else {
1644       if (NumSkipped >= HoistCommonSkipLimit)
1645         return Changed;
1646       // We are about to skip over a pair of non-identical instructions. Record
1647       // if any have characteristics that would prevent reordering instructions
1648       // across them.
1649       SkipFlagsBB1 |= skippedInstrFlags(I1);
1650       SkipFlagsBB2 |= skippedInstrFlags(I2);
1651       ++NumSkipped;
1652     }
1653 
1654     I1 = &*BB1_Itr++;
1655     I2 = &*BB2_Itr++;
1656     // Skip debug info if it is not identical.
1657     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1658     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1659     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1660       while (isa<DbgInfoIntrinsic>(I1))
1661         I1 = &*BB1_Itr++;
1662       while (isa<DbgInfoIntrinsic>(I2))
1663         I2 = &*BB2_Itr++;
1664     }
1665   }
1666 
1667   return Changed;
1668 
1669 HoistTerminator:
1670   // It may not be possible to hoist an invoke.
1671   // FIXME: Can we define a safety predicate for CallBr?
1672   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1673     return Changed;
1674 
1675   // TODO: callbr hoisting currently disabled pending further study.
1676   if (isa<CallBrInst>(I1))
1677     return Changed;
1678 
1679   for (BasicBlock *Succ : successors(BB1)) {
1680     for (PHINode &PN : Succ->phis()) {
1681       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1682       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1683       if (BB1V == BB2V)
1684         continue;
1685 
1686       // Check for passingValueIsAlwaysUndefined here because we would rather
1687       // eliminate undefined control flow then converting it to a select.
1688       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1689           passingValueIsAlwaysUndefined(BB2V, &PN))
1690         return Changed;
1691     }
1692   }
1693 
1694   // Okay, it is safe to hoist the terminator.
1695   Instruction *NT = I1->clone();
1696   NT->insertInto(BIParent, BI->getIterator());
1697   if (!NT->getType()->isVoidTy()) {
1698     I1->replaceAllUsesWith(NT);
1699     I2->replaceAllUsesWith(NT);
1700     NT->takeName(I1);
1701   }
1702   Changed = true;
1703   ++NumHoistCommonInstrs;
1704 
1705   // Ensure terminator gets a debug location, even an unknown one, in case
1706   // it involves inlinable calls.
1707   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1708 
1709   // PHIs created below will adopt NT's merged DebugLoc.
1710   IRBuilder<NoFolder> Builder(NT);
1711 
1712   // Hoisting one of the terminators from our successor is a great thing.
1713   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1714   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1715   // nodes, so we insert select instruction to compute the final result.
1716   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1717   for (BasicBlock *Succ : successors(BB1)) {
1718     for (PHINode &PN : Succ->phis()) {
1719       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1720       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1721       if (BB1V == BB2V)
1722         continue;
1723 
1724       // These values do not agree.  Insert a select instruction before NT
1725       // that determines the right value.
1726       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1727       if (!SI) {
1728         // Propagate fast-math-flags from phi node to its replacement select.
1729         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1730         if (isa<FPMathOperator>(PN))
1731           Builder.setFastMathFlags(PN.getFastMathFlags());
1732 
1733         SI = cast<SelectInst>(
1734             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1735                                  BB1V->getName() + "." + BB2V->getName(), BI));
1736       }
1737 
1738       // Make the PHI node use the select for all incoming values for BB1/BB2
1739       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1740         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1741           PN.setIncomingValue(i, SI);
1742     }
1743   }
1744 
1745   SmallVector<DominatorTree::UpdateType, 4> Updates;
1746 
1747   // Update any PHI nodes in our new successors.
1748   for (BasicBlock *Succ : successors(BB1)) {
1749     AddPredecessorToBlock(Succ, BIParent, BB1);
1750     if (DTU)
1751       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1752   }
1753 
1754   if (DTU)
1755     for (BasicBlock *Succ : successors(BI))
1756       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1757 
1758   EraseTerminatorAndDCECond(BI);
1759   if (DTU)
1760     DTU->applyUpdates(Updates);
1761   return Changed;
1762 }
1763 
1764 // Check lifetime markers.
isLifeTimeMarker(const Instruction * I)1765 static bool isLifeTimeMarker(const Instruction *I) {
1766   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1767     switch (II->getIntrinsicID()) {
1768     default:
1769       break;
1770     case Intrinsic::lifetime_start:
1771     case Intrinsic::lifetime_end:
1772       return true;
1773     }
1774   }
1775   return false;
1776 }
1777 
1778 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1779 // into variables.
replacingOperandWithVariableIsCheap(const Instruction * I,int OpIdx)1780 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1781                                                 int OpIdx) {
1782   return !isa<IntrinsicInst>(I);
1783 }
1784 
1785 // All instructions in Insts belong to different blocks that all unconditionally
1786 // branch to a common successor. Analyze each instruction and return true if it
1787 // would be possible to sink them into their successor, creating one common
1788 // instruction instead. For every value that would be required to be provided by
1789 // PHI node (because an operand varies in each input block), add to PHIOperands.
canSinkInstructions(ArrayRef<Instruction * > Insts,DenseMap<Instruction *,SmallVector<Value *,4>> & PHIOperands)1790 static bool canSinkInstructions(
1791     ArrayRef<Instruction *> Insts,
1792     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1793   // Prune out obviously bad instructions to move. Each instruction must have
1794   // exactly zero or one use, and we check later that use is by a single, common
1795   // PHI instruction in the successor.
1796   bool HasUse = !Insts.front()->user_empty();
1797   for (auto *I : Insts) {
1798     // These instructions may change or break semantics if moved.
1799     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1800         I->getType()->isTokenTy())
1801       return false;
1802 
1803     // Do not try to sink an instruction in an infinite loop - it can cause
1804     // this algorithm to infinite loop.
1805     if (I->getParent()->getSingleSuccessor() == I->getParent())
1806       return false;
1807 
1808     // Conservatively return false if I is an inline-asm instruction. Sinking
1809     // and merging inline-asm instructions can potentially create arguments
1810     // that cannot satisfy the inline-asm constraints.
1811     // If the instruction has nomerge attribute, return false.
1812     if (const auto *C = dyn_cast<CallBase>(I))
1813       if (C->isInlineAsm() || C->cannotMerge())
1814         return false;
1815 
1816     // Each instruction must have zero or one use.
1817     if (HasUse && !I->hasOneUse())
1818       return false;
1819     if (!HasUse && !I->user_empty())
1820       return false;
1821   }
1822 
1823   const Instruction *I0 = Insts.front();
1824   for (auto *I : Insts)
1825     if (!I->isSameOperationAs(I0))
1826       return false;
1827 
1828   // All instructions in Insts are known to be the same opcode. If they have a
1829   // use, check that the only user is a PHI or in the same block as the
1830   // instruction, because if a user is in the same block as an instruction we're
1831   // contemplating sinking, it must already be determined to be sinkable.
1832   if (HasUse) {
1833     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1834     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1835     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1836           auto *U = cast<Instruction>(*I->user_begin());
1837           return (PNUse &&
1838                   PNUse->getParent() == Succ &&
1839                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1840                  U->getParent() == I->getParent();
1841         }))
1842       return false;
1843   }
1844 
1845   // Because SROA can't handle speculating stores of selects, try not to sink
1846   // loads, stores or lifetime markers of allocas when we'd have to create a
1847   // PHI for the address operand. Also, because it is likely that loads or
1848   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1849   // them.
1850   // This can cause code churn which can have unintended consequences down
1851   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1852   // FIXME: This is a workaround for a deficiency in SROA - see
1853   // https://llvm.org/bugs/show_bug.cgi?id=30188
1854   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1855         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1856       }))
1857     return false;
1858   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1859         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1860       }))
1861     return false;
1862   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1863         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1864       }))
1865     return false;
1866 
1867   // For calls to be sinkable, they must all be indirect, or have same callee.
1868   // I.e. if we have two direct calls to different callees, we don't want to
1869   // turn that into an indirect call. Likewise, if we have an indirect call,
1870   // and a direct call, we don't actually want to have a single indirect call.
1871   if (isa<CallBase>(I0)) {
1872     auto IsIndirectCall = [](const Instruction *I) {
1873       return cast<CallBase>(I)->isIndirectCall();
1874     };
1875     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1876     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1877     if (HaveIndirectCalls) {
1878       if (!AllCallsAreIndirect)
1879         return false;
1880     } else {
1881       // All callees must be identical.
1882       Value *Callee = nullptr;
1883       for (const Instruction *I : Insts) {
1884         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1885         if (!Callee)
1886           Callee = CurrCallee;
1887         else if (Callee != CurrCallee)
1888           return false;
1889       }
1890     }
1891   }
1892 
1893   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1894     Value *Op = I0->getOperand(OI);
1895     if (Op->getType()->isTokenTy())
1896       // Don't touch any operand of token type.
1897       return false;
1898 
1899     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1900       assert(I->getNumOperands() == I0->getNumOperands());
1901       return I->getOperand(OI) == I0->getOperand(OI);
1902     };
1903     if (!all_of(Insts, SameAsI0)) {
1904       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1905           !canReplaceOperandWithVariable(I0, OI))
1906         // We can't create a PHI from this GEP.
1907         return false;
1908       for (auto *I : Insts)
1909         PHIOperands[I].push_back(I->getOperand(OI));
1910     }
1911   }
1912   return true;
1913 }
1914 
1915 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1916 // instruction of every block in Blocks to their common successor, commoning
1917 // into one instruction.
sinkLastInstruction(ArrayRef<BasicBlock * > Blocks)1918 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1919   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1920 
1921   // canSinkInstructions returning true guarantees that every block has at
1922   // least one non-terminator instruction.
1923   SmallVector<Instruction*,4> Insts;
1924   for (auto *BB : Blocks) {
1925     Instruction *I = BB->getTerminator();
1926     do {
1927       I = I->getPrevNode();
1928     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1929     if (!isa<DbgInfoIntrinsic>(I))
1930       Insts.push_back(I);
1931   }
1932 
1933   // The only checking we need to do now is that all users of all instructions
1934   // are the same PHI node. canSinkInstructions should have checked this but
1935   // it is slightly over-aggressive - it gets confused by commutative
1936   // instructions so double-check it here.
1937   Instruction *I0 = Insts.front();
1938   if (!I0->user_empty()) {
1939     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1940     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1941           auto *U = cast<Instruction>(*I->user_begin());
1942           return U == PNUse;
1943         }))
1944       return false;
1945   }
1946 
1947   // We don't need to do any more checking here; canSinkInstructions should
1948   // have done it all for us.
1949   SmallVector<Value*, 4> NewOperands;
1950   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1951     // This check is different to that in canSinkInstructions. There, we
1952     // cared about the global view once simplifycfg (and instcombine) have
1953     // completed - it takes into account PHIs that become trivially
1954     // simplifiable.  However here we need a more local view; if an operand
1955     // differs we create a PHI and rely on instcombine to clean up the very
1956     // small mess we may make.
1957     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1958       return I->getOperand(O) != I0->getOperand(O);
1959     });
1960     if (!NeedPHI) {
1961       NewOperands.push_back(I0->getOperand(O));
1962       continue;
1963     }
1964 
1965     // Create a new PHI in the successor block and populate it.
1966     auto *Op = I0->getOperand(O);
1967     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1968     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1969                                Op->getName() + ".sink", &BBEnd->front());
1970     for (auto *I : Insts)
1971       PN->addIncoming(I->getOperand(O), I->getParent());
1972     NewOperands.push_back(PN);
1973   }
1974 
1975   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1976   // and move it to the start of the successor block.
1977   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1978     I0->getOperandUse(O).set(NewOperands[O]);
1979   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1980 
1981   // Update metadata and IR flags, and merge debug locations.
1982   for (auto *I : Insts)
1983     if (I != I0) {
1984       // The debug location for the "common" instruction is the merged locations
1985       // of all the commoned instructions.  We start with the original location
1986       // of the "common" instruction and iteratively merge each location in the
1987       // loop below.
1988       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1989       // However, as N-way merge for CallInst is rare, so we use simplified API
1990       // instead of using complex API for N-way merge.
1991       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1992       combineMetadataForCSE(I0, I, true);
1993       I0->andIRFlags(I);
1994     }
1995 
1996   if (!I0->user_empty()) {
1997     // canSinkLastInstruction checked that all instructions were used by
1998     // one and only one PHI node. Find that now, RAUW it to our common
1999     // instruction and nuke it.
2000     auto *PN = cast<PHINode>(*I0->user_begin());
2001     PN->replaceAllUsesWith(I0);
2002     PN->eraseFromParent();
2003   }
2004 
2005   // Finally nuke all instructions apart from the common instruction.
2006   for (auto *I : Insts) {
2007     if (I == I0)
2008       continue;
2009     // The remaining uses are debug users, replace those with the common inst.
2010     // In most (all?) cases this just introduces a use-before-def.
2011     assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2012     I->replaceAllUsesWith(I0);
2013     I->eraseFromParent();
2014   }
2015 
2016   return true;
2017 }
2018 
2019 namespace {
2020 
2021   // LockstepReverseIterator - Iterates through instructions
2022   // in a set of blocks in reverse order from the first non-terminator.
2023   // For example (assume all blocks have size n):
2024   //   LockstepReverseIterator I([B1, B2, B3]);
2025   //   *I-- = [B1[n], B2[n], B3[n]];
2026   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2027   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2028   //   ...
2029   class LockstepReverseIterator {
2030     ArrayRef<BasicBlock*> Blocks;
2031     SmallVector<Instruction*,4> Insts;
2032     bool Fail;
2033 
2034   public:
LockstepReverseIterator(ArrayRef<BasicBlock * > Blocks)2035     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2036       reset();
2037     }
2038 
reset()2039     void reset() {
2040       Fail = false;
2041       Insts.clear();
2042       for (auto *BB : Blocks) {
2043         Instruction *Inst = BB->getTerminator();
2044         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2045           Inst = Inst->getPrevNode();
2046         if (!Inst) {
2047           // Block wasn't big enough.
2048           Fail = true;
2049           return;
2050         }
2051         Insts.push_back(Inst);
2052       }
2053     }
2054 
isValid() const2055     bool isValid() const {
2056       return !Fail;
2057     }
2058 
operator --()2059     void operator--() {
2060       if (Fail)
2061         return;
2062       for (auto *&Inst : Insts) {
2063         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2064           Inst = Inst->getPrevNode();
2065         // Already at beginning of block.
2066         if (!Inst) {
2067           Fail = true;
2068           return;
2069         }
2070       }
2071     }
2072 
operator ++()2073     void operator++() {
2074       if (Fail)
2075         return;
2076       for (auto *&Inst : Insts) {
2077         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2078           Inst = Inst->getNextNode();
2079         // Already at end of block.
2080         if (!Inst) {
2081           Fail = true;
2082           return;
2083         }
2084       }
2085     }
2086 
operator *() const2087     ArrayRef<Instruction*> operator * () const {
2088       return Insts;
2089     }
2090   };
2091 
2092 } // end anonymous namespace
2093 
2094 /// Check whether BB's predecessors end with unconditional branches. If it is
2095 /// true, sink any common code from the predecessors to BB.
SinkCommonCodeFromPredecessors(BasicBlock * BB,DomTreeUpdater * DTU)2096 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2097                                            DomTreeUpdater *DTU) {
2098   // We support two situations:
2099   //   (1) all incoming arcs are unconditional
2100   //   (2) there are non-unconditional incoming arcs
2101   //
2102   // (2) is very common in switch defaults and
2103   // else-if patterns;
2104   //
2105   //   if (a) f(1);
2106   //   else if (b) f(2);
2107   //
2108   // produces:
2109   //
2110   //       [if]
2111   //      /    \
2112   //    [f(1)] [if]
2113   //      |     | \
2114   //      |     |  |
2115   //      |  [f(2)]|
2116   //       \    | /
2117   //        [ end ]
2118   //
2119   // [end] has two unconditional predecessor arcs and one conditional. The
2120   // conditional refers to the implicit empty 'else' arc. This conditional
2121   // arc can also be caused by an empty default block in a switch.
2122   //
2123   // In this case, we attempt to sink code from all *unconditional* arcs.
2124   // If we can sink instructions from these arcs (determined during the scan
2125   // phase below) we insert a common successor for all unconditional arcs and
2126   // connect that to [end], to enable sinking:
2127   //
2128   //       [if]
2129   //      /    \
2130   //    [x(1)] [if]
2131   //      |     | \
2132   //      |     |  \
2133   //      |  [x(2)] |
2134   //       \   /    |
2135   //   [sink.split] |
2136   //         \     /
2137   //         [ end ]
2138   //
2139   SmallVector<BasicBlock*,4> UnconditionalPreds;
2140   bool HaveNonUnconditionalPredecessors = false;
2141   for (auto *PredBB : predecessors(BB)) {
2142     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2143     if (PredBr && PredBr->isUnconditional())
2144       UnconditionalPreds.push_back(PredBB);
2145     else
2146       HaveNonUnconditionalPredecessors = true;
2147   }
2148   if (UnconditionalPreds.size() < 2)
2149     return false;
2150 
2151   // We take a two-step approach to tail sinking. First we scan from the end of
2152   // each block upwards in lockstep. If the n'th instruction from the end of each
2153   // block can be sunk, those instructions are added to ValuesToSink and we
2154   // carry on. If we can sink an instruction but need to PHI-merge some operands
2155   // (because they're not identical in each instruction) we add these to
2156   // PHIOperands.
2157   int ScanIdx = 0;
2158   SmallPtrSet<Value*,4> InstructionsToSink;
2159   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2160   LockstepReverseIterator LRI(UnconditionalPreds);
2161   while (LRI.isValid() &&
2162          canSinkInstructions(*LRI, PHIOperands)) {
2163     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2164                       << "\n");
2165     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2166     ++ScanIdx;
2167     --LRI;
2168   }
2169 
2170   // If no instructions can be sunk, early-return.
2171   if (ScanIdx == 0)
2172     return false;
2173 
2174   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2175 
2176   if (!followedByDeoptOrUnreachable) {
2177     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2178     // actually sink before encountering instruction that is unprofitable to
2179     // sink?
2180     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2181       unsigned NumPHIdValues = 0;
2182       for (auto *I : *LRI)
2183         for (auto *V : PHIOperands[I]) {
2184           if (!InstructionsToSink.contains(V))
2185             ++NumPHIdValues;
2186           // FIXME: this check is overly optimistic. We may end up not sinking
2187           // said instruction, due to the very same profitability check.
2188           // See @creating_too_many_phis in sink-common-code.ll.
2189         }
2190       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2191       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2192       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2193         NumPHIInsts++;
2194 
2195       return NumPHIInsts <= 1;
2196     };
2197 
2198     // We've determined that we are going to sink last ScanIdx instructions,
2199     // and recorded them in InstructionsToSink. Now, some instructions may be
2200     // unprofitable to sink. But that determination depends on the instructions
2201     // that we are going to sink.
2202 
2203     // First, forward scan: find the first instruction unprofitable to sink,
2204     // recording all the ones that are profitable to sink.
2205     // FIXME: would it be better, after we detect that not all are profitable.
2206     // to either record the profitable ones, or erase the unprofitable ones?
2207     // Maybe we need to choose (at runtime) the one that will touch least
2208     // instrs?
2209     LRI.reset();
2210     int Idx = 0;
2211     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2212     while (Idx < ScanIdx) {
2213       if (!ProfitableToSinkInstruction(LRI)) {
2214         // Too many PHIs would be created.
2215         LLVM_DEBUG(
2216             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2217         break;
2218       }
2219       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2220       --LRI;
2221       ++Idx;
2222     }
2223 
2224     // If no instructions can be sunk, early-return.
2225     if (Idx == 0)
2226       return false;
2227 
2228     // Did we determine that (only) some instructions are unprofitable to sink?
2229     if (Idx < ScanIdx) {
2230       // Okay, some instructions are unprofitable.
2231       ScanIdx = Idx;
2232       InstructionsToSink = InstructionsProfitableToSink;
2233 
2234       // But, that may make other instructions unprofitable, too.
2235       // So, do a backward scan, do any earlier instructions become
2236       // unprofitable?
2237       assert(
2238           !ProfitableToSinkInstruction(LRI) &&
2239           "We already know that the last instruction is unprofitable to sink");
2240       ++LRI;
2241       --Idx;
2242       while (Idx >= 0) {
2243         // If we detect that an instruction becomes unprofitable to sink,
2244         // all earlier instructions won't be sunk either,
2245         // so preemptively keep InstructionsProfitableToSink in sync.
2246         // FIXME: is this the most performant approach?
2247         for (auto *I : *LRI)
2248           InstructionsProfitableToSink.erase(I);
2249         if (!ProfitableToSinkInstruction(LRI)) {
2250           // Everything starting with this instruction won't be sunk.
2251           ScanIdx = Idx;
2252           InstructionsToSink = InstructionsProfitableToSink;
2253         }
2254         ++LRI;
2255         --Idx;
2256       }
2257     }
2258 
2259     // If no instructions can be sunk, early-return.
2260     if (ScanIdx == 0)
2261       return false;
2262   }
2263 
2264   bool Changed = false;
2265 
2266   if (HaveNonUnconditionalPredecessors) {
2267     if (!followedByDeoptOrUnreachable) {
2268       // It is always legal to sink common instructions from unconditional
2269       // predecessors. However, if not all predecessors are unconditional,
2270       // this transformation might be pessimizing. So as a rule of thumb,
2271       // don't do it unless we'd sink at least one non-speculatable instruction.
2272       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2273       LRI.reset();
2274       int Idx = 0;
2275       bool Profitable = false;
2276       while (Idx < ScanIdx) {
2277         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2278           Profitable = true;
2279           break;
2280         }
2281         --LRI;
2282         ++Idx;
2283       }
2284       if (!Profitable)
2285         return false;
2286     }
2287 
2288     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2289     // We have a conditional edge and we're going to sink some instructions.
2290     // Insert a new block postdominating all blocks we're going to sink from.
2291     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2292       // Edges couldn't be split.
2293       return false;
2294     Changed = true;
2295   }
2296 
2297   // Now that we've analyzed all potential sinking candidates, perform the
2298   // actual sink. We iteratively sink the last non-terminator of the source
2299   // blocks into their common successor unless doing so would require too
2300   // many PHI instructions to be generated (currently only one PHI is allowed
2301   // per sunk instruction).
2302   //
2303   // We can use InstructionsToSink to discount values needing PHI-merging that will
2304   // actually be sunk in a later iteration. This allows us to be more
2305   // aggressive in what we sink. This does allow a false positive where we
2306   // sink presuming a later value will also be sunk, but stop half way through
2307   // and never actually sink it which means we produce more PHIs than intended.
2308   // This is unlikely in practice though.
2309   int SinkIdx = 0;
2310   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2311     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2312                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2313                       << "\n");
2314 
2315     // Because we've sunk every instruction in turn, the current instruction to
2316     // sink is always at index 0.
2317     LRI.reset();
2318 
2319     if (!sinkLastInstruction(UnconditionalPreds)) {
2320       LLVM_DEBUG(
2321           dbgs()
2322           << "SINK: stopping here, failed to actually sink instruction!\n");
2323       break;
2324     }
2325 
2326     NumSinkCommonInstrs++;
2327     Changed = true;
2328   }
2329   if (SinkIdx != 0)
2330     ++NumSinkCommonCode;
2331   return Changed;
2332 }
2333 
2334 namespace {
2335 
2336 struct CompatibleSets {
2337   using SetTy = SmallVector<InvokeInst *, 2>;
2338 
2339   SmallVector<SetTy, 1> Sets;
2340 
2341   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2342 
2343   SetTy &getCompatibleSet(InvokeInst *II);
2344 
2345   void insert(InvokeInst *II);
2346 };
2347 
getCompatibleSet(InvokeInst * II)2348 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2349   // Perform a linear scan over all the existing sets, see if the new `invoke`
2350   // is compatible with any particular set. Since we know that all the `invokes`
2351   // within a set are compatible, only check the first `invoke` in each set.
2352   // WARNING: at worst, this has quadratic complexity.
2353   for (CompatibleSets::SetTy &Set : Sets) {
2354     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2355       return Set;
2356   }
2357 
2358   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2359   return Sets.emplace_back();
2360 }
2361 
insert(InvokeInst * II)2362 void CompatibleSets::insert(InvokeInst *II) {
2363   getCompatibleSet(II).emplace_back(II);
2364 }
2365 
shouldBelongToSameSet(ArrayRef<InvokeInst * > Invokes)2366 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2367   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2368 
2369   // Can we theoretically merge these `invoke`s?
2370   auto IsIllegalToMerge = [](InvokeInst *II) {
2371     return II->cannotMerge() || II->isInlineAsm();
2372   };
2373   if (any_of(Invokes, IsIllegalToMerge))
2374     return false;
2375 
2376   // Either both `invoke`s must be   direct,
2377   // or     both `invoke`s must be indirect.
2378   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2379   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2380   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2381   if (HaveIndirectCalls) {
2382     if (!AllCallsAreIndirect)
2383       return false;
2384   } else {
2385     // All callees must be identical.
2386     Value *Callee = nullptr;
2387     for (InvokeInst *II : Invokes) {
2388       Value *CurrCallee = II->getCalledOperand();
2389       assert(CurrCallee && "There is always a called operand.");
2390       if (!Callee)
2391         Callee = CurrCallee;
2392       else if (Callee != CurrCallee)
2393         return false;
2394     }
2395   }
2396 
2397   // Either both `invoke`s must not have a normal destination,
2398   // or     both `invoke`s must     have a normal destination,
2399   auto HasNormalDest = [](InvokeInst *II) {
2400     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2401   };
2402   if (any_of(Invokes, HasNormalDest)) {
2403     // Do not merge `invoke` that does not have a normal destination with one
2404     // that does have a normal destination, even though doing so would be legal.
2405     if (!all_of(Invokes, HasNormalDest))
2406       return false;
2407 
2408     // All normal destinations must be identical.
2409     BasicBlock *NormalBB = nullptr;
2410     for (InvokeInst *II : Invokes) {
2411       BasicBlock *CurrNormalBB = II->getNormalDest();
2412       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2413       if (!NormalBB)
2414         NormalBB = CurrNormalBB;
2415       else if (NormalBB != CurrNormalBB)
2416         return false;
2417     }
2418 
2419     // In the normal destination, the incoming values for these two `invoke`s
2420     // must be compatible.
2421     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2422     if (!IncomingValuesAreCompatible(
2423             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2424             &EquivalenceSet))
2425       return false;
2426   }
2427 
2428 #ifndef NDEBUG
2429   // All unwind destinations must be identical.
2430   // We know that because we have started from said unwind destination.
2431   BasicBlock *UnwindBB = nullptr;
2432   for (InvokeInst *II : Invokes) {
2433     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2434     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2435     if (!UnwindBB)
2436       UnwindBB = CurrUnwindBB;
2437     else
2438       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2439   }
2440 #endif
2441 
2442   // In the unwind destination, the incoming values for these two `invoke`s
2443   // must be compatible.
2444   if (!IncomingValuesAreCompatible(
2445           Invokes.front()->getUnwindDest(),
2446           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2447     return false;
2448 
2449   // Ignoring arguments, these `invoke`s must be identical,
2450   // including operand bundles.
2451   const InvokeInst *II0 = Invokes.front();
2452   for (auto *II : Invokes.drop_front())
2453     if (!II->isSameOperationAs(II0))
2454       return false;
2455 
2456   // Can we theoretically form the data operands for the merged `invoke`?
2457   auto IsIllegalToMergeArguments = [](auto Ops) {
2458     Type *Ty = std::get<0>(Ops)->getType();
2459     assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
2460     return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
2461   };
2462   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2463   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2464              IsIllegalToMergeArguments))
2465     return false;
2466 
2467   return true;
2468 }
2469 
2470 } // namespace
2471 
2472 // Merge all invokes in the provided set, all of which are compatible
2473 // as per the `CompatibleSets::shouldBelongToSameSet()`.
MergeCompatibleInvokesImpl(ArrayRef<InvokeInst * > Invokes,DomTreeUpdater * DTU)2474 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2475                                        DomTreeUpdater *DTU) {
2476   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2477 
2478   SmallVector<DominatorTree::UpdateType, 8> Updates;
2479   if (DTU)
2480     Updates.reserve(2 + 3 * Invokes.size());
2481 
2482   bool HasNormalDest =
2483       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2484 
2485   // Clone one of the invokes into a new basic block.
2486   // Since they are all compatible, it doesn't matter which invoke is cloned.
2487   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2488     InvokeInst *II0 = Invokes.front();
2489     BasicBlock *II0BB = II0->getParent();
2490     BasicBlock *InsertBeforeBlock =
2491         II0->getParent()->getIterator()->getNextNode();
2492     Function *Func = II0BB->getParent();
2493     LLVMContext &Ctx = II0->getContext();
2494 
2495     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2496         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2497 
2498     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2499     // NOTE: all invokes have the same attributes, so no handling needed.
2500     MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2501 
2502     if (!HasNormalDest) {
2503       // This set does not have a normal destination,
2504       // so just form a new block with unreachable terminator.
2505       BasicBlock *MergedNormalDest = BasicBlock::Create(
2506           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2507       new UnreachableInst(Ctx, MergedNormalDest);
2508       MergedInvoke->setNormalDest(MergedNormalDest);
2509     }
2510 
2511     // The unwind destination, however, remainds identical for all invokes here.
2512 
2513     return MergedInvoke;
2514   }();
2515 
2516   if (DTU) {
2517     // Predecessor blocks that contained these invokes will now branch to
2518     // the new block that contains the merged invoke, ...
2519     for (InvokeInst *II : Invokes)
2520       Updates.push_back(
2521           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2522 
2523     // ... which has the new `unreachable` block as normal destination,
2524     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2525     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2526       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2527                          SuccBBOfMergedInvoke});
2528 
2529     // Since predecessor blocks now unconditionally branch to a new block,
2530     // they no longer branch to their original successors.
2531     for (InvokeInst *II : Invokes)
2532       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2533         Updates.push_back(
2534             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2535   }
2536 
2537   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2538 
2539   // Form the merged operands for the merged invoke.
2540   for (Use &U : MergedInvoke->operands()) {
2541     // Only PHI together the indirect callees and data operands.
2542     if (MergedInvoke->isCallee(&U)) {
2543       if (!IsIndirectCall)
2544         continue;
2545     } else if (!MergedInvoke->isDataOperand(&U))
2546       continue;
2547 
2548     // Don't create trivial PHI's with all-identical incoming values.
2549     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2550       return II->getOperand(U.getOperandNo()) != U.get();
2551     });
2552     if (!NeedPHI)
2553       continue;
2554 
2555     // Form a PHI out of all the data ops under this index.
2556     PHINode *PN = PHINode::Create(
2557         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2558     for (InvokeInst *II : Invokes)
2559       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2560 
2561     U.set(PN);
2562   }
2563 
2564   // We've ensured that each PHI node has compatible (identical) incoming values
2565   // when coming from each of the `invoke`s in the current merge set,
2566   // so update the PHI nodes accordingly.
2567   for (BasicBlock *Succ : successors(MergedInvoke))
2568     AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2569                           /*ExistPred=*/Invokes.front()->getParent());
2570 
2571   // And finally, replace the original `invoke`s with an unconditional branch
2572   // to the block with the merged `invoke`. Also, give that merged `invoke`
2573   // the merged debugloc of all the original `invoke`s.
2574   const DILocation *MergedDebugLoc = nullptr;
2575   for (InvokeInst *II : Invokes) {
2576     // Compute the debug location common to all the original `invoke`s.
2577     if (!MergedDebugLoc)
2578       MergedDebugLoc = II->getDebugLoc();
2579     else
2580       MergedDebugLoc =
2581           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2582 
2583     // And replace the old `invoke` with an unconditionally branch
2584     // to the block with the merged `invoke`.
2585     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2586       OrigSuccBB->removePredecessor(II->getParent());
2587     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2588     II->replaceAllUsesWith(MergedInvoke);
2589     II->eraseFromParent();
2590     ++NumInvokesMerged;
2591   }
2592   MergedInvoke->setDebugLoc(MergedDebugLoc);
2593   ++NumInvokeSetsFormed;
2594 
2595   if (DTU)
2596     DTU->applyUpdates(Updates);
2597 }
2598 
2599 /// If this block is a `landingpad` exception handling block, categorize all
2600 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2601 /// being "mergeable" together, and then merge invokes in each set together.
2602 ///
2603 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2604 ///          [...]        [...]
2605 ///            |            |
2606 ///        [invoke0]    [invoke1]
2607 ///           / \          / \
2608 ///     [cont0] [landingpad] [cont1]
2609 /// to:
2610 ///      [...] [...]
2611 ///          \ /
2612 ///       [invoke]
2613 ///          / \
2614 ///     [cont] [landingpad]
2615 ///
2616 /// But of course we can only do that if the invokes share the `landingpad`,
2617 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2618 /// and the invoked functions are "compatible".
MergeCompatibleInvokes(BasicBlock * BB,DomTreeUpdater * DTU)2619 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2620   if (!EnableMergeCompatibleInvokes)
2621     return false;
2622 
2623   bool Changed = false;
2624 
2625   // FIXME: generalize to all exception handling blocks?
2626   if (!BB->isLandingPad())
2627     return Changed;
2628 
2629   CompatibleSets Grouper;
2630 
2631   // Record all the predecessors of this `landingpad`. As per verifier,
2632   // the only allowed predecessor is the unwind edge of an `invoke`.
2633   // We want to group "compatible" `invokes` into the same set to be merged.
2634   for (BasicBlock *PredBB : predecessors(BB))
2635     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2636 
2637   // And now, merge `invoke`s that were grouped togeter.
2638   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2639     if (Invokes.size() < 2)
2640       continue;
2641     Changed = true;
2642     MergeCompatibleInvokesImpl(Invokes, DTU);
2643   }
2644 
2645   return Changed;
2646 }
2647 
2648 namespace {
2649 /// Track ephemeral values, which should be ignored for cost-modelling
2650 /// purposes. Requires walking instructions in reverse order.
2651 class EphemeralValueTracker {
2652   SmallPtrSet<const Instruction *, 32> EphValues;
2653 
isEphemeral(const Instruction * I)2654   bool isEphemeral(const Instruction *I) {
2655     if (isa<AssumeInst>(I))
2656       return true;
2657     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2658            all_of(I->users(), [&](const User *U) {
2659              return EphValues.count(cast<Instruction>(U));
2660            });
2661   }
2662 
2663 public:
track(const Instruction * I)2664   bool track(const Instruction *I) {
2665     if (isEphemeral(I)) {
2666       EphValues.insert(I);
2667       return true;
2668     }
2669     return false;
2670   }
2671 
contains(const Instruction * I) const2672   bool contains(const Instruction *I) const { return EphValues.contains(I); }
2673 };
2674 } // namespace
2675 
2676 /// Determine if we can hoist sink a sole store instruction out of a
2677 /// conditional block.
2678 ///
2679 /// We are looking for code like the following:
2680 ///   BrBB:
2681 ///     store i32 %add, i32* %arrayidx2
2682 ///     ... // No other stores or function calls (we could be calling a memory
2683 ///     ... // function).
2684 ///     %cmp = icmp ult %x, %y
2685 ///     br i1 %cmp, label %EndBB, label %ThenBB
2686 ///   ThenBB:
2687 ///     store i32 %add5, i32* %arrayidx2
2688 ///     br label EndBB
2689 ///   EndBB:
2690 ///     ...
2691 ///   We are going to transform this into:
2692 ///   BrBB:
2693 ///     store i32 %add, i32* %arrayidx2
2694 ///     ... //
2695 ///     %cmp = icmp ult %x, %y
2696 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2697 ///     store i32 %add.add5, i32* %arrayidx2
2698 ///     ...
2699 ///
2700 /// \return The pointer to the value of the previous store if the store can be
2701 ///         hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)2702 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2703                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2704   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2705   if (!StoreToHoist)
2706     return nullptr;
2707 
2708   // Volatile or atomic.
2709   if (!StoreToHoist->isSimple())
2710     return nullptr;
2711 
2712   Value *StorePtr = StoreToHoist->getPointerOperand();
2713   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2714 
2715   // Look for a store to the same pointer in BrBB.
2716   unsigned MaxNumInstToLookAt = 9;
2717   // Skip pseudo probe intrinsic calls which are not really killing any memory
2718   // accesses.
2719   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2720     if (!MaxNumInstToLookAt)
2721       break;
2722     --MaxNumInstToLookAt;
2723 
2724     // Could be calling an instruction that affects memory like free().
2725     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2726       return nullptr;
2727 
2728     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2729       // Found the previous store to same location and type. Make sure it is
2730       // simple, to avoid introducing a spurious non-atomic write after an
2731       // atomic write.
2732       if (SI->getPointerOperand() == StorePtr &&
2733           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2734         // Found the previous store, return its value operand.
2735         return SI->getValueOperand();
2736       return nullptr; // Unknown store.
2737     }
2738 
2739     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2740       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2741           LI->isSimple()) {
2742         // Local objects (created by an `alloca` instruction) are always
2743         // writable, so once we are past a read from a location it is valid to
2744         // also write to that same location.
2745         // If the address of the local object never escapes the function, that
2746         // means it's never concurrently read or written, hence moving the store
2747         // from under the condition will not introduce a data race.
2748         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2749         if (AI && !PointerMayBeCaptured(AI, false, true))
2750           // Found a previous load, return it.
2751           return LI;
2752       }
2753       // The load didn't work out, but we may still find a store.
2754     }
2755   }
2756 
2757   return nullptr;
2758 }
2759 
2760 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2761 /// converted to selects.
validateAndCostRequiredSelects(BasicBlock * BB,BasicBlock * ThenBB,BasicBlock * EndBB,unsigned & SpeculatedInstructions,InstructionCost & Cost,const TargetTransformInfo & TTI)2762 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2763                                            BasicBlock *EndBB,
2764                                            unsigned &SpeculatedInstructions,
2765                                            InstructionCost &Cost,
2766                                            const TargetTransformInfo &TTI) {
2767   TargetTransformInfo::TargetCostKind CostKind =
2768     BB->getParent()->hasMinSize()
2769     ? TargetTransformInfo::TCK_CodeSize
2770     : TargetTransformInfo::TCK_SizeAndLatency;
2771 
2772   bool HaveRewritablePHIs = false;
2773   for (PHINode &PN : EndBB->phis()) {
2774     Value *OrigV = PN.getIncomingValueForBlock(BB);
2775     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2776 
2777     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2778     // Skip PHIs which are trivial.
2779     if (ThenV == OrigV)
2780       continue;
2781 
2782     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2783                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2784 
2785     // Don't convert to selects if we could remove undefined behavior instead.
2786     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2787         passingValueIsAlwaysUndefined(ThenV, &PN))
2788       return false;
2789 
2790     HaveRewritablePHIs = true;
2791     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2792     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2793     if (!OrigCE && !ThenCE)
2794       continue; // Known cheap (FIXME: Maybe not true for aggregates).
2795 
2796     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2797     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2798     InstructionCost MaxCost =
2799         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2800     if (OrigCost + ThenCost > MaxCost)
2801       return false;
2802 
2803     // Account for the cost of an unfolded ConstantExpr which could end up
2804     // getting expanded into Instructions.
2805     // FIXME: This doesn't account for how many operations are combined in the
2806     // constant expression.
2807     ++SpeculatedInstructions;
2808     if (SpeculatedInstructions > 1)
2809       return false;
2810   }
2811 
2812   return HaveRewritablePHIs;
2813 }
2814 
2815 /// Speculate a conditional basic block flattening the CFG.
2816 ///
2817 /// Note that this is a very risky transform currently. Speculating
2818 /// instructions like this is most often not desirable. Instead, there is an MI
2819 /// pass which can do it with full awareness of the resource constraints.
2820 /// However, some cases are "obvious" and we should do directly. An example of
2821 /// this is speculating a single, reasonably cheap instruction.
2822 ///
2823 /// There is only one distinct advantage to flattening the CFG at the IR level:
2824 /// it makes very common but simplistic optimizations such as are common in
2825 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2826 /// modeling their effects with easier to reason about SSA value graphs.
2827 ///
2828 ///
2829 /// An illustration of this transform is turning this IR:
2830 /// \code
2831 ///   BB:
2832 ///     %cmp = icmp ult %x, %y
2833 ///     br i1 %cmp, label %EndBB, label %ThenBB
2834 ///   ThenBB:
2835 ///     %sub = sub %x, %y
2836 ///     br label BB2
2837 ///   EndBB:
2838 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2839 ///     ...
2840 /// \endcode
2841 ///
2842 /// Into this IR:
2843 /// \code
2844 ///   BB:
2845 ///     %cmp = icmp ult %x, %y
2846 ///     %sub = sub %x, %y
2847 ///     %cond = select i1 %cmp, 0, %sub
2848 ///     ...
2849 /// \endcode
2850 ///
2851 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const TargetTransformInfo & TTI)2852 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2853                                             const TargetTransformInfo &TTI) {
2854   // Be conservative for now. FP select instruction can often be expensive.
2855   Value *BrCond = BI->getCondition();
2856   if (isa<FCmpInst>(BrCond))
2857     return false;
2858 
2859   BasicBlock *BB = BI->getParent();
2860   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2861   InstructionCost Budget =
2862       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2863 
2864   // If ThenBB is actually on the false edge of the conditional branch, remember
2865   // to swap the select operands later.
2866   bool Invert = false;
2867   if (ThenBB != BI->getSuccessor(0)) {
2868     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2869     Invert = true;
2870   }
2871   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2872 
2873   // If the branch is non-unpredictable, and is predicted to *not* branch to
2874   // the `then` block, then avoid speculating it.
2875   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2876     uint64_t TWeight, FWeight;
2877     if (extractBranchWeights(*BI, TWeight, FWeight) &&
2878         (TWeight + FWeight) != 0) {
2879       uint64_t EndWeight = Invert ? TWeight : FWeight;
2880       BranchProbability BIEndProb =
2881           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2882       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2883       if (BIEndProb >= Likely)
2884         return false;
2885     }
2886   }
2887 
2888   // Keep a count of how many times instructions are used within ThenBB when
2889   // they are candidates for sinking into ThenBB. Specifically:
2890   // - They are defined in BB, and
2891   // - They have no side effects, and
2892   // - All of their uses are in ThenBB.
2893   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2894 
2895   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2896 
2897   unsigned SpeculatedInstructions = 0;
2898   Value *SpeculatedStoreValue = nullptr;
2899   StoreInst *SpeculatedStore = nullptr;
2900   EphemeralValueTracker EphTracker;
2901   for (Instruction &I : reverse(drop_end(*ThenBB))) {
2902     // Skip debug info.
2903     if (isa<DbgInfoIntrinsic>(I)) {
2904       SpeculatedDbgIntrinsics.push_back(&I);
2905       continue;
2906     }
2907 
2908     // Skip pseudo probes. The consequence is we lose track of the branch
2909     // probability for ThenBB, which is fine since the optimization here takes
2910     // place regardless of the branch probability.
2911     if (isa<PseudoProbeInst>(I)) {
2912       // The probe should be deleted so that it will not be over-counted when
2913       // the samples collected on the non-conditional path are counted towards
2914       // the conditional path. We leave it for the counts inference algorithm to
2915       // figure out a proper count for an unknown probe.
2916       SpeculatedDbgIntrinsics.push_back(&I);
2917       continue;
2918     }
2919 
2920     // Ignore ephemeral values, they will be dropped by the transform.
2921     if (EphTracker.track(&I))
2922       continue;
2923 
2924     // Only speculatively execute a single instruction (not counting the
2925     // terminator) for now.
2926     ++SpeculatedInstructions;
2927     if (SpeculatedInstructions > 1)
2928       return false;
2929 
2930     // Don't hoist the instruction if it's unsafe or expensive.
2931     if (!isSafeToSpeculativelyExecute(&I) &&
2932         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2933                                   &I, BB, ThenBB, EndBB))))
2934       return false;
2935     if (!SpeculatedStoreValue &&
2936         computeSpeculationCost(&I, TTI) >
2937             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2938       return false;
2939 
2940     // Store the store speculation candidate.
2941     if (SpeculatedStoreValue)
2942       SpeculatedStore = cast<StoreInst>(&I);
2943 
2944     // Do not hoist the instruction if any of its operands are defined but not
2945     // used in BB. The transformation will prevent the operand from
2946     // being sunk into the use block.
2947     for (Use &Op : I.operands()) {
2948       Instruction *OpI = dyn_cast<Instruction>(Op);
2949       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2950         continue; // Not a candidate for sinking.
2951 
2952       ++SinkCandidateUseCounts[OpI];
2953     }
2954   }
2955 
2956   // Consider any sink candidates which are only used in ThenBB as costs for
2957   // speculation. Note, while we iterate over a DenseMap here, we are summing
2958   // and so iteration order isn't significant.
2959   for (const auto &[Inst, Count] : SinkCandidateUseCounts)
2960     if (Inst->hasNUses(Count)) {
2961       ++SpeculatedInstructions;
2962       if (SpeculatedInstructions > 1)
2963         return false;
2964     }
2965 
2966   // Check that we can insert the selects and that it's not too expensive to do
2967   // so.
2968   bool Convert = SpeculatedStore != nullptr;
2969   InstructionCost Cost = 0;
2970   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2971                                             SpeculatedInstructions,
2972                                             Cost, TTI);
2973   if (!Convert || Cost > Budget)
2974     return false;
2975 
2976   // If we get here, we can hoist the instruction and if-convert.
2977   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2978 
2979   // Insert a select of the value of the speculated store.
2980   if (SpeculatedStoreValue) {
2981     IRBuilder<NoFolder> Builder(BI);
2982     Value *OrigV = SpeculatedStore->getValueOperand();
2983     Value *TrueV = SpeculatedStore->getValueOperand();
2984     Value *FalseV = SpeculatedStoreValue;
2985     if (Invert)
2986       std::swap(TrueV, FalseV);
2987     Value *S = Builder.CreateSelect(
2988         BrCond, TrueV, FalseV, "spec.store.select", BI);
2989     SpeculatedStore->setOperand(0, S);
2990     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2991                                          SpeculatedStore->getDebugLoc());
2992     // The value stored is still conditional, but the store itself is now
2993     // unconditonally executed, so we must be sure that any linked dbg.assign
2994     // intrinsics are tracking the new stored value (the result of the
2995     // select). If we don't, and the store were to be removed by another pass
2996     // (e.g. DSE), then we'd eventually end up emitting a location describing
2997     // the conditional value, unconditionally.
2998     //
2999     // === Before this transformation ===
3000     // pred:
3001     //   store %one, %x.dest, !DIAssignID !1
3002     //   dbg.assign %one, "x", ..., !1, ...
3003     //   br %cond if.then
3004     //
3005     // if.then:
3006     //   store %two, %x.dest, !DIAssignID !2
3007     //   dbg.assign %two, "x", ..., !2, ...
3008     //
3009     // === After this transformation ===
3010     // pred:
3011     //   store %one, %x.dest, !DIAssignID !1
3012     //   dbg.assign %one, "x", ..., !1
3013     ///  ...
3014     //   %merge = select %cond, %two, %one
3015     //   store %merge, %x.dest, !DIAssignID !2
3016     //   dbg.assign %merge, "x", ..., !2
3017     for (auto *DAI : at::getAssignmentMarkers(SpeculatedStore)) {
3018       if (any_of(DAI->location_ops(), [&](Value *V) { return V == OrigV; }))
3019         DAI->replaceVariableLocationOp(OrigV, S);
3020     }
3021   }
3022 
3023   // Metadata can be dependent on the condition we are hoisting above.
3024   // Conservatively strip all metadata on the instruction. Drop the debug loc
3025   // to avoid making it appear as if the condition is a constant, which would
3026   // be misleading while debugging.
3027   // Similarly strip attributes that maybe dependent on condition we are
3028   // hoisting above.
3029   for (auto &I : make_early_inc_range(*ThenBB)) {
3030     if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3031       // Don't update the DILocation of dbg.assign intrinsics.
3032       if (!isa<DbgAssignIntrinsic>(&I))
3033         I.setDebugLoc(DebugLoc());
3034     }
3035     I.dropUndefImplyingAttrsAndUnknownMetadata();
3036 
3037     // Drop ephemeral values.
3038     if (EphTracker.contains(&I)) {
3039       I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3040       I.eraseFromParent();
3041     }
3042   }
3043 
3044   // Hoist the instructions.
3045   BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3046              std::prev(ThenBB->end()));
3047 
3048   // Insert selects and rewrite the PHI operands.
3049   IRBuilder<NoFolder> Builder(BI);
3050   for (PHINode &PN : EndBB->phis()) {
3051     unsigned OrigI = PN.getBasicBlockIndex(BB);
3052     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3053     Value *OrigV = PN.getIncomingValue(OrigI);
3054     Value *ThenV = PN.getIncomingValue(ThenI);
3055 
3056     // Skip PHIs which are trivial.
3057     if (OrigV == ThenV)
3058       continue;
3059 
3060     // Create a select whose true value is the speculatively executed value and
3061     // false value is the pre-existing value. Swap them if the branch
3062     // destinations were inverted.
3063     Value *TrueV = ThenV, *FalseV = OrigV;
3064     if (Invert)
3065       std::swap(TrueV, FalseV);
3066     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3067     PN.setIncomingValue(OrigI, V);
3068     PN.setIncomingValue(ThenI, V);
3069   }
3070 
3071   // Remove speculated dbg intrinsics.
3072   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3073   // dbg value for the different flows and inserting it after the select.
3074   for (Instruction *I : SpeculatedDbgIntrinsics) {
3075     // We still want to know that an assignment took place so don't remove
3076     // dbg.assign intrinsics.
3077     if (!isa<DbgAssignIntrinsic>(I))
3078       I->eraseFromParent();
3079   }
3080 
3081   ++NumSpeculations;
3082   return true;
3083 }
3084 
3085 /// Return true if we can thread a branch across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)3086 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3087   int Size = 0;
3088   EphemeralValueTracker EphTracker;
3089 
3090   // Walk the loop in reverse so that we can identify ephemeral values properly
3091   // (values only feeding assumes).
3092   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3093     // Can't fold blocks that contain noduplicate or convergent calls.
3094     if (CallInst *CI = dyn_cast<CallInst>(&I))
3095       if (CI->cannotDuplicate() || CI->isConvergent())
3096         return false;
3097 
3098     // Ignore ephemeral values which are deleted during codegen.
3099     // We will delete Phis while threading, so Phis should not be accounted in
3100     // block's size.
3101     if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3102       if (Size++ > MaxSmallBlockSize)
3103         return false; // Don't clone large BB's.
3104     }
3105 
3106     // We can only support instructions that do not define values that are
3107     // live outside of the current basic block.
3108     for (User *U : I.users()) {
3109       Instruction *UI = cast<Instruction>(U);
3110       if (UI->getParent() != BB || isa<PHINode>(UI))
3111         return false;
3112     }
3113 
3114     // Looks ok, continue checking.
3115   }
3116 
3117   return true;
3118 }
3119 
getKnownValueOnEdge(Value * V,BasicBlock * From,BasicBlock * To)3120 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3121                                         BasicBlock *To) {
3122   // Don't look past the block defining the value, we might get the value from
3123   // a previous loop iteration.
3124   auto *I = dyn_cast<Instruction>(V);
3125   if (I && I->getParent() == To)
3126     return nullptr;
3127 
3128   // We know the value if the From block branches on it.
3129   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3130   if (BI && BI->isConditional() && BI->getCondition() == V &&
3131       BI->getSuccessor(0) != BI->getSuccessor(1))
3132     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3133                                      : ConstantInt::getFalse(BI->getContext());
3134 
3135   return nullptr;
3136 }
3137 
3138 /// If we have a conditional branch on something for which we know the constant
3139 /// value in predecessors (e.g. a phi node in the current block), thread edges
3140 /// from the predecessor to their ultimate destination.
3141 static std::optional<bool>
FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,AssumptionCache * AC)3142 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3143                                             const DataLayout &DL,
3144                                             AssumptionCache *AC) {
3145   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3146   BasicBlock *BB = BI->getParent();
3147   Value *Cond = BI->getCondition();
3148   PHINode *PN = dyn_cast<PHINode>(Cond);
3149   if (PN && PN->getParent() == BB) {
3150     // Degenerate case of a single entry PHI.
3151     if (PN->getNumIncomingValues() == 1) {
3152       FoldSingleEntryPHINodes(PN->getParent());
3153       return true;
3154     }
3155 
3156     for (Use &U : PN->incoming_values())
3157       if (auto *CB = dyn_cast<ConstantInt>(U))
3158         KnownValues[CB].insert(PN->getIncomingBlock(U));
3159   } else {
3160     for (BasicBlock *Pred : predecessors(BB)) {
3161       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3162         KnownValues[CB].insert(Pred);
3163     }
3164   }
3165 
3166   if (KnownValues.empty())
3167     return false;
3168 
3169   // Now we know that this block has multiple preds and two succs.
3170   // Check that the block is small enough and values defined in the block are
3171   // not used outside of it.
3172   if (!BlockIsSimpleEnoughToThreadThrough(BB))
3173     return false;
3174 
3175   for (const auto &Pair : KnownValues) {
3176     // Okay, we now know that all edges from PredBB should be revectored to
3177     // branch to RealDest.
3178     ConstantInt *CB = Pair.first;
3179     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3180     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3181 
3182     if (RealDest == BB)
3183       continue; // Skip self loops.
3184 
3185     // Skip if the predecessor's terminator is an indirect branch.
3186     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3187           return isa<IndirectBrInst>(PredBB->getTerminator());
3188         }))
3189       continue;
3190 
3191     LLVM_DEBUG({
3192       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3193              << " has value " << *Pair.first << " in predecessors:\n";
3194       for (const BasicBlock *PredBB : Pair.second)
3195         dbgs() << "  " << PredBB->getName() << "\n";
3196       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3197     });
3198 
3199     // Split the predecessors we are threading into a new edge block. We'll
3200     // clone the instructions into this block, and then redirect it to RealDest.
3201     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3202 
3203     // TODO: These just exist to reduce test diff, we can drop them if we like.
3204     EdgeBB->setName(RealDest->getName() + ".critedge");
3205     EdgeBB->moveBefore(RealDest);
3206 
3207     // Update PHI nodes.
3208     AddPredecessorToBlock(RealDest, EdgeBB, BB);
3209 
3210     // BB may have instructions that are being threaded over.  Clone these
3211     // instructions into EdgeBB.  We know that there will be no uses of the
3212     // cloned instructions outside of EdgeBB.
3213     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3214     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3215     TranslateMap[Cond] = CB;
3216     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3217       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3218         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3219         continue;
3220       }
3221       // Clone the instruction.
3222       Instruction *N = BBI->clone();
3223       if (BBI->hasName())
3224         N->setName(BBI->getName() + ".c");
3225 
3226       // Update operands due to translation.
3227       for (Use &Op : N->operands()) {
3228         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3229         if (PI != TranslateMap.end())
3230           Op = PI->second;
3231       }
3232 
3233       // Check for trivial simplification.
3234       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3235         if (!BBI->use_empty())
3236           TranslateMap[&*BBI] = V;
3237         if (!N->mayHaveSideEffects()) {
3238           N->deleteValue(); // Instruction folded away, don't need actual inst
3239           N = nullptr;
3240         }
3241       } else {
3242         if (!BBI->use_empty())
3243           TranslateMap[&*BBI] = N;
3244       }
3245       if (N) {
3246         // Insert the new instruction into its new home.
3247         N->insertInto(EdgeBB, InsertPt);
3248 
3249         // Register the new instruction with the assumption cache if necessary.
3250         if (auto *Assume = dyn_cast<AssumeInst>(N))
3251           if (AC)
3252             AC->registerAssumption(Assume);
3253       }
3254     }
3255 
3256     BB->removePredecessor(EdgeBB);
3257     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3258     EdgeBI->setSuccessor(0, RealDest);
3259     EdgeBI->setDebugLoc(BI->getDebugLoc());
3260 
3261     if (DTU) {
3262       SmallVector<DominatorTree::UpdateType, 2> Updates;
3263       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3264       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3265       DTU->applyUpdates(Updates);
3266     }
3267 
3268     // For simplicity, we created a separate basic block for the edge. Merge
3269     // it back into the predecessor if possible. This not only avoids
3270     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3271     // bypass the check for trivial cycles above.
3272     MergeBlockIntoPredecessor(EdgeBB, DTU);
3273 
3274     // Signal repeat, simplifying any other constants.
3275     return std::nullopt;
3276   }
3277 
3278   return false;
3279 }
3280 
FoldCondBranchOnValueKnownInPredecessor(BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,AssumptionCache * AC)3281 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3282                                                     DomTreeUpdater *DTU,
3283                                                     const DataLayout &DL,
3284                                                     AssumptionCache *AC) {
3285   std::optional<bool> Result;
3286   bool EverChanged = false;
3287   do {
3288     // Note that None means "we changed things, but recurse further."
3289     Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3290     EverChanged |= Result == std::nullopt || *Result;
3291   } while (Result == std::nullopt);
3292   return EverChanged;
3293 }
3294 
3295 /// Given a BB that starts with the specified two-entry PHI node,
3296 /// see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const DataLayout & DL)3297 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3298                                 DomTreeUpdater *DTU, const DataLayout &DL) {
3299   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3300   // statement", which has a very simple dominance structure.  Basically, we
3301   // are trying to find the condition that is being branched on, which
3302   // subsequently causes this merge to happen.  We really want control
3303   // dependence information for this check, but simplifycfg can't keep it up
3304   // to date, and this catches most of the cases we care about anyway.
3305   BasicBlock *BB = PN->getParent();
3306 
3307   BasicBlock *IfTrue, *IfFalse;
3308   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3309   if (!DomBI)
3310     return false;
3311   Value *IfCond = DomBI->getCondition();
3312   // Don't bother if the branch will be constant folded trivially.
3313   if (isa<ConstantInt>(IfCond))
3314     return false;
3315 
3316   BasicBlock *DomBlock = DomBI->getParent();
3317   SmallVector<BasicBlock *, 2> IfBlocks;
3318   llvm::copy_if(
3319       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3320         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3321       });
3322   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3323          "Will have either one or two blocks to speculate.");
3324 
3325   // If the branch is non-unpredictable, see if we either predictably jump to
3326   // the merge bb (if we have only a single 'then' block), or if we predictably
3327   // jump to one specific 'then' block (if we have two of them).
3328   // It isn't beneficial to speculatively execute the code
3329   // from the block that we know is predictably not entered.
3330   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3331     uint64_t TWeight, FWeight;
3332     if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3333         (TWeight + FWeight) != 0) {
3334       BranchProbability BITrueProb =
3335           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3336       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3337       BranchProbability BIFalseProb = BITrueProb.getCompl();
3338       if (IfBlocks.size() == 1) {
3339         BranchProbability BIBBProb =
3340             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3341         if (BIBBProb >= Likely)
3342           return false;
3343       } else {
3344         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3345           return false;
3346       }
3347     }
3348   }
3349 
3350   // Don't try to fold an unreachable block. For example, the phi node itself
3351   // can't be the candidate if-condition for a select that we want to form.
3352   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3353     if (IfCondPhiInst->getParent() == BB)
3354       return false;
3355 
3356   // Okay, we found that we can merge this two-entry phi node into a select.
3357   // Doing so would require us to fold *all* two entry phi nodes in this block.
3358   // At some point this becomes non-profitable (particularly if the target
3359   // doesn't support cmov's).  Only do this transformation if there are two or
3360   // fewer PHI nodes in this block.
3361   unsigned NumPhis = 0;
3362   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3363     if (NumPhis > 2)
3364       return false;
3365 
3366   // Loop over the PHI's seeing if we can promote them all to select
3367   // instructions.  While we are at it, keep track of the instructions
3368   // that need to be moved to the dominating block.
3369   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3370   InstructionCost Cost = 0;
3371   InstructionCost Budget =
3372       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3373 
3374   bool Changed = false;
3375   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3376     PHINode *PN = cast<PHINode>(II++);
3377     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3378       PN->replaceAllUsesWith(V);
3379       PN->eraseFromParent();
3380       Changed = true;
3381       continue;
3382     }
3383 
3384     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3385                              Cost, Budget, TTI) ||
3386         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3387                              Cost, Budget, TTI))
3388       return Changed;
3389   }
3390 
3391   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3392   // we ran out of PHIs then we simplified them all.
3393   PN = dyn_cast<PHINode>(BB->begin());
3394   if (!PN)
3395     return true;
3396 
3397   // Return true if at least one of these is a 'not', and another is either
3398   // a 'not' too, or a constant.
3399   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3400     if (!match(V0, m_Not(m_Value())))
3401       std::swap(V0, V1);
3402     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3403     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3404   };
3405 
3406   // Don't fold i1 branches on PHIs which contain binary operators or
3407   // (possibly inverted) select form of or/ands,  unless one of
3408   // the incoming values is an 'not' and another one is freely invertible.
3409   // These can often be turned into switches and other things.
3410   auto IsBinOpOrAnd = [](Value *V) {
3411     return match(
3412         V, m_CombineOr(
3413                m_BinOp(),
3414                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3415                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3416   };
3417   if (PN->getType()->isIntegerTy(1) &&
3418       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3419        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3420       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3421                                  PN->getIncomingValue(1)))
3422     return Changed;
3423 
3424   // If all PHI nodes are promotable, check to make sure that all instructions
3425   // in the predecessor blocks can be promoted as well. If not, we won't be able
3426   // to get rid of the control flow, so it's not worth promoting to select
3427   // instructions.
3428   for (BasicBlock *IfBlock : IfBlocks)
3429     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3430       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3431         // This is not an aggressive instruction that we can promote.
3432         // Because of this, we won't be able to get rid of the control flow, so
3433         // the xform is not worth it.
3434         return Changed;
3435       }
3436 
3437   // If either of the blocks has it's address taken, we can't do this fold.
3438   if (any_of(IfBlocks,
3439              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3440     return Changed;
3441 
3442   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
3443                     << "  T: " << IfTrue->getName()
3444                     << "  F: " << IfFalse->getName() << "\n");
3445 
3446   // If we can still promote the PHI nodes after this gauntlet of tests,
3447   // do all of the PHI's now.
3448 
3449   // Move all 'aggressive' instructions, which are defined in the
3450   // conditional parts of the if's up to the dominating block.
3451   for (BasicBlock *IfBlock : IfBlocks)
3452       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3453 
3454   IRBuilder<NoFolder> Builder(DomBI);
3455   // Propagate fast-math-flags from phi nodes to replacement selects.
3456   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3457   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3458     if (isa<FPMathOperator>(PN))
3459       Builder.setFastMathFlags(PN->getFastMathFlags());
3460 
3461     // Change the PHI node into a select instruction.
3462     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3463     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3464 
3465     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3466     PN->replaceAllUsesWith(Sel);
3467     Sel->takeName(PN);
3468     PN->eraseFromParent();
3469   }
3470 
3471   // At this point, all IfBlocks are empty, so our if statement
3472   // has been flattened.  Change DomBlock to jump directly to our new block to
3473   // avoid other simplifycfg's kicking in on the diamond.
3474   Builder.CreateBr(BB);
3475 
3476   SmallVector<DominatorTree::UpdateType, 3> Updates;
3477   if (DTU) {
3478     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3479     for (auto *Successor : successors(DomBlock))
3480       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3481   }
3482 
3483   DomBI->eraseFromParent();
3484   if (DTU)
3485     DTU->applyUpdates(Updates);
3486 
3487   return true;
3488 }
3489 
createLogicalOp(IRBuilderBase & Builder,Instruction::BinaryOps Opc,Value * LHS,Value * RHS,const Twine & Name="")3490 static Value *createLogicalOp(IRBuilderBase &Builder,
3491                               Instruction::BinaryOps Opc, Value *LHS,
3492                               Value *RHS, const Twine &Name = "") {
3493   // Try to relax logical op to binary op.
3494   if (impliesPoison(RHS, LHS))
3495     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3496   if (Opc == Instruction::And)
3497     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3498   if (Opc == Instruction::Or)
3499     return Builder.CreateLogicalOr(LHS, RHS, Name);
3500   llvm_unreachable("Invalid logical opcode");
3501 }
3502 
3503 /// Return true if either PBI or BI has branch weight available, and store
3504 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3505 /// not have branch weight, use 1:1 as its weight.
extractPredSuccWeights(BranchInst * PBI,BranchInst * BI,uint64_t & PredTrueWeight,uint64_t & PredFalseWeight,uint64_t & SuccTrueWeight,uint64_t & SuccFalseWeight)3506 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3507                                    uint64_t &PredTrueWeight,
3508                                    uint64_t &PredFalseWeight,
3509                                    uint64_t &SuccTrueWeight,
3510                                    uint64_t &SuccFalseWeight) {
3511   bool PredHasWeights =
3512       extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3513   bool SuccHasWeights =
3514       extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3515   if (PredHasWeights || SuccHasWeights) {
3516     if (!PredHasWeights)
3517       PredTrueWeight = PredFalseWeight = 1;
3518     if (!SuccHasWeights)
3519       SuccTrueWeight = SuccFalseWeight = 1;
3520     return true;
3521   } else {
3522     return false;
3523   }
3524 }
3525 
3526 /// Determine if the two branches share a common destination and deduce a glue
3527 /// that joins the branches' conditions to arrive at the common destination if
3528 /// that would be profitable.
3529 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
shouldFoldCondBranchesToCommonDestination(BranchInst * BI,BranchInst * PBI,const TargetTransformInfo * TTI)3530 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3531                                           const TargetTransformInfo *TTI) {
3532   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3533          "Both blocks must end with a conditional branches.");
3534   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3535          "PredBB must be a predecessor of BB.");
3536 
3537   // We have the potential to fold the conditions together, but if the
3538   // predecessor branch is predictable, we may not want to merge them.
3539   uint64_t PTWeight, PFWeight;
3540   BranchProbability PBITrueProb, Likely;
3541   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3542       extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3543       (PTWeight + PFWeight) != 0) {
3544     PBITrueProb =
3545         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3546     Likely = TTI->getPredictableBranchThreshold();
3547   }
3548 
3549   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3550     // Speculate the 2nd condition unless the 1st is probably true.
3551     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3552       return {{BI->getSuccessor(0), Instruction::Or, false}};
3553   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3554     // Speculate the 2nd condition unless the 1st is probably false.
3555     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3556       return {{BI->getSuccessor(1), Instruction::And, false}};
3557   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3558     // Speculate the 2nd condition unless the 1st is probably true.
3559     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3560       return {{BI->getSuccessor(1), Instruction::And, true}};
3561   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3562     // Speculate the 2nd condition unless the 1st is probably false.
3563     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3564       return {{BI->getSuccessor(0), Instruction::Or, true}};
3565   }
3566   return std::nullopt;
3567 }
3568 
performBranchToCommonDestFolding(BranchInst * BI,BranchInst * PBI,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU,const TargetTransformInfo * TTI)3569 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3570                                              DomTreeUpdater *DTU,
3571                                              MemorySSAUpdater *MSSAU,
3572                                              const TargetTransformInfo *TTI) {
3573   BasicBlock *BB = BI->getParent();
3574   BasicBlock *PredBlock = PBI->getParent();
3575 
3576   // Determine if the two branches share a common destination.
3577   BasicBlock *CommonSucc;
3578   Instruction::BinaryOps Opc;
3579   bool InvertPredCond;
3580   std::tie(CommonSucc, Opc, InvertPredCond) =
3581       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3582 
3583   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3584 
3585   IRBuilder<> Builder(PBI);
3586   // The builder is used to create instructions to eliminate the branch in BB.
3587   // If BB's terminator has !annotation metadata, add it to the new
3588   // instructions.
3589   Builder.CollectMetadataToCopy(BB->getTerminator(),
3590                                 {LLVMContext::MD_annotation});
3591 
3592   // If we need to invert the condition in the pred block to match, do so now.
3593   if (InvertPredCond) {
3594     Value *NewCond = PBI->getCondition();
3595     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3596       CmpInst *CI = cast<CmpInst>(NewCond);
3597       CI->setPredicate(CI->getInversePredicate());
3598     } else {
3599       NewCond =
3600           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3601     }
3602 
3603     PBI->setCondition(NewCond);
3604     PBI->swapSuccessors();
3605   }
3606 
3607   BasicBlock *UniqueSucc =
3608       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3609 
3610   // Before cloning instructions, notify the successor basic block that it
3611   // is about to have a new predecessor. This will update PHI nodes,
3612   // which will allow us to update live-out uses of bonus instructions.
3613   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3614 
3615   // Try to update branch weights.
3616   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3617   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3618                              SuccTrueWeight, SuccFalseWeight)) {
3619     SmallVector<uint64_t, 8> NewWeights;
3620 
3621     if (PBI->getSuccessor(0) == BB) {
3622       // PBI: br i1 %x, BB, FalseDest
3623       // BI:  br i1 %y, UniqueSucc, FalseDest
3624       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3625       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3626       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3627       //               TrueWeight for PBI * FalseWeight for BI.
3628       // We assume that total weights of a BranchInst can fit into 32 bits.
3629       // Therefore, we will not have overflow using 64-bit arithmetic.
3630       NewWeights.push_back(PredFalseWeight *
3631                                (SuccFalseWeight + SuccTrueWeight) +
3632                            PredTrueWeight * SuccFalseWeight);
3633     } else {
3634       // PBI: br i1 %x, TrueDest, BB
3635       // BI:  br i1 %y, TrueDest, UniqueSucc
3636       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3637       //              FalseWeight for PBI * TrueWeight for BI.
3638       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3639                            PredFalseWeight * SuccTrueWeight);
3640       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3641       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3642     }
3643 
3644     // Halve the weights if any of them cannot fit in an uint32_t
3645     FitWeights(NewWeights);
3646 
3647     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3648     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3649 
3650     // TODO: If BB is reachable from all paths through PredBlock, then we
3651     // could replace PBI's branch probabilities with BI's.
3652   } else
3653     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3654 
3655   // Now, update the CFG.
3656   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3657 
3658   if (DTU)
3659     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3660                        {DominatorTree::Delete, PredBlock, BB}});
3661 
3662   // If BI was a loop latch, it may have had associated loop metadata.
3663   // We need to copy it to the new latch, that is, PBI.
3664   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3665     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3666 
3667   ValueToValueMapTy VMap; // maps original values to cloned values
3668   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3669 
3670   // Now that the Cond was cloned into the predecessor basic block,
3671   // or/and the two conditions together.
3672   Value *BICond = VMap[BI->getCondition()];
3673   PBI->setCondition(
3674       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3675 
3676   // Copy any debug value intrinsics into the end of PredBlock.
3677   for (Instruction &I : *BB) {
3678     if (isa<DbgInfoIntrinsic>(I)) {
3679       Instruction *NewI = I.clone();
3680       RemapInstruction(NewI, VMap,
3681                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3682       NewI->insertBefore(PBI);
3683     }
3684   }
3685 
3686   ++NumFoldBranchToCommonDest;
3687   return true;
3688 }
3689 
3690 /// Return if an instruction's type or any of its operands' types are a vector
3691 /// type.
isVectorOp(Instruction & I)3692 static bool isVectorOp(Instruction &I) {
3693   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3694            return U->getType()->isVectorTy();
3695          });
3696 }
3697 
3698 /// If this basic block is simple enough, and if a predecessor branches to us
3699 /// and one of our successors, fold the block into the predecessor and use
3700 /// logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU,const TargetTransformInfo * TTI,unsigned BonusInstThreshold)3701 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3702                                   MemorySSAUpdater *MSSAU,
3703                                   const TargetTransformInfo *TTI,
3704                                   unsigned BonusInstThreshold) {
3705   // If this block ends with an unconditional branch,
3706   // let SpeculativelyExecuteBB() deal with it.
3707   if (!BI->isConditional())
3708     return false;
3709 
3710   BasicBlock *BB = BI->getParent();
3711   TargetTransformInfo::TargetCostKind CostKind =
3712     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3713                                   : TargetTransformInfo::TCK_SizeAndLatency;
3714 
3715   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3716 
3717   if (!Cond ||
3718       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3719        !isa<SelectInst>(Cond)) ||
3720       Cond->getParent() != BB || !Cond->hasOneUse())
3721     return false;
3722 
3723   // Finally, don't infinitely unroll conditional loops.
3724   if (is_contained(successors(BB), BB))
3725     return false;
3726 
3727   // With which predecessors will we want to deal with?
3728   SmallVector<BasicBlock *, 8> Preds;
3729   for (BasicBlock *PredBlock : predecessors(BB)) {
3730     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3731 
3732     // Check that we have two conditional branches.  If there is a PHI node in
3733     // the common successor, verify that the same value flows in from both
3734     // blocks.
3735     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3736       continue;
3737 
3738     // Determine if the two branches share a common destination.
3739     BasicBlock *CommonSucc;
3740     Instruction::BinaryOps Opc;
3741     bool InvertPredCond;
3742     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3743       std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
3744     else
3745       continue;
3746 
3747     // Check the cost of inserting the necessary logic before performing the
3748     // transformation.
3749     if (TTI) {
3750       Type *Ty = BI->getCondition()->getType();
3751       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3752       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3753                              !isa<CmpInst>(PBI->getCondition())))
3754         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3755 
3756       if (Cost > BranchFoldThreshold)
3757         continue;
3758     }
3759 
3760     // Ok, we do want to deal with this predecessor. Record it.
3761     Preds.emplace_back(PredBlock);
3762   }
3763 
3764   // If there aren't any predecessors into which we can fold,
3765   // don't bother checking the cost.
3766   if (Preds.empty())
3767     return false;
3768 
3769   // Only allow this transformation if computing the condition doesn't involve
3770   // too many instructions and these involved instructions can be executed
3771   // unconditionally. We denote all involved instructions except the condition
3772   // as "bonus instructions", and only allow this transformation when the
3773   // number of the bonus instructions we'll need to create when cloning into
3774   // each predecessor does not exceed a certain threshold.
3775   unsigned NumBonusInsts = 0;
3776   bool SawVectorOp = false;
3777   const unsigned PredCount = Preds.size();
3778   for (Instruction &I : *BB) {
3779     // Don't check the branch condition comparison itself.
3780     if (&I == Cond)
3781       continue;
3782     // Ignore dbg intrinsics, and the terminator.
3783     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3784       continue;
3785     // I must be safe to execute unconditionally.
3786     if (!isSafeToSpeculativelyExecute(&I))
3787       return false;
3788     SawVectorOp |= isVectorOp(I);
3789 
3790     // Account for the cost of duplicating this instruction into each
3791     // predecessor. Ignore free instructions.
3792     if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
3793                     TargetTransformInfo::TCC_Free) {
3794       NumBonusInsts += PredCount;
3795 
3796       // Early exits once we reach the limit.
3797       if (NumBonusInsts >
3798           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3799         return false;
3800     }
3801 
3802     auto IsBCSSAUse = [BB, &I](Use &U) {
3803       auto *UI = cast<Instruction>(U.getUser());
3804       if (auto *PN = dyn_cast<PHINode>(UI))
3805         return PN->getIncomingBlock(U) == BB;
3806       return UI->getParent() == BB && I.comesBefore(UI);
3807     };
3808 
3809     // Does this instruction require rewriting of uses?
3810     if (!all_of(I.uses(), IsBCSSAUse))
3811       return false;
3812   }
3813   if (NumBonusInsts >
3814       BonusInstThreshold *
3815           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3816     return false;
3817 
3818   // Ok, we have the budget. Perform the transformation.
3819   for (BasicBlock *PredBlock : Preds) {
3820     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3821     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3822   }
3823   return false;
3824 }
3825 
3826 // If there is only one store in BB1 and BB2, return it, otherwise return
3827 // nullptr.
findUniqueStoreInBlocks(BasicBlock * BB1,BasicBlock * BB2)3828 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3829   StoreInst *S = nullptr;
3830   for (auto *BB : {BB1, BB2}) {
3831     if (!BB)
3832       continue;
3833     for (auto &I : *BB)
3834       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3835         if (S)
3836           // Multiple stores seen.
3837           return nullptr;
3838         else
3839           S = SI;
3840       }
3841   }
3842   return S;
3843 }
3844 
ensureValueAvailableInSuccessor(Value * V,BasicBlock * BB,Value * AlternativeV=nullptr)3845 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3846                                               Value *AlternativeV = nullptr) {
3847   // PHI is going to be a PHI node that allows the value V that is defined in
3848   // BB to be referenced in BB's only successor.
3849   //
3850   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3851   // doesn't matter to us what the other operand is (it'll never get used). We
3852   // could just create a new PHI with an undef incoming value, but that could
3853   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3854   // other PHI. So here we directly look for some PHI in BB's successor with V
3855   // as an incoming operand. If we find one, we use it, else we create a new
3856   // one.
3857   //
3858   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3859   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3860   // where OtherBB is the single other predecessor of BB's only successor.
3861   PHINode *PHI = nullptr;
3862   BasicBlock *Succ = BB->getSingleSuccessor();
3863 
3864   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3865     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3866       PHI = cast<PHINode>(I);
3867       if (!AlternativeV)
3868         break;
3869 
3870       assert(Succ->hasNPredecessors(2));
3871       auto PredI = pred_begin(Succ);
3872       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3873       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3874         break;
3875       PHI = nullptr;
3876     }
3877   if (PHI)
3878     return PHI;
3879 
3880   // If V is not an instruction defined in BB, just return it.
3881   if (!AlternativeV &&
3882       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3883     return V;
3884 
3885   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3886   PHI->addIncoming(V, BB);
3887   for (BasicBlock *PredBB : predecessors(Succ))
3888     if (PredBB != BB)
3889       PHI->addIncoming(
3890           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3891   return PHI;
3892 }
3893 
mergeConditionalStoreToAddress(BasicBlock * PTB,BasicBlock * PFB,BasicBlock * QTB,BasicBlock * QFB,BasicBlock * PostBB,Value * Address,bool InvertPCond,bool InvertQCond,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)3894 static bool mergeConditionalStoreToAddress(
3895     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3896     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3897     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3898   // For every pointer, there must be exactly two stores, one coming from
3899   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3900   // store (to any address) in PTB,PFB or QTB,QFB.
3901   // FIXME: We could relax this restriction with a bit more work and performance
3902   // testing.
3903   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3904   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3905   if (!PStore || !QStore)
3906     return false;
3907 
3908   // Now check the stores are compatible.
3909   if (!QStore->isUnordered() || !PStore->isUnordered() ||
3910       PStore->getValueOperand()->getType() !=
3911           QStore->getValueOperand()->getType())
3912     return false;
3913 
3914   // Check that sinking the store won't cause program behavior changes. Sinking
3915   // the store out of the Q blocks won't change any behavior as we're sinking
3916   // from a block to its unconditional successor. But we're moving a store from
3917   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3918   // So we need to check that there are no aliasing loads or stores in
3919   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3920   // operations between PStore and the end of its parent block.
3921   //
3922   // The ideal way to do this is to query AliasAnalysis, but we don't
3923   // preserve AA currently so that is dangerous. Be super safe and just
3924   // check there are no other memory operations at all.
3925   for (auto &I : *QFB->getSinglePredecessor())
3926     if (I.mayReadOrWriteMemory())
3927       return false;
3928   for (auto &I : *QFB)
3929     if (&I != QStore && I.mayReadOrWriteMemory())
3930       return false;
3931   if (QTB)
3932     for (auto &I : *QTB)
3933       if (&I != QStore && I.mayReadOrWriteMemory())
3934         return false;
3935   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3936        I != E; ++I)
3937     if (&*I != PStore && I->mayReadOrWriteMemory())
3938       return false;
3939 
3940   // If we're not in aggressive mode, we only optimize if we have some
3941   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3942   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3943     if (!BB)
3944       return true;
3945     // Heuristic: if the block can be if-converted/phi-folded and the
3946     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3947     // thread this store.
3948     InstructionCost Cost = 0;
3949     InstructionCost Budget =
3950         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3951     for (auto &I : BB->instructionsWithoutDebug(false)) {
3952       // Consider terminator instruction to be free.
3953       if (I.isTerminator())
3954         continue;
3955       // If this is one the stores that we want to speculate out of this BB,
3956       // then don't count it's cost, consider it to be free.
3957       if (auto *S = dyn_cast<StoreInst>(&I))
3958         if (llvm::find(FreeStores, S))
3959           continue;
3960       // Else, we have a white-list of instructions that we are ak speculating.
3961       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3962         return false; // Not in white-list - not worthwhile folding.
3963       // And finally, if this is a non-free instruction that we are okay
3964       // speculating, ensure that we consider the speculation budget.
3965       Cost +=
3966           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3967       if (Cost > Budget)
3968         return false; // Eagerly refuse to fold as soon as we're out of budget.
3969     }
3970     assert(Cost <= Budget &&
3971            "When we run out of budget we will eagerly return from within the "
3972            "per-instruction loop.");
3973     return true;
3974   };
3975 
3976   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3977   if (!MergeCondStoresAggressively &&
3978       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3979        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3980     return false;
3981 
3982   // If PostBB has more than two predecessors, we need to split it so we can
3983   // sink the store.
3984   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3985     // We know that QFB's only successor is PostBB. And QFB has a single
3986     // predecessor. If QTB exists, then its only successor is also PostBB.
3987     // If QTB does not exist, then QFB's only predecessor has a conditional
3988     // branch to QFB and PostBB.
3989     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3990     BasicBlock *NewBB =
3991         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3992     if (!NewBB)
3993       return false;
3994     PostBB = NewBB;
3995   }
3996 
3997   // OK, we're going to sink the stores to PostBB. The store has to be
3998   // conditional though, so first create the predicate.
3999   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4000                      ->getCondition();
4001   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4002                      ->getCondition();
4003 
4004   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4005                                                 PStore->getParent());
4006   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4007                                                 QStore->getParent(), PPHI);
4008 
4009   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
4010 
4011   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4012   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4013 
4014   if (InvertPCond)
4015     PPred = QB.CreateNot(PPred);
4016   if (InvertQCond)
4017     QPred = QB.CreateNot(QPred);
4018   Value *CombinedPred = QB.CreateOr(PPred, QPred);
4019 
4020   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
4021                                       /*Unreachable=*/false,
4022                                       /*BranchWeights=*/nullptr, DTU);
4023   QB.SetInsertPoint(T);
4024   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4025   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4026   // Choose the minimum alignment. If we could prove both stores execute, we
4027   // could use biggest one.  In this case, though, we only know that one of the
4028   // stores executes.  And we don't know it's safe to take the alignment from a
4029   // store that doesn't execute.
4030   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4031 
4032   QStore->eraseFromParent();
4033   PStore->eraseFromParent();
4034 
4035   return true;
4036 }
4037 
mergeConditionalStores(BranchInst * PBI,BranchInst * QBI,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)4038 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4039                                    DomTreeUpdater *DTU, const DataLayout &DL,
4040                                    const TargetTransformInfo &TTI) {
4041   // The intention here is to find diamonds or triangles (see below) where each
4042   // conditional block contains a store to the same address. Both of these
4043   // stores are conditional, so they can't be unconditionally sunk. But it may
4044   // be profitable to speculatively sink the stores into one merged store at the
4045   // end, and predicate the merged store on the union of the two conditions of
4046   // PBI and QBI.
4047   //
4048   // This can reduce the number of stores executed if both of the conditions are
4049   // true, and can allow the blocks to become small enough to be if-converted.
4050   // This optimization will also chain, so that ladders of test-and-set
4051   // sequences can be if-converted away.
4052   //
4053   // We only deal with simple diamonds or triangles:
4054   //
4055   //     PBI       or      PBI        or a combination of the two
4056   //    /   \               | \
4057   //   PTB  PFB             |  PFB
4058   //    \   /               | /
4059   //     QBI                QBI
4060   //    /  \                | \
4061   //   QTB  QFB             |  QFB
4062   //    \  /                | /
4063   //    PostBB            PostBB
4064   //
4065   // We model triangles as a type of diamond with a nullptr "true" block.
4066   // Triangles are canonicalized so that the fallthrough edge is represented by
4067   // a true condition, as in the diagram above.
4068   BasicBlock *PTB = PBI->getSuccessor(0);
4069   BasicBlock *PFB = PBI->getSuccessor(1);
4070   BasicBlock *QTB = QBI->getSuccessor(0);
4071   BasicBlock *QFB = QBI->getSuccessor(1);
4072   BasicBlock *PostBB = QFB->getSingleSuccessor();
4073 
4074   // Make sure we have a good guess for PostBB. If QTB's only successor is
4075   // QFB, then QFB is a better PostBB.
4076   if (QTB->getSingleSuccessor() == QFB)
4077     PostBB = QFB;
4078 
4079   // If we couldn't find a good PostBB, stop.
4080   if (!PostBB)
4081     return false;
4082 
4083   bool InvertPCond = false, InvertQCond = false;
4084   // Canonicalize fallthroughs to the true branches.
4085   if (PFB == QBI->getParent()) {
4086     std::swap(PFB, PTB);
4087     InvertPCond = true;
4088   }
4089   if (QFB == PostBB) {
4090     std::swap(QFB, QTB);
4091     InvertQCond = true;
4092   }
4093 
4094   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4095   // and QFB may not. Model fallthroughs as a nullptr block.
4096   if (PTB == QBI->getParent())
4097     PTB = nullptr;
4098   if (QTB == PostBB)
4099     QTB = nullptr;
4100 
4101   // Legality bailouts. We must have at least the non-fallthrough blocks and
4102   // the post-dominating block, and the non-fallthroughs must only have one
4103   // predecessor.
4104   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4105     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4106   };
4107   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4108       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4109     return false;
4110   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4111       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4112     return false;
4113   if (!QBI->getParent()->hasNUses(2))
4114     return false;
4115 
4116   // OK, this is a sequence of two diamonds or triangles.
4117   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4118   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4119   for (auto *BB : {PTB, PFB}) {
4120     if (!BB)
4121       continue;
4122     for (auto &I : *BB)
4123       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4124         PStoreAddresses.insert(SI->getPointerOperand());
4125   }
4126   for (auto *BB : {QTB, QFB}) {
4127     if (!BB)
4128       continue;
4129     for (auto &I : *BB)
4130       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4131         QStoreAddresses.insert(SI->getPointerOperand());
4132   }
4133 
4134   set_intersect(PStoreAddresses, QStoreAddresses);
4135   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4136   // clear what it contains.
4137   auto &CommonAddresses = PStoreAddresses;
4138 
4139   bool Changed = false;
4140   for (auto *Address : CommonAddresses)
4141     Changed |=
4142         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4143                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4144   return Changed;
4145 }
4146 
4147 /// If the previous block ended with a widenable branch, determine if reusing
4148 /// the target block is profitable and legal.  This will have the effect of
4149 /// "widening" PBI, but doesn't require us to reason about hosting safety.
tryWidenCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,DomTreeUpdater * DTU)4150 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4151                                            DomTreeUpdater *DTU) {
4152   // TODO: This can be generalized in two important ways:
4153   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4154   //    values from the PBI edge.
4155   // 2) We can sink side effecting instructions into BI's fallthrough
4156   //    successor provided they doesn't contribute to computation of
4157   //    BI's condition.
4158   Value *CondWB, *WC;
4159   BasicBlock *IfTrueBB, *IfFalseBB;
4160   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
4161       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
4162     return false;
4163   if (!IfFalseBB->phis().empty())
4164     return false; // TODO
4165   // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4166   // may undo the transform done here.
4167   // TODO: There might be a more fine-grained solution to this.
4168   if (!llvm::succ_empty(IfFalseBB))
4169     return false;
4170   // Use lambda to lazily compute expensive condition after cheap ones.
4171   auto NoSideEffects = [](BasicBlock &BB) {
4172     return llvm::none_of(BB, [](const Instruction &I) {
4173         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4174       });
4175   };
4176   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4177       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4178       NoSideEffects(*BI->getParent())) {
4179     auto *OldSuccessor = BI->getSuccessor(1);
4180     OldSuccessor->removePredecessor(BI->getParent());
4181     BI->setSuccessor(1, IfFalseBB);
4182     if (DTU)
4183       DTU->applyUpdates(
4184           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4185            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4186     return true;
4187   }
4188   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4189       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4190       NoSideEffects(*BI->getParent())) {
4191     auto *OldSuccessor = BI->getSuccessor(0);
4192     OldSuccessor->removePredecessor(BI->getParent());
4193     BI->setSuccessor(0, IfFalseBB);
4194     if (DTU)
4195       DTU->applyUpdates(
4196           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4197            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4198     return true;
4199   }
4200   return false;
4201 }
4202 
4203 /// If we have a conditional branch as a predecessor of another block,
4204 /// this function tries to simplify it.  We know
4205 /// that PBI and BI are both conditional branches, and BI is in one of the
4206 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)4207 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4208                                            DomTreeUpdater *DTU,
4209                                            const DataLayout &DL,
4210                                            const TargetTransformInfo &TTI) {
4211   assert(PBI->isConditional() && BI->isConditional());
4212   BasicBlock *BB = BI->getParent();
4213 
4214   // If this block ends with a branch instruction, and if there is a
4215   // predecessor that ends on a branch of the same condition, make
4216   // this conditional branch redundant.
4217   if (PBI->getCondition() == BI->getCondition() &&
4218       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4219     // Okay, the outcome of this conditional branch is statically
4220     // knowable.  If this block had a single pred, handle specially, otherwise
4221     // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4222     if (BB->getSinglePredecessor()) {
4223       // Turn this into a branch on constant.
4224       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4225       BI->setCondition(
4226           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4227       return true; // Nuke the branch on constant.
4228     }
4229   }
4230 
4231   // If the previous block ended with a widenable branch, determine if reusing
4232   // the target block is profitable and legal.  This will have the effect of
4233   // "widening" PBI, but doesn't require us to reason about hosting safety.
4234   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4235     return true;
4236 
4237   // If both branches are conditional and both contain stores to the same
4238   // address, remove the stores from the conditionals and create a conditional
4239   // merged store at the end.
4240   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4241     return true;
4242 
4243   // If this is a conditional branch in an empty block, and if any
4244   // predecessors are a conditional branch to one of our destinations,
4245   // fold the conditions into logical ops and one cond br.
4246 
4247   // Ignore dbg intrinsics.
4248   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4249     return false;
4250 
4251   int PBIOp, BIOp;
4252   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4253     PBIOp = 0;
4254     BIOp = 0;
4255   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4256     PBIOp = 0;
4257     BIOp = 1;
4258   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4259     PBIOp = 1;
4260     BIOp = 0;
4261   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4262     PBIOp = 1;
4263     BIOp = 1;
4264   } else {
4265     return false;
4266   }
4267 
4268   // Check to make sure that the other destination of this branch
4269   // isn't BB itself.  If so, this is an infinite loop that will
4270   // keep getting unwound.
4271   if (PBI->getSuccessor(PBIOp) == BB)
4272     return false;
4273 
4274   // Do not perform this transformation if it would require
4275   // insertion of a large number of select instructions. For targets
4276   // without predication/cmovs, this is a big pessimization.
4277 
4278   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4279   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4280   unsigned NumPhis = 0;
4281   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4282        ++II, ++NumPhis) {
4283     if (NumPhis > 2) // Disable this xform.
4284       return false;
4285   }
4286 
4287   // Finally, if everything is ok, fold the branches to logical ops.
4288   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4289 
4290   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4291                     << "AND: " << *BI->getParent());
4292 
4293   SmallVector<DominatorTree::UpdateType, 5> Updates;
4294 
4295   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4296   // branch in it, where one edge (OtherDest) goes back to itself but the other
4297   // exits.  We don't *know* that the program avoids the infinite loop
4298   // (even though that seems likely).  If we do this xform naively, we'll end up
4299   // recursively unpeeling the loop.  Since we know that (after the xform is
4300   // done) that the block *is* infinite if reached, we just make it an obviously
4301   // infinite loop with no cond branch.
4302   if (OtherDest == BB) {
4303     // Insert it at the end of the function, because it's either code,
4304     // or it won't matter if it's hot. :)
4305     BasicBlock *InfLoopBlock =
4306         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4307     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4308     if (DTU)
4309       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4310     OtherDest = InfLoopBlock;
4311   }
4312 
4313   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4314 
4315   // BI may have other predecessors.  Because of this, we leave
4316   // it alone, but modify PBI.
4317 
4318   // Make sure we get to CommonDest on True&True directions.
4319   Value *PBICond = PBI->getCondition();
4320   IRBuilder<NoFolder> Builder(PBI);
4321   if (PBIOp)
4322     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4323 
4324   Value *BICond = BI->getCondition();
4325   if (BIOp)
4326     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4327 
4328   // Merge the conditions.
4329   Value *Cond =
4330       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4331 
4332   // Modify PBI to branch on the new condition to the new dests.
4333   PBI->setCondition(Cond);
4334   PBI->setSuccessor(0, CommonDest);
4335   PBI->setSuccessor(1, OtherDest);
4336 
4337   if (DTU) {
4338     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4339     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4340 
4341     DTU->applyUpdates(Updates);
4342   }
4343 
4344   // Update branch weight for PBI.
4345   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4346   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4347   bool HasWeights =
4348       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4349                              SuccTrueWeight, SuccFalseWeight);
4350   if (HasWeights) {
4351     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4352     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4353     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4354     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4355     // The weight to CommonDest should be PredCommon * SuccTotal +
4356     //                                    PredOther * SuccCommon.
4357     // The weight to OtherDest should be PredOther * SuccOther.
4358     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4359                                   PredOther * SuccCommon,
4360                               PredOther * SuccOther};
4361     // Halve the weights if any of them cannot fit in an uint32_t
4362     FitWeights(NewWeights);
4363 
4364     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4365   }
4366 
4367   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4368   // block that are identical to the entries for BI's block.
4369   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4370 
4371   // We know that the CommonDest already had an edge from PBI to
4372   // it.  If it has PHIs though, the PHIs may have different
4373   // entries for BB and PBI's BB.  If so, insert a select to make
4374   // them agree.
4375   for (PHINode &PN : CommonDest->phis()) {
4376     Value *BIV = PN.getIncomingValueForBlock(BB);
4377     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4378     Value *PBIV = PN.getIncomingValue(PBBIdx);
4379     if (BIV != PBIV) {
4380       // Insert a select in PBI to pick the right value.
4381       SelectInst *NV = cast<SelectInst>(
4382           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4383       PN.setIncomingValue(PBBIdx, NV);
4384       // Although the select has the same condition as PBI, the original branch
4385       // weights for PBI do not apply to the new select because the select's
4386       // 'logical' edges are incoming edges of the phi that is eliminated, not
4387       // the outgoing edges of PBI.
4388       if (HasWeights) {
4389         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4390         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4391         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4392         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4393         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4394         // The weight to PredOtherDest should be PredOther * SuccCommon.
4395         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4396                                   PredOther * SuccCommon};
4397 
4398         FitWeights(NewWeights);
4399 
4400         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4401       }
4402     }
4403   }
4404 
4405   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4406   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4407 
4408   // This basic block is probably dead.  We know it has at least
4409   // one fewer predecessor.
4410   return true;
4411 }
4412 
4413 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4414 // true or to FalseBB if Cond is false.
4415 // Takes care of updating the successors and removing the old terminator.
4416 // Also makes sure not to introduce new successors by assuming that edges to
4417 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(Instruction * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)4418 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4419                                                 Value *Cond, BasicBlock *TrueBB,
4420                                                 BasicBlock *FalseBB,
4421                                                 uint32_t TrueWeight,
4422                                                 uint32_t FalseWeight) {
4423   auto *BB = OldTerm->getParent();
4424   // Remove any superfluous successor edges from the CFG.
4425   // First, figure out which successors to preserve.
4426   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4427   // successor.
4428   BasicBlock *KeepEdge1 = TrueBB;
4429   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4430 
4431   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4432 
4433   // Then remove the rest.
4434   for (BasicBlock *Succ : successors(OldTerm)) {
4435     // Make sure only to keep exactly one copy of each edge.
4436     if (Succ == KeepEdge1)
4437       KeepEdge1 = nullptr;
4438     else if (Succ == KeepEdge2)
4439       KeepEdge2 = nullptr;
4440     else {
4441       Succ->removePredecessor(BB,
4442                               /*KeepOneInputPHIs=*/true);
4443 
4444       if (Succ != TrueBB && Succ != FalseBB)
4445         RemovedSuccessors.insert(Succ);
4446     }
4447   }
4448 
4449   IRBuilder<> Builder(OldTerm);
4450   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4451 
4452   // Insert an appropriate new terminator.
4453   if (!KeepEdge1 && !KeepEdge2) {
4454     if (TrueBB == FalseBB) {
4455       // We were only looking for one successor, and it was present.
4456       // Create an unconditional branch to it.
4457       Builder.CreateBr(TrueBB);
4458     } else {
4459       // We found both of the successors we were looking for.
4460       // Create a conditional branch sharing the condition of the select.
4461       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4462       if (TrueWeight != FalseWeight)
4463         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4464     }
4465   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4466     // Neither of the selected blocks were successors, so this
4467     // terminator must be unreachable.
4468     new UnreachableInst(OldTerm->getContext(), OldTerm);
4469   } else {
4470     // One of the selected values was a successor, but the other wasn't.
4471     // Insert an unconditional branch to the one that was found;
4472     // the edge to the one that wasn't must be unreachable.
4473     if (!KeepEdge1) {
4474       // Only TrueBB was found.
4475       Builder.CreateBr(TrueBB);
4476     } else {
4477       // Only FalseBB was found.
4478       Builder.CreateBr(FalseBB);
4479     }
4480   }
4481 
4482   EraseTerminatorAndDCECond(OldTerm);
4483 
4484   if (DTU) {
4485     SmallVector<DominatorTree::UpdateType, 2> Updates;
4486     Updates.reserve(RemovedSuccessors.size());
4487     for (auto *RemovedSuccessor : RemovedSuccessors)
4488       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4489     DTU->applyUpdates(Updates);
4490   }
4491 
4492   return true;
4493 }
4494 
4495 // Replaces
4496 //   (switch (select cond, X, Y)) on constant X, Y
4497 // with a branch - conditional if X and Y lead to distinct BBs,
4498 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)4499 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4500                                             SelectInst *Select) {
4501   // Check for constant integer values in the select.
4502   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4503   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4504   if (!TrueVal || !FalseVal)
4505     return false;
4506 
4507   // Find the relevant condition and destinations.
4508   Value *Condition = Select->getCondition();
4509   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4510   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4511 
4512   // Get weight for TrueBB and FalseBB.
4513   uint32_t TrueWeight = 0, FalseWeight = 0;
4514   SmallVector<uint64_t, 8> Weights;
4515   bool HasWeights = hasBranchWeightMD(*SI);
4516   if (HasWeights) {
4517     GetBranchWeights(SI, Weights);
4518     if (Weights.size() == 1 + SI->getNumCases()) {
4519       TrueWeight =
4520           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4521       FalseWeight =
4522           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4523     }
4524   }
4525 
4526   // Perform the actual simplification.
4527   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4528                                     FalseWeight);
4529 }
4530 
4531 // Replaces
4532 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4533 //                             blockaddress(@fn, BlockB)))
4534 // with
4535 //   (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)4536 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4537                                                 SelectInst *SI) {
4538   // Check that both operands of the select are block addresses.
4539   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4540   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4541   if (!TBA || !FBA)
4542     return false;
4543 
4544   // Extract the actual blocks.
4545   BasicBlock *TrueBB = TBA->getBasicBlock();
4546   BasicBlock *FalseBB = FBA->getBasicBlock();
4547 
4548   // Perform the actual simplification.
4549   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4550                                     0);
4551 }
4552 
4553 /// This is called when we find an icmp instruction
4554 /// (a seteq/setne with a constant) as the only instruction in a
4555 /// block that ends with an uncond branch.  We are looking for a very specific
4556 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4557 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4558 /// default value goes to an uncond block with a seteq in it, we get something
4559 /// like:
4560 ///
4561 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4562 /// DEFAULT:
4563 ///   %tmp = icmp eq i8 %A, 92
4564 ///   br label %end
4565 /// end:
4566 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4567 ///
4568 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4569 /// the PHI, merging the third icmp into the switch.
tryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder)4570 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4571     ICmpInst *ICI, IRBuilder<> &Builder) {
4572   BasicBlock *BB = ICI->getParent();
4573 
4574   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4575   // complex.
4576   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4577     return false;
4578 
4579   Value *V = ICI->getOperand(0);
4580   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4581 
4582   // The pattern we're looking for is where our only predecessor is a switch on
4583   // 'V' and this block is the default case for the switch.  In this case we can
4584   // fold the compared value into the switch to simplify things.
4585   BasicBlock *Pred = BB->getSinglePredecessor();
4586   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4587     return false;
4588 
4589   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4590   if (SI->getCondition() != V)
4591     return false;
4592 
4593   // If BB is reachable on a non-default case, then we simply know the value of
4594   // V in this block.  Substitute it and constant fold the icmp instruction
4595   // away.
4596   if (SI->getDefaultDest() != BB) {
4597     ConstantInt *VVal = SI->findCaseDest(BB);
4598     assert(VVal && "Should have a unique destination value");
4599     ICI->setOperand(0, VVal);
4600 
4601     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4602       ICI->replaceAllUsesWith(V);
4603       ICI->eraseFromParent();
4604     }
4605     // BB is now empty, so it is likely to simplify away.
4606     return requestResimplify();
4607   }
4608 
4609   // Ok, the block is reachable from the default dest.  If the constant we're
4610   // comparing exists in one of the other edges, then we can constant fold ICI
4611   // and zap it.
4612   if (SI->findCaseValue(Cst) != SI->case_default()) {
4613     Value *V;
4614     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4615       V = ConstantInt::getFalse(BB->getContext());
4616     else
4617       V = ConstantInt::getTrue(BB->getContext());
4618 
4619     ICI->replaceAllUsesWith(V);
4620     ICI->eraseFromParent();
4621     // BB is now empty, so it is likely to simplify away.
4622     return requestResimplify();
4623   }
4624 
4625   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4626   // the block.
4627   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4628   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4629   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4630       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4631     return false;
4632 
4633   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4634   // true in the PHI.
4635   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4636   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4637 
4638   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4639     std::swap(DefaultCst, NewCst);
4640 
4641   // Replace ICI (which is used by the PHI for the default value) with true or
4642   // false depending on if it is EQ or NE.
4643   ICI->replaceAllUsesWith(DefaultCst);
4644   ICI->eraseFromParent();
4645 
4646   SmallVector<DominatorTree::UpdateType, 2> Updates;
4647 
4648   // Okay, the switch goes to this block on a default value.  Add an edge from
4649   // the switch to the merge point on the compared value.
4650   BasicBlock *NewBB =
4651       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4652   {
4653     SwitchInstProfUpdateWrapper SIW(*SI);
4654     auto W0 = SIW.getSuccessorWeight(0);
4655     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4656     if (W0) {
4657       NewW = ((uint64_t(*W0) + 1) >> 1);
4658       SIW.setSuccessorWeight(0, *NewW);
4659     }
4660     SIW.addCase(Cst, NewBB, NewW);
4661     if (DTU)
4662       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4663   }
4664 
4665   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4666   Builder.SetInsertPoint(NewBB);
4667   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4668   Builder.CreateBr(SuccBlock);
4669   PHIUse->addIncoming(NewCst, NewBB);
4670   if (DTU) {
4671     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4672     DTU->applyUpdates(Updates);
4673   }
4674   return true;
4675 }
4676 
4677 /// The specified branch is a conditional branch.
4678 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4679 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,IRBuilder<> & Builder,const DataLayout & DL)4680 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4681                                                IRBuilder<> &Builder,
4682                                                const DataLayout &DL) {
4683   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4684   if (!Cond)
4685     return false;
4686 
4687   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4688   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4689   // 'setne's and'ed together, collect them.
4690 
4691   // Try to gather values from a chain of and/or to be turned into a switch
4692   ConstantComparesGatherer ConstantCompare(Cond, DL);
4693   // Unpack the result
4694   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4695   Value *CompVal = ConstantCompare.CompValue;
4696   unsigned UsedICmps = ConstantCompare.UsedICmps;
4697   Value *ExtraCase = ConstantCompare.Extra;
4698 
4699   // If we didn't have a multiply compared value, fail.
4700   if (!CompVal)
4701     return false;
4702 
4703   // Avoid turning single icmps into a switch.
4704   if (UsedICmps <= 1)
4705     return false;
4706 
4707   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4708 
4709   // There might be duplicate constants in the list, which the switch
4710   // instruction can't handle, remove them now.
4711   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4712   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4713 
4714   // If Extra was used, we require at least two switch values to do the
4715   // transformation.  A switch with one value is just a conditional branch.
4716   if (ExtraCase && Values.size() < 2)
4717     return false;
4718 
4719   // TODO: Preserve branch weight metadata, similarly to how
4720   // FoldValueComparisonIntoPredecessors preserves it.
4721 
4722   // Figure out which block is which destination.
4723   BasicBlock *DefaultBB = BI->getSuccessor(1);
4724   BasicBlock *EdgeBB = BI->getSuccessor(0);
4725   if (!TrueWhenEqual)
4726     std::swap(DefaultBB, EdgeBB);
4727 
4728   BasicBlock *BB = BI->getParent();
4729 
4730   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4731                     << " cases into SWITCH.  BB is:\n"
4732                     << *BB);
4733 
4734   SmallVector<DominatorTree::UpdateType, 2> Updates;
4735 
4736   // If there are any extra values that couldn't be folded into the switch
4737   // then we evaluate them with an explicit branch first. Split the block
4738   // right before the condbr to handle it.
4739   if (ExtraCase) {
4740     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4741                                    /*MSSAU=*/nullptr, "switch.early.test");
4742 
4743     // Remove the uncond branch added to the old block.
4744     Instruction *OldTI = BB->getTerminator();
4745     Builder.SetInsertPoint(OldTI);
4746 
4747     // There can be an unintended UB if extra values are Poison. Before the
4748     // transformation, extra values may not be evaluated according to the
4749     // condition, and it will not raise UB. But after transformation, we are
4750     // evaluating extra values before checking the condition, and it will raise
4751     // UB. It can be solved by adding freeze instruction to extra values.
4752     AssumptionCache *AC = Options.AC;
4753 
4754     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4755       ExtraCase = Builder.CreateFreeze(ExtraCase);
4756 
4757     if (TrueWhenEqual)
4758       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4759     else
4760       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4761 
4762     OldTI->eraseFromParent();
4763 
4764     if (DTU)
4765       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4766 
4767     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4768     // for the edge we just added.
4769     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4770 
4771     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4772                       << "\nEXTRABB = " << *BB);
4773     BB = NewBB;
4774   }
4775 
4776   Builder.SetInsertPoint(BI);
4777   // Convert pointer to int before we switch.
4778   if (CompVal->getType()->isPointerTy()) {
4779     CompVal = Builder.CreatePtrToInt(
4780         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4781   }
4782 
4783   // Create the new switch instruction now.
4784   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4785 
4786   // Add all of the 'cases' to the switch instruction.
4787   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4788     New->addCase(Values[i], EdgeBB);
4789 
4790   // We added edges from PI to the EdgeBB.  As such, if there were any
4791   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4792   // the number of edges added.
4793   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4794     PHINode *PN = cast<PHINode>(BBI);
4795     Value *InVal = PN->getIncomingValueForBlock(BB);
4796     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4797       PN->addIncoming(InVal, BB);
4798   }
4799 
4800   // Erase the old branch instruction.
4801   EraseTerminatorAndDCECond(BI);
4802   if (DTU)
4803     DTU->applyUpdates(Updates);
4804 
4805   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4806   return true;
4807 }
4808 
simplifyResume(ResumeInst * RI,IRBuilder<> & Builder)4809 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4810   if (isa<PHINode>(RI->getValue()))
4811     return simplifyCommonResume(RI);
4812   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4813            RI->getValue() == RI->getParent()->getFirstNonPHI())
4814     // The resume must unwind the exception that caused control to branch here.
4815     return simplifySingleResume(RI);
4816 
4817   return false;
4818 }
4819 
4820 // Check if cleanup block is empty
isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R)4821 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4822   for (Instruction &I : R) {
4823     auto *II = dyn_cast<IntrinsicInst>(&I);
4824     if (!II)
4825       return false;
4826 
4827     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4828     switch (IntrinsicID) {
4829     case Intrinsic::dbg_declare:
4830     case Intrinsic::dbg_value:
4831     case Intrinsic::dbg_label:
4832     case Intrinsic::lifetime_end:
4833       break;
4834     default:
4835       return false;
4836     }
4837   }
4838   return true;
4839 }
4840 
4841 // Simplify resume that is shared by several landing pads (phi of landing pad).
simplifyCommonResume(ResumeInst * RI)4842 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4843   BasicBlock *BB = RI->getParent();
4844 
4845   // Check that there are no other instructions except for debug and lifetime
4846   // intrinsics between the phi's and resume instruction.
4847   if (!isCleanupBlockEmpty(
4848           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4849     return false;
4850 
4851   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4852   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4853 
4854   // Check incoming blocks to see if any of them are trivial.
4855   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4856        Idx++) {
4857     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4858     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4859 
4860     // If the block has other successors, we can not delete it because
4861     // it has other dependents.
4862     if (IncomingBB->getUniqueSuccessor() != BB)
4863       continue;
4864 
4865     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4866     // Not the landing pad that caused the control to branch here.
4867     if (IncomingValue != LandingPad)
4868       continue;
4869 
4870     if (isCleanupBlockEmpty(
4871             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4872       TrivialUnwindBlocks.insert(IncomingBB);
4873   }
4874 
4875   // If no trivial unwind blocks, don't do any simplifications.
4876   if (TrivialUnwindBlocks.empty())
4877     return false;
4878 
4879   // Turn all invokes that unwind here into calls.
4880   for (auto *TrivialBB : TrivialUnwindBlocks) {
4881     // Blocks that will be simplified should be removed from the phi node.
4882     // Note there could be multiple edges to the resume block, and we need
4883     // to remove them all.
4884     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4885       BB->removePredecessor(TrivialBB, true);
4886 
4887     for (BasicBlock *Pred :
4888          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4889       removeUnwindEdge(Pred, DTU);
4890       ++NumInvokes;
4891     }
4892 
4893     // In each SimplifyCFG run, only the current processed block can be erased.
4894     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4895     // of erasing TrivialBB, we only remove the branch to the common resume
4896     // block so that we can later erase the resume block since it has no
4897     // predecessors.
4898     TrivialBB->getTerminator()->eraseFromParent();
4899     new UnreachableInst(RI->getContext(), TrivialBB);
4900     if (DTU)
4901       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4902   }
4903 
4904   // Delete the resume block if all its predecessors have been removed.
4905   if (pred_empty(BB))
4906     DeleteDeadBlock(BB, DTU);
4907 
4908   return !TrivialUnwindBlocks.empty();
4909 }
4910 
4911 // Simplify resume that is only used by a single (non-phi) landing pad.
simplifySingleResume(ResumeInst * RI)4912 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4913   BasicBlock *BB = RI->getParent();
4914   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4915   assert(RI->getValue() == LPInst &&
4916          "Resume must unwind the exception that caused control to here");
4917 
4918   // Check that there are no other instructions except for debug intrinsics.
4919   if (!isCleanupBlockEmpty(
4920           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4921     return false;
4922 
4923   // Turn all invokes that unwind here into calls and delete the basic block.
4924   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4925     removeUnwindEdge(Pred, DTU);
4926     ++NumInvokes;
4927   }
4928 
4929   // The landingpad is now unreachable.  Zap it.
4930   DeleteDeadBlock(BB, DTU);
4931   return true;
4932 }
4933 
removeEmptyCleanup(CleanupReturnInst * RI,DomTreeUpdater * DTU)4934 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4935   // If this is a trivial cleanup pad that executes no instructions, it can be
4936   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4937   // that is an EH pad will be updated to continue to the caller and any
4938   // predecessor that terminates with an invoke instruction will have its invoke
4939   // instruction converted to a call instruction.  If the cleanup pad being
4940   // simplified does not continue to the caller, each predecessor will be
4941   // updated to continue to the unwind destination of the cleanup pad being
4942   // simplified.
4943   BasicBlock *BB = RI->getParent();
4944   CleanupPadInst *CPInst = RI->getCleanupPad();
4945   if (CPInst->getParent() != BB)
4946     // This isn't an empty cleanup.
4947     return false;
4948 
4949   // We cannot kill the pad if it has multiple uses.  This typically arises
4950   // from unreachable basic blocks.
4951   if (!CPInst->hasOneUse())
4952     return false;
4953 
4954   // Check that there are no other instructions except for benign intrinsics.
4955   if (!isCleanupBlockEmpty(
4956           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4957     return false;
4958 
4959   // If the cleanup return we are simplifying unwinds to the caller, this will
4960   // set UnwindDest to nullptr.
4961   BasicBlock *UnwindDest = RI->getUnwindDest();
4962   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4963 
4964   // We're about to remove BB from the control flow.  Before we do, sink any
4965   // PHINodes into the unwind destination.  Doing this before changing the
4966   // control flow avoids some potentially slow checks, since we can currently
4967   // be certain that UnwindDest and BB have no common predecessors (since they
4968   // are both EH pads).
4969   if (UnwindDest) {
4970     // First, go through the PHI nodes in UnwindDest and update any nodes that
4971     // reference the block we are removing
4972     for (PHINode &DestPN : UnwindDest->phis()) {
4973       int Idx = DestPN.getBasicBlockIndex(BB);
4974       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4975       assert(Idx != -1);
4976       // This PHI node has an incoming value that corresponds to a control
4977       // path through the cleanup pad we are removing.  If the incoming
4978       // value is in the cleanup pad, it must be a PHINode (because we
4979       // verified above that the block is otherwise empty).  Otherwise, the
4980       // value is either a constant or a value that dominates the cleanup
4981       // pad being removed.
4982       //
4983       // Because BB and UnwindDest are both EH pads, all of their
4984       // predecessors must unwind to these blocks, and since no instruction
4985       // can have multiple unwind destinations, there will be no overlap in
4986       // incoming blocks between SrcPN and DestPN.
4987       Value *SrcVal = DestPN.getIncomingValue(Idx);
4988       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4989 
4990       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4991       for (auto *Pred : predecessors(BB)) {
4992         Value *Incoming =
4993             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4994         DestPN.addIncoming(Incoming, Pred);
4995       }
4996     }
4997 
4998     // Sink any remaining PHI nodes directly into UnwindDest.
4999     Instruction *InsertPt = DestEHPad;
5000     for (PHINode &PN : make_early_inc_range(BB->phis())) {
5001       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5002         // If the PHI node has no uses or all of its uses are in this basic
5003         // block (meaning they are debug or lifetime intrinsics), just leave
5004         // it.  It will be erased when we erase BB below.
5005         continue;
5006 
5007       // Otherwise, sink this PHI node into UnwindDest.
5008       // Any predecessors to UnwindDest which are not already represented
5009       // must be back edges which inherit the value from the path through
5010       // BB.  In this case, the PHI value must reference itself.
5011       for (auto *pred : predecessors(UnwindDest))
5012         if (pred != BB)
5013           PN.addIncoming(&PN, pred);
5014       PN.moveBefore(InsertPt);
5015       // Also, add a dummy incoming value for the original BB itself,
5016       // so that the PHI is well-formed until we drop said predecessor.
5017       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5018     }
5019   }
5020 
5021   std::vector<DominatorTree::UpdateType> Updates;
5022 
5023   // We use make_early_inc_range here because we will remove all predecessors.
5024   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5025     if (UnwindDest == nullptr) {
5026       if (DTU) {
5027         DTU->applyUpdates(Updates);
5028         Updates.clear();
5029       }
5030       removeUnwindEdge(PredBB, DTU);
5031       ++NumInvokes;
5032     } else {
5033       BB->removePredecessor(PredBB);
5034       Instruction *TI = PredBB->getTerminator();
5035       TI->replaceUsesOfWith(BB, UnwindDest);
5036       if (DTU) {
5037         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5038         Updates.push_back({DominatorTree::Delete, PredBB, BB});
5039       }
5040     }
5041   }
5042 
5043   if (DTU)
5044     DTU->applyUpdates(Updates);
5045 
5046   DeleteDeadBlock(BB, DTU);
5047 
5048   return true;
5049 }
5050 
5051 // Try to merge two cleanuppads together.
mergeCleanupPad(CleanupReturnInst * RI)5052 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5053   // Skip any cleanuprets which unwind to caller, there is nothing to merge
5054   // with.
5055   BasicBlock *UnwindDest = RI->getUnwindDest();
5056   if (!UnwindDest)
5057     return false;
5058 
5059   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5060   // be safe to merge without code duplication.
5061   if (UnwindDest->getSinglePredecessor() != RI->getParent())
5062     return false;
5063 
5064   // Verify that our cleanuppad's unwind destination is another cleanuppad.
5065   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5066   if (!SuccessorCleanupPad)
5067     return false;
5068 
5069   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5070   // Replace any uses of the successor cleanupad with the predecessor pad
5071   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5072   // funclet bundle operands.
5073   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5074   // Remove the old cleanuppad.
5075   SuccessorCleanupPad->eraseFromParent();
5076   // Now, we simply replace the cleanupret with a branch to the unwind
5077   // destination.
5078   BranchInst::Create(UnwindDest, RI->getParent());
5079   RI->eraseFromParent();
5080 
5081   return true;
5082 }
5083 
simplifyCleanupReturn(CleanupReturnInst * RI)5084 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5085   // It is possible to transiantly have an undef cleanuppad operand because we
5086   // have deleted some, but not all, dead blocks.
5087   // Eventually, this block will be deleted.
5088   if (isa<UndefValue>(RI->getOperand(0)))
5089     return false;
5090 
5091   if (mergeCleanupPad(RI))
5092     return true;
5093 
5094   if (removeEmptyCleanup(RI, DTU))
5095     return true;
5096 
5097   return false;
5098 }
5099 
5100 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
simplifyUnreachable(UnreachableInst * UI)5101 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5102   BasicBlock *BB = UI->getParent();
5103 
5104   bool Changed = false;
5105 
5106   // If there are any instructions immediately before the unreachable that can
5107   // be removed, do so.
5108   while (UI->getIterator() != BB->begin()) {
5109     BasicBlock::iterator BBI = UI->getIterator();
5110     --BBI;
5111 
5112     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5113       break; // Can not drop any more instructions. We're done here.
5114     // Otherwise, this instruction can be freely erased,
5115     // even if it is not side-effect free.
5116 
5117     // Note that deleting EH's here is in fact okay, although it involves a bit
5118     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5119     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5120     // and we can therefore guarantee this block will be erased.
5121 
5122     // Delete this instruction (any uses are guaranteed to be dead)
5123     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5124     BBI->eraseFromParent();
5125     Changed = true;
5126   }
5127 
5128   // If the unreachable instruction is the first in the block, take a gander
5129   // at all of the predecessors of this instruction, and simplify them.
5130   if (&BB->front() != UI)
5131     return Changed;
5132 
5133   std::vector<DominatorTree::UpdateType> Updates;
5134 
5135   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5136   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
5137     auto *Predecessor = Preds[i];
5138     Instruction *TI = Predecessor->getTerminator();
5139     IRBuilder<> Builder(TI);
5140     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5141       // We could either have a proper unconditional branch,
5142       // or a degenerate conditional branch with matching destinations.
5143       if (all_of(BI->successors(),
5144                  [BB](auto *Successor) { return Successor == BB; })) {
5145         new UnreachableInst(TI->getContext(), TI);
5146         TI->eraseFromParent();
5147         Changed = true;
5148       } else {
5149         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5150         Value* Cond = BI->getCondition();
5151         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5152                "The destinations are guaranteed to be different here.");
5153         if (BI->getSuccessor(0) == BB) {
5154           Builder.CreateAssumption(Builder.CreateNot(Cond));
5155           Builder.CreateBr(BI->getSuccessor(1));
5156         } else {
5157           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5158           Builder.CreateAssumption(Cond);
5159           Builder.CreateBr(BI->getSuccessor(0));
5160         }
5161         EraseTerminatorAndDCECond(BI);
5162         Changed = true;
5163       }
5164       if (DTU)
5165         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5166     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5167       SwitchInstProfUpdateWrapper SU(*SI);
5168       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5169         if (i->getCaseSuccessor() != BB) {
5170           ++i;
5171           continue;
5172         }
5173         BB->removePredecessor(SU->getParent());
5174         i = SU.removeCase(i);
5175         e = SU->case_end();
5176         Changed = true;
5177       }
5178       // Note that the default destination can't be removed!
5179       if (DTU && SI->getDefaultDest() != BB)
5180         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5181     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5182       if (II->getUnwindDest() == BB) {
5183         if (DTU) {
5184           DTU->applyUpdates(Updates);
5185           Updates.clear();
5186         }
5187         auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5188         if (!CI->doesNotThrow())
5189           CI->setDoesNotThrow();
5190         Changed = true;
5191       }
5192     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5193       if (CSI->getUnwindDest() == BB) {
5194         if (DTU) {
5195           DTU->applyUpdates(Updates);
5196           Updates.clear();
5197         }
5198         removeUnwindEdge(TI->getParent(), DTU);
5199         Changed = true;
5200         continue;
5201       }
5202 
5203       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5204                                              E = CSI->handler_end();
5205            I != E; ++I) {
5206         if (*I == BB) {
5207           CSI->removeHandler(I);
5208           --I;
5209           --E;
5210           Changed = true;
5211         }
5212       }
5213       if (DTU)
5214         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5215       if (CSI->getNumHandlers() == 0) {
5216         if (CSI->hasUnwindDest()) {
5217           // Redirect all predecessors of the block containing CatchSwitchInst
5218           // to instead branch to the CatchSwitchInst's unwind destination.
5219           if (DTU) {
5220             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5221               Updates.push_back({DominatorTree::Insert,
5222                                  PredecessorOfPredecessor,
5223                                  CSI->getUnwindDest()});
5224               Updates.push_back({DominatorTree::Delete,
5225                                  PredecessorOfPredecessor, Predecessor});
5226             }
5227           }
5228           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5229         } else {
5230           // Rewrite all preds to unwind to caller (or from invoke to call).
5231           if (DTU) {
5232             DTU->applyUpdates(Updates);
5233             Updates.clear();
5234           }
5235           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5236           for (BasicBlock *EHPred : EHPreds)
5237             removeUnwindEdge(EHPred, DTU);
5238         }
5239         // The catchswitch is no longer reachable.
5240         new UnreachableInst(CSI->getContext(), CSI);
5241         CSI->eraseFromParent();
5242         Changed = true;
5243       }
5244     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5245       (void)CRI;
5246       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5247              "Expected to always have an unwind to BB.");
5248       if (DTU)
5249         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5250       new UnreachableInst(TI->getContext(), TI);
5251       TI->eraseFromParent();
5252       Changed = true;
5253     }
5254   }
5255 
5256   if (DTU)
5257     DTU->applyUpdates(Updates);
5258 
5259   // If this block is now dead, remove it.
5260   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5261     DeleteDeadBlock(BB, DTU);
5262     return true;
5263   }
5264 
5265   return Changed;
5266 }
5267 
CasesAreContiguous(SmallVectorImpl<ConstantInt * > & Cases)5268 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5269   assert(Cases.size() >= 1);
5270 
5271   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5272   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5273     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5274       return false;
5275   }
5276   return true;
5277 }
5278 
createUnreachableSwitchDefault(SwitchInst * Switch,DomTreeUpdater * DTU)5279 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5280                                            DomTreeUpdater *DTU) {
5281   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5282   auto *BB = Switch->getParent();
5283   auto *OrigDefaultBlock = Switch->getDefaultDest();
5284   OrigDefaultBlock->removePredecessor(BB);
5285   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5286       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5287       OrigDefaultBlock);
5288   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5289   Switch->setDefaultDest(&*NewDefaultBlock);
5290   if (DTU) {
5291     SmallVector<DominatorTree::UpdateType, 2> Updates;
5292     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5293     if (!is_contained(successors(BB), OrigDefaultBlock))
5294       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5295     DTU->applyUpdates(Updates);
5296   }
5297 }
5298 
5299 /// Turn a switch into an integer range comparison and branch.
5300 /// Switches with more than 2 destinations are ignored.
5301 /// Switches with 1 destination are also ignored.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)5302 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5303                                              IRBuilder<> &Builder) {
5304   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5305 
5306   bool HasDefault =
5307       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5308 
5309   auto *BB = SI->getParent();
5310 
5311   // Partition the cases into two sets with different destinations.
5312   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5313   BasicBlock *DestB = nullptr;
5314   SmallVector<ConstantInt *, 16> CasesA;
5315   SmallVector<ConstantInt *, 16> CasesB;
5316 
5317   for (auto Case : SI->cases()) {
5318     BasicBlock *Dest = Case.getCaseSuccessor();
5319     if (!DestA)
5320       DestA = Dest;
5321     if (Dest == DestA) {
5322       CasesA.push_back(Case.getCaseValue());
5323       continue;
5324     }
5325     if (!DestB)
5326       DestB = Dest;
5327     if (Dest == DestB) {
5328       CasesB.push_back(Case.getCaseValue());
5329       continue;
5330     }
5331     return false; // More than two destinations.
5332   }
5333   if (!DestB)
5334     return false; // All destinations are the same and the default is unreachable
5335 
5336   assert(DestA && DestB &&
5337          "Single-destination switch should have been folded.");
5338   assert(DestA != DestB);
5339   assert(DestB != SI->getDefaultDest());
5340   assert(!CasesB.empty() && "There must be non-default cases.");
5341   assert(!CasesA.empty() || HasDefault);
5342 
5343   // Figure out if one of the sets of cases form a contiguous range.
5344   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5345   BasicBlock *ContiguousDest = nullptr;
5346   BasicBlock *OtherDest = nullptr;
5347   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5348     ContiguousCases = &CasesA;
5349     ContiguousDest = DestA;
5350     OtherDest = DestB;
5351   } else if (CasesAreContiguous(CasesB)) {
5352     ContiguousCases = &CasesB;
5353     ContiguousDest = DestB;
5354     OtherDest = DestA;
5355   } else
5356     return false;
5357 
5358   // Start building the compare and branch.
5359 
5360   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5361   Constant *NumCases =
5362       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5363 
5364   Value *Sub = SI->getCondition();
5365   if (!Offset->isNullValue())
5366     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5367 
5368   Value *Cmp;
5369   // If NumCases overflowed, then all possible values jump to the successor.
5370   if (NumCases->isNullValue() && !ContiguousCases->empty())
5371     Cmp = ConstantInt::getTrue(SI->getContext());
5372   else
5373     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5374   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5375 
5376   // Update weight for the newly-created conditional branch.
5377   if (hasBranchWeightMD(*SI)) {
5378     SmallVector<uint64_t, 8> Weights;
5379     GetBranchWeights(SI, Weights);
5380     if (Weights.size() == 1 + SI->getNumCases()) {
5381       uint64_t TrueWeight = 0;
5382       uint64_t FalseWeight = 0;
5383       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5384         if (SI->getSuccessor(I) == ContiguousDest)
5385           TrueWeight += Weights[I];
5386         else
5387           FalseWeight += Weights[I];
5388       }
5389       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5390         TrueWeight /= 2;
5391         FalseWeight /= 2;
5392       }
5393       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5394     }
5395   }
5396 
5397   // Prune obsolete incoming values off the successors' PHI nodes.
5398   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5399     unsigned PreviousEdges = ContiguousCases->size();
5400     if (ContiguousDest == SI->getDefaultDest())
5401       ++PreviousEdges;
5402     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5403       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5404   }
5405   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5406     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5407     if (OtherDest == SI->getDefaultDest())
5408       ++PreviousEdges;
5409     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5410       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5411   }
5412 
5413   // Clean up the default block - it may have phis or other instructions before
5414   // the unreachable terminator.
5415   if (!HasDefault)
5416     createUnreachableSwitchDefault(SI, DTU);
5417 
5418   auto *UnreachableDefault = SI->getDefaultDest();
5419 
5420   // Drop the switch.
5421   SI->eraseFromParent();
5422 
5423   if (!HasDefault && DTU)
5424     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5425 
5426   return true;
5427 }
5428 
5429 /// Compute masked bits for the condition of a switch
5430 /// and use it to remove dead cases.
eliminateDeadSwitchCases(SwitchInst * SI,DomTreeUpdater * DTU,AssumptionCache * AC,const DataLayout & DL)5431 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5432                                      AssumptionCache *AC,
5433                                      const DataLayout &DL) {
5434   Value *Cond = SI->getCondition();
5435   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5436 
5437   // We can also eliminate cases by determining that their values are outside of
5438   // the limited range of the condition based on how many significant (non-sign)
5439   // bits are in the condition value.
5440   unsigned MaxSignificantBitsInCond =
5441       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5442 
5443   // Gather dead cases.
5444   SmallVector<ConstantInt *, 8> DeadCases;
5445   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5446   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5447   for (const auto &Case : SI->cases()) {
5448     auto *Successor = Case.getCaseSuccessor();
5449     if (DTU) {
5450       if (!NumPerSuccessorCases.count(Successor))
5451         UniqueSuccessors.push_back(Successor);
5452       ++NumPerSuccessorCases[Successor];
5453     }
5454     const APInt &CaseVal = Case.getCaseValue()->getValue();
5455     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5456         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5457       DeadCases.push_back(Case.getCaseValue());
5458       if (DTU)
5459         --NumPerSuccessorCases[Successor];
5460       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5461                         << " is dead.\n");
5462     }
5463   }
5464 
5465   // If we can prove that the cases must cover all possible values, the
5466   // default destination becomes dead and we can remove it.  If we know some
5467   // of the bits in the value, we can use that to more precisely compute the
5468   // number of possible unique case values.
5469   bool HasDefault =
5470       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5471   const unsigned NumUnknownBits =
5472       Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5473   assert(NumUnknownBits <= Known.getBitWidth());
5474   if (HasDefault && DeadCases.empty() &&
5475       NumUnknownBits < 64 /* avoid overflow */ &&
5476       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5477     createUnreachableSwitchDefault(SI, DTU);
5478     return true;
5479   }
5480 
5481   if (DeadCases.empty())
5482     return false;
5483 
5484   SwitchInstProfUpdateWrapper SIW(*SI);
5485   for (ConstantInt *DeadCase : DeadCases) {
5486     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5487     assert(CaseI != SI->case_default() &&
5488            "Case was not found. Probably mistake in DeadCases forming.");
5489     // Prune unused values from PHI nodes.
5490     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5491     SIW.removeCase(CaseI);
5492   }
5493 
5494   if (DTU) {
5495     std::vector<DominatorTree::UpdateType> Updates;
5496     for (auto *Successor : UniqueSuccessors)
5497       if (NumPerSuccessorCases[Successor] == 0)
5498         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5499     DTU->applyUpdates(Updates);
5500   }
5501 
5502   return true;
5503 }
5504 
5505 /// If BB would be eligible for simplification by
5506 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5507 /// by an unconditional branch), look at the phi node for BB in the successor
5508 /// block and see if the incoming value is equal to CaseValue. If so, return
5509 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)5510 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5511                                               BasicBlock *BB, int *PhiIndex) {
5512   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5513     return nullptr; // BB must be empty to be a candidate for simplification.
5514   if (!BB->getSinglePredecessor())
5515     return nullptr; // BB must be dominated by the switch.
5516 
5517   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5518   if (!Branch || !Branch->isUnconditional())
5519     return nullptr; // Terminator must be unconditional branch.
5520 
5521   BasicBlock *Succ = Branch->getSuccessor(0);
5522 
5523   for (PHINode &PHI : Succ->phis()) {
5524     int Idx = PHI.getBasicBlockIndex(BB);
5525     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5526 
5527     Value *InValue = PHI.getIncomingValue(Idx);
5528     if (InValue != CaseValue)
5529       continue;
5530 
5531     *PhiIndex = Idx;
5532     return &PHI;
5533   }
5534 
5535   return nullptr;
5536 }
5537 
5538 /// Try to forward the condition of a switch instruction to a phi node
5539 /// dominated by the switch, if that would mean that some of the destination
5540 /// blocks of the switch can be folded away. Return true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)5541 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5542   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5543 
5544   ForwardingNodesMap ForwardingNodes;
5545   BasicBlock *SwitchBlock = SI->getParent();
5546   bool Changed = false;
5547   for (const auto &Case : SI->cases()) {
5548     ConstantInt *CaseValue = Case.getCaseValue();
5549     BasicBlock *CaseDest = Case.getCaseSuccessor();
5550 
5551     // Replace phi operands in successor blocks that are using the constant case
5552     // value rather than the switch condition variable:
5553     //   switchbb:
5554     //   switch i32 %x, label %default [
5555     //     i32 17, label %succ
5556     //   ...
5557     //   succ:
5558     //     %r = phi i32 ... [ 17, %switchbb ] ...
5559     // -->
5560     //     %r = phi i32 ... [ %x, %switchbb ] ...
5561 
5562     for (PHINode &Phi : CaseDest->phis()) {
5563       // This only works if there is exactly 1 incoming edge from the switch to
5564       // a phi. If there is >1, that means multiple cases of the switch map to 1
5565       // value in the phi, and that phi value is not the switch condition. Thus,
5566       // this transform would not make sense (the phi would be invalid because
5567       // a phi can't have different incoming values from the same block).
5568       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5569       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5570           count(Phi.blocks(), SwitchBlock) == 1) {
5571         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5572         Changed = true;
5573       }
5574     }
5575 
5576     // Collect phi nodes that are indirectly using this switch's case constants.
5577     int PhiIdx;
5578     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5579       ForwardingNodes[Phi].push_back(PhiIdx);
5580   }
5581 
5582   for (auto &ForwardingNode : ForwardingNodes) {
5583     PHINode *Phi = ForwardingNode.first;
5584     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5585     if (Indexes.size() < 2)
5586       continue;
5587 
5588     for (int Index : Indexes)
5589       Phi->setIncomingValue(Index, SI->getCondition());
5590     Changed = true;
5591   }
5592 
5593   return Changed;
5594 }
5595 
5596 /// Return true if the backend will be able to handle
5597 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C,const TargetTransformInfo & TTI)5598 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5599   if (C->isThreadDependent())
5600     return false;
5601   if (C->isDLLImportDependent())
5602     return false;
5603 
5604   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5605       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5606       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5607     return false;
5608 
5609   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5610     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5611     // materializing the array of constants.
5612     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5613     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5614       return false;
5615   }
5616 
5617   if (!TTI.shouldBuildLookupTablesForConstant(C))
5618     return false;
5619 
5620   return true;
5621 }
5622 
5623 /// If V is a Constant, return it. Otherwise, try to look up
5624 /// its constant value in ConstantPool, returning 0 if it's not there.
5625 static Constant *
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)5626 LookupConstant(Value *V,
5627                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5628   if (Constant *C = dyn_cast<Constant>(V))
5629     return C;
5630   return ConstantPool.lookup(V);
5631 }
5632 
5633 /// Try to fold instruction I into a constant. This works for
5634 /// simple instructions such as binary operations where both operands are
5635 /// constant or can be replaced by constants from the ConstantPool. Returns the
5636 /// resulting constant on success, 0 otherwise.
5637 static Constant *
ConstantFold(Instruction * I,const DataLayout & DL,const SmallDenseMap<Value *,Constant * > & ConstantPool)5638 ConstantFold(Instruction *I, const DataLayout &DL,
5639              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5640   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5641     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5642     if (!A)
5643       return nullptr;
5644     if (A->isAllOnesValue())
5645       return LookupConstant(Select->getTrueValue(), ConstantPool);
5646     if (A->isNullValue())
5647       return LookupConstant(Select->getFalseValue(), ConstantPool);
5648     return nullptr;
5649   }
5650 
5651   SmallVector<Constant *, 4> COps;
5652   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5653     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5654       COps.push_back(A);
5655     else
5656       return nullptr;
5657   }
5658 
5659   return ConstantFoldInstOperands(I, COps, DL);
5660 }
5661 
5662 /// Try to determine the resulting constant values in phi nodes
5663 /// at the common destination basic block, *CommonDest, for one of the case
5664 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5665 /// case), of a switch instruction SI.
5666 static bool
getCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout & DL,const TargetTransformInfo & TTI)5667 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5668                BasicBlock **CommonDest,
5669                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5670                const DataLayout &DL, const TargetTransformInfo &TTI) {
5671   // The block from which we enter the common destination.
5672   BasicBlock *Pred = SI->getParent();
5673 
5674   // If CaseDest is empty except for some side-effect free instructions through
5675   // which we can constant-propagate the CaseVal, continue to its successor.
5676   SmallDenseMap<Value *, Constant *> ConstantPool;
5677   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5678   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5679     if (I.isTerminator()) {
5680       // If the terminator is a simple branch, continue to the next block.
5681       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5682         return false;
5683       Pred = CaseDest;
5684       CaseDest = I.getSuccessor(0);
5685     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5686       // Instruction is side-effect free and constant.
5687 
5688       // If the instruction has uses outside this block or a phi node slot for
5689       // the block, it is not safe to bypass the instruction since it would then
5690       // no longer dominate all its uses.
5691       for (auto &Use : I.uses()) {
5692         User *User = Use.getUser();
5693         if (Instruction *I = dyn_cast<Instruction>(User))
5694           if (I->getParent() == CaseDest)
5695             continue;
5696         if (PHINode *Phi = dyn_cast<PHINode>(User))
5697           if (Phi->getIncomingBlock(Use) == CaseDest)
5698             continue;
5699         return false;
5700       }
5701 
5702       ConstantPool.insert(std::make_pair(&I, C));
5703     } else {
5704       break;
5705     }
5706   }
5707 
5708   // If we did not have a CommonDest before, use the current one.
5709   if (!*CommonDest)
5710     *CommonDest = CaseDest;
5711   // If the destination isn't the common one, abort.
5712   if (CaseDest != *CommonDest)
5713     return false;
5714 
5715   // Get the values for this case from phi nodes in the destination block.
5716   for (PHINode &PHI : (*CommonDest)->phis()) {
5717     int Idx = PHI.getBasicBlockIndex(Pred);
5718     if (Idx == -1)
5719       continue;
5720 
5721     Constant *ConstVal =
5722         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5723     if (!ConstVal)
5724       return false;
5725 
5726     // Be conservative about which kinds of constants we support.
5727     if (!ValidLookupTableConstant(ConstVal, TTI))
5728       return false;
5729 
5730     Res.push_back(std::make_pair(&PHI, ConstVal));
5731   }
5732 
5733   return Res.size() > 0;
5734 }
5735 
5736 // Helper function used to add CaseVal to the list of cases that generate
5737 // Result. Returns the updated number of cases that generate this result.
mapCaseToResult(ConstantInt * CaseVal,SwitchCaseResultVectorTy & UniqueResults,Constant * Result)5738 static size_t mapCaseToResult(ConstantInt *CaseVal,
5739                               SwitchCaseResultVectorTy &UniqueResults,
5740                               Constant *Result) {
5741   for (auto &I : UniqueResults) {
5742     if (I.first == Result) {
5743       I.second.push_back(CaseVal);
5744       return I.second.size();
5745     }
5746   }
5747   UniqueResults.push_back(
5748       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5749   return 1;
5750 }
5751 
5752 // Helper function that initializes a map containing
5753 // results for the PHI node of the common destination block for a switch
5754 // instruction. Returns false if multiple PHI nodes have been found or if
5755 // there is not a common destination block for the switch.
initializeUniqueCases(SwitchInst * SI,PHINode * & PHI,BasicBlock * & CommonDest,SwitchCaseResultVectorTy & UniqueResults,Constant * & DefaultResult,const DataLayout & DL,const TargetTransformInfo & TTI,uintptr_t MaxUniqueResults)5756 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5757                                   BasicBlock *&CommonDest,
5758                                   SwitchCaseResultVectorTy &UniqueResults,
5759                                   Constant *&DefaultResult,
5760                                   const DataLayout &DL,
5761                                   const TargetTransformInfo &TTI,
5762                                   uintptr_t MaxUniqueResults) {
5763   for (const auto &I : SI->cases()) {
5764     ConstantInt *CaseVal = I.getCaseValue();
5765 
5766     // Resulting value at phi nodes for this case value.
5767     SwitchCaseResultsTy Results;
5768     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5769                         DL, TTI))
5770       return false;
5771 
5772     // Only one value per case is permitted.
5773     if (Results.size() > 1)
5774       return false;
5775 
5776     // Add the case->result mapping to UniqueResults.
5777     const size_t NumCasesForResult =
5778         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5779 
5780     // Early out if there are too many cases for this result.
5781     if (NumCasesForResult > MaxSwitchCasesPerResult)
5782       return false;
5783 
5784     // Early out if there are too many unique results.
5785     if (UniqueResults.size() > MaxUniqueResults)
5786       return false;
5787 
5788     // Check the PHI consistency.
5789     if (!PHI)
5790       PHI = Results[0].first;
5791     else if (PHI != Results[0].first)
5792       return false;
5793   }
5794   // Find the default result value.
5795   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5796   BasicBlock *DefaultDest = SI->getDefaultDest();
5797   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5798                  DL, TTI);
5799   // If the default value is not found abort unless the default destination
5800   // is unreachable.
5801   DefaultResult =
5802       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5803   if ((!DefaultResult &&
5804        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5805     return false;
5806 
5807   return true;
5808 }
5809 
5810 // Helper function that checks if it is possible to transform a switch with only
5811 // two cases (or two cases + default) that produces a result into a select.
5812 // TODO: Handle switches with more than 2 cases that map to the same result.
foldSwitchToSelect(const SwitchCaseResultVectorTy & ResultVector,Constant * DefaultResult,Value * Condition,IRBuilder<> & Builder)5813 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5814                                  Constant *DefaultResult, Value *Condition,
5815                                  IRBuilder<> &Builder) {
5816   // If we are selecting between only two cases transform into a simple
5817   // select or a two-way select if default is possible.
5818   // Example:
5819   // switch (a) {                  %0 = icmp eq i32 %a, 10
5820   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
5821   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
5822   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
5823   // }
5824   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5825       ResultVector[1].second.size() == 1) {
5826     ConstantInt *FirstCase = ResultVector[0].second[0];
5827     ConstantInt *SecondCase = ResultVector[1].second[0];
5828     Value *SelectValue = ResultVector[1].first;
5829     if (DefaultResult) {
5830       Value *ValueCompare =
5831           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5832       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5833                                          DefaultResult, "switch.select");
5834     }
5835     Value *ValueCompare =
5836         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5837     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5838                                 SelectValue, "switch.select");
5839   }
5840 
5841   // Handle the degenerate case where two cases have the same result value.
5842   if (ResultVector.size() == 1 && DefaultResult) {
5843     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5844     unsigned CaseCount = CaseValues.size();
5845     // n bits group cases map to the same result:
5846     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
5847     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
5848     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5849     if (isPowerOf2_32(CaseCount)) {
5850       ConstantInt *MinCaseVal = CaseValues[0];
5851       // Find mininal value.
5852       for (auto *Case : CaseValues)
5853         if (Case->getValue().slt(MinCaseVal->getValue()))
5854           MinCaseVal = Case;
5855 
5856       // Mark the bits case number touched.
5857       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
5858       for (auto *Case : CaseValues)
5859         BitMask |= (Case->getValue() - MinCaseVal->getValue());
5860 
5861       // Check if cases with the same result can cover all number
5862       // in touched bits.
5863       if (BitMask.countPopulation() == Log2_32(CaseCount)) {
5864         if (!MinCaseVal->isNullValue())
5865           Condition = Builder.CreateSub(Condition, MinCaseVal);
5866         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
5867         Value *Cmp = Builder.CreateICmpEQ(
5868             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
5869         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5870       }
5871     }
5872 
5873     // Handle the degenerate case where two cases have the same value.
5874     if (CaseValues.size() == 2) {
5875       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
5876                                          "switch.selectcmp.case1");
5877       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
5878                                          "switch.selectcmp.case2");
5879       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5880       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5881     }
5882   }
5883 
5884   return nullptr;
5885 }
5886 
5887 // Helper function to cleanup a switch instruction that has been converted into
5888 // a select, fixing up PHI nodes and basic blocks.
removeSwitchAfterSelectFold(SwitchInst * SI,PHINode * PHI,Value * SelectValue,IRBuilder<> & Builder,DomTreeUpdater * DTU)5889 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
5890                                         Value *SelectValue,
5891                                         IRBuilder<> &Builder,
5892                                         DomTreeUpdater *DTU) {
5893   std::vector<DominatorTree::UpdateType> Updates;
5894 
5895   BasicBlock *SelectBB = SI->getParent();
5896   BasicBlock *DestBB = PHI->getParent();
5897 
5898   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5899     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5900   Builder.CreateBr(DestBB);
5901 
5902   // Remove the switch.
5903 
5904   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5905     PHI->removeIncomingValue(SelectBB);
5906   PHI->addIncoming(SelectValue, SelectBB);
5907 
5908   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5909   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5910     BasicBlock *Succ = SI->getSuccessor(i);
5911 
5912     if (Succ == DestBB)
5913       continue;
5914     Succ->removePredecessor(SelectBB);
5915     if (DTU && RemovedSuccessors.insert(Succ).second)
5916       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5917   }
5918   SI->eraseFromParent();
5919   if (DTU)
5920     DTU->applyUpdates(Updates);
5921 }
5922 
5923 /// If a switch is only used to initialize one or more phi nodes in a common
5924 /// successor block with only two different constant values, try to replace the
5925 /// switch with a select. Returns true if the fold was made.
trySwitchToSelect(SwitchInst * SI,IRBuilder<> & Builder,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)5926 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5927                               DomTreeUpdater *DTU, const DataLayout &DL,
5928                               const TargetTransformInfo &TTI) {
5929   Value *const Cond = SI->getCondition();
5930   PHINode *PHI = nullptr;
5931   BasicBlock *CommonDest = nullptr;
5932   Constant *DefaultResult;
5933   SwitchCaseResultVectorTy UniqueResults;
5934   // Collect all the cases that will deliver the same value from the switch.
5935   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5936                              DL, TTI, /*MaxUniqueResults*/ 2))
5937     return false;
5938 
5939   assert(PHI != nullptr && "PHI for value select not found");
5940   Builder.SetInsertPoint(SI);
5941   Value *SelectValue =
5942       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
5943   if (!SelectValue)
5944     return false;
5945 
5946   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
5947   return true;
5948 }
5949 
5950 namespace {
5951 
5952 /// This class represents a lookup table that can be used to replace a switch.
5953 class SwitchLookupTable {
5954 public:
5955   /// Create a lookup table to use as a switch replacement with the contents
5956   /// of Values, using DefaultValue to fill any holes in the table.
5957   SwitchLookupTable(
5958       Module &M, uint64_t TableSize, ConstantInt *Offset,
5959       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5960       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5961 
5962   /// Build instructions with Builder to retrieve the value at
5963   /// the position given by Index in the lookup table.
5964   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5965 
5966   /// Return true if a table with TableSize elements of
5967   /// type ElementType would fit in a target-legal register.
5968   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5969                                  Type *ElementType);
5970 
5971 private:
5972   // Depending on the contents of the table, it can be represented in
5973   // different ways.
5974   enum {
5975     // For tables where each element contains the same value, we just have to
5976     // store that single value and return it for each lookup.
5977     SingleValueKind,
5978 
5979     // For tables where there is a linear relationship between table index
5980     // and values. We calculate the result with a simple multiplication
5981     // and addition instead of a table lookup.
5982     LinearMapKind,
5983 
5984     // For small tables with integer elements, we can pack them into a bitmap
5985     // that fits into a target-legal register. Values are retrieved by
5986     // shift and mask operations.
5987     BitMapKind,
5988 
5989     // The table is stored as an array of values. Values are retrieved by load
5990     // instructions from the table.
5991     ArrayKind
5992   } Kind;
5993 
5994   // For SingleValueKind, this is the single value.
5995   Constant *SingleValue = nullptr;
5996 
5997   // For BitMapKind, this is the bitmap.
5998   ConstantInt *BitMap = nullptr;
5999   IntegerType *BitMapElementTy = nullptr;
6000 
6001   // For LinearMapKind, these are the constants used to derive the value.
6002   ConstantInt *LinearOffset = nullptr;
6003   ConstantInt *LinearMultiplier = nullptr;
6004 
6005   // For ArrayKind, this is the array.
6006   GlobalVariable *Array = nullptr;
6007 };
6008 
6009 } // end anonymous namespace
6010 
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout & DL,const StringRef & FuncName)6011 SwitchLookupTable::SwitchLookupTable(
6012     Module &M, uint64_t TableSize, ConstantInt *Offset,
6013     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6014     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6015   assert(Values.size() && "Can't build lookup table without values!");
6016   assert(TableSize >= Values.size() && "Can't fit values in table!");
6017 
6018   // If all values in the table are equal, this is that value.
6019   SingleValue = Values.begin()->second;
6020 
6021   Type *ValueType = Values.begin()->second->getType();
6022 
6023   // Build up the table contents.
6024   SmallVector<Constant *, 64> TableContents(TableSize);
6025   for (size_t I = 0, E = Values.size(); I != E; ++I) {
6026     ConstantInt *CaseVal = Values[I].first;
6027     Constant *CaseRes = Values[I].second;
6028     assert(CaseRes->getType() == ValueType);
6029 
6030     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6031     TableContents[Idx] = CaseRes;
6032 
6033     if (CaseRes != SingleValue)
6034       SingleValue = nullptr;
6035   }
6036 
6037   // Fill in any holes in the table with the default result.
6038   if (Values.size() < TableSize) {
6039     assert(DefaultValue &&
6040            "Need a default value to fill the lookup table holes.");
6041     assert(DefaultValue->getType() == ValueType);
6042     for (uint64_t I = 0; I < TableSize; ++I) {
6043       if (!TableContents[I])
6044         TableContents[I] = DefaultValue;
6045     }
6046 
6047     if (DefaultValue != SingleValue)
6048       SingleValue = nullptr;
6049   }
6050 
6051   // If each element in the table contains the same value, we only need to store
6052   // that single value.
6053   if (SingleValue) {
6054     Kind = SingleValueKind;
6055     return;
6056   }
6057 
6058   // Check if we can derive the value with a linear transformation from the
6059   // table index.
6060   if (isa<IntegerType>(ValueType)) {
6061     bool LinearMappingPossible = true;
6062     APInt PrevVal;
6063     APInt DistToPrev;
6064     assert(TableSize >= 2 && "Should be a SingleValue table.");
6065     // Check if there is the same distance between two consecutive values.
6066     for (uint64_t I = 0; I < TableSize; ++I) {
6067       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6068       if (!ConstVal) {
6069         // This is an undef. We could deal with it, but undefs in lookup tables
6070         // are very seldom. It's probably not worth the additional complexity.
6071         LinearMappingPossible = false;
6072         break;
6073       }
6074       const APInt &Val = ConstVal->getValue();
6075       if (I != 0) {
6076         APInt Dist = Val - PrevVal;
6077         if (I == 1) {
6078           DistToPrev = Dist;
6079         } else if (Dist != DistToPrev) {
6080           LinearMappingPossible = false;
6081           break;
6082         }
6083       }
6084       PrevVal = Val;
6085     }
6086     if (LinearMappingPossible) {
6087       LinearOffset = cast<ConstantInt>(TableContents[0]);
6088       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6089       Kind = LinearMapKind;
6090       ++NumLinearMaps;
6091       return;
6092     }
6093   }
6094 
6095   // If the type is integer and the table fits in a register, build a bitmap.
6096   if (WouldFitInRegister(DL, TableSize, ValueType)) {
6097     IntegerType *IT = cast<IntegerType>(ValueType);
6098     APInt TableInt(TableSize * IT->getBitWidth(), 0);
6099     for (uint64_t I = TableSize; I > 0; --I) {
6100       TableInt <<= IT->getBitWidth();
6101       // Insert values into the bitmap. Undef values are set to zero.
6102       if (!isa<UndefValue>(TableContents[I - 1])) {
6103         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6104         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6105       }
6106     }
6107     BitMap = ConstantInt::get(M.getContext(), TableInt);
6108     BitMapElementTy = IT;
6109     Kind = BitMapKind;
6110     ++NumBitMaps;
6111     return;
6112   }
6113 
6114   // Store the table in an array.
6115   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6116   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6117 
6118   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6119                              GlobalVariable::PrivateLinkage, Initializer,
6120                              "switch.table." + FuncName);
6121   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6122   // Set the alignment to that of an array items. We will be only loading one
6123   // value out of it.
6124   Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6125   Kind = ArrayKind;
6126 }
6127 
BuildLookup(Value * Index,IRBuilder<> & Builder)6128 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
6129   switch (Kind) {
6130   case SingleValueKind:
6131     return SingleValue;
6132   case LinearMapKind: {
6133     // Derive the result value from the input value.
6134     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6135                                           false, "switch.idx.cast");
6136     if (!LinearMultiplier->isOne())
6137       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
6138     if (!LinearOffset->isZero())
6139       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
6140     return Result;
6141   }
6142   case BitMapKind: {
6143     // Type of the bitmap (e.g. i59).
6144     IntegerType *MapTy = BitMap->getType();
6145 
6146     // Cast Index to the same type as the bitmap.
6147     // Note: The Index is <= the number of elements in the table, so
6148     // truncating it to the width of the bitmask is safe.
6149     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6150 
6151     // Multiply the shift amount by the element width.
6152     ShiftAmt = Builder.CreateMul(
6153         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6154         "switch.shiftamt");
6155 
6156     // Shift down.
6157     Value *DownShifted =
6158         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6159     // Mask off.
6160     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6161   }
6162   case ArrayKind: {
6163     // Make sure the table index will not overflow when treated as signed.
6164     IntegerType *IT = cast<IntegerType>(Index->getType());
6165     uint64_t TableSize =
6166         Array->getInitializer()->getType()->getArrayNumElements();
6167     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6168       Index = Builder.CreateZExt(
6169           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6170           "switch.tableidx.zext");
6171 
6172     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6173     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6174                                            GEPIndices, "switch.gep");
6175     return Builder.CreateLoad(
6176         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6177         "switch.load");
6178   }
6179   }
6180   llvm_unreachable("Unknown lookup table kind!");
6181 }
6182 
WouldFitInRegister(const DataLayout & DL,uint64_t TableSize,Type * ElementType)6183 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6184                                            uint64_t TableSize,
6185                                            Type *ElementType) {
6186   auto *IT = dyn_cast<IntegerType>(ElementType);
6187   if (!IT)
6188     return false;
6189   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6190   // are <= 15, we could try to narrow the type.
6191 
6192   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6193   if (TableSize >= UINT_MAX / IT->getBitWidth())
6194     return false;
6195   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6196 }
6197 
isTypeLegalForLookupTable(Type * Ty,const TargetTransformInfo & TTI,const DataLayout & DL)6198 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6199                                       const DataLayout &DL) {
6200   // Allow any legal type.
6201   if (TTI.isTypeLegal(Ty))
6202     return true;
6203 
6204   auto *IT = dyn_cast<IntegerType>(Ty);
6205   if (!IT)
6206     return false;
6207 
6208   // Also allow power of 2 integer types that have at least 8 bits and fit in
6209   // a register. These types are common in frontend languages and targets
6210   // usually support loads of these types.
6211   // TODO: We could relax this to any integer that fits in a register and rely
6212   // on ABI alignment and padding in the table to allow the load to be widened.
6213   // Or we could widen the constants and truncate the load.
6214   unsigned BitWidth = IT->getBitWidth();
6215   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6216          DL.fitsInLegalInteger(IT->getBitWidth());
6217 }
6218 
isSwitchDense(uint64_t NumCases,uint64_t CaseRange)6219 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6220   // 40% is the default density for building a jump table in optsize/minsize
6221   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6222   // function was based on.
6223   const uint64_t MinDensity = 40;
6224 
6225   if (CaseRange >= UINT64_MAX / 100)
6226     return false; // Avoid multiplication overflows below.
6227 
6228   return NumCases * 100 >= CaseRange * MinDensity;
6229 }
6230 
isSwitchDense(ArrayRef<int64_t> Values)6231 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6232   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6233   uint64_t Range = Diff + 1;
6234   if (Range < Diff)
6235     return false; // Overflow.
6236 
6237   return isSwitchDense(Values.size(), Range);
6238 }
6239 
6240 /// Determine whether a lookup table should be built for this switch, based on
6241 /// the number of cases, size of the table, and the types of the results.
6242 // TODO: We could support larger than legal types by limiting based on the
6243 // number of loads required and/or table size. If the constants are small we
6244 // could use smaller table entries and extend after the load.
6245 static bool
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout & DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)6246 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6247                        const TargetTransformInfo &TTI, const DataLayout &DL,
6248                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6249   if (SI->getNumCases() > TableSize)
6250     return false; // TableSize overflowed.
6251 
6252   bool AllTablesFitInRegister = true;
6253   bool HasIllegalType = false;
6254   for (const auto &I : ResultTypes) {
6255     Type *Ty = I.second;
6256 
6257     // Saturate this flag to true.
6258     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6259 
6260     // Saturate this flag to false.
6261     AllTablesFitInRegister =
6262         AllTablesFitInRegister &&
6263         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6264 
6265     // If both flags saturate, we're done. NOTE: This *only* works with
6266     // saturating flags, and all flags have to saturate first due to the
6267     // non-deterministic behavior of iterating over a dense map.
6268     if (HasIllegalType && !AllTablesFitInRegister)
6269       break;
6270   }
6271 
6272   // If each table would fit in a register, we should build it anyway.
6273   if (AllTablesFitInRegister)
6274     return true;
6275 
6276   // Don't build a table that doesn't fit in-register if it has illegal types.
6277   if (HasIllegalType)
6278     return false;
6279 
6280   return isSwitchDense(SI->getNumCases(), TableSize);
6281 }
6282 
ShouldUseSwitchConditionAsTableIndex(ConstantInt & MinCaseVal,const ConstantInt & MaxCaseVal,bool HasDefaultResults,const SmallDenseMap<PHINode *,Type * > & ResultTypes,const DataLayout & DL,const TargetTransformInfo & TTI)6283 static bool ShouldUseSwitchConditionAsTableIndex(
6284     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6285     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6286     const DataLayout &DL, const TargetTransformInfo &TTI) {
6287   if (MinCaseVal.isNullValue())
6288     return true;
6289   if (MinCaseVal.isNegative() ||
6290       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6291       !HasDefaultResults)
6292     return false;
6293   return all_of(ResultTypes, [&](const auto &KV) {
6294     return SwitchLookupTable::WouldFitInRegister(
6295         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6296         KV.second /* ResultType */);
6297   });
6298 }
6299 
6300 /// Try to reuse the switch table index compare. Following pattern:
6301 /// \code
6302 ///     if (idx < tablesize)
6303 ///        r = table[idx]; // table does not contain default_value
6304 ///     else
6305 ///        r = default_value;
6306 ///     if (r != default_value)
6307 ///        ...
6308 /// \endcode
6309 /// Is optimized to:
6310 /// \code
6311 ///     cond = idx < tablesize;
6312 ///     if (cond)
6313 ///        r = table[idx];
6314 ///     else
6315 ///        r = default_value;
6316 ///     if (cond)
6317 ///        ...
6318 /// \endcode
6319 /// Jump threading will then eliminate the second if(cond).
reuseTableCompare(User * PhiUser,BasicBlock * PhiBlock,BranchInst * RangeCheckBranch,Constant * DefaultValue,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values)6320 static void reuseTableCompare(
6321     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6322     Constant *DefaultValue,
6323     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6324   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6325   if (!CmpInst)
6326     return;
6327 
6328   // We require that the compare is in the same block as the phi so that jump
6329   // threading can do its work afterwards.
6330   if (CmpInst->getParent() != PhiBlock)
6331     return;
6332 
6333   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6334   if (!CmpOp1)
6335     return;
6336 
6337   Value *RangeCmp = RangeCheckBranch->getCondition();
6338   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6339   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6340 
6341   // Check if the compare with the default value is constant true or false.
6342   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6343                                                  DefaultValue, CmpOp1, true);
6344   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6345     return;
6346 
6347   // Check if the compare with the case values is distinct from the default
6348   // compare result.
6349   for (auto ValuePair : Values) {
6350     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6351                                                 ValuePair.second, CmpOp1, true);
6352     if (!CaseConst || CaseConst == DefaultConst ||
6353         (CaseConst != TrueConst && CaseConst != FalseConst))
6354       return;
6355   }
6356 
6357   // Check if the branch instruction dominates the phi node. It's a simple
6358   // dominance check, but sufficient for our needs.
6359   // Although this check is invariant in the calling loops, it's better to do it
6360   // at this late stage. Practically we do it at most once for a switch.
6361   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6362   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6363     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6364       return;
6365   }
6366 
6367   if (DefaultConst == FalseConst) {
6368     // The compare yields the same result. We can replace it.
6369     CmpInst->replaceAllUsesWith(RangeCmp);
6370     ++NumTableCmpReuses;
6371   } else {
6372     // The compare yields the same result, just inverted. We can replace it.
6373     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6374         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6375         RangeCheckBranch);
6376     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6377     ++NumTableCmpReuses;
6378   }
6379 }
6380 
6381 /// If the switch is only used to initialize one or more phi nodes in a common
6382 /// successor block with different constant values, replace the switch with
6383 /// lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)6384 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6385                                 DomTreeUpdater *DTU, const DataLayout &DL,
6386                                 const TargetTransformInfo &TTI) {
6387   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6388 
6389   BasicBlock *BB = SI->getParent();
6390   Function *Fn = BB->getParent();
6391   // Only build lookup table when we have a target that supports it or the
6392   // attribute is not set.
6393   if (!TTI.shouldBuildLookupTables() ||
6394       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6395     return false;
6396 
6397   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6398   // split off a dense part and build a lookup table for that.
6399 
6400   // FIXME: This creates arrays of GEPs to constant strings, which means each
6401   // GEP needs a runtime relocation in PIC code. We should just build one big
6402   // string and lookup indices into that.
6403 
6404   // Ignore switches with less than three cases. Lookup tables will not make
6405   // them faster, so we don't analyze them.
6406   if (SI->getNumCases() < 3)
6407     return false;
6408 
6409   // Figure out the corresponding result for each case value and phi node in the
6410   // common destination, as well as the min and max case values.
6411   assert(!SI->cases().empty());
6412   SwitchInst::CaseIt CI = SI->case_begin();
6413   ConstantInt *MinCaseVal = CI->getCaseValue();
6414   ConstantInt *MaxCaseVal = CI->getCaseValue();
6415 
6416   BasicBlock *CommonDest = nullptr;
6417 
6418   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6419   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6420 
6421   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6422   SmallDenseMap<PHINode *, Type *> ResultTypes;
6423   SmallVector<PHINode *, 4> PHIs;
6424 
6425   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6426     ConstantInt *CaseVal = CI->getCaseValue();
6427     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6428       MinCaseVal = CaseVal;
6429     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6430       MaxCaseVal = CaseVal;
6431 
6432     // Resulting value at phi nodes for this case value.
6433     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6434     ResultsTy Results;
6435     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6436                         Results, DL, TTI))
6437       return false;
6438 
6439     // Append the result from this case to the list for each phi.
6440     for (const auto &I : Results) {
6441       PHINode *PHI = I.first;
6442       Constant *Value = I.second;
6443       if (!ResultLists.count(PHI))
6444         PHIs.push_back(PHI);
6445       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6446     }
6447   }
6448 
6449   // Keep track of the result types.
6450   for (PHINode *PHI : PHIs) {
6451     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6452   }
6453 
6454   uint64_t NumResults = ResultLists[PHIs[0]].size();
6455 
6456   // If the table has holes, we need a constant result for the default case
6457   // or a bitmask that fits in a register.
6458   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6459   bool HasDefaultResults =
6460       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6461                      DefaultResultsList, DL, TTI);
6462 
6463   for (const auto &I : DefaultResultsList) {
6464     PHINode *PHI = I.first;
6465     Constant *Result = I.second;
6466     DefaultResults[PHI] = Result;
6467   }
6468 
6469   bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex(
6470       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6471   uint64_t TableSize;
6472   if (UseSwitchConditionAsTableIndex)
6473     TableSize = MaxCaseVal->getLimitedValue() + 1;
6474   else
6475     TableSize =
6476         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6477 
6478   bool TableHasHoles = (NumResults < TableSize);
6479   bool NeedMask = (TableHasHoles && !HasDefaultResults);
6480   if (NeedMask) {
6481     // As an extra penalty for the validity test we require more cases.
6482     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6483       return false;
6484     if (!DL.fitsInLegalInteger(TableSize))
6485       return false;
6486   }
6487 
6488   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6489     return false;
6490 
6491   std::vector<DominatorTree::UpdateType> Updates;
6492 
6493   // Create the BB that does the lookups.
6494   Module &Mod = *CommonDest->getParent()->getParent();
6495   BasicBlock *LookupBB = BasicBlock::Create(
6496       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6497 
6498   // Compute the table index value.
6499   Builder.SetInsertPoint(SI);
6500   Value *TableIndex;
6501   ConstantInt *TableIndexOffset;
6502   if (UseSwitchConditionAsTableIndex) {
6503     TableIndexOffset = ConstantInt::get(MaxCaseVal->getType(), 0);
6504     TableIndex = SI->getCondition();
6505   } else {
6506     TableIndexOffset = MinCaseVal;
6507     TableIndex =
6508         Builder.CreateSub(SI->getCondition(), TableIndexOffset, "switch.tableidx");
6509   }
6510 
6511   // Compute the maximum table size representable by the integer type we are
6512   // switching upon.
6513   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6514   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6515   assert(MaxTableSize >= TableSize &&
6516          "It is impossible for a switch to have more entries than the max "
6517          "representable value of its input integer type's size.");
6518 
6519   // If the default destination is unreachable, or if the lookup table covers
6520   // all values of the conditional variable, branch directly to the lookup table
6521   // BB. Otherwise, check that the condition is within the case range.
6522   const bool DefaultIsReachable =
6523       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6524   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6525   BranchInst *RangeCheckBranch = nullptr;
6526 
6527   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6528     Builder.CreateBr(LookupBB);
6529     if (DTU)
6530       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6531     // Note: We call removeProdecessor later since we need to be able to get the
6532     // PHI value for the default case in case we're using a bit mask.
6533   } else {
6534     Value *Cmp = Builder.CreateICmpULT(
6535         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6536     RangeCheckBranch =
6537         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6538     if (DTU)
6539       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6540   }
6541 
6542   // Populate the BB that does the lookups.
6543   Builder.SetInsertPoint(LookupBB);
6544 
6545   if (NeedMask) {
6546     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6547     // re-purposed to do the hole check, and we create a new LookupBB.
6548     BasicBlock *MaskBB = LookupBB;
6549     MaskBB->setName("switch.hole_check");
6550     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6551                                   CommonDest->getParent(), CommonDest);
6552 
6553     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6554     // unnecessary illegal types.
6555     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6556     APInt MaskInt(TableSizePowOf2, 0);
6557     APInt One(TableSizePowOf2, 1);
6558     // Build bitmask; fill in a 1 bit for every case.
6559     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6560     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6561       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
6562                          .getLimitedValue();
6563       MaskInt |= One << Idx;
6564     }
6565     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6566 
6567     // Get the TableIndex'th bit of the bitmask.
6568     // If this bit is 0 (meaning hole) jump to the default destination,
6569     // else continue with table lookup.
6570     IntegerType *MapTy = TableMask->getType();
6571     Value *MaskIndex =
6572         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6573     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6574     Value *LoBit = Builder.CreateTrunc(
6575         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6576     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6577     if (DTU) {
6578       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6579       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6580     }
6581     Builder.SetInsertPoint(LookupBB);
6582     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6583   }
6584 
6585   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6586     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6587     // do not delete PHINodes here.
6588     SI->getDefaultDest()->removePredecessor(BB,
6589                                             /*KeepOneInputPHIs=*/true);
6590     if (DTU)
6591       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6592   }
6593 
6594   for (PHINode *PHI : PHIs) {
6595     const ResultListTy &ResultList = ResultLists[PHI];
6596 
6597     // If using a bitmask, use any value to fill the lookup table holes.
6598     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6599     StringRef FuncName = Fn->getName();
6600     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
6601                             DL, FuncName);
6602 
6603     Value *Result = Table.BuildLookup(TableIndex, Builder);
6604 
6605     // Do a small peephole optimization: re-use the switch table compare if
6606     // possible.
6607     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6608       BasicBlock *PhiBlock = PHI->getParent();
6609       // Search for compare instructions which use the phi.
6610       for (auto *User : PHI->users()) {
6611         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6612       }
6613     }
6614 
6615     PHI->addIncoming(Result, LookupBB);
6616   }
6617 
6618   Builder.CreateBr(CommonDest);
6619   if (DTU)
6620     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6621 
6622   // Remove the switch.
6623   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6624   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6625     BasicBlock *Succ = SI->getSuccessor(i);
6626 
6627     if (Succ == SI->getDefaultDest())
6628       continue;
6629     Succ->removePredecessor(BB);
6630     if (DTU && RemovedSuccessors.insert(Succ).second)
6631       Updates.push_back({DominatorTree::Delete, BB, Succ});
6632   }
6633   SI->eraseFromParent();
6634 
6635   if (DTU)
6636     DTU->applyUpdates(Updates);
6637 
6638   ++NumLookupTables;
6639   if (NeedMask)
6640     ++NumLookupTablesHoles;
6641   return true;
6642 }
6643 
6644 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6645 /// of cases.
6646 ///
6647 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6648 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6649 ///
6650 /// This converts a sparse switch into a dense switch which allows better
6651 /// lowering and could also allow transforming into a lookup table.
ReduceSwitchRange(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)6652 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6653                               const DataLayout &DL,
6654                               const TargetTransformInfo &TTI) {
6655   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6656   if (CondTy->getIntegerBitWidth() > 64 ||
6657       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6658     return false;
6659   // Only bother with this optimization if there are more than 3 switch cases;
6660   // SDAG will only bother creating jump tables for 4 or more cases.
6661   if (SI->getNumCases() < 4)
6662     return false;
6663 
6664   // This transform is agnostic to the signedness of the input or case values. We
6665   // can treat the case values as signed or unsigned. We can optimize more common
6666   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6667   // as signed.
6668   SmallVector<int64_t,4> Values;
6669   for (const auto &C : SI->cases())
6670     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6671   llvm::sort(Values);
6672 
6673   // If the switch is already dense, there's nothing useful to do here.
6674   if (isSwitchDense(Values))
6675     return false;
6676 
6677   // First, transform the values such that they start at zero and ascend.
6678   int64_t Base = Values[0];
6679   for (auto &V : Values)
6680     V -= (uint64_t)(Base);
6681 
6682   // Now we have signed numbers that have been shifted so that, given enough
6683   // precision, there are no negative values. Since the rest of the transform
6684   // is bitwise only, we switch now to an unsigned representation.
6685 
6686   // This transform can be done speculatively because it is so cheap - it
6687   // results in a single rotate operation being inserted.
6688   // FIXME: It's possible that optimizing a switch on powers of two might also
6689   // be beneficial - flag values are often powers of two and we could use a CLZ
6690   // as the key function.
6691 
6692   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6693   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6694   // less than 64.
6695   unsigned Shift = 64;
6696   for (auto &V : Values)
6697     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6698   assert(Shift < 64);
6699   if (Shift > 0)
6700     for (auto &V : Values)
6701       V = (int64_t)((uint64_t)V >> Shift);
6702 
6703   if (!isSwitchDense(Values))
6704     // Transform didn't create a dense switch.
6705     return false;
6706 
6707   // The obvious transform is to shift the switch condition right and emit a
6708   // check that the condition actually cleanly divided by GCD, i.e.
6709   //   C & (1 << Shift - 1) == 0
6710   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6711   //
6712   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6713   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6714   // are nonzero then the switch condition will be very large and will hit the
6715   // default case.
6716 
6717   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6718   Builder.SetInsertPoint(SI);
6719   auto *ShiftC = ConstantInt::get(Ty, Shift);
6720   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6721   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6722   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6723   auto *Rot = Builder.CreateOr(LShr, Shl);
6724   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6725 
6726   for (auto Case : SI->cases()) {
6727     auto *Orig = Case.getCaseValue();
6728     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6729     Case.setValue(
6730         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6731   }
6732   return true;
6733 }
6734 
simplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)6735 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6736   BasicBlock *BB = SI->getParent();
6737 
6738   if (isValueEqualityComparison(SI)) {
6739     // If we only have one predecessor, and if it is a branch on this value,
6740     // see if that predecessor totally determines the outcome of this switch.
6741     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6742       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6743         return requestResimplify();
6744 
6745     Value *Cond = SI->getCondition();
6746     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6747       if (SimplifySwitchOnSelect(SI, Select))
6748         return requestResimplify();
6749 
6750     // If the block only contains the switch, see if we can fold the block
6751     // away into any preds.
6752     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6753       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6754         return requestResimplify();
6755   }
6756 
6757   // Try to transform the switch into an icmp and a branch.
6758   // The conversion from switch to comparison may lose information on
6759   // impossible switch values, so disable it early in the pipeline.
6760   if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
6761     return requestResimplify();
6762 
6763   // Remove unreachable cases.
6764   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6765     return requestResimplify();
6766 
6767   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
6768     return requestResimplify();
6769 
6770   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6771     return requestResimplify();
6772 
6773   // The conversion from switch to lookup tables results in difficult-to-analyze
6774   // code and makes pruning branches much harder. This is a problem if the
6775   // switch expression itself can still be restricted as a result of inlining or
6776   // CVP. Therefore, only apply this transformation during late stages of the
6777   // optimisation pipeline.
6778   if (Options.ConvertSwitchToLookupTable &&
6779       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6780     return requestResimplify();
6781 
6782   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6783     return requestResimplify();
6784 
6785   return false;
6786 }
6787 
simplifyIndirectBr(IndirectBrInst * IBI)6788 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6789   BasicBlock *BB = IBI->getParent();
6790   bool Changed = false;
6791 
6792   // Eliminate redundant destinations.
6793   SmallPtrSet<Value *, 8> Succs;
6794   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6795   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6796     BasicBlock *Dest = IBI->getDestination(i);
6797     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6798       if (!Dest->hasAddressTaken())
6799         RemovedSuccs.insert(Dest);
6800       Dest->removePredecessor(BB);
6801       IBI->removeDestination(i);
6802       --i;
6803       --e;
6804       Changed = true;
6805     }
6806   }
6807 
6808   if (DTU) {
6809     std::vector<DominatorTree::UpdateType> Updates;
6810     Updates.reserve(RemovedSuccs.size());
6811     for (auto *RemovedSucc : RemovedSuccs)
6812       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6813     DTU->applyUpdates(Updates);
6814   }
6815 
6816   if (IBI->getNumDestinations() == 0) {
6817     // If the indirectbr has no successors, change it to unreachable.
6818     new UnreachableInst(IBI->getContext(), IBI);
6819     EraseTerminatorAndDCECond(IBI);
6820     return true;
6821   }
6822 
6823   if (IBI->getNumDestinations() == 1) {
6824     // If the indirectbr has one successor, change it to a direct branch.
6825     BranchInst::Create(IBI->getDestination(0), IBI);
6826     EraseTerminatorAndDCECond(IBI);
6827     return true;
6828   }
6829 
6830   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6831     if (SimplifyIndirectBrOnSelect(IBI, SI))
6832       return requestResimplify();
6833   }
6834   return Changed;
6835 }
6836 
6837 /// Given an block with only a single landing pad and a unconditional branch
6838 /// try to find another basic block which this one can be merged with.  This
6839 /// handles cases where we have multiple invokes with unique landing pads, but
6840 /// a shared handler.
6841 ///
6842 /// We specifically choose to not worry about merging non-empty blocks
6843 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6844 /// practice, the optimizer produces empty landing pad blocks quite frequently
6845 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6846 /// sinking in this file)
6847 ///
6848 /// This is primarily a code size optimization.  We need to avoid performing
6849 /// any transform which might inhibit optimization (such as our ability to
6850 /// specialize a particular handler via tail commoning).  We do this by not
6851 /// merging any blocks which require us to introduce a phi.  Since the same
6852 /// values are flowing through both blocks, we don't lose any ability to
6853 /// specialize.  If anything, we make such specialization more likely.
6854 ///
6855 /// TODO - This transformation could remove entries from a phi in the target
6856 /// block when the inputs in the phi are the same for the two blocks being
6857 /// merged.  In some cases, this could result in removal of the PHI entirely.
TryToMergeLandingPad(LandingPadInst * LPad,BranchInst * BI,BasicBlock * BB,DomTreeUpdater * DTU)6858 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6859                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6860   auto Succ = BB->getUniqueSuccessor();
6861   assert(Succ);
6862   // If there's a phi in the successor block, we'd likely have to introduce
6863   // a phi into the merged landing pad block.
6864   if (isa<PHINode>(*Succ->begin()))
6865     return false;
6866 
6867   for (BasicBlock *OtherPred : predecessors(Succ)) {
6868     if (BB == OtherPred)
6869       continue;
6870     BasicBlock::iterator I = OtherPred->begin();
6871     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6872     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6873       continue;
6874     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6875       ;
6876     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6877     if (!BI2 || !BI2->isIdenticalTo(BI))
6878       continue;
6879 
6880     std::vector<DominatorTree::UpdateType> Updates;
6881 
6882     // We've found an identical block.  Update our predecessors to take that
6883     // path instead and make ourselves dead.
6884     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6885     for (BasicBlock *Pred : UniquePreds) {
6886       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6887       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6888              "unexpected successor");
6889       II->setUnwindDest(OtherPred);
6890       if (DTU) {
6891         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6892         Updates.push_back({DominatorTree::Delete, Pred, BB});
6893       }
6894     }
6895 
6896     // The debug info in OtherPred doesn't cover the merged control flow that
6897     // used to go through BB.  We need to delete it or update it.
6898     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6899       if (isa<DbgInfoIntrinsic>(Inst))
6900         Inst.eraseFromParent();
6901 
6902     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6903     for (BasicBlock *Succ : UniqueSuccs) {
6904       Succ->removePredecessor(BB);
6905       if (DTU)
6906         Updates.push_back({DominatorTree::Delete, BB, Succ});
6907     }
6908 
6909     IRBuilder<> Builder(BI);
6910     Builder.CreateUnreachable();
6911     BI->eraseFromParent();
6912     if (DTU)
6913       DTU->applyUpdates(Updates);
6914     return true;
6915   }
6916   return false;
6917 }
6918 
simplifyBranch(BranchInst * Branch,IRBuilder<> & Builder)6919 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6920   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6921                                    : simplifyCondBranch(Branch, Builder);
6922 }
6923 
simplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)6924 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6925                                           IRBuilder<> &Builder) {
6926   BasicBlock *BB = BI->getParent();
6927   BasicBlock *Succ = BI->getSuccessor(0);
6928 
6929   // If the Terminator is the only non-phi instruction, simplify the block.
6930   // If LoopHeader is provided, check if the block or its successor is a loop
6931   // header. (This is for early invocations before loop simplify and
6932   // vectorization to keep canonical loop forms for nested loops. These blocks
6933   // can be eliminated when the pass is invoked later in the back-end.)
6934   // Note that if BB has only one predecessor then we do not introduce new
6935   // backedge, so we can eliminate BB.
6936   bool NeedCanonicalLoop =
6937       Options.NeedCanonicalLoop &&
6938       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6939        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6940   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6941   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6942       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6943     return true;
6944 
6945   // If the only instruction in the block is a seteq/setne comparison against a
6946   // constant, try to simplify the block.
6947   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6948     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6949       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6950         ;
6951       if (I->isTerminator() &&
6952           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6953         return true;
6954     }
6955 
6956   // See if we can merge an empty landing pad block with another which is
6957   // equivalent.
6958   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6959     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6960       ;
6961     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6962       return true;
6963   }
6964 
6965   // If this basic block is ONLY a compare and a branch, and if a predecessor
6966   // branches to us and our successor, fold the comparison into the
6967   // predecessor and use logical operations to update the incoming value
6968   // for PHI nodes in common successor.
6969   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6970                              Options.BonusInstThreshold))
6971     return requestResimplify();
6972   return false;
6973 }
6974 
allPredecessorsComeFromSameSource(BasicBlock * BB)6975 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6976   BasicBlock *PredPred = nullptr;
6977   for (auto *P : predecessors(BB)) {
6978     BasicBlock *PPred = P->getSinglePredecessor();
6979     if (!PPred || (PredPred && PredPred != PPred))
6980       return nullptr;
6981     PredPred = PPred;
6982   }
6983   return PredPred;
6984 }
6985 
simplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)6986 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6987   assert(
6988       !isa<ConstantInt>(BI->getCondition()) &&
6989       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6990       "Tautological conditional branch should have been eliminated already.");
6991 
6992   BasicBlock *BB = BI->getParent();
6993   if (!Options.SimplifyCondBranch)
6994     return false;
6995 
6996   // Conditional branch
6997   if (isValueEqualityComparison(BI)) {
6998     // If we only have one predecessor, and if it is a branch on this value,
6999     // see if that predecessor totally determines the outcome of this
7000     // switch.
7001     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7002       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
7003         return requestResimplify();
7004 
7005     // This block must be empty, except for the setcond inst, if it exists.
7006     // Ignore dbg and pseudo intrinsics.
7007     auto I = BB->instructionsWithoutDebug(true).begin();
7008     if (&*I == BI) {
7009       if (FoldValueComparisonIntoPredecessors(BI, Builder))
7010         return requestResimplify();
7011     } else if (&*I == cast<Instruction>(BI->getCondition())) {
7012       ++I;
7013       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
7014         return requestResimplify();
7015     }
7016   }
7017 
7018   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
7019   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
7020     return true;
7021 
7022   // If this basic block has dominating predecessor blocks and the dominating
7023   // blocks' conditions imply BI's condition, we know the direction of BI.
7024   std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
7025   if (Imp) {
7026     // Turn this into a branch on constant.
7027     auto *OldCond = BI->getCondition();
7028     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
7029                              : ConstantInt::getFalse(BB->getContext());
7030     BI->setCondition(TorF);
7031     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
7032     return requestResimplify();
7033   }
7034 
7035   // If this basic block is ONLY a compare and a branch, and if a predecessor
7036   // branches to us and one of our successors, fold the comparison into the
7037   // predecessor and use logical operations to pick the right destination.
7038   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7039                              Options.BonusInstThreshold))
7040     return requestResimplify();
7041 
7042   // We have a conditional branch to two blocks that are only reachable
7043   // from BI.  We know that the condbr dominates the two blocks, so see if
7044   // there is any identical code in the "then" and "else" blocks.  If so, we
7045   // can hoist it up to the branching block.
7046   if (BI->getSuccessor(0)->getSinglePredecessor()) {
7047     if (BI->getSuccessor(1)->getSinglePredecessor()) {
7048       if (HoistCommon &&
7049           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
7050         return requestResimplify();
7051     } else {
7052       // If Successor #1 has multiple preds, we may be able to conditionally
7053       // execute Successor #0 if it branches to Successor #1.
7054       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
7055       if (Succ0TI->getNumSuccessors() == 1 &&
7056           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
7057         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
7058           return requestResimplify();
7059     }
7060   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
7061     // If Successor #0 has multiple preds, we may be able to conditionally
7062     // execute Successor #1 if it branches to Successor #0.
7063     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
7064     if (Succ1TI->getNumSuccessors() == 1 &&
7065         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
7066       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
7067         return requestResimplify();
7068   }
7069 
7070   // If this is a branch on something for which we know the constant value in
7071   // predecessors (e.g. a phi node in the current block), thread control
7072   // through this block.
7073   if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
7074     return requestResimplify();
7075 
7076   // Scan predecessor blocks for conditional branches.
7077   for (BasicBlock *Pred : predecessors(BB))
7078     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
7079       if (PBI != BI && PBI->isConditional())
7080         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
7081           return requestResimplify();
7082 
7083   // Look for diamond patterns.
7084   if (MergeCondStores)
7085     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
7086       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
7087         if (PBI != BI && PBI->isConditional())
7088           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
7089             return requestResimplify();
7090 
7091   return false;
7092 }
7093 
7094 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I,bool PtrValueMayBeModified)7095 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
7096   Constant *C = dyn_cast<Constant>(V);
7097   if (!C)
7098     return false;
7099 
7100   if (I->use_empty())
7101     return false;
7102 
7103   if (C->isNullValue() || isa<UndefValue>(C)) {
7104     // Only look at the first use, avoid hurting compile time with long uselists
7105     auto *Use = cast<Instruction>(*I->user_begin());
7106     // Bail out if Use is not in the same BB as I or Use == I or Use comes
7107     // before I in the block. The latter two can be the case if Use is a PHI
7108     // node.
7109     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
7110       return false;
7111 
7112     // Now make sure that there are no instructions in between that can alter
7113     // control flow (eg. calls)
7114     auto InstrRange =
7115         make_range(std::next(I->getIterator()), Use->getIterator());
7116     if (any_of(InstrRange, [](Instruction &I) {
7117           return !isGuaranteedToTransferExecutionToSuccessor(&I);
7118         }))
7119       return false;
7120 
7121     // Look through GEPs. A load from a GEP derived from NULL is still undefined
7122     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
7123       if (GEP->getPointerOperand() == I) {
7124         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
7125           PtrValueMayBeModified = true;
7126         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
7127       }
7128 
7129     // Look through bitcasts.
7130     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
7131       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
7132 
7133     // Load from null is undefined.
7134     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
7135       if (!LI->isVolatile())
7136         return !NullPointerIsDefined(LI->getFunction(),
7137                                      LI->getPointerAddressSpace());
7138 
7139     // Store to null is undefined.
7140     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
7141       if (!SI->isVolatile())
7142         return (!NullPointerIsDefined(SI->getFunction(),
7143                                       SI->getPointerAddressSpace())) &&
7144                SI->getPointerOperand() == I;
7145 
7146     if (auto *CB = dyn_cast<CallBase>(Use)) {
7147       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
7148         return false;
7149       // A call to null is undefined.
7150       if (CB->getCalledOperand() == I)
7151         return true;
7152 
7153       if (C->isNullValue()) {
7154         for (const llvm::Use &Arg : CB->args())
7155           if (Arg == I) {
7156             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7157             if (CB->isPassingUndefUB(ArgIdx) &&
7158                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
7159               // Passing null to a nonnnull+noundef argument is undefined.
7160               return !PtrValueMayBeModified;
7161             }
7162           }
7163       } else if (isa<UndefValue>(C)) {
7164         // Passing undef to a noundef argument is undefined.
7165         for (const llvm::Use &Arg : CB->args())
7166           if (Arg == I) {
7167             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7168             if (CB->isPassingUndefUB(ArgIdx)) {
7169               // Passing undef to a noundef argument is undefined.
7170               return true;
7171             }
7172           }
7173       }
7174     }
7175   }
7176   return false;
7177 }
7178 
7179 /// If BB has an incoming value that will always trigger undefined behavior
7180 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB,DomTreeUpdater * DTU)7181 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7182                                               DomTreeUpdater *DTU) {
7183   for (PHINode &PHI : BB->phis())
7184     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7185       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
7186         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7187         Instruction *T = Predecessor->getTerminator();
7188         IRBuilder<> Builder(T);
7189         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7190           BB->removePredecessor(Predecessor);
7191           // Turn unconditional branches into unreachables and remove the dead
7192           // destination from conditional branches.
7193           if (BI->isUnconditional())
7194             Builder.CreateUnreachable();
7195           else {
7196             // Preserve guarding condition in assume, because it might not be
7197             // inferrable from any dominating condition.
7198             Value *Cond = BI->getCondition();
7199             if (BI->getSuccessor(0) == BB)
7200               Builder.CreateAssumption(Builder.CreateNot(Cond));
7201             else
7202               Builder.CreateAssumption(Cond);
7203             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7204                                                        : BI->getSuccessor(0));
7205           }
7206           BI->eraseFromParent();
7207           if (DTU)
7208             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7209           return true;
7210         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7211           // Redirect all branches leading to UB into
7212           // a newly created unreachable block.
7213           BasicBlock *Unreachable = BasicBlock::Create(
7214               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7215           Builder.SetInsertPoint(Unreachable);
7216           // The new block contains only one instruction: Unreachable
7217           Builder.CreateUnreachable();
7218           for (const auto &Case : SI->cases())
7219             if (Case.getCaseSuccessor() == BB) {
7220               BB->removePredecessor(Predecessor);
7221               Case.setSuccessor(Unreachable);
7222             }
7223           if (SI->getDefaultDest() == BB) {
7224             BB->removePredecessor(Predecessor);
7225             SI->setDefaultDest(Unreachable);
7226           }
7227 
7228           if (DTU)
7229             DTU->applyUpdates(
7230                 { { DominatorTree::Insert, Predecessor, Unreachable },
7231                   { DominatorTree::Delete, Predecessor, BB } });
7232           return true;
7233         }
7234       }
7235 
7236   return false;
7237 }
7238 
simplifyOnce(BasicBlock * BB)7239 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7240   bool Changed = false;
7241 
7242   assert(BB && BB->getParent() && "Block not embedded in function!");
7243   assert(BB->getTerminator() && "Degenerate basic block encountered!");
7244 
7245   // Remove basic blocks that have no predecessors (except the entry block)...
7246   // or that just have themself as a predecessor.  These are unreachable.
7247   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7248       BB->getSinglePredecessor() == BB) {
7249     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7250     DeleteDeadBlock(BB, DTU);
7251     return true;
7252   }
7253 
7254   // Check to see if we can constant propagate this terminator instruction
7255   // away...
7256   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7257                                     /*TLI=*/nullptr, DTU);
7258 
7259   // Check for and eliminate duplicate PHI nodes in this block.
7260   Changed |= EliminateDuplicatePHINodes(BB);
7261 
7262   // Check for and remove branches that will always cause undefined behavior.
7263   if (removeUndefIntroducingPredecessor(BB, DTU))
7264     return requestResimplify();
7265 
7266   // Merge basic blocks into their predecessor if there is only one distinct
7267   // pred, and if there is only one distinct successor of the predecessor, and
7268   // if there are no PHI nodes.
7269   if (MergeBlockIntoPredecessor(BB, DTU))
7270     return true;
7271 
7272   if (SinkCommon && Options.SinkCommonInsts)
7273     if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7274         MergeCompatibleInvokes(BB, DTU)) {
7275       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7276       // so we may now how duplicate PHI's.
7277       // Let's rerun EliminateDuplicatePHINodes() first,
7278       // before FoldTwoEntryPHINode() potentially converts them into select's,
7279       // after which we'd need a whole EarlyCSE pass run to cleanup them.
7280       return true;
7281     }
7282 
7283   IRBuilder<> Builder(BB);
7284 
7285   if (Options.FoldTwoEntryPHINode) {
7286     // If there is a trivial two-entry PHI node in this basic block, and we can
7287     // eliminate it, do so now.
7288     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7289       if (PN->getNumIncomingValues() == 2)
7290         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7291           return true;
7292   }
7293 
7294   Instruction *Terminator = BB->getTerminator();
7295   Builder.SetInsertPoint(Terminator);
7296   switch (Terminator->getOpcode()) {
7297   case Instruction::Br:
7298     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7299     break;
7300   case Instruction::Resume:
7301     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7302     break;
7303   case Instruction::CleanupRet:
7304     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7305     break;
7306   case Instruction::Switch:
7307     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7308     break;
7309   case Instruction::Unreachable:
7310     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7311     break;
7312   case Instruction::IndirectBr:
7313     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7314     break;
7315   }
7316 
7317   return Changed;
7318 }
7319 
run(BasicBlock * BB)7320 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7321   bool Changed = false;
7322 
7323   // Repeated simplify BB as long as resimplification is requested.
7324   do {
7325     Resimplify = false;
7326 
7327     // Perform one round of simplifcation. Resimplify flag will be set if
7328     // another iteration is requested.
7329     Changed |= simplifyOnce(BB);
7330   } while (Resimplify);
7331 
7332   return Changed;
7333 }
7334 
simplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const SimplifyCFGOptions & Options,ArrayRef<WeakVH> LoopHeaders)7335 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7336                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7337                        ArrayRef<WeakVH> LoopHeaders) {
7338   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7339                         Options)
7340       .run(BB);
7341 }
7342