1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/Sequence.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ProfDataUtils.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <map>
84 #include <optional>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89
90 using namespace llvm;
91 using namespace PatternMatch;
92
93 #define DEBUG_TYPE "simplifycfg"
94
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96 "simplifycfg-require-and-preserve-domtree", cl::Hidden,
97
98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99 "into preserving DomTree,"));
100
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106 "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107 cl::desc(
108 "Control the amount of phi node folding to perform (default = 2)"));
109
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112 cl::desc("Control the maximal total instruction cost that we are willing "
113 "to speculatively execute to fold a 2-entry PHI node into a "
114 "select (default = 4)"));
115
116 static cl::opt<bool>
117 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
118 cl::desc("Hoist common instructions up to the parent block"));
119
120 static cl::opt<unsigned>
121 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
122 cl::init(20),
123 cl::desc("Allow reordering across at most this many "
124 "instructions when hoisting"));
125
126 static cl::opt<bool>
127 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
128 cl::desc("Sink common instructions down to the end block"));
129
130 static cl::opt<bool> HoistCondStores(
131 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
132 cl::desc("Hoist conditional stores if an unconditional store precedes"));
133
134 static cl::opt<bool> MergeCondStores(
135 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
136 cl::desc("Hoist conditional stores even if an unconditional store does not "
137 "precede - hoist multiple conditional stores into a single "
138 "predicated store"));
139
140 static cl::opt<bool> MergeCondStoresAggressively(
141 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
142 cl::desc("When merging conditional stores, do so even if the resultant "
143 "basic blocks are unlikely to be if-converted as a result"));
144
145 static cl::opt<bool> SpeculateOneExpensiveInst(
146 "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
147 cl::desc("Allow exactly one expensive instruction to be speculatively "
148 "executed"));
149
150 static cl::opt<unsigned> MaxSpeculationDepth(
151 "max-speculation-depth", cl::Hidden, cl::init(10),
152 cl::desc("Limit maximum recursion depth when calculating costs of "
153 "speculatively executed instructions"));
154
155 static cl::opt<int>
156 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
157 cl::init(10),
158 cl::desc("Max size of a block which is still considered "
159 "small enough to thread through"));
160
161 // Two is chosen to allow one negation and a logical combine.
162 static cl::opt<unsigned>
163 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
164 cl::init(2),
165 cl::desc("Maximum cost of combining conditions when "
166 "folding branches"));
167
168 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
169 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
170 cl::init(2),
171 cl::desc("Multiplier to apply to threshold when determining whether or not "
172 "to fold branch to common destination when vector operations are "
173 "present"));
174
175 static cl::opt<bool> EnableMergeCompatibleInvokes(
176 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
177 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
178
179 static cl::opt<unsigned> MaxSwitchCasesPerResult(
180 "max-switch-cases-per-result", cl::Hidden, cl::init(16),
181 cl::desc("Limit cases to analyze when converting a switch to select"));
182
183 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
184 STATISTIC(NumLinearMaps,
185 "Number of switch instructions turned into linear mapping");
186 STATISTIC(NumLookupTables,
187 "Number of switch instructions turned into lookup tables");
188 STATISTIC(
189 NumLookupTablesHoles,
190 "Number of switch instructions turned into lookup tables (holes checked)");
191 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
192 STATISTIC(NumFoldValueComparisonIntoPredecessors,
193 "Number of value comparisons folded into predecessor basic blocks");
194 STATISTIC(NumFoldBranchToCommonDest,
195 "Number of branches folded into predecessor basic block");
196 STATISTIC(
197 NumHoistCommonCode,
198 "Number of common instruction 'blocks' hoisted up to the begin block");
199 STATISTIC(NumHoistCommonInstrs,
200 "Number of common instructions hoisted up to the begin block");
201 STATISTIC(NumSinkCommonCode,
202 "Number of common instruction 'blocks' sunk down to the end block");
203 STATISTIC(NumSinkCommonInstrs,
204 "Number of common instructions sunk down to the end block");
205 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
206 STATISTIC(NumInvokes,
207 "Number of invokes with empty resume blocks simplified into calls");
208 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
209 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
210
211 namespace {
212
213 // The first field contains the value that the switch produces when a certain
214 // case group is selected, and the second field is a vector containing the
215 // cases composing the case group.
216 using SwitchCaseResultVectorTy =
217 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
218
219 // The first field contains the phi node that generates a result of the switch
220 // and the second field contains the value generated for a certain case in the
221 // switch for that PHI.
222 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
223
224 /// ValueEqualityComparisonCase - Represents a case of a switch.
225 struct ValueEqualityComparisonCase {
226 ConstantInt *Value;
227 BasicBlock *Dest;
228
ValueEqualityComparisonCase__anon7001eb4b0111::ValueEqualityComparisonCase229 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
230 : Value(Value), Dest(Dest) {}
231
operator <__anon7001eb4b0111::ValueEqualityComparisonCase232 bool operator<(ValueEqualityComparisonCase RHS) const {
233 // Comparing pointers is ok as we only rely on the order for uniquing.
234 return Value < RHS.Value;
235 }
236
operator ==__anon7001eb4b0111::ValueEqualityComparisonCase237 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
238 };
239
240 class SimplifyCFGOpt {
241 const TargetTransformInfo &TTI;
242 DomTreeUpdater *DTU;
243 const DataLayout &DL;
244 ArrayRef<WeakVH> LoopHeaders;
245 const SimplifyCFGOptions &Options;
246 bool Resimplify;
247
248 Value *isValueEqualityComparison(Instruction *TI);
249 BasicBlock *GetValueEqualityComparisonCases(
250 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
251 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
252 BasicBlock *Pred,
253 IRBuilder<> &Builder);
254 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
255 Instruction *PTI,
256 IRBuilder<> &Builder);
257 bool FoldValueComparisonIntoPredecessors(Instruction *TI,
258 IRBuilder<> &Builder);
259
260 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
261 bool simplifySingleResume(ResumeInst *RI);
262 bool simplifyCommonResume(ResumeInst *RI);
263 bool simplifyCleanupReturn(CleanupReturnInst *RI);
264 bool simplifyUnreachable(UnreachableInst *UI);
265 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
266 bool simplifyIndirectBr(IndirectBrInst *IBI);
267 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
268 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
269 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
270
271 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
272 IRBuilder<> &Builder);
273
274 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
275 bool EqTermsOnly);
276 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
277 const TargetTransformInfo &TTI);
278 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
279 BasicBlock *TrueBB, BasicBlock *FalseBB,
280 uint32_t TrueWeight, uint32_t FalseWeight);
281 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
282 const DataLayout &DL);
283 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
284 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
285 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
286
287 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const DataLayout & DL,ArrayRef<WeakVH> LoopHeaders,const SimplifyCFGOptions & Opts)288 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
289 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
290 const SimplifyCFGOptions &Opts)
291 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
292 assert((!DTU || !DTU->hasPostDomTree()) &&
293 "SimplifyCFG is not yet capable of maintaining validity of a "
294 "PostDomTree, so don't ask for it.");
295 }
296
297 bool simplifyOnce(BasicBlock *BB);
298 bool run(BasicBlock *BB);
299
300 // Helper to set Resimplify and return change indication.
requestResimplify()301 bool requestResimplify() {
302 Resimplify = true;
303 return true;
304 }
305 };
306
307 } // end anonymous namespace
308
309 /// Return true if all the PHI nodes in the basic block \p BB
310 /// receive compatible (identical) incoming values when coming from
311 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
312 ///
313 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
314 /// is provided, and *both* of the values are present in the set,
315 /// then they are considered equal.
IncomingValuesAreCompatible(BasicBlock * BB,ArrayRef<BasicBlock * > IncomingBlocks,SmallPtrSetImpl<Value * > * EquivalenceSet=nullptr)316 static bool IncomingValuesAreCompatible(
317 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
318 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
319 assert(IncomingBlocks.size() == 2 &&
320 "Only for a pair of incoming blocks at the time!");
321
322 // FIXME: it is okay if one of the incoming values is an `undef` value,
323 // iff the other incoming value is guaranteed to be a non-poison value.
324 // FIXME: it is okay if one of the incoming values is a `poison` value.
325 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
326 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
327 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
328 if (IV0 == IV1)
329 return true;
330 if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
331 EquivalenceSet->contains(IV1))
332 return true;
333 return false;
334 });
335 }
336
337 /// Return true if it is safe to merge these two
338 /// terminator instructions together.
339 static bool
SafeToMergeTerminators(Instruction * SI1,Instruction * SI2,SmallSetVector<BasicBlock *,4> * FailBlocks=nullptr)340 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
341 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
342 if (SI1 == SI2)
343 return false; // Can't merge with self!
344
345 // It is not safe to merge these two switch instructions if they have a common
346 // successor, and if that successor has a PHI node, and if *that* PHI node has
347 // conflicting incoming values from the two switch blocks.
348 BasicBlock *SI1BB = SI1->getParent();
349 BasicBlock *SI2BB = SI2->getParent();
350
351 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
352 bool Fail = false;
353 for (BasicBlock *Succ : successors(SI2BB)) {
354 if (!SI1Succs.count(Succ))
355 continue;
356 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
357 continue;
358 Fail = true;
359 if (FailBlocks)
360 FailBlocks->insert(Succ);
361 else
362 break;
363 }
364
365 return !Fail;
366 }
367
368 /// Update PHI nodes in Succ to indicate that there will now be entries in it
369 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
370 /// will be the same as those coming in from ExistPred, an existing predecessor
371 /// of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred,MemorySSAUpdater * MSSAU=nullptr)372 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
373 BasicBlock *ExistPred,
374 MemorySSAUpdater *MSSAU = nullptr) {
375 for (PHINode &PN : Succ->phis())
376 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
377 if (MSSAU)
378 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
379 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
380 }
381
382 /// Compute an abstract "cost" of speculating the given instruction,
383 /// which is assumed to be safe to speculate. TCC_Free means cheap,
384 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
385 /// expensive.
computeSpeculationCost(const User * I,const TargetTransformInfo & TTI)386 static InstructionCost computeSpeculationCost(const User *I,
387 const TargetTransformInfo &TTI) {
388 assert((!isa<Instruction>(I) ||
389 isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
390 "Instruction is not safe to speculatively execute!");
391 return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
392 }
393
394 /// If we have a merge point of an "if condition" as accepted above,
395 /// return true if the specified value dominates the block. We
396 /// don't handle the true generality of domination here, just a special case
397 /// which works well enough for us.
398 ///
399 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
400 /// see if V (which must be an instruction) and its recursive operands
401 /// that do not dominate BB have a combined cost lower than Budget and
402 /// are non-trapping. If both are true, the instruction is inserted into the
403 /// set and true is returned.
404 ///
405 /// The cost for most non-trapping instructions is defined as 1 except for
406 /// Select whose cost is 2.
407 ///
408 /// After this function returns, Cost is increased by the cost of
409 /// V plus its non-dominating operands. If that cost is greater than
410 /// Budget, false is returned and Cost is undefined.
dominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSetImpl<Instruction * > & AggressiveInsts,InstructionCost & Cost,InstructionCost Budget,const TargetTransformInfo & TTI,unsigned Depth=0)411 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
412 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
413 InstructionCost &Cost,
414 InstructionCost Budget,
415 const TargetTransformInfo &TTI,
416 unsigned Depth = 0) {
417 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
418 // so limit the recursion depth.
419 // TODO: While this recursion limit does prevent pathological behavior, it
420 // would be better to track visited instructions to avoid cycles.
421 if (Depth == MaxSpeculationDepth)
422 return false;
423
424 Instruction *I = dyn_cast<Instruction>(V);
425 if (!I) {
426 // Non-instructions dominate all instructions and can be executed
427 // unconditionally.
428 return true;
429 }
430 BasicBlock *PBB = I->getParent();
431
432 // We don't want to allow weird loops that might have the "if condition" in
433 // the bottom of this block.
434 if (PBB == BB)
435 return false;
436
437 // If this instruction is defined in a block that contains an unconditional
438 // branch to BB, then it must be in the 'conditional' part of the "if
439 // statement". If not, it definitely dominates the region.
440 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
441 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
442 return true;
443
444 // If we have seen this instruction before, don't count it again.
445 if (AggressiveInsts.count(I))
446 return true;
447
448 // Okay, it looks like the instruction IS in the "condition". Check to
449 // see if it's a cheap instruction to unconditionally compute, and if it
450 // only uses stuff defined outside of the condition. If so, hoist it out.
451 if (!isSafeToSpeculativelyExecute(I))
452 return false;
453
454 Cost += computeSpeculationCost(I, TTI);
455
456 // Allow exactly one instruction to be speculated regardless of its cost
457 // (as long as it is safe to do so).
458 // This is intended to flatten the CFG even if the instruction is a division
459 // or other expensive operation. The speculation of an expensive instruction
460 // is expected to be undone in CodeGenPrepare if the speculation has not
461 // enabled further IR optimizations.
462 if (Cost > Budget &&
463 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
464 !Cost.isValid()))
465 return false;
466
467 // Okay, we can only really hoist these out if their operands do
468 // not take us over the cost threshold.
469 for (Use &Op : I->operands())
470 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
471 Depth + 1))
472 return false;
473 // Okay, it's safe to do this! Remember this instruction.
474 AggressiveInsts.insert(I);
475 return true;
476 }
477
478 /// Extract ConstantInt from value, looking through IntToPtr
479 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout & DL)480 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
481 // Normal constant int.
482 ConstantInt *CI = dyn_cast<ConstantInt>(V);
483 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
484 DL.isNonIntegralPointerType(V->getType()))
485 return CI;
486
487 // This is some kind of pointer constant. Turn it into a pointer-sized
488 // ConstantInt if possible.
489 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
490
491 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
492 if (isa<ConstantPointerNull>(V))
493 return ConstantInt::get(PtrTy, 0);
494
495 // IntToPtr const int.
496 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
497 if (CE->getOpcode() == Instruction::IntToPtr)
498 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
499 // The constant is very likely to have the right type already.
500 if (CI->getType() == PtrTy)
501 return CI;
502 else
503 return cast<ConstantInt>(
504 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
505 }
506 return nullptr;
507 }
508
509 namespace {
510
511 /// Given a chain of or (||) or and (&&) comparison of a value against a
512 /// constant, this will try to recover the information required for a switch
513 /// structure.
514 /// It will depth-first traverse the chain of comparison, seeking for patterns
515 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
516 /// representing the different cases for the switch.
517 /// Note that if the chain is composed of '||' it will build the set of elements
518 /// that matches the comparisons (i.e. any of this value validate the chain)
519 /// while for a chain of '&&' it will build the set elements that make the test
520 /// fail.
521 struct ConstantComparesGatherer {
522 const DataLayout &DL;
523
524 /// Value found for the switch comparison
525 Value *CompValue = nullptr;
526
527 /// Extra clause to be checked before the switch
528 Value *Extra = nullptr;
529
530 /// Set of integers to match in switch
531 SmallVector<ConstantInt *, 8> Vals;
532
533 /// Number of comparisons matched in the and/or chain
534 unsigned UsedICmps = 0;
535
536 /// Construct and compute the result for the comparison instruction Cond
ConstantComparesGatherer__anon7001eb4b0311::ConstantComparesGatherer537 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
538 gather(Cond);
539 }
540
541 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
542 ConstantComparesGatherer &
543 operator=(const ConstantComparesGatherer &) = delete;
544
545 private:
546 /// Try to set the current value used for the comparison, it succeeds only if
547 /// it wasn't set before or if the new value is the same as the old one
setValueOnce__anon7001eb4b0311::ConstantComparesGatherer548 bool setValueOnce(Value *NewVal) {
549 if (CompValue && CompValue != NewVal)
550 return false;
551 CompValue = NewVal;
552 return (CompValue != nullptr);
553 }
554
555 /// Try to match Instruction "I" as a comparison against a constant and
556 /// populates the array Vals with the set of values that match (or do not
557 /// match depending on isEQ).
558 /// Return false on failure. On success, the Value the comparison matched
559 /// against is placed in CompValue.
560 /// If CompValue is already set, the function is expected to fail if a match
561 /// is found but the value compared to is different.
matchInstruction__anon7001eb4b0311::ConstantComparesGatherer562 bool matchInstruction(Instruction *I, bool isEQ) {
563 // If this is an icmp against a constant, handle this as one of the cases.
564 ICmpInst *ICI;
565 ConstantInt *C;
566 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
567 (C = GetConstantInt(I->getOperand(1), DL)))) {
568 return false;
569 }
570
571 Value *RHSVal;
572 const APInt *RHSC;
573
574 // Pattern match a special case
575 // (x & ~2^z) == y --> x == y || x == y|2^z
576 // This undoes a transformation done by instcombine to fuse 2 compares.
577 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
578 // It's a little bit hard to see why the following transformations are
579 // correct. Here is a CVC3 program to verify them for 64-bit values:
580
581 /*
582 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
583 x : BITVECTOR(64);
584 y : BITVECTOR(64);
585 z : BITVECTOR(64);
586 mask : BITVECTOR(64) = BVSHL(ONE, z);
587 QUERY( (y & ~mask = y) =>
588 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
589 );
590 QUERY( (y | mask = y) =>
591 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
592 );
593 */
594
595 // Please note that each pattern must be a dual implication (<--> or
596 // iff). One directional implication can create spurious matches. If the
597 // implication is only one-way, an unsatisfiable condition on the left
598 // side can imply a satisfiable condition on the right side. Dual
599 // implication ensures that satisfiable conditions are transformed to
600 // other satisfiable conditions and unsatisfiable conditions are
601 // transformed to other unsatisfiable conditions.
602
603 // Here is a concrete example of a unsatisfiable condition on the left
604 // implying a satisfiable condition on the right:
605 //
606 // mask = (1 << z)
607 // (x & ~mask) == y --> (x == y || x == (y | mask))
608 //
609 // Substituting y = 3, z = 0 yields:
610 // (x & -2) == 3 --> (x == 3 || x == 2)
611
612 // Pattern match a special case:
613 /*
614 QUERY( (y & ~mask = y) =>
615 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
616 );
617 */
618 if (match(ICI->getOperand(0),
619 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
620 APInt Mask = ~*RHSC;
621 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
622 // If we already have a value for the switch, it has to match!
623 if (!setValueOnce(RHSVal))
624 return false;
625
626 Vals.push_back(C);
627 Vals.push_back(
628 ConstantInt::get(C->getContext(),
629 C->getValue() | Mask));
630 UsedICmps++;
631 return true;
632 }
633 }
634
635 // Pattern match a special case:
636 /*
637 QUERY( (y | mask = y) =>
638 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
639 );
640 */
641 if (match(ICI->getOperand(0),
642 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
643 APInt Mask = *RHSC;
644 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
645 // If we already have a value for the switch, it has to match!
646 if (!setValueOnce(RHSVal))
647 return false;
648
649 Vals.push_back(C);
650 Vals.push_back(ConstantInt::get(C->getContext(),
651 C->getValue() & ~Mask));
652 UsedICmps++;
653 return true;
654 }
655 }
656
657 // If we already have a value for the switch, it has to match!
658 if (!setValueOnce(ICI->getOperand(0)))
659 return false;
660
661 UsedICmps++;
662 Vals.push_back(C);
663 return ICI->getOperand(0);
664 }
665
666 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
667 ConstantRange Span =
668 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
669
670 // Shift the range if the compare is fed by an add. This is the range
671 // compare idiom as emitted by instcombine.
672 Value *CandidateVal = I->getOperand(0);
673 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
674 Span = Span.subtract(*RHSC);
675 CandidateVal = RHSVal;
676 }
677
678 // If this is an and/!= check, then we are looking to build the set of
679 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
680 // x != 0 && x != 1.
681 if (!isEQ)
682 Span = Span.inverse();
683
684 // If there are a ton of values, we don't want to make a ginormous switch.
685 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
686 return false;
687 }
688
689 // If we already have a value for the switch, it has to match!
690 if (!setValueOnce(CandidateVal))
691 return false;
692
693 // Add all values from the range to the set
694 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
695 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
696
697 UsedICmps++;
698 return true;
699 }
700
701 /// Given a potentially 'or'd or 'and'd together collection of icmp
702 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
703 /// the value being compared, and stick the list constants into the Vals
704 /// vector.
705 /// One "Extra" case is allowed to differ from the other.
gather__anon7001eb4b0311::ConstantComparesGatherer706 void gather(Value *V) {
707 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
708
709 // Keep a stack (SmallVector for efficiency) for depth-first traversal
710 SmallVector<Value *, 8> DFT;
711 SmallPtrSet<Value *, 8> Visited;
712
713 // Initialize
714 Visited.insert(V);
715 DFT.push_back(V);
716
717 while (!DFT.empty()) {
718 V = DFT.pop_back_val();
719
720 if (Instruction *I = dyn_cast<Instruction>(V)) {
721 // If it is a || (or && depending on isEQ), process the operands.
722 Value *Op0, *Op1;
723 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
724 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
725 if (Visited.insert(Op1).second)
726 DFT.push_back(Op1);
727 if (Visited.insert(Op0).second)
728 DFT.push_back(Op0);
729
730 continue;
731 }
732
733 // Try to match the current instruction
734 if (matchInstruction(I, isEQ))
735 // Match succeed, continue the loop
736 continue;
737 }
738
739 // One element of the sequence of || (or &&) could not be match as a
740 // comparison against the same value as the others.
741 // We allow only one "Extra" case to be checked before the switch
742 if (!Extra) {
743 Extra = V;
744 continue;
745 }
746 // Failed to parse a proper sequence, abort now
747 CompValue = nullptr;
748 break;
749 }
750 }
751 };
752
753 } // end anonymous namespace
754
EraseTerminatorAndDCECond(Instruction * TI,MemorySSAUpdater * MSSAU=nullptr)755 static void EraseTerminatorAndDCECond(Instruction *TI,
756 MemorySSAUpdater *MSSAU = nullptr) {
757 Instruction *Cond = nullptr;
758 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
759 Cond = dyn_cast<Instruction>(SI->getCondition());
760 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
761 if (BI->isConditional())
762 Cond = dyn_cast<Instruction>(BI->getCondition());
763 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
764 Cond = dyn_cast<Instruction>(IBI->getAddress());
765 }
766
767 TI->eraseFromParent();
768 if (Cond)
769 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
770 }
771
772 /// Return true if the specified terminator checks
773 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(Instruction * TI)774 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
775 Value *CV = nullptr;
776 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
777 // Do not permit merging of large switch instructions into their
778 // predecessors unless there is only one predecessor.
779 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
780 CV = SI->getCondition();
781 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
782 if (BI->isConditional() && BI->getCondition()->hasOneUse())
783 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
784 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
785 CV = ICI->getOperand(0);
786 }
787
788 // Unwrap any lossless ptrtoint cast.
789 if (CV) {
790 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
791 Value *Ptr = PTII->getPointerOperand();
792 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
793 CV = Ptr;
794 }
795 }
796 return CV;
797 }
798
799 /// Given a value comparison instruction,
800 /// decode all of the 'cases' that it represents and return the 'default' block.
GetValueEqualityComparisonCases(Instruction * TI,std::vector<ValueEqualityComparisonCase> & Cases)801 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
802 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
803 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
804 Cases.reserve(SI->getNumCases());
805 for (auto Case : SI->cases())
806 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
807 Case.getCaseSuccessor()));
808 return SI->getDefaultDest();
809 }
810
811 BranchInst *BI = cast<BranchInst>(TI);
812 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
813 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
814 Cases.push_back(ValueEqualityComparisonCase(
815 GetConstantInt(ICI->getOperand(1), DL), Succ));
816 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
817 }
818
819 /// Given a vector of bb/value pairs, remove any entries
820 /// in the list that match the specified block.
821 static void
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)822 EliminateBlockCases(BasicBlock *BB,
823 std::vector<ValueEqualityComparisonCase> &Cases) {
824 llvm::erase_value(Cases, BB);
825 }
826
827 /// Return true if there are any keys in C1 that exist in C2 as well.
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)828 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
829 std::vector<ValueEqualityComparisonCase> &C2) {
830 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
831
832 // Make V1 be smaller than V2.
833 if (V1->size() > V2->size())
834 std::swap(V1, V2);
835
836 if (V1->empty())
837 return false;
838 if (V1->size() == 1) {
839 // Just scan V2.
840 ConstantInt *TheVal = (*V1)[0].Value;
841 for (const ValueEqualityComparisonCase &VECC : *V2)
842 if (TheVal == VECC.Value)
843 return true;
844 }
845
846 // Otherwise, just sort both lists and compare element by element.
847 array_pod_sort(V1->begin(), V1->end());
848 array_pod_sort(V2->begin(), V2->end());
849 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
850 while (i1 != e1 && i2 != e2) {
851 if ((*V1)[i1].Value == (*V2)[i2].Value)
852 return true;
853 if ((*V1)[i1].Value < (*V2)[i2].Value)
854 ++i1;
855 else
856 ++i2;
857 }
858 return false;
859 }
860
861 // Set branch weights on SwitchInst. This sets the metadata if there is at
862 // least one non-zero weight.
setBranchWeights(SwitchInst * SI,ArrayRef<uint32_t> Weights)863 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
864 // Check that there is at least one non-zero weight. Otherwise, pass
865 // nullptr to setMetadata which will erase the existing metadata.
866 MDNode *N = nullptr;
867 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
868 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
869 SI->setMetadata(LLVMContext::MD_prof, N);
870 }
871
872 // Similar to the above, but for branch and select instructions that take
873 // exactly 2 weights.
setBranchWeights(Instruction * I,uint32_t TrueWeight,uint32_t FalseWeight)874 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
875 uint32_t FalseWeight) {
876 assert(isa<BranchInst>(I) || isa<SelectInst>(I));
877 // Check that there is at least one non-zero weight. Otherwise, pass
878 // nullptr to setMetadata which will erase the existing metadata.
879 MDNode *N = nullptr;
880 if (TrueWeight || FalseWeight)
881 N = MDBuilder(I->getParent()->getContext())
882 .createBranchWeights(TrueWeight, FalseWeight);
883 I->setMetadata(LLVMContext::MD_prof, N);
884 }
885
886 /// If TI is known to be a terminator instruction and its block is known to
887 /// only have a single predecessor block, check to see if that predecessor is
888 /// also a value comparison with the same value, and if that comparison
889 /// determines the outcome of this comparison. If so, simplify TI. This does a
890 /// very limited form of jump threading.
SimplifyEqualityComparisonWithOnlyPredecessor(Instruction * TI,BasicBlock * Pred,IRBuilder<> & Builder)891 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
892 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
893 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
894 if (!PredVal)
895 return false; // Not a value comparison in predecessor.
896
897 Value *ThisVal = isValueEqualityComparison(TI);
898 assert(ThisVal && "This isn't a value comparison!!");
899 if (ThisVal != PredVal)
900 return false; // Different predicates.
901
902 // TODO: Preserve branch weight metadata, similarly to how
903 // FoldValueComparisonIntoPredecessors preserves it.
904
905 // Find out information about when control will move from Pred to TI's block.
906 std::vector<ValueEqualityComparisonCase> PredCases;
907 BasicBlock *PredDef =
908 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
909 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
910
911 // Find information about how control leaves this block.
912 std::vector<ValueEqualityComparisonCase> ThisCases;
913 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
914 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
915
916 // If TI's block is the default block from Pred's comparison, potentially
917 // simplify TI based on this knowledge.
918 if (PredDef == TI->getParent()) {
919 // If we are here, we know that the value is none of those cases listed in
920 // PredCases. If there are any cases in ThisCases that are in PredCases, we
921 // can simplify TI.
922 if (!ValuesOverlap(PredCases, ThisCases))
923 return false;
924
925 if (isa<BranchInst>(TI)) {
926 // Okay, one of the successors of this condbr is dead. Convert it to a
927 // uncond br.
928 assert(ThisCases.size() == 1 && "Branch can only have one case!");
929 // Insert the new branch.
930 Instruction *NI = Builder.CreateBr(ThisDef);
931 (void)NI;
932
933 // Remove PHI node entries for the dead edge.
934 ThisCases[0].Dest->removePredecessor(PredDef);
935
936 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
937 << "Through successor TI: " << *TI << "Leaving: " << *NI
938 << "\n");
939
940 EraseTerminatorAndDCECond(TI);
941
942 if (DTU)
943 DTU->applyUpdates(
944 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
945
946 return true;
947 }
948
949 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
950 // Okay, TI has cases that are statically dead, prune them away.
951 SmallPtrSet<Constant *, 16> DeadCases;
952 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
953 DeadCases.insert(PredCases[i].Value);
954
955 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
956 << "Through successor TI: " << *TI);
957
958 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
959 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
960 --i;
961 auto *Successor = i->getCaseSuccessor();
962 if (DTU)
963 ++NumPerSuccessorCases[Successor];
964 if (DeadCases.count(i->getCaseValue())) {
965 Successor->removePredecessor(PredDef);
966 SI.removeCase(i);
967 if (DTU)
968 --NumPerSuccessorCases[Successor];
969 }
970 }
971
972 if (DTU) {
973 std::vector<DominatorTree::UpdateType> Updates;
974 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
975 if (I.second == 0)
976 Updates.push_back({DominatorTree::Delete, PredDef, I.first});
977 DTU->applyUpdates(Updates);
978 }
979
980 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
981 return true;
982 }
983
984 // Otherwise, TI's block must correspond to some matched value. Find out
985 // which value (or set of values) this is.
986 ConstantInt *TIV = nullptr;
987 BasicBlock *TIBB = TI->getParent();
988 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
989 if (PredCases[i].Dest == TIBB) {
990 if (TIV)
991 return false; // Cannot handle multiple values coming to this block.
992 TIV = PredCases[i].Value;
993 }
994 assert(TIV && "No edge from pred to succ?");
995
996 // Okay, we found the one constant that our value can be if we get into TI's
997 // BB. Find out which successor will unconditionally be branched to.
998 BasicBlock *TheRealDest = nullptr;
999 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
1000 if (ThisCases[i].Value == TIV) {
1001 TheRealDest = ThisCases[i].Dest;
1002 break;
1003 }
1004
1005 // If not handled by any explicit cases, it is handled by the default case.
1006 if (!TheRealDest)
1007 TheRealDest = ThisDef;
1008
1009 SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1010
1011 // Remove PHI node entries for dead edges.
1012 BasicBlock *CheckEdge = TheRealDest;
1013 for (BasicBlock *Succ : successors(TIBB))
1014 if (Succ != CheckEdge) {
1015 if (Succ != TheRealDest)
1016 RemovedSuccs.insert(Succ);
1017 Succ->removePredecessor(TIBB);
1018 } else
1019 CheckEdge = nullptr;
1020
1021 // Insert the new branch.
1022 Instruction *NI = Builder.CreateBr(TheRealDest);
1023 (void)NI;
1024
1025 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1026 << "Through successor TI: " << *TI << "Leaving: " << *NI
1027 << "\n");
1028
1029 EraseTerminatorAndDCECond(TI);
1030 if (DTU) {
1031 SmallVector<DominatorTree::UpdateType, 2> Updates;
1032 Updates.reserve(RemovedSuccs.size());
1033 for (auto *RemovedSucc : RemovedSuccs)
1034 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1035 DTU->applyUpdates(Updates);
1036 }
1037 return true;
1038 }
1039
1040 namespace {
1041
1042 /// This class implements a stable ordering of constant
1043 /// integers that does not depend on their address. This is important for
1044 /// applications that sort ConstantInt's to ensure uniqueness.
1045 struct ConstantIntOrdering {
operator ()__anon7001eb4b0511::ConstantIntOrdering1046 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1047 return LHS->getValue().ult(RHS->getValue());
1048 }
1049 };
1050
1051 } // end anonymous namespace
1052
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)1053 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1054 ConstantInt *const *P2) {
1055 const ConstantInt *LHS = *P1;
1056 const ConstantInt *RHS = *P2;
1057 if (LHS == RHS)
1058 return 0;
1059 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1060 }
1061
1062 /// Get Weights of a given terminator, the default weight is at the front
1063 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1064 /// metadata.
GetBranchWeights(Instruction * TI,SmallVectorImpl<uint64_t> & Weights)1065 static void GetBranchWeights(Instruction *TI,
1066 SmallVectorImpl<uint64_t> &Weights) {
1067 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1068 assert(MD);
1069 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1070 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1071 Weights.push_back(CI->getValue().getZExtValue());
1072 }
1073
1074 // If TI is a conditional eq, the default case is the false case,
1075 // and the corresponding branch-weight data is at index 2. We swap the
1076 // default weight to be the first entry.
1077 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1078 assert(Weights.size() == 2);
1079 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1080 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1081 std::swap(Weights.front(), Weights.back());
1082 }
1083 }
1084
1085 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1087 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1088 if (Max > UINT_MAX) {
1089 unsigned Offset = 32 - countLeadingZeros(Max);
1090 for (uint64_t &I : Weights)
1091 I >>= Offset;
1092 }
1093 }
1094
CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BasicBlock * BB,BasicBlock * PredBlock,ValueToValueMapTy & VMap)1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1096 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1097 Instruction *PTI = PredBlock->getTerminator();
1098
1099 // If we have bonus instructions, clone them into the predecessor block.
1100 // Note that there may be multiple predecessor blocks, so we cannot move
1101 // bonus instructions to a predecessor block.
1102 for (Instruction &BonusInst : *BB) {
1103 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1104 continue;
1105
1106 Instruction *NewBonusInst = BonusInst.clone();
1107
1108 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1109 // Unless the instruction has the same !dbg location as the original
1110 // branch, drop it. When we fold the bonus instructions we want to make
1111 // sure we reset their debug locations in order to avoid stepping on
1112 // dead code caused by folding dead branches.
1113 NewBonusInst->setDebugLoc(DebugLoc());
1114 }
1115
1116 RemapInstruction(NewBonusInst, VMap,
1117 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1118 VMap[&BonusInst] = NewBonusInst;
1119
1120 // If we moved a load, we cannot any longer claim any knowledge about
1121 // its potential value. The previous information might have been valid
1122 // only given the branch precondition.
1123 // For an analogous reason, we must also drop all the metadata whose
1124 // semantics we don't understand. We *can* preserve !annotation, because
1125 // it is tied to the instruction itself, not the value or position.
1126 // Similarly strip attributes on call parameters that may cause UB in
1127 // location the call is moved to.
1128 NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1129 LLVMContext::MD_annotation);
1130
1131 NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1132 NewBonusInst->takeName(&BonusInst);
1133 BonusInst.setName(NewBonusInst->getName() + ".old");
1134
1135 // Update (liveout) uses of bonus instructions,
1136 // now that the bonus instruction has been cloned into predecessor.
1137 // Note that we expect to be in a block-closed SSA form for this to work!
1138 for (Use &U : make_early_inc_range(BonusInst.uses())) {
1139 auto *UI = cast<Instruction>(U.getUser());
1140 auto *PN = dyn_cast<PHINode>(UI);
1141 if (!PN) {
1142 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1143 "If the user is not a PHI node, then it should be in the same "
1144 "block as, and come after, the original bonus instruction.");
1145 continue; // Keep using the original bonus instruction.
1146 }
1147 // Is this the block-closed SSA form PHI node?
1148 if (PN->getIncomingBlock(U) == BB)
1149 continue; // Great, keep using the original bonus instruction.
1150 // The only other alternative is an "use" when coming from
1151 // the predecessor block - here we should refer to the cloned bonus instr.
1152 assert(PN->getIncomingBlock(U) == PredBlock &&
1153 "Not in block-closed SSA form?");
1154 U.set(NewBonusInst);
1155 }
1156 }
1157 }
1158
PerformValueComparisonIntoPredecessorFolding(Instruction * TI,Value * & CV,Instruction * PTI,IRBuilder<> & Builder)1159 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1160 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1161 BasicBlock *BB = TI->getParent();
1162 BasicBlock *Pred = PTI->getParent();
1163
1164 SmallVector<DominatorTree::UpdateType, 32> Updates;
1165
1166 // Figure out which 'cases' to copy from SI to PSI.
1167 std::vector<ValueEqualityComparisonCase> BBCases;
1168 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1169
1170 std::vector<ValueEqualityComparisonCase> PredCases;
1171 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1172
1173 // Based on whether the default edge from PTI goes to BB or not, fill in
1174 // PredCases and PredDefault with the new switch cases we would like to
1175 // build.
1176 SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1177
1178 // Update the branch weight metadata along the way
1179 SmallVector<uint64_t, 8> Weights;
1180 bool PredHasWeights = hasBranchWeightMD(*PTI);
1181 bool SuccHasWeights = hasBranchWeightMD(*TI);
1182
1183 if (PredHasWeights) {
1184 GetBranchWeights(PTI, Weights);
1185 // branch-weight metadata is inconsistent here.
1186 if (Weights.size() != 1 + PredCases.size())
1187 PredHasWeights = SuccHasWeights = false;
1188 } else if (SuccHasWeights)
1189 // If there are no predecessor weights but there are successor weights,
1190 // populate Weights with 1, which will later be scaled to the sum of
1191 // successor's weights
1192 Weights.assign(1 + PredCases.size(), 1);
1193
1194 SmallVector<uint64_t, 8> SuccWeights;
1195 if (SuccHasWeights) {
1196 GetBranchWeights(TI, SuccWeights);
1197 // branch-weight metadata is inconsistent here.
1198 if (SuccWeights.size() != 1 + BBCases.size())
1199 PredHasWeights = SuccHasWeights = false;
1200 } else if (PredHasWeights)
1201 SuccWeights.assign(1 + BBCases.size(), 1);
1202
1203 if (PredDefault == BB) {
1204 // If this is the default destination from PTI, only the edges in TI
1205 // that don't occur in PTI, or that branch to BB will be activated.
1206 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1207 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1208 if (PredCases[i].Dest != BB)
1209 PTIHandled.insert(PredCases[i].Value);
1210 else {
1211 // The default destination is BB, we don't need explicit targets.
1212 std::swap(PredCases[i], PredCases.back());
1213
1214 if (PredHasWeights || SuccHasWeights) {
1215 // Increase weight for the default case.
1216 Weights[0] += Weights[i + 1];
1217 std::swap(Weights[i + 1], Weights.back());
1218 Weights.pop_back();
1219 }
1220
1221 PredCases.pop_back();
1222 --i;
1223 --e;
1224 }
1225
1226 // Reconstruct the new switch statement we will be building.
1227 if (PredDefault != BBDefault) {
1228 PredDefault->removePredecessor(Pred);
1229 if (DTU && PredDefault != BB)
1230 Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1231 PredDefault = BBDefault;
1232 ++NewSuccessors[BBDefault];
1233 }
1234
1235 unsigned CasesFromPred = Weights.size();
1236 uint64_t ValidTotalSuccWeight = 0;
1237 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1239 PredCases.push_back(BBCases[i]);
1240 ++NewSuccessors[BBCases[i].Dest];
1241 if (SuccHasWeights || PredHasWeights) {
1242 // The default weight is at index 0, so weight for the ith case
1243 // should be at index i+1. Scale the cases from successor by
1244 // PredDefaultWeight (Weights[0]).
1245 Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1246 ValidTotalSuccWeight += SuccWeights[i + 1];
1247 }
1248 }
1249
1250 if (SuccHasWeights || PredHasWeights) {
1251 ValidTotalSuccWeight += SuccWeights[0];
1252 // Scale the cases from predecessor by ValidTotalSuccWeight.
1253 for (unsigned i = 1; i < CasesFromPred; ++i)
1254 Weights[i] *= ValidTotalSuccWeight;
1255 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1256 Weights[0] *= SuccWeights[0];
1257 }
1258 } else {
1259 // If this is not the default destination from PSI, only the edges
1260 // in SI that occur in PSI with a destination of BB will be
1261 // activated.
1262 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1263 std::map<ConstantInt *, uint64_t> WeightsForHandled;
1264 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1265 if (PredCases[i].Dest == BB) {
1266 PTIHandled.insert(PredCases[i].Value);
1267
1268 if (PredHasWeights || SuccHasWeights) {
1269 WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1270 std::swap(Weights[i + 1], Weights.back());
1271 Weights.pop_back();
1272 }
1273
1274 std::swap(PredCases[i], PredCases.back());
1275 PredCases.pop_back();
1276 --i;
1277 --e;
1278 }
1279
1280 // Okay, now we know which constants were sent to BB from the
1281 // predecessor. Figure out where they will all go now.
1282 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1283 if (PTIHandled.count(BBCases[i].Value)) {
1284 // If this is one we are capable of getting...
1285 if (PredHasWeights || SuccHasWeights)
1286 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1287 PredCases.push_back(BBCases[i]);
1288 ++NewSuccessors[BBCases[i].Dest];
1289 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1290 }
1291
1292 // If there are any constants vectored to BB that TI doesn't handle,
1293 // they must go to the default destination of TI.
1294 for (ConstantInt *I : PTIHandled) {
1295 if (PredHasWeights || SuccHasWeights)
1296 Weights.push_back(WeightsForHandled[I]);
1297 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1298 ++NewSuccessors[BBDefault];
1299 }
1300 }
1301
1302 // Okay, at this point, we know which new successor Pred will get. Make
1303 // sure we update the number of entries in the PHI nodes for these
1304 // successors.
1305 SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1306 if (DTU) {
1307 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1308 Updates.reserve(Updates.size() + NewSuccessors.size());
1309 }
1310 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1311 NewSuccessors) {
1312 for (auto I : seq(0, NewSuccessor.second)) {
1313 (void)I;
1314 AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1315 }
1316 if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1317 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1318 }
1319
1320 Builder.SetInsertPoint(PTI);
1321 // Convert pointer to int before we switch.
1322 if (CV->getType()->isPointerTy()) {
1323 CV =
1324 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1325 }
1326
1327 // Now that the successors are updated, create the new Switch instruction.
1328 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1329 NewSI->setDebugLoc(PTI->getDebugLoc());
1330 for (ValueEqualityComparisonCase &V : PredCases)
1331 NewSI->addCase(V.Value, V.Dest);
1332
1333 if (PredHasWeights || SuccHasWeights) {
1334 // Halve the weights if any of them cannot fit in an uint32_t
1335 FitWeights(Weights);
1336
1337 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1338
1339 setBranchWeights(NewSI, MDWeights);
1340 }
1341
1342 EraseTerminatorAndDCECond(PTI);
1343
1344 // Okay, last check. If BB is still a successor of PSI, then we must
1345 // have an infinite loop case. If so, add an infinitely looping block
1346 // to handle the case to preserve the behavior of the code.
1347 BasicBlock *InfLoopBlock = nullptr;
1348 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1349 if (NewSI->getSuccessor(i) == BB) {
1350 if (!InfLoopBlock) {
1351 // Insert it at the end of the function, because it's either code,
1352 // or it won't matter if it's hot. :)
1353 InfLoopBlock =
1354 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1355 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1356 if (DTU)
1357 Updates.push_back(
1358 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1359 }
1360 NewSI->setSuccessor(i, InfLoopBlock);
1361 }
1362
1363 if (DTU) {
1364 if (InfLoopBlock)
1365 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1366
1367 Updates.push_back({DominatorTree::Delete, Pred, BB});
1368
1369 DTU->applyUpdates(Updates);
1370 }
1371
1372 ++NumFoldValueComparisonIntoPredecessors;
1373 return true;
1374 }
1375
1376 /// The specified terminator is a value equality comparison instruction
1377 /// (either a switch or a branch on "X == c").
1378 /// See if any of the predecessors of the terminator block are value comparisons
1379 /// on the same value. If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(Instruction * TI,IRBuilder<> & Builder)1380 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1381 IRBuilder<> &Builder) {
1382 BasicBlock *BB = TI->getParent();
1383 Value *CV = isValueEqualityComparison(TI); // CondVal
1384 assert(CV && "Not a comparison?");
1385
1386 bool Changed = false;
1387
1388 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1389 while (!Preds.empty()) {
1390 BasicBlock *Pred = Preds.pop_back_val();
1391 Instruction *PTI = Pred->getTerminator();
1392
1393 // Don't try to fold into itself.
1394 if (Pred == BB)
1395 continue;
1396
1397 // See if the predecessor is a comparison with the same value.
1398 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1399 if (PCV != CV)
1400 continue;
1401
1402 SmallSetVector<BasicBlock *, 4> FailBlocks;
1403 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1404 for (auto *Succ : FailBlocks) {
1405 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1406 return false;
1407 }
1408 }
1409
1410 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1411 Changed = true;
1412 }
1413 return Changed;
1414 }
1415
1416 // If we would need to insert a select that uses the value of this invoke
1417 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1418 // can't hoist the invoke, as there is nowhere to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1419 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1420 Instruction *I1, Instruction *I2) {
1421 for (BasicBlock *Succ : successors(BB1)) {
1422 for (const PHINode &PN : Succ->phis()) {
1423 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1424 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1425 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1426 return false;
1427 }
1428 }
1429 }
1430 return true;
1431 }
1432
1433 // Get interesting characteristics of instructions that `HoistThenElseCodeToIf`
1434 // didn't hoist. They restrict what kind of instructions can be reordered
1435 // across.
1436 enum SkipFlags {
1437 SkipReadMem = 1,
1438 SkipSideEffect = 2,
1439 SkipImplicitControlFlow = 4
1440 };
1441
skippedInstrFlags(Instruction * I)1442 static unsigned skippedInstrFlags(Instruction *I) {
1443 unsigned Flags = 0;
1444 if (I->mayReadFromMemory())
1445 Flags |= SkipReadMem;
1446 // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1447 // inalloca) across stacksave/stackrestore boundaries.
1448 if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1449 Flags |= SkipSideEffect;
1450 if (!isGuaranteedToTransferExecutionToSuccessor(I))
1451 Flags |= SkipImplicitControlFlow;
1452 return Flags;
1453 }
1454
1455 // Returns true if it is safe to reorder an instruction across preceding
1456 // instructions in a basic block.
isSafeToHoistInstr(Instruction * I,unsigned Flags)1457 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1458 // Don't reorder a store over a load.
1459 if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1460 return false;
1461
1462 // If we have seen an instruction with side effects, it's unsafe to reorder an
1463 // instruction which reads memory or itself has side effects.
1464 if ((Flags & SkipSideEffect) &&
1465 (I->mayReadFromMemory() || I->mayHaveSideEffects()))
1466 return false;
1467
1468 // Reordering across an instruction which does not necessarily transfer
1469 // control to the next instruction is speculation.
1470 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1471 return false;
1472
1473 // Hoisting of llvm.deoptimize is only legal together with the next return
1474 // instruction, which this pass is not always able to do.
1475 if (auto *CB = dyn_cast<CallBase>(I))
1476 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1477 return false;
1478
1479 // It's also unsafe/illegal to hoist an instruction above its instruction
1480 // operands
1481 BasicBlock *BB = I->getParent();
1482 for (Value *Op : I->operands()) {
1483 if (auto *J = dyn_cast<Instruction>(Op))
1484 if (J->getParent() == BB)
1485 return false;
1486 }
1487
1488 return true;
1489 }
1490
1491 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1492
1493 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1494 /// in the two blocks up into the branch block. The caller of this function
1495 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1496 /// only perform hoisting in case both blocks only contain a terminator. In that
1497 /// case, only the original BI will be replaced and selects for PHIs are added.
HoistThenElseCodeToIf(BranchInst * BI,const TargetTransformInfo & TTI,bool EqTermsOnly)1498 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1499 const TargetTransformInfo &TTI,
1500 bool EqTermsOnly) {
1501 // This does very trivial matching, with limited scanning, to find identical
1502 // instructions in the two blocks. In particular, we don't want to get into
1503 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1504 // such, we currently just scan for obviously identical instructions in an
1505 // identical order, possibly separated by the same number of non-identical
1506 // instructions.
1507 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1508 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1509
1510 // If either of the blocks has it's address taken, then we can't do this fold,
1511 // because the code we'd hoist would no longer run when we jump into the block
1512 // by it's address.
1513 if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1514 return false;
1515
1516 BasicBlock::iterator BB1_Itr = BB1->begin();
1517 BasicBlock::iterator BB2_Itr = BB2->begin();
1518
1519 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1520 // Skip debug info if it is not identical.
1521 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1522 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1523 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1524 while (isa<DbgInfoIntrinsic>(I1))
1525 I1 = &*BB1_Itr++;
1526 while (isa<DbgInfoIntrinsic>(I2))
1527 I2 = &*BB2_Itr++;
1528 }
1529 if (isa<PHINode>(I1))
1530 return false;
1531
1532 BasicBlock *BIParent = BI->getParent();
1533
1534 bool Changed = false;
1535
1536 auto _ = make_scope_exit([&]() {
1537 if (Changed)
1538 ++NumHoistCommonCode;
1539 });
1540
1541 // Check if only hoisting terminators is allowed. This does not add new
1542 // instructions to the hoist location.
1543 if (EqTermsOnly) {
1544 // Skip any debug intrinsics, as they are free to hoist.
1545 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1546 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1547 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1548 return false;
1549 if (!I1NonDbg->isTerminator())
1550 return false;
1551 // Now we know that we only need to hoist debug intrinsics and the
1552 // terminator. Let the loop below handle those 2 cases.
1553 }
1554
1555 // Count how many instructions were not hoisted so far. There's a limit on how
1556 // many instructions we skip, serving as a compilation time control as well as
1557 // preventing excessive increase of life ranges.
1558 unsigned NumSkipped = 0;
1559
1560 // Record any skipped instuctions that may read memory, write memory or have
1561 // side effects, or have implicit control flow.
1562 unsigned SkipFlagsBB1 = 0;
1563 unsigned SkipFlagsBB2 = 0;
1564
1565 for (;;) {
1566 // If we are hoisting the terminator instruction, don't move one (making a
1567 // broken BB), instead clone it, and remove BI.
1568 if (I1->isTerminator() || I2->isTerminator()) {
1569 // If any instructions remain in the block, we cannot hoist terminators.
1570 if (NumSkipped || !I1->isIdenticalToWhenDefined(I2))
1571 return Changed;
1572 goto HoistTerminator;
1573 }
1574
1575 if (I1->isIdenticalToWhenDefined(I2)) {
1576 // Even if the instructions are identical, it may not be safe to hoist
1577 // them if we have skipped over instructions with side effects or their
1578 // operands weren't hoisted.
1579 if (!isSafeToHoistInstr(I1, SkipFlagsBB1) ||
1580 !isSafeToHoistInstr(I2, SkipFlagsBB2))
1581 return Changed;
1582
1583 // If we're going to hoist a call, make sure that the two instructions
1584 // we're commoning/hoisting are both marked with musttail, or neither of
1585 // them is marked as such. Otherwise, we might end up in a situation where
1586 // we hoist from a block where the terminator is a `ret` to a block where
1587 // the terminator is a `br`, and `musttail` calls expect to be followed by
1588 // a return.
1589 auto *C1 = dyn_cast<CallInst>(I1);
1590 auto *C2 = dyn_cast<CallInst>(I2);
1591 if (C1 && C2)
1592 if (C1->isMustTailCall() != C2->isMustTailCall())
1593 return Changed;
1594
1595 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1596 return Changed;
1597
1598 // If any of the two call sites has nomerge attribute, stop hoisting.
1599 if (const auto *CB1 = dyn_cast<CallBase>(I1))
1600 if (CB1->cannotMerge())
1601 return Changed;
1602 if (const auto *CB2 = dyn_cast<CallBase>(I2))
1603 if (CB2->cannotMerge())
1604 return Changed;
1605
1606 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1607 assert(isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1608 // The debug location is an integral part of a debug info intrinsic
1609 // and can't be separated from it or replaced. Instead of attempting
1610 // to merge locations, simply hoist both copies of the intrinsic.
1611 BIParent->splice(BI->getIterator(), BB1, I1->getIterator());
1612 BIParent->splice(BI->getIterator(), BB2, I2->getIterator());
1613 } else {
1614 // For a normal instruction, we just move one to right before the
1615 // branch, then replace all uses of the other with the first. Finally,
1616 // we remove the now redundant second instruction.
1617 BIParent->splice(BI->getIterator(), BB1, I1->getIterator());
1618 if (!I2->use_empty())
1619 I2->replaceAllUsesWith(I1);
1620 I1->andIRFlags(I2);
1621 unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1622 LLVMContext::MD_range,
1623 LLVMContext::MD_fpmath,
1624 LLVMContext::MD_invariant_load,
1625 LLVMContext::MD_nonnull,
1626 LLVMContext::MD_invariant_group,
1627 LLVMContext::MD_align,
1628 LLVMContext::MD_dereferenceable,
1629 LLVMContext::MD_dereferenceable_or_null,
1630 LLVMContext::MD_mem_parallel_loop_access,
1631 LLVMContext::MD_access_group,
1632 LLVMContext::MD_preserve_access_index};
1633 combineMetadata(I1, I2, KnownIDs, true);
1634
1635 // I1 and I2 are being combined into a single instruction. Its debug
1636 // location is the merged locations of the original instructions.
1637 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1638
1639 I2->eraseFromParent();
1640 }
1641 Changed = true;
1642 ++NumHoistCommonInstrs;
1643 } else {
1644 if (NumSkipped >= HoistCommonSkipLimit)
1645 return Changed;
1646 // We are about to skip over a pair of non-identical instructions. Record
1647 // if any have characteristics that would prevent reordering instructions
1648 // across them.
1649 SkipFlagsBB1 |= skippedInstrFlags(I1);
1650 SkipFlagsBB2 |= skippedInstrFlags(I2);
1651 ++NumSkipped;
1652 }
1653
1654 I1 = &*BB1_Itr++;
1655 I2 = &*BB2_Itr++;
1656 // Skip debug info if it is not identical.
1657 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1658 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1659 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1660 while (isa<DbgInfoIntrinsic>(I1))
1661 I1 = &*BB1_Itr++;
1662 while (isa<DbgInfoIntrinsic>(I2))
1663 I2 = &*BB2_Itr++;
1664 }
1665 }
1666
1667 return Changed;
1668
1669 HoistTerminator:
1670 // It may not be possible to hoist an invoke.
1671 // FIXME: Can we define a safety predicate for CallBr?
1672 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1673 return Changed;
1674
1675 // TODO: callbr hoisting currently disabled pending further study.
1676 if (isa<CallBrInst>(I1))
1677 return Changed;
1678
1679 for (BasicBlock *Succ : successors(BB1)) {
1680 for (PHINode &PN : Succ->phis()) {
1681 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1682 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1683 if (BB1V == BB2V)
1684 continue;
1685
1686 // Check for passingValueIsAlwaysUndefined here because we would rather
1687 // eliminate undefined control flow then converting it to a select.
1688 if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1689 passingValueIsAlwaysUndefined(BB2V, &PN))
1690 return Changed;
1691 }
1692 }
1693
1694 // Okay, it is safe to hoist the terminator.
1695 Instruction *NT = I1->clone();
1696 NT->insertInto(BIParent, BI->getIterator());
1697 if (!NT->getType()->isVoidTy()) {
1698 I1->replaceAllUsesWith(NT);
1699 I2->replaceAllUsesWith(NT);
1700 NT->takeName(I1);
1701 }
1702 Changed = true;
1703 ++NumHoistCommonInstrs;
1704
1705 // Ensure terminator gets a debug location, even an unknown one, in case
1706 // it involves inlinable calls.
1707 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1708
1709 // PHIs created below will adopt NT's merged DebugLoc.
1710 IRBuilder<NoFolder> Builder(NT);
1711
1712 // Hoisting one of the terminators from our successor is a great thing.
1713 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1714 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1715 // nodes, so we insert select instruction to compute the final result.
1716 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1717 for (BasicBlock *Succ : successors(BB1)) {
1718 for (PHINode &PN : Succ->phis()) {
1719 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1720 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1721 if (BB1V == BB2V)
1722 continue;
1723
1724 // These values do not agree. Insert a select instruction before NT
1725 // that determines the right value.
1726 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1727 if (!SI) {
1728 // Propagate fast-math-flags from phi node to its replacement select.
1729 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1730 if (isa<FPMathOperator>(PN))
1731 Builder.setFastMathFlags(PN.getFastMathFlags());
1732
1733 SI = cast<SelectInst>(
1734 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1735 BB1V->getName() + "." + BB2V->getName(), BI));
1736 }
1737
1738 // Make the PHI node use the select for all incoming values for BB1/BB2
1739 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1740 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1741 PN.setIncomingValue(i, SI);
1742 }
1743 }
1744
1745 SmallVector<DominatorTree::UpdateType, 4> Updates;
1746
1747 // Update any PHI nodes in our new successors.
1748 for (BasicBlock *Succ : successors(BB1)) {
1749 AddPredecessorToBlock(Succ, BIParent, BB1);
1750 if (DTU)
1751 Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1752 }
1753
1754 if (DTU)
1755 for (BasicBlock *Succ : successors(BI))
1756 Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1757
1758 EraseTerminatorAndDCECond(BI);
1759 if (DTU)
1760 DTU->applyUpdates(Updates);
1761 return Changed;
1762 }
1763
1764 // Check lifetime markers.
isLifeTimeMarker(const Instruction * I)1765 static bool isLifeTimeMarker(const Instruction *I) {
1766 if (auto II = dyn_cast<IntrinsicInst>(I)) {
1767 switch (II->getIntrinsicID()) {
1768 default:
1769 break;
1770 case Intrinsic::lifetime_start:
1771 case Intrinsic::lifetime_end:
1772 return true;
1773 }
1774 }
1775 return false;
1776 }
1777
1778 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1779 // into variables.
replacingOperandWithVariableIsCheap(const Instruction * I,int OpIdx)1780 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1781 int OpIdx) {
1782 return !isa<IntrinsicInst>(I);
1783 }
1784
1785 // All instructions in Insts belong to different blocks that all unconditionally
1786 // branch to a common successor. Analyze each instruction and return true if it
1787 // would be possible to sink them into their successor, creating one common
1788 // instruction instead. For every value that would be required to be provided by
1789 // PHI node (because an operand varies in each input block), add to PHIOperands.
canSinkInstructions(ArrayRef<Instruction * > Insts,DenseMap<Instruction *,SmallVector<Value *,4>> & PHIOperands)1790 static bool canSinkInstructions(
1791 ArrayRef<Instruction *> Insts,
1792 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1793 // Prune out obviously bad instructions to move. Each instruction must have
1794 // exactly zero or one use, and we check later that use is by a single, common
1795 // PHI instruction in the successor.
1796 bool HasUse = !Insts.front()->user_empty();
1797 for (auto *I : Insts) {
1798 // These instructions may change or break semantics if moved.
1799 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1800 I->getType()->isTokenTy())
1801 return false;
1802
1803 // Do not try to sink an instruction in an infinite loop - it can cause
1804 // this algorithm to infinite loop.
1805 if (I->getParent()->getSingleSuccessor() == I->getParent())
1806 return false;
1807
1808 // Conservatively return false if I is an inline-asm instruction. Sinking
1809 // and merging inline-asm instructions can potentially create arguments
1810 // that cannot satisfy the inline-asm constraints.
1811 // If the instruction has nomerge attribute, return false.
1812 if (const auto *C = dyn_cast<CallBase>(I))
1813 if (C->isInlineAsm() || C->cannotMerge())
1814 return false;
1815
1816 // Each instruction must have zero or one use.
1817 if (HasUse && !I->hasOneUse())
1818 return false;
1819 if (!HasUse && !I->user_empty())
1820 return false;
1821 }
1822
1823 const Instruction *I0 = Insts.front();
1824 for (auto *I : Insts)
1825 if (!I->isSameOperationAs(I0))
1826 return false;
1827
1828 // All instructions in Insts are known to be the same opcode. If they have a
1829 // use, check that the only user is a PHI or in the same block as the
1830 // instruction, because if a user is in the same block as an instruction we're
1831 // contemplating sinking, it must already be determined to be sinkable.
1832 if (HasUse) {
1833 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1834 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1835 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1836 auto *U = cast<Instruction>(*I->user_begin());
1837 return (PNUse &&
1838 PNUse->getParent() == Succ &&
1839 PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1840 U->getParent() == I->getParent();
1841 }))
1842 return false;
1843 }
1844
1845 // Because SROA can't handle speculating stores of selects, try not to sink
1846 // loads, stores or lifetime markers of allocas when we'd have to create a
1847 // PHI for the address operand. Also, because it is likely that loads or
1848 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1849 // them.
1850 // This can cause code churn which can have unintended consequences down
1851 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1852 // FIXME: This is a workaround for a deficiency in SROA - see
1853 // https://llvm.org/bugs/show_bug.cgi?id=30188
1854 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1855 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1856 }))
1857 return false;
1858 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1859 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1860 }))
1861 return false;
1862 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1863 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1864 }))
1865 return false;
1866
1867 // For calls to be sinkable, they must all be indirect, or have same callee.
1868 // I.e. if we have two direct calls to different callees, we don't want to
1869 // turn that into an indirect call. Likewise, if we have an indirect call,
1870 // and a direct call, we don't actually want to have a single indirect call.
1871 if (isa<CallBase>(I0)) {
1872 auto IsIndirectCall = [](const Instruction *I) {
1873 return cast<CallBase>(I)->isIndirectCall();
1874 };
1875 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1876 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1877 if (HaveIndirectCalls) {
1878 if (!AllCallsAreIndirect)
1879 return false;
1880 } else {
1881 // All callees must be identical.
1882 Value *Callee = nullptr;
1883 for (const Instruction *I : Insts) {
1884 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1885 if (!Callee)
1886 Callee = CurrCallee;
1887 else if (Callee != CurrCallee)
1888 return false;
1889 }
1890 }
1891 }
1892
1893 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1894 Value *Op = I0->getOperand(OI);
1895 if (Op->getType()->isTokenTy())
1896 // Don't touch any operand of token type.
1897 return false;
1898
1899 auto SameAsI0 = [&I0, OI](const Instruction *I) {
1900 assert(I->getNumOperands() == I0->getNumOperands());
1901 return I->getOperand(OI) == I0->getOperand(OI);
1902 };
1903 if (!all_of(Insts, SameAsI0)) {
1904 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1905 !canReplaceOperandWithVariable(I0, OI))
1906 // We can't create a PHI from this GEP.
1907 return false;
1908 for (auto *I : Insts)
1909 PHIOperands[I].push_back(I->getOperand(OI));
1910 }
1911 }
1912 return true;
1913 }
1914
1915 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1916 // instruction of every block in Blocks to their common successor, commoning
1917 // into one instruction.
sinkLastInstruction(ArrayRef<BasicBlock * > Blocks)1918 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1919 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1920
1921 // canSinkInstructions returning true guarantees that every block has at
1922 // least one non-terminator instruction.
1923 SmallVector<Instruction*,4> Insts;
1924 for (auto *BB : Blocks) {
1925 Instruction *I = BB->getTerminator();
1926 do {
1927 I = I->getPrevNode();
1928 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1929 if (!isa<DbgInfoIntrinsic>(I))
1930 Insts.push_back(I);
1931 }
1932
1933 // The only checking we need to do now is that all users of all instructions
1934 // are the same PHI node. canSinkInstructions should have checked this but
1935 // it is slightly over-aggressive - it gets confused by commutative
1936 // instructions so double-check it here.
1937 Instruction *I0 = Insts.front();
1938 if (!I0->user_empty()) {
1939 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1940 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1941 auto *U = cast<Instruction>(*I->user_begin());
1942 return U == PNUse;
1943 }))
1944 return false;
1945 }
1946
1947 // We don't need to do any more checking here; canSinkInstructions should
1948 // have done it all for us.
1949 SmallVector<Value*, 4> NewOperands;
1950 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1951 // This check is different to that in canSinkInstructions. There, we
1952 // cared about the global view once simplifycfg (and instcombine) have
1953 // completed - it takes into account PHIs that become trivially
1954 // simplifiable. However here we need a more local view; if an operand
1955 // differs we create a PHI and rely on instcombine to clean up the very
1956 // small mess we may make.
1957 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1958 return I->getOperand(O) != I0->getOperand(O);
1959 });
1960 if (!NeedPHI) {
1961 NewOperands.push_back(I0->getOperand(O));
1962 continue;
1963 }
1964
1965 // Create a new PHI in the successor block and populate it.
1966 auto *Op = I0->getOperand(O);
1967 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1968 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1969 Op->getName() + ".sink", &BBEnd->front());
1970 for (auto *I : Insts)
1971 PN->addIncoming(I->getOperand(O), I->getParent());
1972 NewOperands.push_back(PN);
1973 }
1974
1975 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1976 // and move it to the start of the successor block.
1977 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1978 I0->getOperandUse(O).set(NewOperands[O]);
1979 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1980
1981 // Update metadata and IR flags, and merge debug locations.
1982 for (auto *I : Insts)
1983 if (I != I0) {
1984 // The debug location for the "common" instruction is the merged locations
1985 // of all the commoned instructions. We start with the original location
1986 // of the "common" instruction and iteratively merge each location in the
1987 // loop below.
1988 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1989 // However, as N-way merge for CallInst is rare, so we use simplified API
1990 // instead of using complex API for N-way merge.
1991 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1992 combineMetadataForCSE(I0, I, true);
1993 I0->andIRFlags(I);
1994 }
1995
1996 if (!I0->user_empty()) {
1997 // canSinkLastInstruction checked that all instructions were used by
1998 // one and only one PHI node. Find that now, RAUW it to our common
1999 // instruction and nuke it.
2000 auto *PN = cast<PHINode>(*I0->user_begin());
2001 PN->replaceAllUsesWith(I0);
2002 PN->eraseFromParent();
2003 }
2004
2005 // Finally nuke all instructions apart from the common instruction.
2006 for (auto *I : Insts) {
2007 if (I == I0)
2008 continue;
2009 // The remaining uses are debug users, replace those with the common inst.
2010 // In most (all?) cases this just introduces a use-before-def.
2011 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2012 I->replaceAllUsesWith(I0);
2013 I->eraseFromParent();
2014 }
2015
2016 return true;
2017 }
2018
2019 namespace {
2020
2021 // LockstepReverseIterator - Iterates through instructions
2022 // in a set of blocks in reverse order from the first non-terminator.
2023 // For example (assume all blocks have size n):
2024 // LockstepReverseIterator I([B1, B2, B3]);
2025 // *I-- = [B1[n], B2[n], B3[n]];
2026 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2027 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2028 // ...
2029 class LockstepReverseIterator {
2030 ArrayRef<BasicBlock*> Blocks;
2031 SmallVector<Instruction*,4> Insts;
2032 bool Fail;
2033
2034 public:
LockstepReverseIterator(ArrayRef<BasicBlock * > Blocks)2035 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2036 reset();
2037 }
2038
reset()2039 void reset() {
2040 Fail = false;
2041 Insts.clear();
2042 for (auto *BB : Blocks) {
2043 Instruction *Inst = BB->getTerminator();
2044 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2045 Inst = Inst->getPrevNode();
2046 if (!Inst) {
2047 // Block wasn't big enough.
2048 Fail = true;
2049 return;
2050 }
2051 Insts.push_back(Inst);
2052 }
2053 }
2054
isValid() const2055 bool isValid() const {
2056 return !Fail;
2057 }
2058
operator --()2059 void operator--() {
2060 if (Fail)
2061 return;
2062 for (auto *&Inst : Insts) {
2063 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2064 Inst = Inst->getPrevNode();
2065 // Already at beginning of block.
2066 if (!Inst) {
2067 Fail = true;
2068 return;
2069 }
2070 }
2071 }
2072
operator ++()2073 void operator++() {
2074 if (Fail)
2075 return;
2076 for (auto *&Inst : Insts) {
2077 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2078 Inst = Inst->getNextNode();
2079 // Already at end of block.
2080 if (!Inst) {
2081 Fail = true;
2082 return;
2083 }
2084 }
2085 }
2086
operator *() const2087 ArrayRef<Instruction*> operator * () const {
2088 return Insts;
2089 }
2090 };
2091
2092 } // end anonymous namespace
2093
2094 /// Check whether BB's predecessors end with unconditional branches. If it is
2095 /// true, sink any common code from the predecessors to BB.
SinkCommonCodeFromPredecessors(BasicBlock * BB,DomTreeUpdater * DTU)2096 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2097 DomTreeUpdater *DTU) {
2098 // We support two situations:
2099 // (1) all incoming arcs are unconditional
2100 // (2) there are non-unconditional incoming arcs
2101 //
2102 // (2) is very common in switch defaults and
2103 // else-if patterns;
2104 //
2105 // if (a) f(1);
2106 // else if (b) f(2);
2107 //
2108 // produces:
2109 //
2110 // [if]
2111 // / \
2112 // [f(1)] [if]
2113 // | | \
2114 // | | |
2115 // | [f(2)]|
2116 // \ | /
2117 // [ end ]
2118 //
2119 // [end] has two unconditional predecessor arcs and one conditional. The
2120 // conditional refers to the implicit empty 'else' arc. This conditional
2121 // arc can also be caused by an empty default block in a switch.
2122 //
2123 // In this case, we attempt to sink code from all *unconditional* arcs.
2124 // If we can sink instructions from these arcs (determined during the scan
2125 // phase below) we insert a common successor for all unconditional arcs and
2126 // connect that to [end], to enable sinking:
2127 //
2128 // [if]
2129 // / \
2130 // [x(1)] [if]
2131 // | | \
2132 // | | \
2133 // | [x(2)] |
2134 // \ / |
2135 // [sink.split] |
2136 // \ /
2137 // [ end ]
2138 //
2139 SmallVector<BasicBlock*,4> UnconditionalPreds;
2140 bool HaveNonUnconditionalPredecessors = false;
2141 for (auto *PredBB : predecessors(BB)) {
2142 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2143 if (PredBr && PredBr->isUnconditional())
2144 UnconditionalPreds.push_back(PredBB);
2145 else
2146 HaveNonUnconditionalPredecessors = true;
2147 }
2148 if (UnconditionalPreds.size() < 2)
2149 return false;
2150
2151 // We take a two-step approach to tail sinking. First we scan from the end of
2152 // each block upwards in lockstep. If the n'th instruction from the end of each
2153 // block can be sunk, those instructions are added to ValuesToSink and we
2154 // carry on. If we can sink an instruction but need to PHI-merge some operands
2155 // (because they're not identical in each instruction) we add these to
2156 // PHIOperands.
2157 int ScanIdx = 0;
2158 SmallPtrSet<Value*,4> InstructionsToSink;
2159 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2160 LockstepReverseIterator LRI(UnconditionalPreds);
2161 while (LRI.isValid() &&
2162 canSinkInstructions(*LRI, PHIOperands)) {
2163 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2164 << "\n");
2165 InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2166 ++ScanIdx;
2167 --LRI;
2168 }
2169
2170 // If no instructions can be sunk, early-return.
2171 if (ScanIdx == 0)
2172 return false;
2173
2174 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2175
2176 if (!followedByDeoptOrUnreachable) {
2177 // Okay, we *could* sink last ScanIdx instructions. But how many can we
2178 // actually sink before encountering instruction that is unprofitable to
2179 // sink?
2180 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2181 unsigned NumPHIdValues = 0;
2182 for (auto *I : *LRI)
2183 for (auto *V : PHIOperands[I]) {
2184 if (!InstructionsToSink.contains(V))
2185 ++NumPHIdValues;
2186 // FIXME: this check is overly optimistic. We may end up not sinking
2187 // said instruction, due to the very same profitability check.
2188 // See @creating_too_many_phis in sink-common-code.ll.
2189 }
2190 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2191 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2192 if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2193 NumPHIInsts++;
2194
2195 return NumPHIInsts <= 1;
2196 };
2197
2198 // We've determined that we are going to sink last ScanIdx instructions,
2199 // and recorded them in InstructionsToSink. Now, some instructions may be
2200 // unprofitable to sink. But that determination depends on the instructions
2201 // that we are going to sink.
2202
2203 // First, forward scan: find the first instruction unprofitable to sink,
2204 // recording all the ones that are profitable to sink.
2205 // FIXME: would it be better, after we detect that not all are profitable.
2206 // to either record the profitable ones, or erase the unprofitable ones?
2207 // Maybe we need to choose (at runtime) the one that will touch least
2208 // instrs?
2209 LRI.reset();
2210 int Idx = 0;
2211 SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2212 while (Idx < ScanIdx) {
2213 if (!ProfitableToSinkInstruction(LRI)) {
2214 // Too many PHIs would be created.
2215 LLVM_DEBUG(
2216 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2217 break;
2218 }
2219 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2220 --LRI;
2221 ++Idx;
2222 }
2223
2224 // If no instructions can be sunk, early-return.
2225 if (Idx == 0)
2226 return false;
2227
2228 // Did we determine that (only) some instructions are unprofitable to sink?
2229 if (Idx < ScanIdx) {
2230 // Okay, some instructions are unprofitable.
2231 ScanIdx = Idx;
2232 InstructionsToSink = InstructionsProfitableToSink;
2233
2234 // But, that may make other instructions unprofitable, too.
2235 // So, do a backward scan, do any earlier instructions become
2236 // unprofitable?
2237 assert(
2238 !ProfitableToSinkInstruction(LRI) &&
2239 "We already know that the last instruction is unprofitable to sink");
2240 ++LRI;
2241 --Idx;
2242 while (Idx >= 0) {
2243 // If we detect that an instruction becomes unprofitable to sink,
2244 // all earlier instructions won't be sunk either,
2245 // so preemptively keep InstructionsProfitableToSink in sync.
2246 // FIXME: is this the most performant approach?
2247 for (auto *I : *LRI)
2248 InstructionsProfitableToSink.erase(I);
2249 if (!ProfitableToSinkInstruction(LRI)) {
2250 // Everything starting with this instruction won't be sunk.
2251 ScanIdx = Idx;
2252 InstructionsToSink = InstructionsProfitableToSink;
2253 }
2254 ++LRI;
2255 --Idx;
2256 }
2257 }
2258
2259 // If no instructions can be sunk, early-return.
2260 if (ScanIdx == 0)
2261 return false;
2262 }
2263
2264 bool Changed = false;
2265
2266 if (HaveNonUnconditionalPredecessors) {
2267 if (!followedByDeoptOrUnreachable) {
2268 // It is always legal to sink common instructions from unconditional
2269 // predecessors. However, if not all predecessors are unconditional,
2270 // this transformation might be pessimizing. So as a rule of thumb,
2271 // don't do it unless we'd sink at least one non-speculatable instruction.
2272 // See https://bugs.llvm.org/show_bug.cgi?id=30244
2273 LRI.reset();
2274 int Idx = 0;
2275 bool Profitable = false;
2276 while (Idx < ScanIdx) {
2277 if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2278 Profitable = true;
2279 break;
2280 }
2281 --LRI;
2282 ++Idx;
2283 }
2284 if (!Profitable)
2285 return false;
2286 }
2287
2288 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2289 // We have a conditional edge and we're going to sink some instructions.
2290 // Insert a new block postdominating all blocks we're going to sink from.
2291 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2292 // Edges couldn't be split.
2293 return false;
2294 Changed = true;
2295 }
2296
2297 // Now that we've analyzed all potential sinking candidates, perform the
2298 // actual sink. We iteratively sink the last non-terminator of the source
2299 // blocks into their common successor unless doing so would require too
2300 // many PHI instructions to be generated (currently only one PHI is allowed
2301 // per sunk instruction).
2302 //
2303 // We can use InstructionsToSink to discount values needing PHI-merging that will
2304 // actually be sunk in a later iteration. This allows us to be more
2305 // aggressive in what we sink. This does allow a false positive where we
2306 // sink presuming a later value will also be sunk, but stop half way through
2307 // and never actually sink it which means we produce more PHIs than intended.
2308 // This is unlikely in practice though.
2309 int SinkIdx = 0;
2310 for (; SinkIdx != ScanIdx; ++SinkIdx) {
2311 LLVM_DEBUG(dbgs() << "SINK: Sink: "
2312 << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2313 << "\n");
2314
2315 // Because we've sunk every instruction in turn, the current instruction to
2316 // sink is always at index 0.
2317 LRI.reset();
2318
2319 if (!sinkLastInstruction(UnconditionalPreds)) {
2320 LLVM_DEBUG(
2321 dbgs()
2322 << "SINK: stopping here, failed to actually sink instruction!\n");
2323 break;
2324 }
2325
2326 NumSinkCommonInstrs++;
2327 Changed = true;
2328 }
2329 if (SinkIdx != 0)
2330 ++NumSinkCommonCode;
2331 return Changed;
2332 }
2333
2334 namespace {
2335
2336 struct CompatibleSets {
2337 using SetTy = SmallVector<InvokeInst *, 2>;
2338
2339 SmallVector<SetTy, 1> Sets;
2340
2341 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2342
2343 SetTy &getCompatibleSet(InvokeInst *II);
2344
2345 void insert(InvokeInst *II);
2346 };
2347
getCompatibleSet(InvokeInst * II)2348 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2349 // Perform a linear scan over all the existing sets, see if the new `invoke`
2350 // is compatible with any particular set. Since we know that all the `invokes`
2351 // within a set are compatible, only check the first `invoke` in each set.
2352 // WARNING: at worst, this has quadratic complexity.
2353 for (CompatibleSets::SetTy &Set : Sets) {
2354 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2355 return Set;
2356 }
2357
2358 // Otherwise, we either had no sets yet, or this invoke forms a new set.
2359 return Sets.emplace_back();
2360 }
2361
insert(InvokeInst * II)2362 void CompatibleSets::insert(InvokeInst *II) {
2363 getCompatibleSet(II).emplace_back(II);
2364 }
2365
shouldBelongToSameSet(ArrayRef<InvokeInst * > Invokes)2366 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2367 assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2368
2369 // Can we theoretically merge these `invoke`s?
2370 auto IsIllegalToMerge = [](InvokeInst *II) {
2371 return II->cannotMerge() || II->isInlineAsm();
2372 };
2373 if (any_of(Invokes, IsIllegalToMerge))
2374 return false;
2375
2376 // Either both `invoke`s must be direct,
2377 // or both `invoke`s must be indirect.
2378 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2379 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2380 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2381 if (HaveIndirectCalls) {
2382 if (!AllCallsAreIndirect)
2383 return false;
2384 } else {
2385 // All callees must be identical.
2386 Value *Callee = nullptr;
2387 for (InvokeInst *II : Invokes) {
2388 Value *CurrCallee = II->getCalledOperand();
2389 assert(CurrCallee && "There is always a called operand.");
2390 if (!Callee)
2391 Callee = CurrCallee;
2392 else if (Callee != CurrCallee)
2393 return false;
2394 }
2395 }
2396
2397 // Either both `invoke`s must not have a normal destination,
2398 // or both `invoke`s must have a normal destination,
2399 auto HasNormalDest = [](InvokeInst *II) {
2400 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2401 };
2402 if (any_of(Invokes, HasNormalDest)) {
2403 // Do not merge `invoke` that does not have a normal destination with one
2404 // that does have a normal destination, even though doing so would be legal.
2405 if (!all_of(Invokes, HasNormalDest))
2406 return false;
2407
2408 // All normal destinations must be identical.
2409 BasicBlock *NormalBB = nullptr;
2410 for (InvokeInst *II : Invokes) {
2411 BasicBlock *CurrNormalBB = II->getNormalDest();
2412 assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2413 if (!NormalBB)
2414 NormalBB = CurrNormalBB;
2415 else if (NormalBB != CurrNormalBB)
2416 return false;
2417 }
2418
2419 // In the normal destination, the incoming values for these two `invoke`s
2420 // must be compatible.
2421 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2422 if (!IncomingValuesAreCompatible(
2423 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2424 &EquivalenceSet))
2425 return false;
2426 }
2427
2428 #ifndef NDEBUG
2429 // All unwind destinations must be identical.
2430 // We know that because we have started from said unwind destination.
2431 BasicBlock *UnwindBB = nullptr;
2432 for (InvokeInst *II : Invokes) {
2433 BasicBlock *CurrUnwindBB = II->getUnwindDest();
2434 assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2435 if (!UnwindBB)
2436 UnwindBB = CurrUnwindBB;
2437 else
2438 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2439 }
2440 #endif
2441
2442 // In the unwind destination, the incoming values for these two `invoke`s
2443 // must be compatible.
2444 if (!IncomingValuesAreCompatible(
2445 Invokes.front()->getUnwindDest(),
2446 {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2447 return false;
2448
2449 // Ignoring arguments, these `invoke`s must be identical,
2450 // including operand bundles.
2451 const InvokeInst *II0 = Invokes.front();
2452 for (auto *II : Invokes.drop_front())
2453 if (!II->isSameOperationAs(II0))
2454 return false;
2455
2456 // Can we theoretically form the data operands for the merged `invoke`?
2457 auto IsIllegalToMergeArguments = [](auto Ops) {
2458 Type *Ty = std::get<0>(Ops)->getType();
2459 assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
2460 return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
2461 };
2462 assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2463 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2464 IsIllegalToMergeArguments))
2465 return false;
2466
2467 return true;
2468 }
2469
2470 } // namespace
2471
2472 // Merge all invokes in the provided set, all of which are compatible
2473 // as per the `CompatibleSets::shouldBelongToSameSet()`.
MergeCompatibleInvokesImpl(ArrayRef<InvokeInst * > Invokes,DomTreeUpdater * DTU)2474 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2475 DomTreeUpdater *DTU) {
2476 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2477
2478 SmallVector<DominatorTree::UpdateType, 8> Updates;
2479 if (DTU)
2480 Updates.reserve(2 + 3 * Invokes.size());
2481
2482 bool HasNormalDest =
2483 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2484
2485 // Clone one of the invokes into a new basic block.
2486 // Since they are all compatible, it doesn't matter which invoke is cloned.
2487 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2488 InvokeInst *II0 = Invokes.front();
2489 BasicBlock *II0BB = II0->getParent();
2490 BasicBlock *InsertBeforeBlock =
2491 II0->getParent()->getIterator()->getNextNode();
2492 Function *Func = II0BB->getParent();
2493 LLVMContext &Ctx = II0->getContext();
2494
2495 BasicBlock *MergedInvokeBB = BasicBlock::Create(
2496 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2497
2498 auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2499 // NOTE: all invokes have the same attributes, so no handling needed.
2500 MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2501
2502 if (!HasNormalDest) {
2503 // This set does not have a normal destination,
2504 // so just form a new block with unreachable terminator.
2505 BasicBlock *MergedNormalDest = BasicBlock::Create(
2506 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2507 new UnreachableInst(Ctx, MergedNormalDest);
2508 MergedInvoke->setNormalDest(MergedNormalDest);
2509 }
2510
2511 // The unwind destination, however, remainds identical for all invokes here.
2512
2513 return MergedInvoke;
2514 }();
2515
2516 if (DTU) {
2517 // Predecessor blocks that contained these invokes will now branch to
2518 // the new block that contains the merged invoke, ...
2519 for (InvokeInst *II : Invokes)
2520 Updates.push_back(
2521 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2522
2523 // ... which has the new `unreachable` block as normal destination,
2524 // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2525 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2526 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2527 SuccBBOfMergedInvoke});
2528
2529 // Since predecessor blocks now unconditionally branch to a new block,
2530 // they no longer branch to their original successors.
2531 for (InvokeInst *II : Invokes)
2532 for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2533 Updates.push_back(
2534 {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2535 }
2536
2537 bool IsIndirectCall = Invokes[0]->isIndirectCall();
2538
2539 // Form the merged operands for the merged invoke.
2540 for (Use &U : MergedInvoke->operands()) {
2541 // Only PHI together the indirect callees and data operands.
2542 if (MergedInvoke->isCallee(&U)) {
2543 if (!IsIndirectCall)
2544 continue;
2545 } else if (!MergedInvoke->isDataOperand(&U))
2546 continue;
2547
2548 // Don't create trivial PHI's with all-identical incoming values.
2549 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2550 return II->getOperand(U.getOperandNo()) != U.get();
2551 });
2552 if (!NeedPHI)
2553 continue;
2554
2555 // Form a PHI out of all the data ops under this index.
2556 PHINode *PN = PHINode::Create(
2557 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2558 for (InvokeInst *II : Invokes)
2559 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2560
2561 U.set(PN);
2562 }
2563
2564 // We've ensured that each PHI node has compatible (identical) incoming values
2565 // when coming from each of the `invoke`s in the current merge set,
2566 // so update the PHI nodes accordingly.
2567 for (BasicBlock *Succ : successors(MergedInvoke))
2568 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2569 /*ExistPred=*/Invokes.front()->getParent());
2570
2571 // And finally, replace the original `invoke`s with an unconditional branch
2572 // to the block with the merged `invoke`. Also, give that merged `invoke`
2573 // the merged debugloc of all the original `invoke`s.
2574 const DILocation *MergedDebugLoc = nullptr;
2575 for (InvokeInst *II : Invokes) {
2576 // Compute the debug location common to all the original `invoke`s.
2577 if (!MergedDebugLoc)
2578 MergedDebugLoc = II->getDebugLoc();
2579 else
2580 MergedDebugLoc =
2581 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2582
2583 // And replace the old `invoke` with an unconditionally branch
2584 // to the block with the merged `invoke`.
2585 for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2586 OrigSuccBB->removePredecessor(II->getParent());
2587 BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2588 II->replaceAllUsesWith(MergedInvoke);
2589 II->eraseFromParent();
2590 ++NumInvokesMerged;
2591 }
2592 MergedInvoke->setDebugLoc(MergedDebugLoc);
2593 ++NumInvokeSetsFormed;
2594
2595 if (DTU)
2596 DTU->applyUpdates(Updates);
2597 }
2598
2599 /// If this block is a `landingpad` exception handling block, categorize all
2600 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2601 /// being "mergeable" together, and then merge invokes in each set together.
2602 ///
2603 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2604 /// [...] [...]
2605 /// | |
2606 /// [invoke0] [invoke1]
2607 /// / \ / \
2608 /// [cont0] [landingpad] [cont1]
2609 /// to:
2610 /// [...] [...]
2611 /// \ /
2612 /// [invoke]
2613 /// / \
2614 /// [cont] [landingpad]
2615 ///
2616 /// But of course we can only do that if the invokes share the `landingpad`,
2617 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2618 /// and the invoked functions are "compatible".
MergeCompatibleInvokes(BasicBlock * BB,DomTreeUpdater * DTU)2619 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2620 if (!EnableMergeCompatibleInvokes)
2621 return false;
2622
2623 bool Changed = false;
2624
2625 // FIXME: generalize to all exception handling blocks?
2626 if (!BB->isLandingPad())
2627 return Changed;
2628
2629 CompatibleSets Grouper;
2630
2631 // Record all the predecessors of this `landingpad`. As per verifier,
2632 // the only allowed predecessor is the unwind edge of an `invoke`.
2633 // We want to group "compatible" `invokes` into the same set to be merged.
2634 for (BasicBlock *PredBB : predecessors(BB))
2635 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2636
2637 // And now, merge `invoke`s that were grouped togeter.
2638 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2639 if (Invokes.size() < 2)
2640 continue;
2641 Changed = true;
2642 MergeCompatibleInvokesImpl(Invokes, DTU);
2643 }
2644
2645 return Changed;
2646 }
2647
2648 namespace {
2649 /// Track ephemeral values, which should be ignored for cost-modelling
2650 /// purposes. Requires walking instructions in reverse order.
2651 class EphemeralValueTracker {
2652 SmallPtrSet<const Instruction *, 32> EphValues;
2653
isEphemeral(const Instruction * I)2654 bool isEphemeral(const Instruction *I) {
2655 if (isa<AssumeInst>(I))
2656 return true;
2657 return !I->mayHaveSideEffects() && !I->isTerminator() &&
2658 all_of(I->users(), [&](const User *U) {
2659 return EphValues.count(cast<Instruction>(U));
2660 });
2661 }
2662
2663 public:
track(const Instruction * I)2664 bool track(const Instruction *I) {
2665 if (isEphemeral(I)) {
2666 EphValues.insert(I);
2667 return true;
2668 }
2669 return false;
2670 }
2671
contains(const Instruction * I) const2672 bool contains(const Instruction *I) const { return EphValues.contains(I); }
2673 };
2674 } // namespace
2675
2676 /// Determine if we can hoist sink a sole store instruction out of a
2677 /// conditional block.
2678 ///
2679 /// We are looking for code like the following:
2680 /// BrBB:
2681 /// store i32 %add, i32* %arrayidx2
2682 /// ... // No other stores or function calls (we could be calling a memory
2683 /// ... // function).
2684 /// %cmp = icmp ult %x, %y
2685 /// br i1 %cmp, label %EndBB, label %ThenBB
2686 /// ThenBB:
2687 /// store i32 %add5, i32* %arrayidx2
2688 /// br label EndBB
2689 /// EndBB:
2690 /// ...
2691 /// We are going to transform this into:
2692 /// BrBB:
2693 /// store i32 %add, i32* %arrayidx2
2694 /// ... //
2695 /// %cmp = icmp ult %x, %y
2696 /// %add.add5 = select i1 %cmp, i32 %add, %add5
2697 /// store i32 %add.add5, i32* %arrayidx2
2698 /// ...
2699 ///
2700 /// \return The pointer to the value of the previous store if the store can be
2701 /// hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)2702 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2703 BasicBlock *StoreBB, BasicBlock *EndBB) {
2704 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2705 if (!StoreToHoist)
2706 return nullptr;
2707
2708 // Volatile or atomic.
2709 if (!StoreToHoist->isSimple())
2710 return nullptr;
2711
2712 Value *StorePtr = StoreToHoist->getPointerOperand();
2713 Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2714
2715 // Look for a store to the same pointer in BrBB.
2716 unsigned MaxNumInstToLookAt = 9;
2717 // Skip pseudo probe intrinsic calls which are not really killing any memory
2718 // accesses.
2719 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2720 if (!MaxNumInstToLookAt)
2721 break;
2722 --MaxNumInstToLookAt;
2723
2724 // Could be calling an instruction that affects memory like free().
2725 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2726 return nullptr;
2727
2728 if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2729 // Found the previous store to same location and type. Make sure it is
2730 // simple, to avoid introducing a spurious non-atomic write after an
2731 // atomic write.
2732 if (SI->getPointerOperand() == StorePtr &&
2733 SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2734 // Found the previous store, return its value operand.
2735 return SI->getValueOperand();
2736 return nullptr; // Unknown store.
2737 }
2738
2739 if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2740 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2741 LI->isSimple()) {
2742 // Local objects (created by an `alloca` instruction) are always
2743 // writable, so once we are past a read from a location it is valid to
2744 // also write to that same location.
2745 // If the address of the local object never escapes the function, that
2746 // means it's never concurrently read or written, hence moving the store
2747 // from under the condition will not introduce a data race.
2748 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2749 if (AI && !PointerMayBeCaptured(AI, false, true))
2750 // Found a previous load, return it.
2751 return LI;
2752 }
2753 // The load didn't work out, but we may still find a store.
2754 }
2755 }
2756
2757 return nullptr;
2758 }
2759
2760 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2761 /// converted to selects.
validateAndCostRequiredSelects(BasicBlock * BB,BasicBlock * ThenBB,BasicBlock * EndBB,unsigned & SpeculatedInstructions,InstructionCost & Cost,const TargetTransformInfo & TTI)2762 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2763 BasicBlock *EndBB,
2764 unsigned &SpeculatedInstructions,
2765 InstructionCost &Cost,
2766 const TargetTransformInfo &TTI) {
2767 TargetTransformInfo::TargetCostKind CostKind =
2768 BB->getParent()->hasMinSize()
2769 ? TargetTransformInfo::TCK_CodeSize
2770 : TargetTransformInfo::TCK_SizeAndLatency;
2771
2772 bool HaveRewritablePHIs = false;
2773 for (PHINode &PN : EndBB->phis()) {
2774 Value *OrigV = PN.getIncomingValueForBlock(BB);
2775 Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2776
2777 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2778 // Skip PHIs which are trivial.
2779 if (ThenV == OrigV)
2780 continue;
2781
2782 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2783 CmpInst::BAD_ICMP_PREDICATE, CostKind);
2784
2785 // Don't convert to selects if we could remove undefined behavior instead.
2786 if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2787 passingValueIsAlwaysUndefined(ThenV, &PN))
2788 return false;
2789
2790 HaveRewritablePHIs = true;
2791 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2792 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2793 if (!OrigCE && !ThenCE)
2794 continue; // Known cheap (FIXME: Maybe not true for aggregates).
2795
2796 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2797 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2798 InstructionCost MaxCost =
2799 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2800 if (OrigCost + ThenCost > MaxCost)
2801 return false;
2802
2803 // Account for the cost of an unfolded ConstantExpr which could end up
2804 // getting expanded into Instructions.
2805 // FIXME: This doesn't account for how many operations are combined in the
2806 // constant expression.
2807 ++SpeculatedInstructions;
2808 if (SpeculatedInstructions > 1)
2809 return false;
2810 }
2811
2812 return HaveRewritablePHIs;
2813 }
2814
2815 /// Speculate a conditional basic block flattening the CFG.
2816 ///
2817 /// Note that this is a very risky transform currently. Speculating
2818 /// instructions like this is most often not desirable. Instead, there is an MI
2819 /// pass which can do it with full awareness of the resource constraints.
2820 /// However, some cases are "obvious" and we should do directly. An example of
2821 /// this is speculating a single, reasonably cheap instruction.
2822 ///
2823 /// There is only one distinct advantage to flattening the CFG at the IR level:
2824 /// it makes very common but simplistic optimizations such as are common in
2825 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2826 /// modeling their effects with easier to reason about SSA value graphs.
2827 ///
2828 ///
2829 /// An illustration of this transform is turning this IR:
2830 /// \code
2831 /// BB:
2832 /// %cmp = icmp ult %x, %y
2833 /// br i1 %cmp, label %EndBB, label %ThenBB
2834 /// ThenBB:
2835 /// %sub = sub %x, %y
2836 /// br label BB2
2837 /// EndBB:
2838 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2839 /// ...
2840 /// \endcode
2841 ///
2842 /// Into this IR:
2843 /// \code
2844 /// BB:
2845 /// %cmp = icmp ult %x, %y
2846 /// %sub = sub %x, %y
2847 /// %cond = select i1 %cmp, 0, %sub
2848 /// ...
2849 /// \endcode
2850 ///
2851 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const TargetTransformInfo & TTI)2852 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2853 const TargetTransformInfo &TTI) {
2854 // Be conservative for now. FP select instruction can often be expensive.
2855 Value *BrCond = BI->getCondition();
2856 if (isa<FCmpInst>(BrCond))
2857 return false;
2858
2859 BasicBlock *BB = BI->getParent();
2860 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2861 InstructionCost Budget =
2862 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2863
2864 // If ThenBB is actually on the false edge of the conditional branch, remember
2865 // to swap the select operands later.
2866 bool Invert = false;
2867 if (ThenBB != BI->getSuccessor(0)) {
2868 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2869 Invert = true;
2870 }
2871 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2872
2873 // If the branch is non-unpredictable, and is predicted to *not* branch to
2874 // the `then` block, then avoid speculating it.
2875 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2876 uint64_t TWeight, FWeight;
2877 if (extractBranchWeights(*BI, TWeight, FWeight) &&
2878 (TWeight + FWeight) != 0) {
2879 uint64_t EndWeight = Invert ? TWeight : FWeight;
2880 BranchProbability BIEndProb =
2881 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2882 BranchProbability Likely = TTI.getPredictableBranchThreshold();
2883 if (BIEndProb >= Likely)
2884 return false;
2885 }
2886 }
2887
2888 // Keep a count of how many times instructions are used within ThenBB when
2889 // they are candidates for sinking into ThenBB. Specifically:
2890 // - They are defined in BB, and
2891 // - They have no side effects, and
2892 // - All of their uses are in ThenBB.
2893 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2894
2895 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2896
2897 unsigned SpeculatedInstructions = 0;
2898 Value *SpeculatedStoreValue = nullptr;
2899 StoreInst *SpeculatedStore = nullptr;
2900 EphemeralValueTracker EphTracker;
2901 for (Instruction &I : reverse(drop_end(*ThenBB))) {
2902 // Skip debug info.
2903 if (isa<DbgInfoIntrinsic>(I)) {
2904 SpeculatedDbgIntrinsics.push_back(&I);
2905 continue;
2906 }
2907
2908 // Skip pseudo probes. The consequence is we lose track of the branch
2909 // probability for ThenBB, which is fine since the optimization here takes
2910 // place regardless of the branch probability.
2911 if (isa<PseudoProbeInst>(I)) {
2912 // The probe should be deleted so that it will not be over-counted when
2913 // the samples collected on the non-conditional path are counted towards
2914 // the conditional path. We leave it for the counts inference algorithm to
2915 // figure out a proper count for an unknown probe.
2916 SpeculatedDbgIntrinsics.push_back(&I);
2917 continue;
2918 }
2919
2920 // Ignore ephemeral values, they will be dropped by the transform.
2921 if (EphTracker.track(&I))
2922 continue;
2923
2924 // Only speculatively execute a single instruction (not counting the
2925 // terminator) for now.
2926 ++SpeculatedInstructions;
2927 if (SpeculatedInstructions > 1)
2928 return false;
2929
2930 // Don't hoist the instruction if it's unsafe or expensive.
2931 if (!isSafeToSpeculativelyExecute(&I) &&
2932 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2933 &I, BB, ThenBB, EndBB))))
2934 return false;
2935 if (!SpeculatedStoreValue &&
2936 computeSpeculationCost(&I, TTI) >
2937 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2938 return false;
2939
2940 // Store the store speculation candidate.
2941 if (SpeculatedStoreValue)
2942 SpeculatedStore = cast<StoreInst>(&I);
2943
2944 // Do not hoist the instruction if any of its operands are defined but not
2945 // used in BB. The transformation will prevent the operand from
2946 // being sunk into the use block.
2947 for (Use &Op : I.operands()) {
2948 Instruction *OpI = dyn_cast<Instruction>(Op);
2949 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2950 continue; // Not a candidate for sinking.
2951
2952 ++SinkCandidateUseCounts[OpI];
2953 }
2954 }
2955
2956 // Consider any sink candidates which are only used in ThenBB as costs for
2957 // speculation. Note, while we iterate over a DenseMap here, we are summing
2958 // and so iteration order isn't significant.
2959 for (const auto &[Inst, Count] : SinkCandidateUseCounts)
2960 if (Inst->hasNUses(Count)) {
2961 ++SpeculatedInstructions;
2962 if (SpeculatedInstructions > 1)
2963 return false;
2964 }
2965
2966 // Check that we can insert the selects and that it's not too expensive to do
2967 // so.
2968 bool Convert = SpeculatedStore != nullptr;
2969 InstructionCost Cost = 0;
2970 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2971 SpeculatedInstructions,
2972 Cost, TTI);
2973 if (!Convert || Cost > Budget)
2974 return false;
2975
2976 // If we get here, we can hoist the instruction and if-convert.
2977 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2978
2979 // Insert a select of the value of the speculated store.
2980 if (SpeculatedStoreValue) {
2981 IRBuilder<NoFolder> Builder(BI);
2982 Value *OrigV = SpeculatedStore->getValueOperand();
2983 Value *TrueV = SpeculatedStore->getValueOperand();
2984 Value *FalseV = SpeculatedStoreValue;
2985 if (Invert)
2986 std::swap(TrueV, FalseV);
2987 Value *S = Builder.CreateSelect(
2988 BrCond, TrueV, FalseV, "spec.store.select", BI);
2989 SpeculatedStore->setOperand(0, S);
2990 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2991 SpeculatedStore->getDebugLoc());
2992 // The value stored is still conditional, but the store itself is now
2993 // unconditonally executed, so we must be sure that any linked dbg.assign
2994 // intrinsics are tracking the new stored value (the result of the
2995 // select). If we don't, and the store were to be removed by another pass
2996 // (e.g. DSE), then we'd eventually end up emitting a location describing
2997 // the conditional value, unconditionally.
2998 //
2999 // === Before this transformation ===
3000 // pred:
3001 // store %one, %x.dest, !DIAssignID !1
3002 // dbg.assign %one, "x", ..., !1, ...
3003 // br %cond if.then
3004 //
3005 // if.then:
3006 // store %two, %x.dest, !DIAssignID !2
3007 // dbg.assign %two, "x", ..., !2, ...
3008 //
3009 // === After this transformation ===
3010 // pred:
3011 // store %one, %x.dest, !DIAssignID !1
3012 // dbg.assign %one, "x", ..., !1
3013 /// ...
3014 // %merge = select %cond, %two, %one
3015 // store %merge, %x.dest, !DIAssignID !2
3016 // dbg.assign %merge, "x", ..., !2
3017 for (auto *DAI : at::getAssignmentMarkers(SpeculatedStore)) {
3018 if (any_of(DAI->location_ops(), [&](Value *V) { return V == OrigV; }))
3019 DAI->replaceVariableLocationOp(OrigV, S);
3020 }
3021 }
3022
3023 // Metadata can be dependent on the condition we are hoisting above.
3024 // Conservatively strip all metadata on the instruction. Drop the debug loc
3025 // to avoid making it appear as if the condition is a constant, which would
3026 // be misleading while debugging.
3027 // Similarly strip attributes that maybe dependent on condition we are
3028 // hoisting above.
3029 for (auto &I : make_early_inc_range(*ThenBB)) {
3030 if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3031 // Don't update the DILocation of dbg.assign intrinsics.
3032 if (!isa<DbgAssignIntrinsic>(&I))
3033 I.setDebugLoc(DebugLoc());
3034 }
3035 I.dropUndefImplyingAttrsAndUnknownMetadata();
3036
3037 // Drop ephemeral values.
3038 if (EphTracker.contains(&I)) {
3039 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3040 I.eraseFromParent();
3041 }
3042 }
3043
3044 // Hoist the instructions.
3045 BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3046 std::prev(ThenBB->end()));
3047
3048 // Insert selects and rewrite the PHI operands.
3049 IRBuilder<NoFolder> Builder(BI);
3050 for (PHINode &PN : EndBB->phis()) {
3051 unsigned OrigI = PN.getBasicBlockIndex(BB);
3052 unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3053 Value *OrigV = PN.getIncomingValue(OrigI);
3054 Value *ThenV = PN.getIncomingValue(ThenI);
3055
3056 // Skip PHIs which are trivial.
3057 if (OrigV == ThenV)
3058 continue;
3059
3060 // Create a select whose true value is the speculatively executed value and
3061 // false value is the pre-existing value. Swap them if the branch
3062 // destinations were inverted.
3063 Value *TrueV = ThenV, *FalseV = OrigV;
3064 if (Invert)
3065 std::swap(TrueV, FalseV);
3066 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3067 PN.setIncomingValue(OrigI, V);
3068 PN.setIncomingValue(ThenI, V);
3069 }
3070
3071 // Remove speculated dbg intrinsics.
3072 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3073 // dbg value for the different flows and inserting it after the select.
3074 for (Instruction *I : SpeculatedDbgIntrinsics) {
3075 // We still want to know that an assignment took place so don't remove
3076 // dbg.assign intrinsics.
3077 if (!isa<DbgAssignIntrinsic>(I))
3078 I->eraseFromParent();
3079 }
3080
3081 ++NumSpeculations;
3082 return true;
3083 }
3084
3085 /// Return true if we can thread a branch across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)3086 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3087 int Size = 0;
3088 EphemeralValueTracker EphTracker;
3089
3090 // Walk the loop in reverse so that we can identify ephemeral values properly
3091 // (values only feeding assumes).
3092 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3093 // Can't fold blocks that contain noduplicate or convergent calls.
3094 if (CallInst *CI = dyn_cast<CallInst>(&I))
3095 if (CI->cannotDuplicate() || CI->isConvergent())
3096 return false;
3097
3098 // Ignore ephemeral values which are deleted during codegen.
3099 // We will delete Phis while threading, so Phis should not be accounted in
3100 // block's size.
3101 if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3102 if (Size++ > MaxSmallBlockSize)
3103 return false; // Don't clone large BB's.
3104 }
3105
3106 // We can only support instructions that do not define values that are
3107 // live outside of the current basic block.
3108 for (User *U : I.users()) {
3109 Instruction *UI = cast<Instruction>(U);
3110 if (UI->getParent() != BB || isa<PHINode>(UI))
3111 return false;
3112 }
3113
3114 // Looks ok, continue checking.
3115 }
3116
3117 return true;
3118 }
3119
getKnownValueOnEdge(Value * V,BasicBlock * From,BasicBlock * To)3120 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3121 BasicBlock *To) {
3122 // Don't look past the block defining the value, we might get the value from
3123 // a previous loop iteration.
3124 auto *I = dyn_cast<Instruction>(V);
3125 if (I && I->getParent() == To)
3126 return nullptr;
3127
3128 // We know the value if the From block branches on it.
3129 auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3130 if (BI && BI->isConditional() && BI->getCondition() == V &&
3131 BI->getSuccessor(0) != BI->getSuccessor(1))
3132 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3133 : ConstantInt::getFalse(BI->getContext());
3134
3135 return nullptr;
3136 }
3137
3138 /// If we have a conditional branch on something for which we know the constant
3139 /// value in predecessors (e.g. a phi node in the current block), thread edges
3140 /// from the predecessor to their ultimate destination.
3141 static std::optional<bool>
FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,AssumptionCache * AC)3142 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3143 const DataLayout &DL,
3144 AssumptionCache *AC) {
3145 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3146 BasicBlock *BB = BI->getParent();
3147 Value *Cond = BI->getCondition();
3148 PHINode *PN = dyn_cast<PHINode>(Cond);
3149 if (PN && PN->getParent() == BB) {
3150 // Degenerate case of a single entry PHI.
3151 if (PN->getNumIncomingValues() == 1) {
3152 FoldSingleEntryPHINodes(PN->getParent());
3153 return true;
3154 }
3155
3156 for (Use &U : PN->incoming_values())
3157 if (auto *CB = dyn_cast<ConstantInt>(U))
3158 KnownValues[CB].insert(PN->getIncomingBlock(U));
3159 } else {
3160 for (BasicBlock *Pred : predecessors(BB)) {
3161 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3162 KnownValues[CB].insert(Pred);
3163 }
3164 }
3165
3166 if (KnownValues.empty())
3167 return false;
3168
3169 // Now we know that this block has multiple preds and two succs.
3170 // Check that the block is small enough and values defined in the block are
3171 // not used outside of it.
3172 if (!BlockIsSimpleEnoughToThreadThrough(BB))
3173 return false;
3174
3175 for (const auto &Pair : KnownValues) {
3176 // Okay, we now know that all edges from PredBB should be revectored to
3177 // branch to RealDest.
3178 ConstantInt *CB = Pair.first;
3179 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3180 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3181
3182 if (RealDest == BB)
3183 continue; // Skip self loops.
3184
3185 // Skip if the predecessor's terminator is an indirect branch.
3186 if (any_of(PredBBs, [](BasicBlock *PredBB) {
3187 return isa<IndirectBrInst>(PredBB->getTerminator());
3188 }))
3189 continue;
3190
3191 LLVM_DEBUG({
3192 dbgs() << "Condition " << *Cond << " in " << BB->getName()
3193 << " has value " << *Pair.first << " in predecessors:\n";
3194 for (const BasicBlock *PredBB : Pair.second)
3195 dbgs() << " " << PredBB->getName() << "\n";
3196 dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3197 });
3198
3199 // Split the predecessors we are threading into a new edge block. We'll
3200 // clone the instructions into this block, and then redirect it to RealDest.
3201 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3202
3203 // TODO: These just exist to reduce test diff, we can drop them if we like.
3204 EdgeBB->setName(RealDest->getName() + ".critedge");
3205 EdgeBB->moveBefore(RealDest);
3206
3207 // Update PHI nodes.
3208 AddPredecessorToBlock(RealDest, EdgeBB, BB);
3209
3210 // BB may have instructions that are being threaded over. Clone these
3211 // instructions into EdgeBB. We know that there will be no uses of the
3212 // cloned instructions outside of EdgeBB.
3213 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3214 DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3215 TranslateMap[Cond] = CB;
3216 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3217 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3218 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3219 continue;
3220 }
3221 // Clone the instruction.
3222 Instruction *N = BBI->clone();
3223 if (BBI->hasName())
3224 N->setName(BBI->getName() + ".c");
3225
3226 // Update operands due to translation.
3227 for (Use &Op : N->operands()) {
3228 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3229 if (PI != TranslateMap.end())
3230 Op = PI->second;
3231 }
3232
3233 // Check for trivial simplification.
3234 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3235 if (!BBI->use_empty())
3236 TranslateMap[&*BBI] = V;
3237 if (!N->mayHaveSideEffects()) {
3238 N->deleteValue(); // Instruction folded away, don't need actual inst
3239 N = nullptr;
3240 }
3241 } else {
3242 if (!BBI->use_empty())
3243 TranslateMap[&*BBI] = N;
3244 }
3245 if (N) {
3246 // Insert the new instruction into its new home.
3247 N->insertInto(EdgeBB, InsertPt);
3248
3249 // Register the new instruction with the assumption cache if necessary.
3250 if (auto *Assume = dyn_cast<AssumeInst>(N))
3251 if (AC)
3252 AC->registerAssumption(Assume);
3253 }
3254 }
3255
3256 BB->removePredecessor(EdgeBB);
3257 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3258 EdgeBI->setSuccessor(0, RealDest);
3259 EdgeBI->setDebugLoc(BI->getDebugLoc());
3260
3261 if (DTU) {
3262 SmallVector<DominatorTree::UpdateType, 2> Updates;
3263 Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3264 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3265 DTU->applyUpdates(Updates);
3266 }
3267
3268 // For simplicity, we created a separate basic block for the edge. Merge
3269 // it back into the predecessor if possible. This not only avoids
3270 // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3271 // bypass the check for trivial cycles above.
3272 MergeBlockIntoPredecessor(EdgeBB, DTU);
3273
3274 // Signal repeat, simplifying any other constants.
3275 return std::nullopt;
3276 }
3277
3278 return false;
3279 }
3280
FoldCondBranchOnValueKnownInPredecessor(BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,AssumptionCache * AC)3281 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3282 DomTreeUpdater *DTU,
3283 const DataLayout &DL,
3284 AssumptionCache *AC) {
3285 std::optional<bool> Result;
3286 bool EverChanged = false;
3287 do {
3288 // Note that None means "we changed things, but recurse further."
3289 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3290 EverChanged |= Result == std::nullopt || *Result;
3291 } while (Result == std::nullopt);
3292 return EverChanged;
3293 }
3294
3295 /// Given a BB that starts with the specified two-entry PHI node,
3296 /// see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const DataLayout & DL)3297 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3298 DomTreeUpdater *DTU, const DataLayout &DL) {
3299 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
3300 // statement", which has a very simple dominance structure. Basically, we
3301 // are trying to find the condition that is being branched on, which
3302 // subsequently causes this merge to happen. We really want control
3303 // dependence information for this check, but simplifycfg can't keep it up
3304 // to date, and this catches most of the cases we care about anyway.
3305 BasicBlock *BB = PN->getParent();
3306
3307 BasicBlock *IfTrue, *IfFalse;
3308 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3309 if (!DomBI)
3310 return false;
3311 Value *IfCond = DomBI->getCondition();
3312 // Don't bother if the branch will be constant folded trivially.
3313 if (isa<ConstantInt>(IfCond))
3314 return false;
3315
3316 BasicBlock *DomBlock = DomBI->getParent();
3317 SmallVector<BasicBlock *, 2> IfBlocks;
3318 llvm::copy_if(
3319 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3320 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3321 });
3322 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3323 "Will have either one or two blocks to speculate.");
3324
3325 // If the branch is non-unpredictable, see if we either predictably jump to
3326 // the merge bb (if we have only a single 'then' block), or if we predictably
3327 // jump to one specific 'then' block (if we have two of them).
3328 // It isn't beneficial to speculatively execute the code
3329 // from the block that we know is predictably not entered.
3330 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3331 uint64_t TWeight, FWeight;
3332 if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3333 (TWeight + FWeight) != 0) {
3334 BranchProbability BITrueProb =
3335 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3336 BranchProbability Likely = TTI.getPredictableBranchThreshold();
3337 BranchProbability BIFalseProb = BITrueProb.getCompl();
3338 if (IfBlocks.size() == 1) {
3339 BranchProbability BIBBProb =
3340 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3341 if (BIBBProb >= Likely)
3342 return false;
3343 } else {
3344 if (BITrueProb >= Likely || BIFalseProb >= Likely)
3345 return false;
3346 }
3347 }
3348 }
3349
3350 // Don't try to fold an unreachable block. For example, the phi node itself
3351 // can't be the candidate if-condition for a select that we want to form.
3352 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3353 if (IfCondPhiInst->getParent() == BB)
3354 return false;
3355
3356 // Okay, we found that we can merge this two-entry phi node into a select.
3357 // Doing so would require us to fold *all* two entry phi nodes in this block.
3358 // At some point this becomes non-profitable (particularly if the target
3359 // doesn't support cmov's). Only do this transformation if there are two or
3360 // fewer PHI nodes in this block.
3361 unsigned NumPhis = 0;
3362 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3363 if (NumPhis > 2)
3364 return false;
3365
3366 // Loop over the PHI's seeing if we can promote them all to select
3367 // instructions. While we are at it, keep track of the instructions
3368 // that need to be moved to the dominating block.
3369 SmallPtrSet<Instruction *, 4> AggressiveInsts;
3370 InstructionCost Cost = 0;
3371 InstructionCost Budget =
3372 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3373
3374 bool Changed = false;
3375 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3376 PHINode *PN = cast<PHINode>(II++);
3377 if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3378 PN->replaceAllUsesWith(V);
3379 PN->eraseFromParent();
3380 Changed = true;
3381 continue;
3382 }
3383
3384 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3385 Cost, Budget, TTI) ||
3386 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3387 Cost, Budget, TTI))
3388 return Changed;
3389 }
3390
3391 // If we folded the first phi, PN dangles at this point. Refresh it. If
3392 // we ran out of PHIs then we simplified them all.
3393 PN = dyn_cast<PHINode>(BB->begin());
3394 if (!PN)
3395 return true;
3396
3397 // Return true if at least one of these is a 'not', and another is either
3398 // a 'not' too, or a constant.
3399 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3400 if (!match(V0, m_Not(m_Value())))
3401 std::swap(V0, V1);
3402 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3403 return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3404 };
3405
3406 // Don't fold i1 branches on PHIs which contain binary operators or
3407 // (possibly inverted) select form of or/ands, unless one of
3408 // the incoming values is an 'not' and another one is freely invertible.
3409 // These can often be turned into switches and other things.
3410 auto IsBinOpOrAnd = [](Value *V) {
3411 return match(
3412 V, m_CombineOr(
3413 m_BinOp(),
3414 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3415 m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3416 };
3417 if (PN->getType()->isIntegerTy(1) &&
3418 (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3419 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3420 !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3421 PN->getIncomingValue(1)))
3422 return Changed;
3423
3424 // If all PHI nodes are promotable, check to make sure that all instructions
3425 // in the predecessor blocks can be promoted as well. If not, we won't be able
3426 // to get rid of the control flow, so it's not worth promoting to select
3427 // instructions.
3428 for (BasicBlock *IfBlock : IfBlocks)
3429 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3430 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3431 // This is not an aggressive instruction that we can promote.
3432 // Because of this, we won't be able to get rid of the control flow, so
3433 // the xform is not worth it.
3434 return Changed;
3435 }
3436
3437 // If either of the blocks has it's address taken, we can't do this fold.
3438 if (any_of(IfBlocks,
3439 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3440 return Changed;
3441
3442 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
3443 << " T: " << IfTrue->getName()
3444 << " F: " << IfFalse->getName() << "\n");
3445
3446 // If we can still promote the PHI nodes after this gauntlet of tests,
3447 // do all of the PHI's now.
3448
3449 // Move all 'aggressive' instructions, which are defined in the
3450 // conditional parts of the if's up to the dominating block.
3451 for (BasicBlock *IfBlock : IfBlocks)
3452 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3453
3454 IRBuilder<NoFolder> Builder(DomBI);
3455 // Propagate fast-math-flags from phi nodes to replacement selects.
3456 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3457 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3458 if (isa<FPMathOperator>(PN))
3459 Builder.setFastMathFlags(PN->getFastMathFlags());
3460
3461 // Change the PHI node into a select instruction.
3462 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3463 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3464
3465 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3466 PN->replaceAllUsesWith(Sel);
3467 Sel->takeName(PN);
3468 PN->eraseFromParent();
3469 }
3470
3471 // At this point, all IfBlocks are empty, so our if statement
3472 // has been flattened. Change DomBlock to jump directly to our new block to
3473 // avoid other simplifycfg's kicking in on the diamond.
3474 Builder.CreateBr(BB);
3475
3476 SmallVector<DominatorTree::UpdateType, 3> Updates;
3477 if (DTU) {
3478 Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3479 for (auto *Successor : successors(DomBlock))
3480 Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3481 }
3482
3483 DomBI->eraseFromParent();
3484 if (DTU)
3485 DTU->applyUpdates(Updates);
3486
3487 return true;
3488 }
3489
createLogicalOp(IRBuilderBase & Builder,Instruction::BinaryOps Opc,Value * LHS,Value * RHS,const Twine & Name="")3490 static Value *createLogicalOp(IRBuilderBase &Builder,
3491 Instruction::BinaryOps Opc, Value *LHS,
3492 Value *RHS, const Twine &Name = "") {
3493 // Try to relax logical op to binary op.
3494 if (impliesPoison(RHS, LHS))
3495 return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3496 if (Opc == Instruction::And)
3497 return Builder.CreateLogicalAnd(LHS, RHS, Name);
3498 if (Opc == Instruction::Or)
3499 return Builder.CreateLogicalOr(LHS, RHS, Name);
3500 llvm_unreachable("Invalid logical opcode");
3501 }
3502
3503 /// Return true if either PBI or BI has branch weight available, and store
3504 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3505 /// not have branch weight, use 1:1 as its weight.
extractPredSuccWeights(BranchInst * PBI,BranchInst * BI,uint64_t & PredTrueWeight,uint64_t & PredFalseWeight,uint64_t & SuccTrueWeight,uint64_t & SuccFalseWeight)3506 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3507 uint64_t &PredTrueWeight,
3508 uint64_t &PredFalseWeight,
3509 uint64_t &SuccTrueWeight,
3510 uint64_t &SuccFalseWeight) {
3511 bool PredHasWeights =
3512 extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3513 bool SuccHasWeights =
3514 extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3515 if (PredHasWeights || SuccHasWeights) {
3516 if (!PredHasWeights)
3517 PredTrueWeight = PredFalseWeight = 1;
3518 if (!SuccHasWeights)
3519 SuccTrueWeight = SuccFalseWeight = 1;
3520 return true;
3521 } else {
3522 return false;
3523 }
3524 }
3525
3526 /// Determine if the two branches share a common destination and deduce a glue
3527 /// that joins the branches' conditions to arrive at the common destination if
3528 /// that would be profitable.
3529 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
shouldFoldCondBranchesToCommonDestination(BranchInst * BI,BranchInst * PBI,const TargetTransformInfo * TTI)3530 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3531 const TargetTransformInfo *TTI) {
3532 assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3533 "Both blocks must end with a conditional branches.");
3534 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3535 "PredBB must be a predecessor of BB.");
3536
3537 // We have the potential to fold the conditions together, but if the
3538 // predecessor branch is predictable, we may not want to merge them.
3539 uint64_t PTWeight, PFWeight;
3540 BranchProbability PBITrueProb, Likely;
3541 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3542 extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3543 (PTWeight + PFWeight) != 0) {
3544 PBITrueProb =
3545 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3546 Likely = TTI->getPredictableBranchThreshold();
3547 }
3548
3549 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3550 // Speculate the 2nd condition unless the 1st is probably true.
3551 if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3552 return {{BI->getSuccessor(0), Instruction::Or, false}};
3553 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3554 // Speculate the 2nd condition unless the 1st is probably false.
3555 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3556 return {{BI->getSuccessor(1), Instruction::And, false}};
3557 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3558 // Speculate the 2nd condition unless the 1st is probably true.
3559 if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3560 return {{BI->getSuccessor(1), Instruction::And, true}};
3561 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3562 // Speculate the 2nd condition unless the 1st is probably false.
3563 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3564 return {{BI->getSuccessor(0), Instruction::Or, true}};
3565 }
3566 return std::nullopt;
3567 }
3568
performBranchToCommonDestFolding(BranchInst * BI,BranchInst * PBI,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU,const TargetTransformInfo * TTI)3569 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3570 DomTreeUpdater *DTU,
3571 MemorySSAUpdater *MSSAU,
3572 const TargetTransformInfo *TTI) {
3573 BasicBlock *BB = BI->getParent();
3574 BasicBlock *PredBlock = PBI->getParent();
3575
3576 // Determine if the two branches share a common destination.
3577 BasicBlock *CommonSucc;
3578 Instruction::BinaryOps Opc;
3579 bool InvertPredCond;
3580 std::tie(CommonSucc, Opc, InvertPredCond) =
3581 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3582
3583 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3584
3585 IRBuilder<> Builder(PBI);
3586 // The builder is used to create instructions to eliminate the branch in BB.
3587 // If BB's terminator has !annotation metadata, add it to the new
3588 // instructions.
3589 Builder.CollectMetadataToCopy(BB->getTerminator(),
3590 {LLVMContext::MD_annotation});
3591
3592 // If we need to invert the condition in the pred block to match, do so now.
3593 if (InvertPredCond) {
3594 Value *NewCond = PBI->getCondition();
3595 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3596 CmpInst *CI = cast<CmpInst>(NewCond);
3597 CI->setPredicate(CI->getInversePredicate());
3598 } else {
3599 NewCond =
3600 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3601 }
3602
3603 PBI->setCondition(NewCond);
3604 PBI->swapSuccessors();
3605 }
3606
3607 BasicBlock *UniqueSucc =
3608 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3609
3610 // Before cloning instructions, notify the successor basic block that it
3611 // is about to have a new predecessor. This will update PHI nodes,
3612 // which will allow us to update live-out uses of bonus instructions.
3613 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3614
3615 // Try to update branch weights.
3616 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3617 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3618 SuccTrueWeight, SuccFalseWeight)) {
3619 SmallVector<uint64_t, 8> NewWeights;
3620
3621 if (PBI->getSuccessor(0) == BB) {
3622 // PBI: br i1 %x, BB, FalseDest
3623 // BI: br i1 %y, UniqueSucc, FalseDest
3624 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3625 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3626 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3627 // TrueWeight for PBI * FalseWeight for BI.
3628 // We assume that total weights of a BranchInst can fit into 32 bits.
3629 // Therefore, we will not have overflow using 64-bit arithmetic.
3630 NewWeights.push_back(PredFalseWeight *
3631 (SuccFalseWeight + SuccTrueWeight) +
3632 PredTrueWeight * SuccFalseWeight);
3633 } else {
3634 // PBI: br i1 %x, TrueDest, BB
3635 // BI: br i1 %y, TrueDest, UniqueSucc
3636 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3637 // FalseWeight for PBI * TrueWeight for BI.
3638 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3639 PredFalseWeight * SuccTrueWeight);
3640 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3641 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3642 }
3643
3644 // Halve the weights if any of them cannot fit in an uint32_t
3645 FitWeights(NewWeights);
3646
3647 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3648 setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3649
3650 // TODO: If BB is reachable from all paths through PredBlock, then we
3651 // could replace PBI's branch probabilities with BI's.
3652 } else
3653 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3654
3655 // Now, update the CFG.
3656 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3657
3658 if (DTU)
3659 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3660 {DominatorTree::Delete, PredBlock, BB}});
3661
3662 // If BI was a loop latch, it may have had associated loop metadata.
3663 // We need to copy it to the new latch, that is, PBI.
3664 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3665 PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3666
3667 ValueToValueMapTy VMap; // maps original values to cloned values
3668 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3669
3670 // Now that the Cond was cloned into the predecessor basic block,
3671 // or/and the two conditions together.
3672 Value *BICond = VMap[BI->getCondition()];
3673 PBI->setCondition(
3674 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3675
3676 // Copy any debug value intrinsics into the end of PredBlock.
3677 for (Instruction &I : *BB) {
3678 if (isa<DbgInfoIntrinsic>(I)) {
3679 Instruction *NewI = I.clone();
3680 RemapInstruction(NewI, VMap,
3681 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3682 NewI->insertBefore(PBI);
3683 }
3684 }
3685
3686 ++NumFoldBranchToCommonDest;
3687 return true;
3688 }
3689
3690 /// Return if an instruction's type or any of its operands' types are a vector
3691 /// type.
isVectorOp(Instruction & I)3692 static bool isVectorOp(Instruction &I) {
3693 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3694 return U->getType()->isVectorTy();
3695 });
3696 }
3697
3698 /// If this basic block is simple enough, and if a predecessor branches to us
3699 /// and one of our successors, fold the block into the predecessor and use
3700 /// logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU,const TargetTransformInfo * TTI,unsigned BonusInstThreshold)3701 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3702 MemorySSAUpdater *MSSAU,
3703 const TargetTransformInfo *TTI,
3704 unsigned BonusInstThreshold) {
3705 // If this block ends with an unconditional branch,
3706 // let SpeculativelyExecuteBB() deal with it.
3707 if (!BI->isConditional())
3708 return false;
3709
3710 BasicBlock *BB = BI->getParent();
3711 TargetTransformInfo::TargetCostKind CostKind =
3712 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3713 : TargetTransformInfo::TCK_SizeAndLatency;
3714
3715 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3716
3717 if (!Cond ||
3718 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3719 !isa<SelectInst>(Cond)) ||
3720 Cond->getParent() != BB || !Cond->hasOneUse())
3721 return false;
3722
3723 // Finally, don't infinitely unroll conditional loops.
3724 if (is_contained(successors(BB), BB))
3725 return false;
3726
3727 // With which predecessors will we want to deal with?
3728 SmallVector<BasicBlock *, 8> Preds;
3729 for (BasicBlock *PredBlock : predecessors(BB)) {
3730 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3731
3732 // Check that we have two conditional branches. If there is a PHI node in
3733 // the common successor, verify that the same value flows in from both
3734 // blocks.
3735 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3736 continue;
3737
3738 // Determine if the two branches share a common destination.
3739 BasicBlock *CommonSucc;
3740 Instruction::BinaryOps Opc;
3741 bool InvertPredCond;
3742 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3743 std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
3744 else
3745 continue;
3746
3747 // Check the cost of inserting the necessary logic before performing the
3748 // transformation.
3749 if (TTI) {
3750 Type *Ty = BI->getCondition()->getType();
3751 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3752 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3753 !isa<CmpInst>(PBI->getCondition())))
3754 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3755
3756 if (Cost > BranchFoldThreshold)
3757 continue;
3758 }
3759
3760 // Ok, we do want to deal with this predecessor. Record it.
3761 Preds.emplace_back(PredBlock);
3762 }
3763
3764 // If there aren't any predecessors into which we can fold,
3765 // don't bother checking the cost.
3766 if (Preds.empty())
3767 return false;
3768
3769 // Only allow this transformation if computing the condition doesn't involve
3770 // too many instructions and these involved instructions can be executed
3771 // unconditionally. We denote all involved instructions except the condition
3772 // as "bonus instructions", and only allow this transformation when the
3773 // number of the bonus instructions we'll need to create when cloning into
3774 // each predecessor does not exceed a certain threshold.
3775 unsigned NumBonusInsts = 0;
3776 bool SawVectorOp = false;
3777 const unsigned PredCount = Preds.size();
3778 for (Instruction &I : *BB) {
3779 // Don't check the branch condition comparison itself.
3780 if (&I == Cond)
3781 continue;
3782 // Ignore dbg intrinsics, and the terminator.
3783 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3784 continue;
3785 // I must be safe to execute unconditionally.
3786 if (!isSafeToSpeculativelyExecute(&I))
3787 return false;
3788 SawVectorOp |= isVectorOp(I);
3789
3790 // Account for the cost of duplicating this instruction into each
3791 // predecessor. Ignore free instructions.
3792 if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
3793 TargetTransformInfo::TCC_Free) {
3794 NumBonusInsts += PredCount;
3795
3796 // Early exits once we reach the limit.
3797 if (NumBonusInsts >
3798 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3799 return false;
3800 }
3801
3802 auto IsBCSSAUse = [BB, &I](Use &U) {
3803 auto *UI = cast<Instruction>(U.getUser());
3804 if (auto *PN = dyn_cast<PHINode>(UI))
3805 return PN->getIncomingBlock(U) == BB;
3806 return UI->getParent() == BB && I.comesBefore(UI);
3807 };
3808
3809 // Does this instruction require rewriting of uses?
3810 if (!all_of(I.uses(), IsBCSSAUse))
3811 return false;
3812 }
3813 if (NumBonusInsts >
3814 BonusInstThreshold *
3815 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3816 return false;
3817
3818 // Ok, we have the budget. Perform the transformation.
3819 for (BasicBlock *PredBlock : Preds) {
3820 auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3821 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3822 }
3823 return false;
3824 }
3825
3826 // If there is only one store in BB1 and BB2, return it, otherwise return
3827 // nullptr.
findUniqueStoreInBlocks(BasicBlock * BB1,BasicBlock * BB2)3828 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3829 StoreInst *S = nullptr;
3830 for (auto *BB : {BB1, BB2}) {
3831 if (!BB)
3832 continue;
3833 for (auto &I : *BB)
3834 if (auto *SI = dyn_cast<StoreInst>(&I)) {
3835 if (S)
3836 // Multiple stores seen.
3837 return nullptr;
3838 else
3839 S = SI;
3840 }
3841 }
3842 return S;
3843 }
3844
ensureValueAvailableInSuccessor(Value * V,BasicBlock * BB,Value * AlternativeV=nullptr)3845 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3846 Value *AlternativeV = nullptr) {
3847 // PHI is going to be a PHI node that allows the value V that is defined in
3848 // BB to be referenced in BB's only successor.
3849 //
3850 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3851 // doesn't matter to us what the other operand is (it'll never get used). We
3852 // could just create a new PHI with an undef incoming value, but that could
3853 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3854 // other PHI. So here we directly look for some PHI in BB's successor with V
3855 // as an incoming operand. If we find one, we use it, else we create a new
3856 // one.
3857 //
3858 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3859 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3860 // where OtherBB is the single other predecessor of BB's only successor.
3861 PHINode *PHI = nullptr;
3862 BasicBlock *Succ = BB->getSingleSuccessor();
3863
3864 for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3865 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3866 PHI = cast<PHINode>(I);
3867 if (!AlternativeV)
3868 break;
3869
3870 assert(Succ->hasNPredecessors(2));
3871 auto PredI = pred_begin(Succ);
3872 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3873 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3874 break;
3875 PHI = nullptr;
3876 }
3877 if (PHI)
3878 return PHI;
3879
3880 // If V is not an instruction defined in BB, just return it.
3881 if (!AlternativeV &&
3882 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3883 return V;
3884
3885 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3886 PHI->addIncoming(V, BB);
3887 for (BasicBlock *PredBB : predecessors(Succ))
3888 if (PredBB != BB)
3889 PHI->addIncoming(
3890 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3891 return PHI;
3892 }
3893
mergeConditionalStoreToAddress(BasicBlock * PTB,BasicBlock * PFB,BasicBlock * QTB,BasicBlock * QFB,BasicBlock * PostBB,Value * Address,bool InvertPCond,bool InvertQCond,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)3894 static bool mergeConditionalStoreToAddress(
3895 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3896 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3897 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3898 // For every pointer, there must be exactly two stores, one coming from
3899 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3900 // store (to any address) in PTB,PFB or QTB,QFB.
3901 // FIXME: We could relax this restriction with a bit more work and performance
3902 // testing.
3903 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3904 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3905 if (!PStore || !QStore)
3906 return false;
3907
3908 // Now check the stores are compatible.
3909 if (!QStore->isUnordered() || !PStore->isUnordered() ||
3910 PStore->getValueOperand()->getType() !=
3911 QStore->getValueOperand()->getType())
3912 return false;
3913
3914 // Check that sinking the store won't cause program behavior changes. Sinking
3915 // the store out of the Q blocks won't change any behavior as we're sinking
3916 // from a block to its unconditional successor. But we're moving a store from
3917 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3918 // So we need to check that there are no aliasing loads or stores in
3919 // QBI, QTB and QFB. We also need to check there are no conflicting memory
3920 // operations between PStore and the end of its parent block.
3921 //
3922 // The ideal way to do this is to query AliasAnalysis, but we don't
3923 // preserve AA currently so that is dangerous. Be super safe and just
3924 // check there are no other memory operations at all.
3925 for (auto &I : *QFB->getSinglePredecessor())
3926 if (I.mayReadOrWriteMemory())
3927 return false;
3928 for (auto &I : *QFB)
3929 if (&I != QStore && I.mayReadOrWriteMemory())
3930 return false;
3931 if (QTB)
3932 for (auto &I : *QTB)
3933 if (&I != QStore && I.mayReadOrWriteMemory())
3934 return false;
3935 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3936 I != E; ++I)
3937 if (&*I != PStore && I->mayReadOrWriteMemory())
3938 return false;
3939
3940 // If we're not in aggressive mode, we only optimize if we have some
3941 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3942 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3943 if (!BB)
3944 return true;
3945 // Heuristic: if the block can be if-converted/phi-folded and the
3946 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3947 // thread this store.
3948 InstructionCost Cost = 0;
3949 InstructionCost Budget =
3950 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3951 for (auto &I : BB->instructionsWithoutDebug(false)) {
3952 // Consider terminator instruction to be free.
3953 if (I.isTerminator())
3954 continue;
3955 // If this is one the stores that we want to speculate out of this BB,
3956 // then don't count it's cost, consider it to be free.
3957 if (auto *S = dyn_cast<StoreInst>(&I))
3958 if (llvm::find(FreeStores, S))
3959 continue;
3960 // Else, we have a white-list of instructions that we are ak speculating.
3961 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3962 return false; // Not in white-list - not worthwhile folding.
3963 // And finally, if this is a non-free instruction that we are okay
3964 // speculating, ensure that we consider the speculation budget.
3965 Cost +=
3966 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3967 if (Cost > Budget)
3968 return false; // Eagerly refuse to fold as soon as we're out of budget.
3969 }
3970 assert(Cost <= Budget &&
3971 "When we run out of budget we will eagerly return from within the "
3972 "per-instruction loop.");
3973 return true;
3974 };
3975
3976 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3977 if (!MergeCondStoresAggressively &&
3978 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3979 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3980 return false;
3981
3982 // If PostBB has more than two predecessors, we need to split it so we can
3983 // sink the store.
3984 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3985 // We know that QFB's only successor is PostBB. And QFB has a single
3986 // predecessor. If QTB exists, then its only successor is also PostBB.
3987 // If QTB does not exist, then QFB's only predecessor has a conditional
3988 // branch to QFB and PostBB.
3989 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3990 BasicBlock *NewBB =
3991 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3992 if (!NewBB)
3993 return false;
3994 PostBB = NewBB;
3995 }
3996
3997 // OK, we're going to sink the stores to PostBB. The store has to be
3998 // conditional though, so first create the predicate.
3999 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4000 ->getCondition();
4001 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4002 ->getCondition();
4003
4004 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4005 PStore->getParent());
4006 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4007 QStore->getParent(), PPHI);
4008
4009 IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
4010
4011 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4012 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4013
4014 if (InvertPCond)
4015 PPred = QB.CreateNot(PPred);
4016 if (InvertQCond)
4017 QPred = QB.CreateNot(QPred);
4018 Value *CombinedPred = QB.CreateOr(PPred, QPred);
4019
4020 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
4021 /*Unreachable=*/false,
4022 /*BranchWeights=*/nullptr, DTU);
4023 QB.SetInsertPoint(T);
4024 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4025 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4026 // Choose the minimum alignment. If we could prove both stores execute, we
4027 // could use biggest one. In this case, though, we only know that one of the
4028 // stores executes. And we don't know it's safe to take the alignment from a
4029 // store that doesn't execute.
4030 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4031
4032 QStore->eraseFromParent();
4033 PStore->eraseFromParent();
4034
4035 return true;
4036 }
4037
mergeConditionalStores(BranchInst * PBI,BranchInst * QBI,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)4038 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4039 DomTreeUpdater *DTU, const DataLayout &DL,
4040 const TargetTransformInfo &TTI) {
4041 // The intention here is to find diamonds or triangles (see below) where each
4042 // conditional block contains a store to the same address. Both of these
4043 // stores are conditional, so they can't be unconditionally sunk. But it may
4044 // be profitable to speculatively sink the stores into one merged store at the
4045 // end, and predicate the merged store on the union of the two conditions of
4046 // PBI and QBI.
4047 //
4048 // This can reduce the number of stores executed if both of the conditions are
4049 // true, and can allow the blocks to become small enough to be if-converted.
4050 // This optimization will also chain, so that ladders of test-and-set
4051 // sequences can be if-converted away.
4052 //
4053 // We only deal with simple diamonds or triangles:
4054 //
4055 // PBI or PBI or a combination of the two
4056 // / \ | \
4057 // PTB PFB | PFB
4058 // \ / | /
4059 // QBI QBI
4060 // / \ | \
4061 // QTB QFB | QFB
4062 // \ / | /
4063 // PostBB PostBB
4064 //
4065 // We model triangles as a type of diamond with a nullptr "true" block.
4066 // Triangles are canonicalized so that the fallthrough edge is represented by
4067 // a true condition, as in the diagram above.
4068 BasicBlock *PTB = PBI->getSuccessor(0);
4069 BasicBlock *PFB = PBI->getSuccessor(1);
4070 BasicBlock *QTB = QBI->getSuccessor(0);
4071 BasicBlock *QFB = QBI->getSuccessor(1);
4072 BasicBlock *PostBB = QFB->getSingleSuccessor();
4073
4074 // Make sure we have a good guess for PostBB. If QTB's only successor is
4075 // QFB, then QFB is a better PostBB.
4076 if (QTB->getSingleSuccessor() == QFB)
4077 PostBB = QFB;
4078
4079 // If we couldn't find a good PostBB, stop.
4080 if (!PostBB)
4081 return false;
4082
4083 bool InvertPCond = false, InvertQCond = false;
4084 // Canonicalize fallthroughs to the true branches.
4085 if (PFB == QBI->getParent()) {
4086 std::swap(PFB, PTB);
4087 InvertPCond = true;
4088 }
4089 if (QFB == PostBB) {
4090 std::swap(QFB, QTB);
4091 InvertQCond = true;
4092 }
4093
4094 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4095 // and QFB may not. Model fallthroughs as a nullptr block.
4096 if (PTB == QBI->getParent())
4097 PTB = nullptr;
4098 if (QTB == PostBB)
4099 QTB = nullptr;
4100
4101 // Legality bailouts. We must have at least the non-fallthrough blocks and
4102 // the post-dominating block, and the non-fallthroughs must only have one
4103 // predecessor.
4104 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4105 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4106 };
4107 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4108 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4109 return false;
4110 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4111 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4112 return false;
4113 if (!QBI->getParent()->hasNUses(2))
4114 return false;
4115
4116 // OK, this is a sequence of two diamonds or triangles.
4117 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4118 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4119 for (auto *BB : {PTB, PFB}) {
4120 if (!BB)
4121 continue;
4122 for (auto &I : *BB)
4123 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4124 PStoreAddresses.insert(SI->getPointerOperand());
4125 }
4126 for (auto *BB : {QTB, QFB}) {
4127 if (!BB)
4128 continue;
4129 for (auto &I : *BB)
4130 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4131 QStoreAddresses.insert(SI->getPointerOperand());
4132 }
4133
4134 set_intersect(PStoreAddresses, QStoreAddresses);
4135 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4136 // clear what it contains.
4137 auto &CommonAddresses = PStoreAddresses;
4138
4139 bool Changed = false;
4140 for (auto *Address : CommonAddresses)
4141 Changed |=
4142 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4143 InvertPCond, InvertQCond, DTU, DL, TTI);
4144 return Changed;
4145 }
4146
4147 /// If the previous block ended with a widenable branch, determine if reusing
4148 /// the target block is profitable and legal. This will have the effect of
4149 /// "widening" PBI, but doesn't require us to reason about hosting safety.
tryWidenCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,DomTreeUpdater * DTU)4150 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4151 DomTreeUpdater *DTU) {
4152 // TODO: This can be generalized in two important ways:
4153 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4154 // values from the PBI edge.
4155 // 2) We can sink side effecting instructions into BI's fallthrough
4156 // successor provided they doesn't contribute to computation of
4157 // BI's condition.
4158 Value *CondWB, *WC;
4159 BasicBlock *IfTrueBB, *IfFalseBB;
4160 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
4161 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
4162 return false;
4163 if (!IfFalseBB->phis().empty())
4164 return false; // TODO
4165 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4166 // may undo the transform done here.
4167 // TODO: There might be a more fine-grained solution to this.
4168 if (!llvm::succ_empty(IfFalseBB))
4169 return false;
4170 // Use lambda to lazily compute expensive condition after cheap ones.
4171 auto NoSideEffects = [](BasicBlock &BB) {
4172 return llvm::none_of(BB, [](const Instruction &I) {
4173 return I.mayWriteToMemory() || I.mayHaveSideEffects();
4174 });
4175 };
4176 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4177 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4178 NoSideEffects(*BI->getParent())) {
4179 auto *OldSuccessor = BI->getSuccessor(1);
4180 OldSuccessor->removePredecessor(BI->getParent());
4181 BI->setSuccessor(1, IfFalseBB);
4182 if (DTU)
4183 DTU->applyUpdates(
4184 {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4185 {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4186 return true;
4187 }
4188 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4189 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4190 NoSideEffects(*BI->getParent())) {
4191 auto *OldSuccessor = BI->getSuccessor(0);
4192 OldSuccessor->removePredecessor(BI->getParent());
4193 BI->setSuccessor(0, IfFalseBB);
4194 if (DTU)
4195 DTU->applyUpdates(
4196 {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4197 {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4198 return true;
4199 }
4200 return false;
4201 }
4202
4203 /// If we have a conditional branch as a predecessor of another block,
4204 /// this function tries to simplify it. We know
4205 /// that PBI and BI are both conditional branches, and BI is in one of the
4206 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)4207 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4208 DomTreeUpdater *DTU,
4209 const DataLayout &DL,
4210 const TargetTransformInfo &TTI) {
4211 assert(PBI->isConditional() && BI->isConditional());
4212 BasicBlock *BB = BI->getParent();
4213
4214 // If this block ends with a branch instruction, and if there is a
4215 // predecessor that ends on a branch of the same condition, make
4216 // this conditional branch redundant.
4217 if (PBI->getCondition() == BI->getCondition() &&
4218 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4219 // Okay, the outcome of this conditional branch is statically
4220 // knowable. If this block had a single pred, handle specially, otherwise
4221 // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4222 if (BB->getSinglePredecessor()) {
4223 // Turn this into a branch on constant.
4224 bool CondIsTrue = PBI->getSuccessor(0) == BB;
4225 BI->setCondition(
4226 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4227 return true; // Nuke the branch on constant.
4228 }
4229 }
4230
4231 // If the previous block ended with a widenable branch, determine if reusing
4232 // the target block is profitable and legal. This will have the effect of
4233 // "widening" PBI, but doesn't require us to reason about hosting safety.
4234 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4235 return true;
4236
4237 // If both branches are conditional and both contain stores to the same
4238 // address, remove the stores from the conditionals and create a conditional
4239 // merged store at the end.
4240 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4241 return true;
4242
4243 // If this is a conditional branch in an empty block, and if any
4244 // predecessors are a conditional branch to one of our destinations,
4245 // fold the conditions into logical ops and one cond br.
4246
4247 // Ignore dbg intrinsics.
4248 if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4249 return false;
4250
4251 int PBIOp, BIOp;
4252 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4253 PBIOp = 0;
4254 BIOp = 0;
4255 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4256 PBIOp = 0;
4257 BIOp = 1;
4258 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4259 PBIOp = 1;
4260 BIOp = 0;
4261 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4262 PBIOp = 1;
4263 BIOp = 1;
4264 } else {
4265 return false;
4266 }
4267
4268 // Check to make sure that the other destination of this branch
4269 // isn't BB itself. If so, this is an infinite loop that will
4270 // keep getting unwound.
4271 if (PBI->getSuccessor(PBIOp) == BB)
4272 return false;
4273
4274 // Do not perform this transformation if it would require
4275 // insertion of a large number of select instructions. For targets
4276 // without predication/cmovs, this is a big pessimization.
4277
4278 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4279 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4280 unsigned NumPhis = 0;
4281 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4282 ++II, ++NumPhis) {
4283 if (NumPhis > 2) // Disable this xform.
4284 return false;
4285 }
4286
4287 // Finally, if everything is ok, fold the branches to logical ops.
4288 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4289
4290 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4291 << "AND: " << *BI->getParent());
4292
4293 SmallVector<DominatorTree::UpdateType, 5> Updates;
4294
4295 // If OtherDest *is* BB, then BB is a basic block with a single conditional
4296 // branch in it, where one edge (OtherDest) goes back to itself but the other
4297 // exits. We don't *know* that the program avoids the infinite loop
4298 // (even though that seems likely). If we do this xform naively, we'll end up
4299 // recursively unpeeling the loop. Since we know that (after the xform is
4300 // done) that the block *is* infinite if reached, we just make it an obviously
4301 // infinite loop with no cond branch.
4302 if (OtherDest == BB) {
4303 // Insert it at the end of the function, because it's either code,
4304 // or it won't matter if it's hot. :)
4305 BasicBlock *InfLoopBlock =
4306 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4307 BranchInst::Create(InfLoopBlock, InfLoopBlock);
4308 if (DTU)
4309 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4310 OtherDest = InfLoopBlock;
4311 }
4312
4313 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4314
4315 // BI may have other predecessors. Because of this, we leave
4316 // it alone, but modify PBI.
4317
4318 // Make sure we get to CommonDest on True&True directions.
4319 Value *PBICond = PBI->getCondition();
4320 IRBuilder<NoFolder> Builder(PBI);
4321 if (PBIOp)
4322 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4323
4324 Value *BICond = BI->getCondition();
4325 if (BIOp)
4326 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4327
4328 // Merge the conditions.
4329 Value *Cond =
4330 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4331
4332 // Modify PBI to branch on the new condition to the new dests.
4333 PBI->setCondition(Cond);
4334 PBI->setSuccessor(0, CommonDest);
4335 PBI->setSuccessor(1, OtherDest);
4336
4337 if (DTU) {
4338 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4339 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4340
4341 DTU->applyUpdates(Updates);
4342 }
4343
4344 // Update branch weight for PBI.
4345 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4346 uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4347 bool HasWeights =
4348 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4349 SuccTrueWeight, SuccFalseWeight);
4350 if (HasWeights) {
4351 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4352 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4353 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4354 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4355 // The weight to CommonDest should be PredCommon * SuccTotal +
4356 // PredOther * SuccCommon.
4357 // The weight to OtherDest should be PredOther * SuccOther.
4358 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4359 PredOther * SuccCommon,
4360 PredOther * SuccOther};
4361 // Halve the weights if any of them cannot fit in an uint32_t
4362 FitWeights(NewWeights);
4363
4364 setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4365 }
4366
4367 // OtherDest may have phi nodes. If so, add an entry from PBI's
4368 // block that are identical to the entries for BI's block.
4369 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4370
4371 // We know that the CommonDest already had an edge from PBI to
4372 // it. If it has PHIs though, the PHIs may have different
4373 // entries for BB and PBI's BB. If so, insert a select to make
4374 // them agree.
4375 for (PHINode &PN : CommonDest->phis()) {
4376 Value *BIV = PN.getIncomingValueForBlock(BB);
4377 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4378 Value *PBIV = PN.getIncomingValue(PBBIdx);
4379 if (BIV != PBIV) {
4380 // Insert a select in PBI to pick the right value.
4381 SelectInst *NV = cast<SelectInst>(
4382 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4383 PN.setIncomingValue(PBBIdx, NV);
4384 // Although the select has the same condition as PBI, the original branch
4385 // weights for PBI do not apply to the new select because the select's
4386 // 'logical' edges are incoming edges of the phi that is eliminated, not
4387 // the outgoing edges of PBI.
4388 if (HasWeights) {
4389 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4390 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4391 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4392 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4393 // The weight to PredCommonDest should be PredCommon * SuccTotal.
4394 // The weight to PredOtherDest should be PredOther * SuccCommon.
4395 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4396 PredOther * SuccCommon};
4397
4398 FitWeights(NewWeights);
4399
4400 setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4401 }
4402 }
4403 }
4404
4405 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4406 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4407
4408 // This basic block is probably dead. We know it has at least
4409 // one fewer predecessor.
4410 return true;
4411 }
4412
4413 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4414 // true or to FalseBB if Cond is false.
4415 // Takes care of updating the successors and removing the old terminator.
4416 // Also makes sure not to introduce new successors by assuming that edges to
4417 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(Instruction * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)4418 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4419 Value *Cond, BasicBlock *TrueBB,
4420 BasicBlock *FalseBB,
4421 uint32_t TrueWeight,
4422 uint32_t FalseWeight) {
4423 auto *BB = OldTerm->getParent();
4424 // Remove any superfluous successor edges from the CFG.
4425 // First, figure out which successors to preserve.
4426 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4427 // successor.
4428 BasicBlock *KeepEdge1 = TrueBB;
4429 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4430
4431 SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4432
4433 // Then remove the rest.
4434 for (BasicBlock *Succ : successors(OldTerm)) {
4435 // Make sure only to keep exactly one copy of each edge.
4436 if (Succ == KeepEdge1)
4437 KeepEdge1 = nullptr;
4438 else if (Succ == KeepEdge2)
4439 KeepEdge2 = nullptr;
4440 else {
4441 Succ->removePredecessor(BB,
4442 /*KeepOneInputPHIs=*/true);
4443
4444 if (Succ != TrueBB && Succ != FalseBB)
4445 RemovedSuccessors.insert(Succ);
4446 }
4447 }
4448
4449 IRBuilder<> Builder(OldTerm);
4450 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4451
4452 // Insert an appropriate new terminator.
4453 if (!KeepEdge1 && !KeepEdge2) {
4454 if (TrueBB == FalseBB) {
4455 // We were only looking for one successor, and it was present.
4456 // Create an unconditional branch to it.
4457 Builder.CreateBr(TrueBB);
4458 } else {
4459 // We found both of the successors we were looking for.
4460 // Create a conditional branch sharing the condition of the select.
4461 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4462 if (TrueWeight != FalseWeight)
4463 setBranchWeights(NewBI, TrueWeight, FalseWeight);
4464 }
4465 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4466 // Neither of the selected blocks were successors, so this
4467 // terminator must be unreachable.
4468 new UnreachableInst(OldTerm->getContext(), OldTerm);
4469 } else {
4470 // One of the selected values was a successor, but the other wasn't.
4471 // Insert an unconditional branch to the one that was found;
4472 // the edge to the one that wasn't must be unreachable.
4473 if (!KeepEdge1) {
4474 // Only TrueBB was found.
4475 Builder.CreateBr(TrueBB);
4476 } else {
4477 // Only FalseBB was found.
4478 Builder.CreateBr(FalseBB);
4479 }
4480 }
4481
4482 EraseTerminatorAndDCECond(OldTerm);
4483
4484 if (DTU) {
4485 SmallVector<DominatorTree::UpdateType, 2> Updates;
4486 Updates.reserve(RemovedSuccessors.size());
4487 for (auto *RemovedSuccessor : RemovedSuccessors)
4488 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4489 DTU->applyUpdates(Updates);
4490 }
4491
4492 return true;
4493 }
4494
4495 // Replaces
4496 // (switch (select cond, X, Y)) on constant X, Y
4497 // with a branch - conditional if X and Y lead to distinct BBs,
4498 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)4499 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4500 SelectInst *Select) {
4501 // Check for constant integer values in the select.
4502 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4503 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4504 if (!TrueVal || !FalseVal)
4505 return false;
4506
4507 // Find the relevant condition and destinations.
4508 Value *Condition = Select->getCondition();
4509 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4510 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4511
4512 // Get weight for TrueBB and FalseBB.
4513 uint32_t TrueWeight = 0, FalseWeight = 0;
4514 SmallVector<uint64_t, 8> Weights;
4515 bool HasWeights = hasBranchWeightMD(*SI);
4516 if (HasWeights) {
4517 GetBranchWeights(SI, Weights);
4518 if (Weights.size() == 1 + SI->getNumCases()) {
4519 TrueWeight =
4520 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4521 FalseWeight =
4522 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4523 }
4524 }
4525
4526 // Perform the actual simplification.
4527 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4528 FalseWeight);
4529 }
4530
4531 // Replaces
4532 // (indirectbr (select cond, blockaddress(@fn, BlockA),
4533 // blockaddress(@fn, BlockB)))
4534 // with
4535 // (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)4536 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4537 SelectInst *SI) {
4538 // Check that both operands of the select are block addresses.
4539 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4540 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4541 if (!TBA || !FBA)
4542 return false;
4543
4544 // Extract the actual blocks.
4545 BasicBlock *TrueBB = TBA->getBasicBlock();
4546 BasicBlock *FalseBB = FBA->getBasicBlock();
4547
4548 // Perform the actual simplification.
4549 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4550 0);
4551 }
4552
4553 /// This is called when we find an icmp instruction
4554 /// (a seteq/setne with a constant) as the only instruction in a
4555 /// block that ends with an uncond branch. We are looking for a very specific
4556 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
4557 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4558 /// default value goes to an uncond block with a seteq in it, we get something
4559 /// like:
4560 ///
4561 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
4562 /// DEFAULT:
4563 /// %tmp = icmp eq i8 %A, 92
4564 /// br label %end
4565 /// end:
4566 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4567 ///
4568 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4569 /// the PHI, merging the third icmp into the switch.
tryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder)4570 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4571 ICmpInst *ICI, IRBuilder<> &Builder) {
4572 BasicBlock *BB = ICI->getParent();
4573
4574 // If the block has any PHIs in it or the icmp has multiple uses, it is too
4575 // complex.
4576 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4577 return false;
4578
4579 Value *V = ICI->getOperand(0);
4580 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4581
4582 // The pattern we're looking for is where our only predecessor is a switch on
4583 // 'V' and this block is the default case for the switch. In this case we can
4584 // fold the compared value into the switch to simplify things.
4585 BasicBlock *Pred = BB->getSinglePredecessor();
4586 if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4587 return false;
4588
4589 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4590 if (SI->getCondition() != V)
4591 return false;
4592
4593 // If BB is reachable on a non-default case, then we simply know the value of
4594 // V in this block. Substitute it and constant fold the icmp instruction
4595 // away.
4596 if (SI->getDefaultDest() != BB) {
4597 ConstantInt *VVal = SI->findCaseDest(BB);
4598 assert(VVal && "Should have a unique destination value");
4599 ICI->setOperand(0, VVal);
4600
4601 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4602 ICI->replaceAllUsesWith(V);
4603 ICI->eraseFromParent();
4604 }
4605 // BB is now empty, so it is likely to simplify away.
4606 return requestResimplify();
4607 }
4608
4609 // Ok, the block is reachable from the default dest. If the constant we're
4610 // comparing exists in one of the other edges, then we can constant fold ICI
4611 // and zap it.
4612 if (SI->findCaseValue(Cst) != SI->case_default()) {
4613 Value *V;
4614 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4615 V = ConstantInt::getFalse(BB->getContext());
4616 else
4617 V = ConstantInt::getTrue(BB->getContext());
4618
4619 ICI->replaceAllUsesWith(V);
4620 ICI->eraseFromParent();
4621 // BB is now empty, so it is likely to simplify away.
4622 return requestResimplify();
4623 }
4624
4625 // The use of the icmp has to be in the 'end' block, by the only PHI node in
4626 // the block.
4627 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4628 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4629 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4630 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4631 return false;
4632
4633 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4634 // true in the PHI.
4635 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4636 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4637
4638 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4639 std::swap(DefaultCst, NewCst);
4640
4641 // Replace ICI (which is used by the PHI for the default value) with true or
4642 // false depending on if it is EQ or NE.
4643 ICI->replaceAllUsesWith(DefaultCst);
4644 ICI->eraseFromParent();
4645
4646 SmallVector<DominatorTree::UpdateType, 2> Updates;
4647
4648 // Okay, the switch goes to this block on a default value. Add an edge from
4649 // the switch to the merge point on the compared value.
4650 BasicBlock *NewBB =
4651 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4652 {
4653 SwitchInstProfUpdateWrapper SIW(*SI);
4654 auto W0 = SIW.getSuccessorWeight(0);
4655 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4656 if (W0) {
4657 NewW = ((uint64_t(*W0) + 1) >> 1);
4658 SIW.setSuccessorWeight(0, *NewW);
4659 }
4660 SIW.addCase(Cst, NewBB, NewW);
4661 if (DTU)
4662 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4663 }
4664
4665 // NewBB branches to the phi block, add the uncond branch and the phi entry.
4666 Builder.SetInsertPoint(NewBB);
4667 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4668 Builder.CreateBr(SuccBlock);
4669 PHIUse->addIncoming(NewCst, NewBB);
4670 if (DTU) {
4671 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4672 DTU->applyUpdates(Updates);
4673 }
4674 return true;
4675 }
4676
4677 /// The specified branch is a conditional branch.
4678 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4679 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,IRBuilder<> & Builder,const DataLayout & DL)4680 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4681 IRBuilder<> &Builder,
4682 const DataLayout &DL) {
4683 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4684 if (!Cond)
4685 return false;
4686
4687 // Change br (X == 0 | X == 1), T, F into a switch instruction.
4688 // If this is a bunch of seteq's or'd together, or if it's a bunch of
4689 // 'setne's and'ed together, collect them.
4690
4691 // Try to gather values from a chain of and/or to be turned into a switch
4692 ConstantComparesGatherer ConstantCompare(Cond, DL);
4693 // Unpack the result
4694 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4695 Value *CompVal = ConstantCompare.CompValue;
4696 unsigned UsedICmps = ConstantCompare.UsedICmps;
4697 Value *ExtraCase = ConstantCompare.Extra;
4698
4699 // If we didn't have a multiply compared value, fail.
4700 if (!CompVal)
4701 return false;
4702
4703 // Avoid turning single icmps into a switch.
4704 if (UsedICmps <= 1)
4705 return false;
4706
4707 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4708
4709 // There might be duplicate constants in the list, which the switch
4710 // instruction can't handle, remove them now.
4711 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4712 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4713
4714 // If Extra was used, we require at least two switch values to do the
4715 // transformation. A switch with one value is just a conditional branch.
4716 if (ExtraCase && Values.size() < 2)
4717 return false;
4718
4719 // TODO: Preserve branch weight metadata, similarly to how
4720 // FoldValueComparisonIntoPredecessors preserves it.
4721
4722 // Figure out which block is which destination.
4723 BasicBlock *DefaultBB = BI->getSuccessor(1);
4724 BasicBlock *EdgeBB = BI->getSuccessor(0);
4725 if (!TrueWhenEqual)
4726 std::swap(DefaultBB, EdgeBB);
4727
4728 BasicBlock *BB = BI->getParent();
4729
4730 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4731 << " cases into SWITCH. BB is:\n"
4732 << *BB);
4733
4734 SmallVector<DominatorTree::UpdateType, 2> Updates;
4735
4736 // If there are any extra values that couldn't be folded into the switch
4737 // then we evaluate them with an explicit branch first. Split the block
4738 // right before the condbr to handle it.
4739 if (ExtraCase) {
4740 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4741 /*MSSAU=*/nullptr, "switch.early.test");
4742
4743 // Remove the uncond branch added to the old block.
4744 Instruction *OldTI = BB->getTerminator();
4745 Builder.SetInsertPoint(OldTI);
4746
4747 // There can be an unintended UB if extra values are Poison. Before the
4748 // transformation, extra values may not be evaluated according to the
4749 // condition, and it will not raise UB. But after transformation, we are
4750 // evaluating extra values before checking the condition, and it will raise
4751 // UB. It can be solved by adding freeze instruction to extra values.
4752 AssumptionCache *AC = Options.AC;
4753
4754 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4755 ExtraCase = Builder.CreateFreeze(ExtraCase);
4756
4757 if (TrueWhenEqual)
4758 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4759 else
4760 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4761
4762 OldTI->eraseFromParent();
4763
4764 if (DTU)
4765 Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4766
4767 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4768 // for the edge we just added.
4769 AddPredecessorToBlock(EdgeBB, BB, NewBB);
4770
4771 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
4772 << "\nEXTRABB = " << *BB);
4773 BB = NewBB;
4774 }
4775
4776 Builder.SetInsertPoint(BI);
4777 // Convert pointer to int before we switch.
4778 if (CompVal->getType()->isPointerTy()) {
4779 CompVal = Builder.CreatePtrToInt(
4780 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4781 }
4782
4783 // Create the new switch instruction now.
4784 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4785
4786 // Add all of the 'cases' to the switch instruction.
4787 for (unsigned i = 0, e = Values.size(); i != e; ++i)
4788 New->addCase(Values[i], EdgeBB);
4789
4790 // We added edges from PI to the EdgeBB. As such, if there were any
4791 // PHI nodes in EdgeBB, they need entries to be added corresponding to
4792 // the number of edges added.
4793 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4794 PHINode *PN = cast<PHINode>(BBI);
4795 Value *InVal = PN->getIncomingValueForBlock(BB);
4796 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4797 PN->addIncoming(InVal, BB);
4798 }
4799
4800 // Erase the old branch instruction.
4801 EraseTerminatorAndDCECond(BI);
4802 if (DTU)
4803 DTU->applyUpdates(Updates);
4804
4805 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
4806 return true;
4807 }
4808
simplifyResume(ResumeInst * RI,IRBuilder<> & Builder)4809 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4810 if (isa<PHINode>(RI->getValue()))
4811 return simplifyCommonResume(RI);
4812 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4813 RI->getValue() == RI->getParent()->getFirstNonPHI())
4814 // The resume must unwind the exception that caused control to branch here.
4815 return simplifySingleResume(RI);
4816
4817 return false;
4818 }
4819
4820 // Check if cleanup block is empty
isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R)4821 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4822 for (Instruction &I : R) {
4823 auto *II = dyn_cast<IntrinsicInst>(&I);
4824 if (!II)
4825 return false;
4826
4827 Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4828 switch (IntrinsicID) {
4829 case Intrinsic::dbg_declare:
4830 case Intrinsic::dbg_value:
4831 case Intrinsic::dbg_label:
4832 case Intrinsic::lifetime_end:
4833 break;
4834 default:
4835 return false;
4836 }
4837 }
4838 return true;
4839 }
4840
4841 // Simplify resume that is shared by several landing pads (phi of landing pad).
simplifyCommonResume(ResumeInst * RI)4842 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4843 BasicBlock *BB = RI->getParent();
4844
4845 // Check that there are no other instructions except for debug and lifetime
4846 // intrinsics between the phi's and resume instruction.
4847 if (!isCleanupBlockEmpty(
4848 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4849 return false;
4850
4851 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4852 auto *PhiLPInst = cast<PHINode>(RI->getValue());
4853
4854 // Check incoming blocks to see if any of them are trivial.
4855 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4856 Idx++) {
4857 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4858 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4859
4860 // If the block has other successors, we can not delete it because
4861 // it has other dependents.
4862 if (IncomingBB->getUniqueSuccessor() != BB)
4863 continue;
4864
4865 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4866 // Not the landing pad that caused the control to branch here.
4867 if (IncomingValue != LandingPad)
4868 continue;
4869
4870 if (isCleanupBlockEmpty(
4871 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4872 TrivialUnwindBlocks.insert(IncomingBB);
4873 }
4874
4875 // If no trivial unwind blocks, don't do any simplifications.
4876 if (TrivialUnwindBlocks.empty())
4877 return false;
4878
4879 // Turn all invokes that unwind here into calls.
4880 for (auto *TrivialBB : TrivialUnwindBlocks) {
4881 // Blocks that will be simplified should be removed from the phi node.
4882 // Note there could be multiple edges to the resume block, and we need
4883 // to remove them all.
4884 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4885 BB->removePredecessor(TrivialBB, true);
4886
4887 for (BasicBlock *Pred :
4888 llvm::make_early_inc_range(predecessors(TrivialBB))) {
4889 removeUnwindEdge(Pred, DTU);
4890 ++NumInvokes;
4891 }
4892
4893 // In each SimplifyCFG run, only the current processed block can be erased.
4894 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4895 // of erasing TrivialBB, we only remove the branch to the common resume
4896 // block so that we can later erase the resume block since it has no
4897 // predecessors.
4898 TrivialBB->getTerminator()->eraseFromParent();
4899 new UnreachableInst(RI->getContext(), TrivialBB);
4900 if (DTU)
4901 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4902 }
4903
4904 // Delete the resume block if all its predecessors have been removed.
4905 if (pred_empty(BB))
4906 DeleteDeadBlock(BB, DTU);
4907
4908 return !TrivialUnwindBlocks.empty();
4909 }
4910
4911 // Simplify resume that is only used by a single (non-phi) landing pad.
simplifySingleResume(ResumeInst * RI)4912 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4913 BasicBlock *BB = RI->getParent();
4914 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4915 assert(RI->getValue() == LPInst &&
4916 "Resume must unwind the exception that caused control to here");
4917
4918 // Check that there are no other instructions except for debug intrinsics.
4919 if (!isCleanupBlockEmpty(
4920 make_range<Instruction *>(LPInst->getNextNode(), RI)))
4921 return false;
4922
4923 // Turn all invokes that unwind here into calls and delete the basic block.
4924 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4925 removeUnwindEdge(Pred, DTU);
4926 ++NumInvokes;
4927 }
4928
4929 // The landingpad is now unreachable. Zap it.
4930 DeleteDeadBlock(BB, DTU);
4931 return true;
4932 }
4933
removeEmptyCleanup(CleanupReturnInst * RI,DomTreeUpdater * DTU)4934 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4935 // If this is a trivial cleanup pad that executes no instructions, it can be
4936 // eliminated. If the cleanup pad continues to the caller, any predecessor
4937 // that is an EH pad will be updated to continue to the caller and any
4938 // predecessor that terminates with an invoke instruction will have its invoke
4939 // instruction converted to a call instruction. If the cleanup pad being
4940 // simplified does not continue to the caller, each predecessor will be
4941 // updated to continue to the unwind destination of the cleanup pad being
4942 // simplified.
4943 BasicBlock *BB = RI->getParent();
4944 CleanupPadInst *CPInst = RI->getCleanupPad();
4945 if (CPInst->getParent() != BB)
4946 // This isn't an empty cleanup.
4947 return false;
4948
4949 // We cannot kill the pad if it has multiple uses. This typically arises
4950 // from unreachable basic blocks.
4951 if (!CPInst->hasOneUse())
4952 return false;
4953
4954 // Check that there are no other instructions except for benign intrinsics.
4955 if (!isCleanupBlockEmpty(
4956 make_range<Instruction *>(CPInst->getNextNode(), RI)))
4957 return false;
4958
4959 // If the cleanup return we are simplifying unwinds to the caller, this will
4960 // set UnwindDest to nullptr.
4961 BasicBlock *UnwindDest = RI->getUnwindDest();
4962 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4963
4964 // We're about to remove BB from the control flow. Before we do, sink any
4965 // PHINodes into the unwind destination. Doing this before changing the
4966 // control flow avoids some potentially slow checks, since we can currently
4967 // be certain that UnwindDest and BB have no common predecessors (since they
4968 // are both EH pads).
4969 if (UnwindDest) {
4970 // First, go through the PHI nodes in UnwindDest and update any nodes that
4971 // reference the block we are removing
4972 for (PHINode &DestPN : UnwindDest->phis()) {
4973 int Idx = DestPN.getBasicBlockIndex(BB);
4974 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4975 assert(Idx != -1);
4976 // This PHI node has an incoming value that corresponds to a control
4977 // path through the cleanup pad we are removing. If the incoming
4978 // value is in the cleanup pad, it must be a PHINode (because we
4979 // verified above that the block is otherwise empty). Otherwise, the
4980 // value is either a constant or a value that dominates the cleanup
4981 // pad being removed.
4982 //
4983 // Because BB and UnwindDest are both EH pads, all of their
4984 // predecessors must unwind to these blocks, and since no instruction
4985 // can have multiple unwind destinations, there will be no overlap in
4986 // incoming blocks between SrcPN and DestPN.
4987 Value *SrcVal = DestPN.getIncomingValue(Idx);
4988 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4989
4990 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4991 for (auto *Pred : predecessors(BB)) {
4992 Value *Incoming =
4993 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4994 DestPN.addIncoming(Incoming, Pred);
4995 }
4996 }
4997
4998 // Sink any remaining PHI nodes directly into UnwindDest.
4999 Instruction *InsertPt = DestEHPad;
5000 for (PHINode &PN : make_early_inc_range(BB->phis())) {
5001 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5002 // If the PHI node has no uses or all of its uses are in this basic
5003 // block (meaning they are debug or lifetime intrinsics), just leave
5004 // it. It will be erased when we erase BB below.
5005 continue;
5006
5007 // Otherwise, sink this PHI node into UnwindDest.
5008 // Any predecessors to UnwindDest which are not already represented
5009 // must be back edges which inherit the value from the path through
5010 // BB. In this case, the PHI value must reference itself.
5011 for (auto *pred : predecessors(UnwindDest))
5012 if (pred != BB)
5013 PN.addIncoming(&PN, pred);
5014 PN.moveBefore(InsertPt);
5015 // Also, add a dummy incoming value for the original BB itself,
5016 // so that the PHI is well-formed until we drop said predecessor.
5017 PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5018 }
5019 }
5020
5021 std::vector<DominatorTree::UpdateType> Updates;
5022
5023 // We use make_early_inc_range here because we will remove all predecessors.
5024 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5025 if (UnwindDest == nullptr) {
5026 if (DTU) {
5027 DTU->applyUpdates(Updates);
5028 Updates.clear();
5029 }
5030 removeUnwindEdge(PredBB, DTU);
5031 ++NumInvokes;
5032 } else {
5033 BB->removePredecessor(PredBB);
5034 Instruction *TI = PredBB->getTerminator();
5035 TI->replaceUsesOfWith(BB, UnwindDest);
5036 if (DTU) {
5037 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5038 Updates.push_back({DominatorTree::Delete, PredBB, BB});
5039 }
5040 }
5041 }
5042
5043 if (DTU)
5044 DTU->applyUpdates(Updates);
5045
5046 DeleteDeadBlock(BB, DTU);
5047
5048 return true;
5049 }
5050
5051 // Try to merge two cleanuppads together.
mergeCleanupPad(CleanupReturnInst * RI)5052 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5053 // Skip any cleanuprets which unwind to caller, there is nothing to merge
5054 // with.
5055 BasicBlock *UnwindDest = RI->getUnwindDest();
5056 if (!UnwindDest)
5057 return false;
5058
5059 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5060 // be safe to merge without code duplication.
5061 if (UnwindDest->getSinglePredecessor() != RI->getParent())
5062 return false;
5063
5064 // Verify that our cleanuppad's unwind destination is another cleanuppad.
5065 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5066 if (!SuccessorCleanupPad)
5067 return false;
5068
5069 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5070 // Replace any uses of the successor cleanupad with the predecessor pad
5071 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5072 // funclet bundle operands.
5073 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5074 // Remove the old cleanuppad.
5075 SuccessorCleanupPad->eraseFromParent();
5076 // Now, we simply replace the cleanupret with a branch to the unwind
5077 // destination.
5078 BranchInst::Create(UnwindDest, RI->getParent());
5079 RI->eraseFromParent();
5080
5081 return true;
5082 }
5083
simplifyCleanupReturn(CleanupReturnInst * RI)5084 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5085 // It is possible to transiantly have an undef cleanuppad operand because we
5086 // have deleted some, but not all, dead blocks.
5087 // Eventually, this block will be deleted.
5088 if (isa<UndefValue>(RI->getOperand(0)))
5089 return false;
5090
5091 if (mergeCleanupPad(RI))
5092 return true;
5093
5094 if (removeEmptyCleanup(RI, DTU))
5095 return true;
5096
5097 return false;
5098 }
5099
5100 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
simplifyUnreachable(UnreachableInst * UI)5101 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5102 BasicBlock *BB = UI->getParent();
5103
5104 bool Changed = false;
5105
5106 // If there are any instructions immediately before the unreachable that can
5107 // be removed, do so.
5108 while (UI->getIterator() != BB->begin()) {
5109 BasicBlock::iterator BBI = UI->getIterator();
5110 --BBI;
5111
5112 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5113 break; // Can not drop any more instructions. We're done here.
5114 // Otherwise, this instruction can be freely erased,
5115 // even if it is not side-effect free.
5116
5117 // Note that deleting EH's here is in fact okay, although it involves a bit
5118 // of subtle reasoning. If this inst is an EH, all the predecessors of this
5119 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5120 // and we can therefore guarantee this block will be erased.
5121
5122 // Delete this instruction (any uses are guaranteed to be dead)
5123 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5124 BBI->eraseFromParent();
5125 Changed = true;
5126 }
5127
5128 // If the unreachable instruction is the first in the block, take a gander
5129 // at all of the predecessors of this instruction, and simplify them.
5130 if (&BB->front() != UI)
5131 return Changed;
5132
5133 std::vector<DominatorTree::UpdateType> Updates;
5134
5135 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5136 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
5137 auto *Predecessor = Preds[i];
5138 Instruction *TI = Predecessor->getTerminator();
5139 IRBuilder<> Builder(TI);
5140 if (auto *BI = dyn_cast<BranchInst>(TI)) {
5141 // We could either have a proper unconditional branch,
5142 // or a degenerate conditional branch with matching destinations.
5143 if (all_of(BI->successors(),
5144 [BB](auto *Successor) { return Successor == BB; })) {
5145 new UnreachableInst(TI->getContext(), TI);
5146 TI->eraseFromParent();
5147 Changed = true;
5148 } else {
5149 assert(BI->isConditional() && "Can't get here with an uncond branch.");
5150 Value* Cond = BI->getCondition();
5151 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5152 "The destinations are guaranteed to be different here.");
5153 if (BI->getSuccessor(0) == BB) {
5154 Builder.CreateAssumption(Builder.CreateNot(Cond));
5155 Builder.CreateBr(BI->getSuccessor(1));
5156 } else {
5157 assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5158 Builder.CreateAssumption(Cond);
5159 Builder.CreateBr(BI->getSuccessor(0));
5160 }
5161 EraseTerminatorAndDCECond(BI);
5162 Changed = true;
5163 }
5164 if (DTU)
5165 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5166 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5167 SwitchInstProfUpdateWrapper SU(*SI);
5168 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5169 if (i->getCaseSuccessor() != BB) {
5170 ++i;
5171 continue;
5172 }
5173 BB->removePredecessor(SU->getParent());
5174 i = SU.removeCase(i);
5175 e = SU->case_end();
5176 Changed = true;
5177 }
5178 // Note that the default destination can't be removed!
5179 if (DTU && SI->getDefaultDest() != BB)
5180 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5181 } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5182 if (II->getUnwindDest() == BB) {
5183 if (DTU) {
5184 DTU->applyUpdates(Updates);
5185 Updates.clear();
5186 }
5187 auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5188 if (!CI->doesNotThrow())
5189 CI->setDoesNotThrow();
5190 Changed = true;
5191 }
5192 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5193 if (CSI->getUnwindDest() == BB) {
5194 if (DTU) {
5195 DTU->applyUpdates(Updates);
5196 Updates.clear();
5197 }
5198 removeUnwindEdge(TI->getParent(), DTU);
5199 Changed = true;
5200 continue;
5201 }
5202
5203 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5204 E = CSI->handler_end();
5205 I != E; ++I) {
5206 if (*I == BB) {
5207 CSI->removeHandler(I);
5208 --I;
5209 --E;
5210 Changed = true;
5211 }
5212 }
5213 if (DTU)
5214 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5215 if (CSI->getNumHandlers() == 0) {
5216 if (CSI->hasUnwindDest()) {
5217 // Redirect all predecessors of the block containing CatchSwitchInst
5218 // to instead branch to the CatchSwitchInst's unwind destination.
5219 if (DTU) {
5220 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5221 Updates.push_back({DominatorTree::Insert,
5222 PredecessorOfPredecessor,
5223 CSI->getUnwindDest()});
5224 Updates.push_back({DominatorTree::Delete,
5225 PredecessorOfPredecessor, Predecessor});
5226 }
5227 }
5228 Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5229 } else {
5230 // Rewrite all preds to unwind to caller (or from invoke to call).
5231 if (DTU) {
5232 DTU->applyUpdates(Updates);
5233 Updates.clear();
5234 }
5235 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5236 for (BasicBlock *EHPred : EHPreds)
5237 removeUnwindEdge(EHPred, DTU);
5238 }
5239 // The catchswitch is no longer reachable.
5240 new UnreachableInst(CSI->getContext(), CSI);
5241 CSI->eraseFromParent();
5242 Changed = true;
5243 }
5244 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5245 (void)CRI;
5246 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5247 "Expected to always have an unwind to BB.");
5248 if (DTU)
5249 Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5250 new UnreachableInst(TI->getContext(), TI);
5251 TI->eraseFromParent();
5252 Changed = true;
5253 }
5254 }
5255
5256 if (DTU)
5257 DTU->applyUpdates(Updates);
5258
5259 // If this block is now dead, remove it.
5260 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5261 DeleteDeadBlock(BB, DTU);
5262 return true;
5263 }
5264
5265 return Changed;
5266 }
5267
CasesAreContiguous(SmallVectorImpl<ConstantInt * > & Cases)5268 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5269 assert(Cases.size() >= 1);
5270
5271 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5272 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5273 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5274 return false;
5275 }
5276 return true;
5277 }
5278
createUnreachableSwitchDefault(SwitchInst * Switch,DomTreeUpdater * DTU)5279 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5280 DomTreeUpdater *DTU) {
5281 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5282 auto *BB = Switch->getParent();
5283 auto *OrigDefaultBlock = Switch->getDefaultDest();
5284 OrigDefaultBlock->removePredecessor(BB);
5285 BasicBlock *NewDefaultBlock = BasicBlock::Create(
5286 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5287 OrigDefaultBlock);
5288 new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5289 Switch->setDefaultDest(&*NewDefaultBlock);
5290 if (DTU) {
5291 SmallVector<DominatorTree::UpdateType, 2> Updates;
5292 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5293 if (!is_contained(successors(BB), OrigDefaultBlock))
5294 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5295 DTU->applyUpdates(Updates);
5296 }
5297 }
5298
5299 /// Turn a switch into an integer range comparison and branch.
5300 /// Switches with more than 2 destinations are ignored.
5301 /// Switches with 1 destination are also ignored.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)5302 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5303 IRBuilder<> &Builder) {
5304 assert(SI->getNumCases() > 1 && "Degenerate switch?");
5305
5306 bool HasDefault =
5307 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5308
5309 auto *BB = SI->getParent();
5310
5311 // Partition the cases into two sets with different destinations.
5312 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5313 BasicBlock *DestB = nullptr;
5314 SmallVector<ConstantInt *, 16> CasesA;
5315 SmallVector<ConstantInt *, 16> CasesB;
5316
5317 for (auto Case : SI->cases()) {
5318 BasicBlock *Dest = Case.getCaseSuccessor();
5319 if (!DestA)
5320 DestA = Dest;
5321 if (Dest == DestA) {
5322 CasesA.push_back(Case.getCaseValue());
5323 continue;
5324 }
5325 if (!DestB)
5326 DestB = Dest;
5327 if (Dest == DestB) {
5328 CasesB.push_back(Case.getCaseValue());
5329 continue;
5330 }
5331 return false; // More than two destinations.
5332 }
5333 if (!DestB)
5334 return false; // All destinations are the same and the default is unreachable
5335
5336 assert(DestA && DestB &&
5337 "Single-destination switch should have been folded.");
5338 assert(DestA != DestB);
5339 assert(DestB != SI->getDefaultDest());
5340 assert(!CasesB.empty() && "There must be non-default cases.");
5341 assert(!CasesA.empty() || HasDefault);
5342
5343 // Figure out if one of the sets of cases form a contiguous range.
5344 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5345 BasicBlock *ContiguousDest = nullptr;
5346 BasicBlock *OtherDest = nullptr;
5347 if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5348 ContiguousCases = &CasesA;
5349 ContiguousDest = DestA;
5350 OtherDest = DestB;
5351 } else if (CasesAreContiguous(CasesB)) {
5352 ContiguousCases = &CasesB;
5353 ContiguousDest = DestB;
5354 OtherDest = DestA;
5355 } else
5356 return false;
5357
5358 // Start building the compare and branch.
5359
5360 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5361 Constant *NumCases =
5362 ConstantInt::get(Offset->getType(), ContiguousCases->size());
5363
5364 Value *Sub = SI->getCondition();
5365 if (!Offset->isNullValue())
5366 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5367
5368 Value *Cmp;
5369 // If NumCases overflowed, then all possible values jump to the successor.
5370 if (NumCases->isNullValue() && !ContiguousCases->empty())
5371 Cmp = ConstantInt::getTrue(SI->getContext());
5372 else
5373 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5374 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5375
5376 // Update weight for the newly-created conditional branch.
5377 if (hasBranchWeightMD(*SI)) {
5378 SmallVector<uint64_t, 8> Weights;
5379 GetBranchWeights(SI, Weights);
5380 if (Weights.size() == 1 + SI->getNumCases()) {
5381 uint64_t TrueWeight = 0;
5382 uint64_t FalseWeight = 0;
5383 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5384 if (SI->getSuccessor(I) == ContiguousDest)
5385 TrueWeight += Weights[I];
5386 else
5387 FalseWeight += Weights[I];
5388 }
5389 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5390 TrueWeight /= 2;
5391 FalseWeight /= 2;
5392 }
5393 setBranchWeights(NewBI, TrueWeight, FalseWeight);
5394 }
5395 }
5396
5397 // Prune obsolete incoming values off the successors' PHI nodes.
5398 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5399 unsigned PreviousEdges = ContiguousCases->size();
5400 if (ContiguousDest == SI->getDefaultDest())
5401 ++PreviousEdges;
5402 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5403 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5404 }
5405 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5406 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5407 if (OtherDest == SI->getDefaultDest())
5408 ++PreviousEdges;
5409 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5410 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5411 }
5412
5413 // Clean up the default block - it may have phis or other instructions before
5414 // the unreachable terminator.
5415 if (!HasDefault)
5416 createUnreachableSwitchDefault(SI, DTU);
5417
5418 auto *UnreachableDefault = SI->getDefaultDest();
5419
5420 // Drop the switch.
5421 SI->eraseFromParent();
5422
5423 if (!HasDefault && DTU)
5424 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5425
5426 return true;
5427 }
5428
5429 /// Compute masked bits for the condition of a switch
5430 /// and use it to remove dead cases.
eliminateDeadSwitchCases(SwitchInst * SI,DomTreeUpdater * DTU,AssumptionCache * AC,const DataLayout & DL)5431 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5432 AssumptionCache *AC,
5433 const DataLayout &DL) {
5434 Value *Cond = SI->getCondition();
5435 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5436
5437 // We can also eliminate cases by determining that their values are outside of
5438 // the limited range of the condition based on how many significant (non-sign)
5439 // bits are in the condition value.
5440 unsigned MaxSignificantBitsInCond =
5441 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5442
5443 // Gather dead cases.
5444 SmallVector<ConstantInt *, 8> DeadCases;
5445 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5446 SmallVector<BasicBlock *, 8> UniqueSuccessors;
5447 for (const auto &Case : SI->cases()) {
5448 auto *Successor = Case.getCaseSuccessor();
5449 if (DTU) {
5450 if (!NumPerSuccessorCases.count(Successor))
5451 UniqueSuccessors.push_back(Successor);
5452 ++NumPerSuccessorCases[Successor];
5453 }
5454 const APInt &CaseVal = Case.getCaseValue()->getValue();
5455 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5456 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5457 DeadCases.push_back(Case.getCaseValue());
5458 if (DTU)
5459 --NumPerSuccessorCases[Successor];
5460 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5461 << " is dead.\n");
5462 }
5463 }
5464
5465 // If we can prove that the cases must cover all possible values, the
5466 // default destination becomes dead and we can remove it. If we know some
5467 // of the bits in the value, we can use that to more precisely compute the
5468 // number of possible unique case values.
5469 bool HasDefault =
5470 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5471 const unsigned NumUnknownBits =
5472 Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5473 assert(NumUnknownBits <= Known.getBitWidth());
5474 if (HasDefault && DeadCases.empty() &&
5475 NumUnknownBits < 64 /* avoid overflow */ &&
5476 SI->getNumCases() == (1ULL << NumUnknownBits)) {
5477 createUnreachableSwitchDefault(SI, DTU);
5478 return true;
5479 }
5480
5481 if (DeadCases.empty())
5482 return false;
5483
5484 SwitchInstProfUpdateWrapper SIW(*SI);
5485 for (ConstantInt *DeadCase : DeadCases) {
5486 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5487 assert(CaseI != SI->case_default() &&
5488 "Case was not found. Probably mistake in DeadCases forming.");
5489 // Prune unused values from PHI nodes.
5490 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5491 SIW.removeCase(CaseI);
5492 }
5493
5494 if (DTU) {
5495 std::vector<DominatorTree::UpdateType> Updates;
5496 for (auto *Successor : UniqueSuccessors)
5497 if (NumPerSuccessorCases[Successor] == 0)
5498 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5499 DTU->applyUpdates(Updates);
5500 }
5501
5502 return true;
5503 }
5504
5505 /// If BB would be eligible for simplification by
5506 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5507 /// by an unconditional branch), look at the phi node for BB in the successor
5508 /// block and see if the incoming value is equal to CaseValue. If so, return
5509 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)5510 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5511 BasicBlock *BB, int *PhiIndex) {
5512 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5513 return nullptr; // BB must be empty to be a candidate for simplification.
5514 if (!BB->getSinglePredecessor())
5515 return nullptr; // BB must be dominated by the switch.
5516
5517 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5518 if (!Branch || !Branch->isUnconditional())
5519 return nullptr; // Terminator must be unconditional branch.
5520
5521 BasicBlock *Succ = Branch->getSuccessor(0);
5522
5523 for (PHINode &PHI : Succ->phis()) {
5524 int Idx = PHI.getBasicBlockIndex(BB);
5525 assert(Idx >= 0 && "PHI has no entry for predecessor?");
5526
5527 Value *InValue = PHI.getIncomingValue(Idx);
5528 if (InValue != CaseValue)
5529 continue;
5530
5531 *PhiIndex = Idx;
5532 return &PHI;
5533 }
5534
5535 return nullptr;
5536 }
5537
5538 /// Try to forward the condition of a switch instruction to a phi node
5539 /// dominated by the switch, if that would mean that some of the destination
5540 /// blocks of the switch can be folded away. Return true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)5541 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5542 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5543
5544 ForwardingNodesMap ForwardingNodes;
5545 BasicBlock *SwitchBlock = SI->getParent();
5546 bool Changed = false;
5547 for (const auto &Case : SI->cases()) {
5548 ConstantInt *CaseValue = Case.getCaseValue();
5549 BasicBlock *CaseDest = Case.getCaseSuccessor();
5550
5551 // Replace phi operands in successor blocks that are using the constant case
5552 // value rather than the switch condition variable:
5553 // switchbb:
5554 // switch i32 %x, label %default [
5555 // i32 17, label %succ
5556 // ...
5557 // succ:
5558 // %r = phi i32 ... [ 17, %switchbb ] ...
5559 // -->
5560 // %r = phi i32 ... [ %x, %switchbb ] ...
5561
5562 for (PHINode &Phi : CaseDest->phis()) {
5563 // This only works if there is exactly 1 incoming edge from the switch to
5564 // a phi. If there is >1, that means multiple cases of the switch map to 1
5565 // value in the phi, and that phi value is not the switch condition. Thus,
5566 // this transform would not make sense (the phi would be invalid because
5567 // a phi can't have different incoming values from the same block).
5568 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5569 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5570 count(Phi.blocks(), SwitchBlock) == 1) {
5571 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5572 Changed = true;
5573 }
5574 }
5575
5576 // Collect phi nodes that are indirectly using this switch's case constants.
5577 int PhiIdx;
5578 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5579 ForwardingNodes[Phi].push_back(PhiIdx);
5580 }
5581
5582 for (auto &ForwardingNode : ForwardingNodes) {
5583 PHINode *Phi = ForwardingNode.first;
5584 SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5585 if (Indexes.size() < 2)
5586 continue;
5587
5588 for (int Index : Indexes)
5589 Phi->setIncomingValue(Index, SI->getCondition());
5590 Changed = true;
5591 }
5592
5593 return Changed;
5594 }
5595
5596 /// Return true if the backend will be able to handle
5597 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C,const TargetTransformInfo & TTI)5598 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5599 if (C->isThreadDependent())
5600 return false;
5601 if (C->isDLLImportDependent())
5602 return false;
5603
5604 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5605 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5606 !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5607 return false;
5608
5609 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5610 // Pointer casts and in-bounds GEPs will not prohibit the backend from
5611 // materializing the array of constants.
5612 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5613 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5614 return false;
5615 }
5616
5617 if (!TTI.shouldBuildLookupTablesForConstant(C))
5618 return false;
5619
5620 return true;
5621 }
5622
5623 /// If V is a Constant, return it. Otherwise, try to look up
5624 /// its constant value in ConstantPool, returning 0 if it's not there.
5625 static Constant *
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)5626 LookupConstant(Value *V,
5627 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5628 if (Constant *C = dyn_cast<Constant>(V))
5629 return C;
5630 return ConstantPool.lookup(V);
5631 }
5632
5633 /// Try to fold instruction I into a constant. This works for
5634 /// simple instructions such as binary operations where both operands are
5635 /// constant or can be replaced by constants from the ConstantPool. Returns the
5636 /// resulting constant on success, 0 otherwise.
5637 static Constant *
ConstantFold(Instruction * I,const DataLayout & DL,const SmallDenseMap<Value *,Constant * > & ConstantPool)5638 ConstantFold(Instruction *I, const DataLayout &DL,
5639 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5640 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5641 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5642 if (!A)
5643 return nullptr;
5644 if (A->isAllOnesValue())
5645 return LookupConstant(Select->getTrueValue(), ConstantPool);
5646 if (A->isNullValue())
5647 return LookupConstant(Select->getFalseValue(), ConstantPool);
5648 return nullptr;
5649 }
5650
5651 SmallVector<Constant *, 4> COps;
5652 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5653 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5654 COps.push_back(A);
5655 else
5656 return nullptr;
5657 }
5658
5659 return ConstantFoldInstOperands(I, COps, DL);
5660 }
5661
5662 /// Try to determine the resulting constant values in phi nodes
5663 /// at the common destination basic block, *CommonDest, for one of the case
5664 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5665 /// case), of a switch instruction SI.
5666 static bool
getCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout & DL,const TargetTransformInfo & TTI)5667 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5668 BasicBlock **CommonDest,
5669 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5670 const DataLayout &DL, const TargetTransformInfo &TTI) {
5671 // The block from which we enter the common destination.
5672 BasicBlock *Pred = SI->getParent();
5673
5674 // If CaseDest is empty except for some side-effect free instructions through
5675 // which we can constant-propagate the CaseVal, continue to its successor.
5676 SmallDenseMap<Value *, Constant *> ConstantPool;
5677 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5678 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5679 if (I.isTerminator()) {
5680 // If the terminator is a simple branch, continue to the next block.
5681 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5682 return false;
5683 Pred = CaseDest;
5684 CaseDest = I.getSuccessor(0);
5685 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5686 // Instruction is side-effect free and constant.
5687
5688 // If the instruction has uses outside this block or a phi node slot for
5689 // the block, it is not safe to bypass the instruction since it would then
5690 // no longer dominate all its uses.
5691 for (auto &Use : I.uses()) {
5692 User *User = Use.getUser();
5693 if (Instruction *I = dyn_cast<Instruction>(User))
5694 if (I->getParent() == CaseDest)
5695 continue;
5696 if (PHINode *Phi = dyn_cast<PHINode>(User))
5697 if (Phi->getIncomingBlock(Use) == CaseDest)
5698 continue;
5699 return false;
5700 }
5701
5702 ConstantPool.insert(std::make_pair(&I, C));
5703 } else {
5704 break;
5705 }
5706 }
5707
5708 // If we did not have a CommonDest before, use the current one.
5709 if (!*CommonDest)
5710 *CommonDest = CaseDest;
5711 // If the destination isn't the common one, abort.
5712 if (CaseDest != *CommonDest)
5713 return false;
5714
5715 // Get the values for this case from phi nodes in the destination block.
5716 for (PHINode &PHI : (*CommonDest)->phis()) {
5717 int Idx = PHI.getBasicBlockIndex(Pred);
5718 if (Idx == -1)
5719 continue;
5720
5721 Constant *ConstVal =
5722 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5723 if (!ConstVal)
5724 return false;
5725
5726 // Be conservative about which kinds of constants we support.
5727 if (!ValidLookupTableConstant(ConstVal, TTI))
5728 return false;
5729
5730 Res.push_back(std::make_pair(&PHI, ConstVal));
5731 }
5732
5733 return Res.size() > 0;
5734 }
5735
5736 // Helper function used to add CaseVal to the list of cases that generate
5737 // Result. Returns the updated number of cases that generate this result.
mapCaseToResult(ConstantInt * CaseVal,SwitchCaseResultVectorTy & UniqueResults,Constant * Result)5738 static size_t mapCaseToResult(ConstantInt *CaseVal,
5739 SwitchCaseResultVectorTy &UniqueResults,
5740 Constant *Result) {
5741 for (auto &I : UniqueResults) {
5742 if (I.first == Result) {
5743 I.second.push_back(CaseVal);
5744 return I.second.size();
5745 }
5746 }
5747 UniqueResults.push_back(
5748 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5749 return 1;
5750 }
5751
5752 // Helper function that initializes a map containing
5753 // results for the PHI node of the common destination block for a switch
5754 // instruction. Returns false if multiple PHI nodes have been found or if
5755 // there is not a common destination block for the switch.
initializeUniqueCases(SwitchInst * SI,PHINode * & PHI,BasicBlock * & CommonDest,SwitchCaseResultVectorTy & UniqueResults,Constant * & DefaultResult,const DataLayout & DL,const TargetTransformInfo & TTI,uintptr_t MaxUniqueResults)5756 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5757 BasicBlock *&CommonDest,
5758 SwitchCaseResultVectorTy &UniqueResults,
5759 Constant *&DefaultResult,
5760 const DataLayout &DL,
5761 const TargetTransformInfo &TTI,
5762 uintptr_t MaxUniqueResults) {
5763 for (const auto &I : SI->cases()) {
5764 ConstantInt *CaseVal = I.getCaseValue();
5765
5766 // Resulting value at phi nodes for this case value.
5767 SwitchCaseResultsTy Results;
5768 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5769 DL, TTI))
5770 return false;
5771
5772 // Only one value per case is permitted.
5773 if (Results.size() > 1)
5774 return false;
5775
5776 // Add the case->result mapping to UniqueResults.
5777 const size_t NumCasesForResult =
5778 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5779
5780 // Early out if there are too many cases for this result.
5781 if (NumCasesForResult > MaxSwitchCasesPerResult)
5782 return false;
5783
5784 // Early out if there are too many unique results.
5785 if (UniqueResults.size() > MaxUniqueResults)
5786 return false;
5787
5788 // Check the PHI consistency.
5789 if (!PHI)
5790 PHI = Results[0].first;
5791 else if (PHI != Results[0].first)
5792 return false;
5793 }
5794 // Find the default result value.
5795 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5796 BasicBlock *DefaultDest = SI->getDefaultDest();
5797 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5798 DL, TTI);
5799 // If the default value is not found abort unless the default destination
5800 // is unreachable.
5801 DefaultResult =
5802 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5803 if ((!DefaultResult &&
5804 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5805 return false;
5806
5807 return true;
5808 }
5809
5810 // Helper function that checks if it is possible to transform a switch with only
5811 // two cases (or two cases + default) that produces a result into a select.
5812 // TODO: Handle switches with more than 2 cases that map to the same result.
foldSwitchToSelect(const SwitchCaseResultVectorTy & ResultVector,Constant * DefaultResult,Value * Condition,IRBuilder<> & Builder)5813 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5814 Constant *DefaultResult, Value *Condition,
5815 IRBuilder<> &Builder) {
5816 // If we are selecting between only two cases transform into a simple
5817 // select or a two-way select if default is possible.
5818 // Example:
5819 // switch (a) { %0 = icmp eq i32 %a, 10
5820 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4
5821 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20
5822 // default: return 4; %3 = select i1 %2, i32 2, i32 %1
5823 // }
5824 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5825 ResultVector[1].second.size() == 1) {
5826 ConstantInt *FirstCase = ResultVector[0].second[0];
5827 ConstantInt *SecondCase = ResultVector[1].second[0];
5828 Value *SelectValue = ResultVector[1].first;
5829 if (DefaultResult) {
5830 Value *ValueCompare =
5831 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5832 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5833 DefaultResult, "switch.select");
5834 }
5835 Value *ValueCompare =
5836 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5837 return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5838 SelectValue, "switch.select");
5839 }
5840
5841 // Handle the degenerate case where two cases have the same result value.
5842 if (ResultVector.size() == 1 && DefaultResult) {
5843 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5844 unsigned CaseCount = CaseValues.size();
5845 // n bits group cases map to the same result:
5846 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default
5847 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default
5848 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5849 if (isPowerOf2_32(CaseCount)) {
5850 ConstantInt *MinCaseVal = CaseValues[0];
5851 // Find mininal value.
5852 for (auto *Case : CaseValues)
5853 if (Case->getValue().slt(MinCaseVal->getValue()))
5854 MinCaseVal = Case;
5855
5856 // Mark the bits case number touched.
5857 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
5858 for (auto *Case : CaseValues)
5859 BitMask |= (Case->getValue() - MinCaseVal->getValue());
5860
5861 // Check if cases with the same result can cover all number
5862 // in touched bits.
5863 if (BitMask.countPopulation() == Log2_32(CaseCount)) {
5864 if (!MinCaseVal->isNullValue())
5865 Condition = Builder.CreateSub(Condition, MinCaseVal);
5866 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
5867 Value *Cmp = Builder.CreateICmpEQ(
5868 And, Constant::getNullValue(And->getType()), "switch.selectcmp");
5869 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5870 }
5871 }
5872
5873 // Handle the degenerate case where two cases have the same value.
5874 if (CaseValues.size() == 2) {
5875 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
5876 "switch.selectcmp.case1");
5877 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
5878 "switch.selectcmp.case2");
5879 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5880 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5881 }
5882 }
5883
5884 return nullptr;
5885 }
5886
5887 // Helper function to cleanup a switch instruction that has been converted into
5888 // a select, fixing up PHI nodes and basic blocks.
removeSwitchAfterSelectFold(SwitchInst * SI,PHINode * PHI,Value * SelectValue,IRBuilder<> & Builder,DomTreeUpdater * DTU)5889 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
5890 Value *SelectValue,
5891 IRBuilder<> &Builder,
5892 DomTreeUpdater *DTU) {
5893 std::vector<DominatorTree::UpdateType> Updates;
5894
5895 BasicBlock *SelectBB = SI->getParent();
5896 BasicBlock *DestBB = PHI->getParent();
5897
5898 if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5899 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5900 Builder.CreateBr(DestBB);
5901
5902 // Remove the switch.
5903
5904 while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5905 PHI->removeIncomingValue(SelectBB);
5906 PHI->addIncoming(SelectValue, SelectBB);
5907
5908 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5909 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5910 BasicBlock *Succ = SI->getSuccessor(i);
5911
5912 if (Succ == DestBB)
5913 continue;
5914 Succ->removePredecessor(SelectBB);
5915 if (DTU && RemovedSuccessors.insert(Succ).second)
5916 Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5917 }
5918 SI->eraseFromParent();
5919 if (DTU)
5920 DTU->applyUpdates(Updates);
5921 }
5922
5923 /// If a switch is only used to initialize one or more phi nodes in a common
5924 /// successor block with only two different constant values, try to replace the
5925 /// switch with a select. Returns true if the fold was made.
trySwitchToSelect(SwitchInst * SI,IRBuilder<> & Builder,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)5926 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5927 DomTreeUpdater *DTU, const DataLayout &DL,
5928 const TargetTransformInfo &TTI) {
5929 Value *const Cond = SI->getCondition();
5930 PHINode *PHI = nullptr;
5931 BasicBlock *CommonDest = nullptr;
5932 Constant *DefaultResult;
5933 SwitchCaseResultVectorTy UniqueResults;
5934 // Collect all the cases that will deliver the same value from the switch.
5935 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5936 DL, TTI, /*MaxUniqueResults*/ 2))
5937 return false;
5938
5939 assert(PHI != nullptr && "PHI for value select not found");
5940 Builder.SetInsertPoint(SI);
5941 Value *SelectValue =
5942 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
5943 if (!SelectValue)
5944 return false;
5945
5946 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
5947 return true;
5948 }
5949
5950 namespace {
5951
5952 /// This class represents a lookup table that can be used to replace a switch.
5953 class SwitchLookupTable {
5954 public:
5955 /// Create a lookup table to use as a switch replacement with the contents
5956 /// of Values, using DefaultValue to fill any holes in the table.
5957 SwitchLookupTable(
5958 Module &M, uint64_t TableSize, ConstantInt *Offset,
5959 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5960 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5961
5962 /// Build instructions with Builder to retrieve the value at
5963 /// the position given by Index in the lookup table.
5964 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5965
5966 /// Return true if a table with TableSize elements of
5967 /// type ElementType would fit in a target-legal register.
5968 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5969 Type *ElementType);
5970
5971 private:
5972 // Depending on the contents of the table, it can be represented in
5973 // different ways.
5974 enum {
5975 // For tables where each element contains the same value, we just have to
5976 // store that single value and return it for each lookup.
5977 SingleValueKind,
5978
5979 // For tables where there is a linear relationship between table index
5980 // and values. We calculate the result with a simple multiplication
5981 // and addition instead of a table lookup.
5982 LinearMapKind,
5983
5984 // For small tables with integer elements, we can pack them into a bitmap
5985 // that fits into a target-legal register. Values are retrieved by
5986 // shift and mask operations.
5987 BitMapKind,
5988
5989 // The table is stored as an array of values. Values are retrieved by load
5990 // instructions from the table.
5991 ArrayKind
5992 } Kind;
5993
5994 // For SingleValueKind, this is the single value.
5995 Constant *SingleValue = nullptr;
5996
5997 // For BitMapKind, this is the bitmap.
5998 ConstantInt *BitMap = nullptr;
5999 IntegerType *BitMapElementTy = nullptr;
6000
6001 // For LinearMapKind, these are the constants used to derive the value.
6002 ConstantInt *LinearOffset = nullptr;
6003 ConstantInt *LinearMultiplier = nullptr;
6004
6005 // For ArrayKind, this is the array.
6006 GlobalVariable *Array = nullptr;
6007 };
6008
6009 } // end anonymous namespace
6010
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout & DL,const StringRef & FuncName)6011 SwitchLookupTable::SwitchLookupTable(
6012 Module &M, uint64_t TableSize, ConstantInt *Offset,
6013 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6014 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6015 assert(Values.size() && "Can't build lookup table without values!");
6016 assert(TableSize >= Values.size() && "Can't fit values in table!");
6017
6018 // If all values in the table are equal, this is that value.
6019 SingleValue = Values.begin()->second;
6020
6021 Type *ValueType = Values.begin()->second->getType();
6022
6023 // Build up the table contents.
6024 SmallVector<Constant *, 64> TableContents(TableSize);
6025 for (size_t I = 0, E = Values.size(); I != E; ++I) {
6026 ConstantInt *CaseVal = Values[I].first;
6027 Constant *CaseRes = Values[I].second;
6028 assert(CaseRes->getType() == ValueType);
6029
6030 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6031 TableContents[Idx] = CaseRes;
6032
6033 if (CaseRes != SingleValue)
6034 SingleValue = nullptr;
6035 }
6036
6037 // Fill in any holes in the table with the default result.
6038 if (Values.size() < TableSize) {
6039 assert(DefaultValue &&
6040 "Need a default value to fill the lookup table holes.");
6041 assert(DefaultValue->getType() == ValueType);
6042 for (uint64_t I = 0; I < TableSize; ++I) {
6043 if (!TableContents[I])
6044 TableContents[I] = DefaultValue;
6045 }
6046
6047 if (DefaultValue != SingleValue)
6048 SingleValue = nullptr;
6049 }
6050
6051 // If each element in the table contains the same value, we only need to store
6052 // that single value.
6053 if (SingleValue) {
6054 Kind = SingleValueKind;
6055 return;
6056 }
6057
6058 // Check if we can derive the value with a linear transformation from the
6059 // table index.
6060 if (isa<IntegerType>(ValueType)) {
6061 bool LinearMappingPossible = true;
6062 APInt PrevVal;
6063 APInt DistToPrev;
6064 assert(TableSize >= 2 && "Should be a SingleValue table.");
6065 // Check if there is the same distance between two consecutive values.
6066 for (uint64_t I = 0; I < TableSize; ++I) {
6067 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6068 if (!ConstVal) {
6069 // This is an undef. We could deal with it, but undefs in lookup tables
6070 // are very seldom. It's probably not worth the additional complexity.
6071 LinearMappingPossible = false;
6072 break;
6073 }
6074 const APInt &Val = ConstVal->getValue();
6075 if (I != 0) {
6076 APInt Dist = Val - PrevVal;
6077 if (I == 1) {
6078 DistToPrev = Dist;
6079 } else if (Dist != DistToPrev) {
6080 LinearMappingPossible = false;
6081 break;
6082 }
6083 }
6084 PrevVal = Val;
6085 }
6086 if (LinearMappingPossible) {
6087 LinearOffset = cast<ConstantInt>(TableContents[0]);
6088 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6089 Kind = LinearMapKind;
6090 ++NumLinearMaps;
6091 return;
6092 }
6093 }
6094
6095 // If the type is integer and the table fits in a register, build a bitmap.
6096 if (WouldFitInRegister(DL, TableSize, ValueType)) {
6097 IntegerType *IT = cast<IntegerType>(ValueType);
6098 APInt TableInt(TableSize * IT->getBitWidth(), 0);
6099 for (uint64_t I = TableSize; I > 0; --I) {
6100 TableInt <<= IT->getBitWidth();
6101 // Insert values into the bitmap. Undef values are set to zero.
6102 if (!isa<UndefValue>(TableContents[I - 1])) {
6103 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6104 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6105 }
6106 }
6107 BitMap = ConstantInt::get(M.getContext(), TableInt);
6108 BitMapElementTy = IT;
6109 Kind = BitMapKind;
6110 ++NumBitMaps;
6111 return;
6112 }
6113
6114 // Store the table in an array.
6115 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6116 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6117
6118 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6119 GlobalVariable::PrivateLinkage, Initializer,
6120 "switch.table." + FuncName);
6121 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6122 // Set the alignment to that of an array items. We will be only loading one
6123 // value out of it.
6124 Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6125 Kind = ArrayKind;
6126 }
6127
BuildLookup(Value * Index,IRBuilder<> & Builder)6128 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
6129 switch (Kind) {
6130 case SingleValueKind:
6131 return SingleValue;
6132 case LinearMapKind: {
6133 // Derive the result value from the input value.
6134 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6135 false, "switch.idx.cast");
6136 if (!LinearMultiplier->isOne())
6137 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
6138 if (!LinearOffset->isZero())
6139 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
6140 return Result;
6141 }
6142 case BitMapKind: {
6143 // Type of the bitmap (e.g. i59).
6144 IntegerType *MapTy = BitMap->getType();
6145
6146 // Cast Index to the same type as the bitmap.
6147 // Note: The Index is <= the number of elements in the table, so
6148 // truncating it to the width of the bitmask is safe.
6149 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6150
6151 // Multiply the shift amount by the element width.
6152 ShiftAmt = Builder.CreateMul(
6153 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6154 "switch.shiftamt");
6155
6156 // Shift down.
6157 Value *DownShifted =
6158 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6159 // Mask off.
6160 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6161 }
6162 case ArrayKind: {
6163 // Make sure the table index will not overflow when treated as signed.
6164 IntegerType *IT = cast<IntegerType>(Index->getType());
6165 uint64_t TableSize =
6166 Array->getInitializer()->getType()->getArrayNumElements();
6167 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6168 Index = Builder.CreateZExt(
6169 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6170 "switch.tableidx.zext");
6171
6172 Value *GEPIndices[] = {Builder.getInt32(0), Index};
6173 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6174 GEPIndices, "switch.gep");
6175 return Builder.CreateLoad(
6176 cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6177 "switch.load");
6178 }
6179 }
6180 llvm_unreachable("Unknown lookup table kind!");
6181 }
6182
WouldFitInRegister(const DataLayout & DL,uint64_t TableSize,Type * ElementType)6183 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6184 uint64_t TableSize,
6185 Type *ElementType) {
6186 auto *IT = dyn_cast<IntegerType>(ElementType);
6187 if (!IT)
6188 return false;
6189 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6190 // are <= 15, we could try to narrow the type.
6191
6192 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6193 if (TableSize >= UINT_MAX / IT->getBitWidth())
6194 return false;
6195 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6196 }
6197
isTypeLegalForLookupTable(Type * Ty,const TargetTransformInfo & TTI,const DataLayout & DL)6198 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6199 const DataLayout &DL) {
6200 // Allow any legal type.
6201 if (TTI.isTypeLegal(Ty))
6202 return true;
6203
6204 auto *IT = dyn_cast<IntegerType>(Ty);
6205 if (!IT)
6206 return false;
6207
6208 // Also allow power of 2 integer types that have at least 8 bits and fit in
6209 // a register. These types are common in frontend languages and targets
6210 // usually support loads of these types.
6211 // TODO: We could relax this to any integer that fits in a register and rely
6212 // on ABI alignment and padding in the table to allow the load to be widened.
6213 // Or we could widen the constants and truncate the load.
6214 unsigned BitWidth = IT->getBitWidth();
6215 return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6216 DL.fitsInLegalInteger(IT->getBitWidth());
6217 }
6218
isSwitchDense(uint64_t NumCases,uint64_t CaseRange)6219 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6220 // 40% is the default density for building a jump table in optsize/minsize
6221 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6222 // function was based on.
6223 const uint64_t MinDensity = 40;
6224
6225 if (CaseRange >= UINT64_MAX / 100)
6226 return false; // Avoid multiplication overflows below.
6227
6228 return NumCases * 100 >= CaseRange * MinDensity;
6229 }
6230
isSwitchDense(ArrayRef<int64_t> Values)6231 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6232 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6233 uint64_t Range = Diff + 1;
6234 if (Range < Diff)
6235 return false; // Overflow.
6236
6237 return isSwitchDense(Values.size(), Range);
6238 }
6239
6240 /// Determine whether a lookup table should be built for this switch, based on
6241 /// the number of cases, size of the table, and the types of the results.
6242 // TODO: We could support larger than legal types by limiting based on the
6243 // number of loads required and/or table size. If the constants are small we
6244 // could use smaller table entries and extend after the load.
6245 static bool
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout & DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)6246 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6247 const TargetTransformInfo &TTI, const DataLayout &DL,
6248 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6249 if (SI->getNumCases() > TableSize)
6250 return false; // TableSize overflowed.
6251
6252 bool AllTablesFitInRegister = true;
6253 bool HasIllegalType = false;
6254 for (const auto &I : ResultTypes) {
6255 Type *Ty = I.second;
6256
6257 // Saturate this flag to true.
6258 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6259
6260 // Saturate this flag to false.
6261 AllTablesFitInRegister =
6262 AllTablesFitInRegister &&
6263 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6264
6265 // If both flags saturate, we're done. NOTE: This *only* works with
6266 // saturating flags, and all flags have to saturate first due to the
6267 // non-deterministic behavior of iterating over a dense map.
6268 if (HasIllegalType && !AllTablesFitInRegister)
6269 break;
6270 }
6271
6272 // If each table would fit in a register, we should build it anyway.
6273 if (AllTablesFitInRegister)
6274 return true;
6275
6276 // Don't build a table that doesn't fit in-register if it has illegal types.
6277 if (HasIllegalType)
6278 return false;
6279
6280 return isSwitchDense(SI->getNumCases(), TableSize);
6281 }
6282
ShouldUseSwitchConditionAsTableIndex(ConstantInt & MinCaseVal,const ConstantInt & MaxCaseVal,bool HasDefaultResults,const SmallDenseMap<PHINode *,Type * > & ResultTypes,const DataLayout & DL,const TargetTransformInfo & TTI)6283 static bool ShouldUseSwitchConditionAsTableIndex(
6284 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6285 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6286 const DataLayout &DL, const TargetTransformInfo &TTI) {
6287 if (MinCaseVal.isNullValue())
6288 return true;
6289 if (MinCaseVal.isNegative() ||
6290 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6291 !HasDefaultResults)
6292 return false;
6293 return all_of(ResultTypes, [&](const auto &KV) {
6294 return SwitchLookupTable::WouldFitInRegister(
6295 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6296 KV.second /* ResultType */);
6297 });
6298 }
6299
6300 /// Try to reuse the switch table index compare. Following pattern:
6301 /// \code
6302 /// if (idx < tablesize)
6303 /// r = table[idx]; // table does not contain default_value
6304 /// else
6305 /// r = default_value;
6306 /// if (r != default_value)
6307 /// ...
6308 /// \endcode
6309 /// Is optimized to:
6310 /// \code
6311 /// cond = idx < tablesize;
6312 /// if (cond)
6313 /// r = table[idx];
6314 /// else
6315 /// r = default_value;
6316 /// if (cond)
6317 /// ...
6318 /// \endcode
6319 /// Jump threading will then eliminate the second if(cond).
reuseTableCompare(User * PhiUser,BasicBlock * PhiBlock,BranchInst * RangeCheckBranch,Constant * DefaultValue,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values)6320 static void reuseTableCompare(
6321 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6322 Constant *DefaultValue,
6323 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6324 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6325 if (!CmpInst)
6326 return;
6327
6328 // We require that the compare is in the same block as the phi so that jump
6329 // threading can do its work afterwards.
6330 if (CmpInst->getParent() != PhiBlock)
6331 return;
6332
6333 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6334 if (!CmpOp1)
6335 return;
6336
6337 Value *RangeCmp = RangeCheckBranch->getCondition();
6338 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6339 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6340
6341 // Check if the compare with the default value is constant true or false.
6342 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6343 DefaultValue, CmpOp1, true);
6344 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6345 return;
6346
6347 // Check if the compare with the case values is distinct from the default
6348 // compare result.
6349 for (auto ValuePair : Values) {
6350 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6351 ValuePair.second, CmpOp1, true);
6352 if (!CaseConst || CaseConst == DefaultConst ||
6353 (CaseConst != TrueConst && CaseConst != FalseConst))
6354 return;
6355 }
6356
6357 // Check if the branch instruction dominates the phi node. It's a simple
6358 // dominance check, but sufficient for our needs.
6359 // Although this check is invariant in the calling loops, it's better to do it
6360 // at this late stage. Practically we do it at most once for a switch.
6361 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6362 for (BasicBlock *Pred : predecessors(PhiBlock)) {
6363 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6364 return;
6365 }
6366
6367 if (DefaultConst == FalseConst) {
6368 // The compare yields the same result. We can replace it.
6369 CmpInst->replaceAllUsesWith(RangeCmp);
6370 ++NumTableCmpReuses;
6371 } else {
6372 // The compare yields the same result, just inverted. We can replace it.
6373 Value *InvertedTableCmp = BinaryOperator::CreateXor(
6374 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6375 RangeCheckBranch);
6376 CmpInst->replaceAllUsesWith(InvertedTableCmp);
6377 ++NumTableCmpReuses;
6378 }
6379 }
6380
6381 /// If the switch is only used to initialize one or more phi nodes in a common
6382 /// successor block with different constant values, replace the switch with
6383 /// lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)6384 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6385 DomTreeUpdater *DTU, const DataLayout &DL,
6386 const TargetTransformInfo &TTI) {
6387 assert(SI->getNumCases() > 1 && "Degenerate switch?");
6388
6389 BasicBlock *BB = SI->getParent();
6390 Function *Fn = BB->getParent();
6391 // Only build lookup table when we have a target that supports it or the
6392 // attribute is not set.
6393 if (!TTI.shouldBuildLookupTables() ||
6394 (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6395 return false;
6396
6397 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6398 // split off a dense part and build a lookup table for that.
6399
6400 // FIXME: This creates arrays of GEPs to constant strings, which means each
6401 // GEP needs a runtime relocation in PIC code. We should just build one big
6402 // string and lookup indices into that.
6403
6404 // Ignore switches with less than three cases. Lookup tables will not make
6405 // them faster, so we don't analyze them.
6406 if (SI->getNumCases() < 3)
6407 return false;
6408
6409 // Figure out the corresponding result for each case value and phi node in the
6410 // common destination, as well as the min and max case values.
6411 assert(!SI->cases().empty());
6412 SwitchInst::CaseIt CI = SI->case_begin();
6413 ConstantInt *MinCaseVal = CI->getCaseValue();
6414 ConstantInt *MaxCaseVal = CI->getCaseValue();
6415
6416 BasicBlock *CommonDest = nullptr;
6417
6418 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6419 SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6420
6421 SmallDenseMap<PHINode *, Constant *> DefaultResults;
6422 SmallDenseMap<PHINode *, Type *> ResultTypes;
6423 SmallVector<PHINode *, 4> PHIs;
6424
6425 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6426 ConstantInt *CaseVal = CI->getCaseValue();
6427 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6428 MinCaseVal = CaseVal;
6429 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6430 MaxCaseVal = CaseVal;
6431
6432 // Resulting value at phi nodes for this case value.
6433 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6434 ResultsTy Results;
6435 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6436 Results, DL, TTI))
6437 return false;
6438
6439 // Append the result from this case to the list for each phi.
6440 for (const auto &I : Results) {
6441 PHINode *PHI = I.first;
6442 Constant *Value = I.second;
6443 if (!ResultLists.count(PHI))
6444 PHIs.push_back(PHI);
6445 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6446 }
6447 }
6448
6449 // Keep track of the result types.
6450 for (PHINode *PHI : PHIs) {
6451 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6452 }
6453
6454 uint64_t NumResults = ResultLists[PHIs[0]].size();
6455
6456 // If the table has holes, we need a constant result for the default case
6457 // or a bitmask that fits in a register.
6458 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6459 bool HasDefaultResults =
6460 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6461 DefaultResultsList, DL, TTI);
6462
6463 for (const auto &I : DefaultResultsList) {
6464 PHINode *PHI = I.first;
6465 Constant *Result = I.second;
6466 DefaultResults[PHI] = Result;
6467 }
6468
6469 bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex(
6470 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6471 uint64_t TableSize;
6472 if (UseSwitchConditionAsTableIndex)
6473 TableSize = MaxCaseVal->getLimitedValue() + 1;
6474 else
6475 TableSize =
6476 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6477
6478 bool TableHasHoles = (NumResults < TableSize);
6479 bool NeedMask = (TableHasHoles && !HasDefaultResults);
6480 if (NeedMask) {
6481 // As an extra penalty for the validity test we require more cases.
6482 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6483 return false;
6484 if (!DL.fitsInLegalInteger(TableSize))
6485 return false;
6486 }
6487
6488 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6489 return false;
6490
6491 std::vector<DominatorTree::UpdateType> Updates;
6492
6493 // Create the BB that does the lookups.
6494 Module &Mod = *CommonDest->getParent()->getParent();
6495 BasicBlock *LookupBB = BasicBlock::Create(
6496 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6497
6498 // Compute the table index value.
6499 Builder.SetInsertPoint(SI);
6500 Value *TableIndex;
6501 ConstantInt *TableIndexOffset;
6502 if (UseSwitchConditionAsTableIndex) {
6503 TableIndexOffset = ConstantInt::get(MaxCaseVal->getType(), 0);
6504 TableIndex = SI->getCondition();
6505 } else {
6506 TableIndexOffset = MinCaseVal;
6507 TableIndex =
6508 Builder.CreateSub(SI->getCondition(), TableIndexOffset, "switch.tableidx");
6509 }
6510
6511 // Compute the maximum table size representable by the integer type we are
6512 // switching upon.
6513 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6514 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6515 assert(MaxTableSize >= TableSize &&
6516 "It is impossible for a switch to have more entries than the max "
6517 "representable value of its input integer type's size.");
6518
6519 // If the default destination is unreachable, or if the lookup table covers
6520 // all values of the conditional variable, branch directly to the lookup table
6521 // BB. Otherwise, check that the condition is within the case range.
6522 const bool DefaultIsReachable =
6523 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6524 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6525 BranchInst *RangeCheckBranch = nullptr;
6526
6527 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6528 Builder.CreateBr(LookupBB);
6529 if (DTU)
6530 Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6531 // Note: We call removeProdecessor later since we need to be able to get the
6532 // PHI value for the default case in case we're using a bit mask.
6533 } else {
6534 Value *Cmp = Builder.CreateICmpULT(
6535 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6536 RangeCheckBranch =
6537 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6538 if (DTU)
6539 Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6540 }
6541
6542 // Populate the BB that does the lookups.
6543 Builder.SetInsertPoint(LookupBB);
6544
6545 if (NeedMask) {
6546 // Before doing the lookup, we do the hole check. The LookupBB is therefore
6547 // re-purposed to do the hole check, and we create a new LookupBB.
6548 BasicBlock *MaskBB = LookupBB;
6549 MaskBB->setName("switch.hole_check");
6550 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6551 CommonDest->getParent(), CommonDest);
6552
6553 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6554 // unnecessary illegal types.
6555 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6556 APInt MaskInt(TableSizePowOf2, 0);
6557 APInt One(TableSizePowOf2, 1);
6558 // Build bitmask; fill in a 1 bit for every case.
6559 const ResultListTy &ResultList = ResultLists[PHIs[0]];
6560 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6561 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
6562 .getLimitedValue();
6563 MaskInt |= One << Idx;
6564 }
6565 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6566
6567 // Get the TableIndex'th bit of the bitmask.
6568 // If this bit is 0 (meaning hole) jump to the default destination,
6569 // else continue with table lookup.
6570 IntegerType *MapTy = TableMask->getType();
6571 Value *MaskIndex =
6572 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6573 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6574 Value *LoBit = Builder.CreateTrunc(
6575 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6576 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6577 if (DTU) {
6578 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6579 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6580 }
6581 Builder.SetInsertPoint(LookupBB);
6582 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6583 }
6584
6585 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6586 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6587 // do not delete PHINodes here.
6588 SI->getDefaultDest()->removePredecessor(BB,
6589 /*KeepOneInputPHIs=*/true);
6590 if (DTU)
6591 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6592 }
6593
6594 for (PHINode *PHI : PHIs) {
6595 const ResultListTy &ResultList = ResultLists[PHI];
6596
6597 // If using a bitmask, use any value to fill the lookup table holes.
6598 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6599 StringRef FuncName = Fn->getName();
6600 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
6601 DL, FuncName);
6602
6603 Value *Result = Table.BuildLookup(TableIndex, Builder);
6604
6605 // Do a small peephole optimization: re-use the switch table compare if
6606 // possible.
6607 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6608 BasicBlock *PhiBlock = PHI->getParent();
6609 // Search for compare instructions which use the phi.
6610 for (auto *User : PHI->users()) {
6611 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6612 }
6613 }
6614
6615 PHI->addIncoming(Result, LookupBB);
6616 }
6617
6618 Builder.CreateBr(CommonDest);
6619 if (DTU)
6620 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6621
6622 // Remove the switch.
6623 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6624 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6625 BasicBlock *Succ = SI->getSuccessor(i);
6626
6627 if (Succ == SI->getDefaultDest())
6628 continue;
6629 Succ->removePredecessor(BB);
6630 if (DTU && RemovedSuccessors.insert(Succ).second)
6631 Updates.push_back({DominatorTree::Delete, BB, Succ});
6632 }
6633 SI->eraseFromParent();
6634
6635 if (DTU)
6636 DTU->applyUpdates(Updates);
6637
6638 ++NumLookupTables;
6639 if (NeedMask)
6640 ++NumLookupTablesHoles;
6641 return true;
6642 }
6643
6644 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6645 /// of cases.
6646 ///
6647 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6648 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6649 ///
6650 /// This converts a sparse switch into a dense switch which allows better
6651 /// lowering and could also allow transforming into a lookup table.
ReduceSwitchRange(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)6652 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6653 const DataLayout &DL,
6654 const TargetTransformInfo &TTI) {
6655 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6656 if (CondTy->getIntegerBitWidth() > 64 ||
6657 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6658 return false;
6659 // Only bother with this optimization if there are more than 3 switch cases;
6660 // SDAG will only bother creating jump tables for 4 or more cases.
6661 if (SI->getNumCases() < 4)
6662 return false;
6663
6664 // This transform is agnostic to the signedness of the input or case values. We
6665 // can treat the case values as signed or unsigned. We can optimize more common
6666 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6667 // as signed.
6668 SmallVector<int64_t,4> Values;
6669 for (const auto &C : SI->cases())
6670 Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6671 llvm::sort(Values);
6672
6673 // If the switch is already dense, there's nothing useful to do here.
6674 if (isSwitchDense(Values))
6675 return false;
6676
6677 // First, transform the values such that they start at zero and ascend.
6678 int64_t Base = Values[0];
6679 for (auto &V : Values)
6680 V -= (uint64_t)(Base);
6681
6682 // Now we have signed numbers that have been shifted so that, given enough
6683 // precision, there are no negative values. Since the rest of the transform
6684 // is bitwise only, we switch now to an unsigned representation.
6685
6686 // This transform can be done speculatively because it is so cheap - it
6687 // results in a single rotate operation being inserted.
6688 // FIXME: It's possible that optimizing a switch on powers of two might also
6689 // be beneficial - flag values are often powers of two and we could use a CLZ
6690 // as the key function.
6691
6692 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6693 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6694 // less than 64.
6695 unsigned Shift = 64;
6696 for (auto &V : Values)
6697 Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6698 assert(Shift < 64);
6699 if (Shift > 0)
6700 for (auto &V : Values)
6701 V = (int64_t)((uint64_t)V >> Shift);
6702
6703 if (!isSwitchDense(Values))
6704 // Transform didn't create a dense switch.
6705 return false;
6706
6707 // The obvious transform is to shift the switch condition right and emit a
6708 // check that the condition actually cleanly divided by GCD, i.e.
6709 // C & (1 << Shift - 1) == 0
6710 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6711 //
6712 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6713 // shift and puts the shifted-off bits in the uppermost bits. If any of these
6714 // are nonzero then the switch condition will be very large and will hit the
6715 // default case.
6716
6717 auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6718 Builder.SetInsertPoint(SI);
6719 auto *ShiftC = ConstantInt::get(Ty, Shift);
6720 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6721 auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6722 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6723 auto *Rot = Builder.CreateOr(LShr, Shl);
6724 SI->replaceUsesOfWith(SI->getCondition(), Rot);
6725
6726 for (auto Case : SI->cases()) {
6727 auto *Orig = Case.getCaseValue();
6728 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6729 Case.setValue(
6730 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6731 }
6732 return true;
6733 }
6734
simplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)6735 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6736 BasicBlock *BB = SI->getParent();
6737
6738 if (isValueEqualityComparison(SI)) {
6739 // If we only have one predecessor, and if it is a branch on this value,
6740 // see if that predecessor totally determines the outcome of this switch.
6741 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6742 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6743 return requestResimplify();
6744
6745 Value *Cond = SI->getCondition();
6746 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6747 if (SimplifySwitchOnSelect(SI, Select))
6748 return requestResimplify();
6749
6750 // If the block only contains the switch, see if we can fold the block
6751 // away into any preds.
6752 if (SI == &*BB->instructionsWithoutDebug(false).begin())
6753 if (FoldValueComparisonIntoPredecessors(SI, Builder))
6754 return requestResimplify();
6755 }
6756
6757 // Try to transform the switch into an icmp and a branch.
6758 // The conversion from switch to comparison may lose information on
6759 // impossible switch values, so disable it early in the pipeline.
6760 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
6761 return requestResimplify();
6762
6763 // Remove unreachable cases.
6764 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6765 return requestResimplify();
6766
6767 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
6768 return requestResimplify();
6769
6770 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6771 return requestResimplify();
6772
6773 // The conversion from switch to lookup tables results in difficult-to-analyze
6774 // code and makes pruning branches much harder. This is a problem if the
6775 // switch expression itself can still be restricted as a result of inlining or
6776 // CVP. Therefore, only apply this transformation during late stages of the
6777 // optimisation pipeline.
6778 if (Options.ConvertSwitchToLookupTable &&
6779 SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6780 return requestResimplify();
6781
6782 if (ReduceSwitchRange(SI, Builder, DL, TTI))
6783 return requestResimplify();
6784
6785 return false;
6786 }
6787
simplifyIndirectBr(IndirectBrInst * IBI)6788 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6789 BasicBlock *BB = IBI->getParent();
6790 bool Changed = false;
6791
6792 // Eliminate redundant destinations.
6793 SmallPtrSet<Value *, 8> Succs;
6794 SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6795 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6796 BasicBlock *Dest = IBI->getDestination(i);
6797 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6798 if (!Dest->hasAddressTaken())
6799 RemovedSuccs.insert(Dest);
6800 Dest->removePredecessor(BB);
6801 IBI->removeDestination(i);
6802 --i;
6803 --e;
6804 Changed = true;
6805 }
6806 }
6807
6808 if (DTU) {
6809 std::vector<DominatorTree::UpdateType> Updates;
6810 Updates.reserve(RemovedSuccs.size());
6811 for (auto *RemovedSucc : RemovedSuccs)
6812 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6813 DTU->applyUpdates(Updates);
6814 }
6815
6816 if (IBI->getNumDestinations() == 0) {
6817 // If the indirectbr has no successors, change it to unreachable.
6818 new UnreachableInst(IBI->getContext(), IBI);
6819 EraseTerminatorAndDCECond(IBI);
6820 return true;
6821 }
6822
6823 if (IBI->getNumDestinations() == 1) {
6824 // If the indirectbr has one successor, change it to a direct branch.
6825 BranchInst::Create(IBI->getDestination(0), IBI);
6826 EraseTerminatorAndDCECond(IBI);
6827 return true;
6828 }
6829
6830 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6831 if (SimplifyIndirectBrOnSelect(IBI, SI))
6832 return requestResimplify();
6833 }
6834 return Changed;
6835 }
6836
6837 /// Given an block with only a single landing pad and a unconditional branch
6838 /// try to find another basic block which this one can be merged with. This
6839 /// handles cases where we have multiple invokes with unique landing pads, but
6840 /// a shared handler.
6841 ///
6842 /// We specifically choose to not worry about merging non-empty blocks
6843 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
6844 /// practice, the optimizer produces empty landing pad blocks quite frequently
6845 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
6846 /// sinking in this file)
6847 ///
6848 /// This is primarily a code size optimization. We need to avoid performing
6849 /// any transform which might inhibit optimization (such as our ability to
6850 /// specialize a particular handler via tail commoning). We do this by not
6851 /// merging any blocks which require us to introduce a phi. Since the same
6852 /// values are flowing through both blocks, we don't lose any ability to
6853 /// specialize. If anything, we make such specialization more likely.
6854 ///
6855 /// TODO - This transformation could remove entries from a phi in the target
6856 /// block when the inputs in the phi are the same for the two blocks being
6857 /// merged. In some cases, this could result in removal of the PHI entirely.
TryToMergeLandingPad(LandingPadInst * LPad,BranchInst * BI,BasicBlock * BB,DomTreeUpdater * DTU)6858 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6859 BasicBlock *BB, DomTreeUpdater *DTU) {
6860 auto Succ = BB->getUniqueSuccessor();
6861 assert(Succ);
6862 // If there's a phi in the successor block, we'd likely have to introduce
6863 // a phi into the merged landing pad block.
6864 if (isa<PHINode>(*Succ->begin()))
6865 return false;
6866
6867 for (BasicBlock *OtherPred : predecessors(Succ)) {
6868 if (BB == OtherPred)
6869 continue;
6870 BasicBlock::iterator I = OtherPred->begin();
6871 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6872 if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6873 continue;
6874 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6875 ;
6876 BranchInst *BI2 = dyn_cast<BranchInst>(I);
6877 if (!BI2 || !BI2->isIdenticalTo(BI))
6878 continue;
6879
6880 std::vector<DominatorTree::UpdateType> Updates;
6881
6882 // We've found an identical block. Update our predecessors to take that
6883 // path instead and make ourselves dead.
6884 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6885 for (BasicBlock *Pred : UniquePreds) {
6886 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6887 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6888 "unexpected successor");
6889 II->setUnwindDest(OtherPred);
6890 if (DTU) {
6891 Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6892 Updates.push_back({DominatorTree::Delete, Pred, BB});
6893 }
6894 }
6895
6896 // The debug info in OtherPred doesn't cover the merged control flow that
6897 // used to go through BB. We need to delete it or update it.
6898 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6899 if (isa<DbgInfoIntrinsic>(Inst))
6900 Inst.eraseFromParent();
6901
6902 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6903 for (BasicBlock *Succ : UniqueSuccs) {
6904 Succ->removePredecessor(BB);
6905 if (DTU)
6906 Updates.push_back({DominatorTree::Delete, BB, Succ});
6907 }
6908
6909 IRBuilder<> Builder(BI);
6910 Builder.CreateUnreachable();
6911 BI->eraseFromParent();
6912 if (DTU)
6913 DTU->applyUpdates(Updates);
6914 return true;
6915 }
6916 return false;
6917 }
6918
simplifyBranch(BranchInst * Branch,IRBuilder<> & Builder)6919 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6920 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6921 : simplifyCondBranch(Branch, Builder);
6922 }
6923
simplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)6924 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6925 IRBuilder<> &Builder) {
6926 BasicBlock *BB = BI->getParent();
6927 BasicBlock *Succ = BI->getSuccessor(0);
6928
6929 // If the Terminator is the only non-phi instruction, simplify the block.
6930 // If LoopHeader is provided, check if the block or its successor is a loop
6931 // header. (This is for early invocations before loop simplify and
6932 // vectorization to keep canonical loop forms for nested loops. These blocks
6933 // can be eliminated when the pass is invoked later in the back-end.)
6934 // Note that if BB has only one predecessor then we do not introduce new
6935 // backedge, so we can eliminate BB.
6936 bool NeedCanonicalLoop =
6937 Options.NeedCanonicalLoop &&
6938 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6939 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6940 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6941 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6942 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6943 return true;
6944
6945 // If the only instruction in the block is a seteq/setne comparison against a
6946 // constant, try to simplify the block.
6947 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6948 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6949 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6950 ;
6951 if (I->isTerminator() &&
6952 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6953 return true;
6954 }
6955
6956 // See if we can merge an empty landing pad block with another which is
6957 // equivalent.
6958 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6959 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6960 ;
6961 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6962 return true;
6963 }
6964
6965 // If this basic block is ONLY a compare and a branch, and if a predecessor
6966 // branches to us and our successor, fold the comparison into the
6967 // predecessor and use logical operations to update the incoming value
6968 // for PHI nodes in common successor.
6969 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6970 Options.BonusInstThreshold))
6971 return requestResimplify();
6972 return false;
6973 }
6974
allPredecessorsComeFromSameSource(BasicBlock * BB)6975 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6976 BasicBlock *PredPred = nullptr;
6977 for (auto *P : predecessors(BB)) {
6978 BasicBlock *PPred = P->getSinglePredecessor();
6979 if (!PPred || (PredPred && PredPred != PPred))
6980 return nullptr;
6981 PredPred = PPred;
6982 }
6983 return PredPred;
6984 }
6985
simplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)6986 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6987 assert(
6988 !isa<ConstantInt>(BI->getCondition()) &&
6989 BI->getSuccessor(0) != BI->getSuccessor(1) &&
6990 "Tautological conditional branch should have been eliminated already.");
6991
6992 BasicBlock *BB = BI->getParent();
6993 if (!Options.SimplifyCondBranch)
6994 return false;
6995
6996 // Conditional branch
6997 if (isValueEqualityComparison(BI)) {
6998 // If we only have one predecessor, and if it is a branch on this value,
6999 // see if that predecessor totally determines the outcome of this
7000 // switch.
7001 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7002 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
7003 return requestResimplify();
7004
7005 // This block must be empty, except for the setcond inst, if it exists.
7006 // Ignore dbg and pseudo intrinsics.
7007 auto I = BB->instructionsWithoutDebug(true).begin();
7008 if (&*I == BI) {
7009 if (FoldValueComparisonIntoPredecessors(BI, Builder))
7010 return requestResimplify();
7011 } else if (&*I == cast<Instruction>(BI->getCondition())) {
7012 ++I;
7013 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
7014 return requestResimplify();
7015 }
7016 }
7017
7018 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
7019 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
7020 return true;
7021
7022 // If this basic block has dominating predecessor blocks and the dominating
7023 // blocks' conditions imply BI's condition, we know the direction of BI.
7024 std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
7025 if (Imp) {
7026 // Turn this into a branch on constant.
7027 auto *OldCond = BI->getCondition();
7028 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
7029 : ConstantInt::getFalse(BB->getContext());
7030 BI->setCondition(TorF);
7031 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
7032 return requestResimplify();
7033 }
7034
7035 // If this basic block is ONLY a compare and a branch, and if a predecessor
7036 // branches to us and one of our successors, fold the comparison into the
7037 // predecessor and use logical operations to pick the right destination.
7038 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7039 Options.BonusInstThreshold))
7040 return requestResimplify();
7041
7042 // We have a conditional branch to two blocks that are only reachable
7043 // from BI. We know that the condbr dominates the two blocks, so see if
7044 // there is any identical code in the "then" and "else" blocks. If so, we
7045 // can hoist it up to the branching block.
7046 if (BI->getSuccessor(0)->getSinglePredecessor()) {
7047 if (BI->getSuccessor(1)->getSinglePredecessor()) {
7048 if (HoistCommon &&
7049 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
7050 return requestResimplify();
7051 } else {
7052 // If Successor #1 has multiple preds, we may be able to conditionally
7053 // execute Successor #0 if it branches to Successor #1.
7054 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
7055 if (Succ0TI->getNumSuccessors() == 1 &&
7056 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
7057 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
7058 return requestResimplify();
7059 }
7060 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
7061 // If Successor #0 has multiple preds, we may be able to conditionally
7062 // execute Successor #1 if it branches to Successor #0.
7063 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
7064 if (Succ1TI->getNumSuccessors() == 1 &&
7065 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
7066 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
7067 return requestResimplify();
7068 }
7069
7070 // If this is a branch on something for which we know the constant value in
7071 // predecessors (e.g. a phi node in the current block), thread control
7072 // through this block.
7073 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
7074 return requestResimplify();
7075
7076 // Scan predecessor blocks for conditional branches.
7077 for (BasicBlock *Pred : predecessors(BB))
7078 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
7079 if (PBI != BI && PBI->isConditional())
7080 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
7081 return requestResimplify();
7082
7083 // Look for diamond patterns.
7084 if (MergeCondStores)
7085 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
7086 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
7087 if (PBI != BI && PBI->isConditional())
7088 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
7089 return requestResimplify();
7090
7091 return false;
7092 }
7093
7094 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I,bool PtrValueMayBeModified)7095 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
7096 Constant *C = dyn_cast<Constant>(V);
7097 if (!C)
7098 return false;
7099
7100 if (I->use_empty())
7101 return false;
7102
7103 if (C->isNullValue() || isa<UndefValue>(C)) {
7104 // Only look at the first use, avoid hurting compile time with long uselists
7105 auto *Use = cast<Instruction>(*I->user_begin());
7106 // Bail out if Use is not in the same BB as I or Use == I or Use comes
7107 // before I in the block. The latter two can be the case if Use is a PHI
7108 // node.
7109 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
7110 return false;
7111
7112 // Now make sure that there are no instructions in between that can alter
7113 // control flow (eg. calls)
7114 auto InstrRange =
7115 make_range(std::next(I->getIterator()), Use->getIterator());
7116 if (any_of(InstrRange, [](Instruction &I) {
7117 return !isGuaranteedToTransferExecutionToSuccessor(&I);
7118 }))
7119 return false;
7120
7121 // Look through GEPs. A load from a GEP derived from NULL is still undefined
7122 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
7123 if (GEP->getPointerOperand() == I) {
7124 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
7125 PtrValueMayBeModified = true;
7126 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
7127 }
7128
7129 // Look through bitcasts.
7130 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
7131 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
7132
7133 // Load from null is undefined.
7134 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
7135 if (!LI->isVolatile())
7136 return !NullPointerIsDefined(LI->getFunction(),
7137 LI->getPointerAddressSpace());
7138
7139 // Store to null is undefined.
7140 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
7141 if (!SI->isVolatile())
7142 return (!NullPointerIsDefined(SI->getFunction(),
7143 SI->getPointerAddressSpace())) &&
7144 SI->getPointerOperand() == I;
7145
7146 if (auto *CB = dyn_cast<CallBase>(Use)) {
7147 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
7148 return false;
7149 // A call to null is undefined.
7150 if (CB->getCalledOperand() == I)
7151 return true;
7152
7153 if (C->isNullValue()) {
7154 for (const llvm::Use &Arg : CB->args())
7155 if (Arg == I) {
7156 unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7157 if (CB->isPassingUndefUB(ArgIdx) &&
7158 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
7159 // Passing null to a nonnnull+noundef argument is undefined.
7160 return !PtrValueMayBeModified;
7161 }
7162 }
7163 } else if (isa<UndefValue>(C)) {
7164 // Passing undef to a noundef argument is undefined.
7165 for (const llvm::Use &Arg : CB->args())
7166 if (Arg == I) {
7167 unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7168 if (CB->isPassingUndefUB(ArgIdx)) {
7169 // Passing undef to a noundef argument is undefined.
7170 return true;
7171 }
7172 }
7173 }
7174 }
7175 }
7176 return false;
7177 }
7178
7179 /// If BB has an incoming value that will always trigger undefined behavior
7180 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB,DomTreeUpdater * DTU)7181 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7182 DomTreeUpdater *DTU) {
7183 for (PHINode &PHI : BB->phis())
7184 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7185 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
7186 BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7187 Instruction *T = Predecessor->getTerminator();
7188 IRBuilder<> Builder(T);
7189 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7190 BB->removePredecessor(Predecessor);
7191 // Turn unconditional branches into unreachables and remove the dead
7192 // destination from conditional branches.
7193 if (BI->isUnconditional())
7194 Builder.CreateUnreachable();
7195 else {
7196 // Preserve guarding condition in assume, because it might not be
7197 // inferrable from any dominating condition.
7198 Value *Cond = BI->getCondition();
7199 if (BI->getSuccessor(0) == BB)
7200 Builder.CreateAssumption(Builder.CreateNot(Cond));
7201 else
7202 Builder.CreateAssumption(Cond);
7203 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7204 : BI->getSuccessor(0));
7205 }
7206 BI->eraseFromParent();
7207 if (DTU)
7208 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7209 return true;
7210 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7211 // Redirect all branches leading to UB into
7212 // a newly created unreachable block.
7213 BasicBlock *Unreachable = BasicBlock::Create(
7214 Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7215 Builder.SetInsertPoint(Unreachable);
7216 // The new block contains only one instruction: Unreachable
7217 Builder.CreateUnreachable();
7218 for (const auto &Case : SI->cases())
7219 if (Case.getCaseSuccessor() == BB) {
7220 BB->removePredecessor(Predecessor);
7221 Case.setSuccessor(Unreachable);
7222 }
7223 if (SI->getDefaultDest() == BB) {
7224 BB->removePredecessor(Predecessor);
7225 SI->setDefaultDest(Unreachable);
7226 }
7227
7228 if (DTU)
7229 DTU->applyUpdates(
7230 { { DominatorTree::Insert, Predecessor, Unreachable },
7231 { DominatorTree::Delete, Predecessor, BB } });
7232 return true;
7233 }
7234 }
7235
7236 return false;
7237 }
7238
simplifyOnce(BasicBlock * BB)7239 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7240 bool Changed = false;
7241
7242 assert(BB && BB->getParent() && "Block not embedded in function!");
7243 assert(BB->getTerminator() && "Degenerate basic block encountered!");
7244
7245 // Remove basic blocks that have no predecessors (except the entry block)...
7246 // or that just have themself as a predecessor. These are unreachable.
7247 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7248 BB->getSinglePredecessor() == BB) {
7249 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7250 DeleteDeadBlock(BB, DTU);
7251 return true;
7252 }
7253
7254 // Check to see if we can constant propagate this terminator instruction
7255 // away...
7256 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7257 /*TLI=*/nullptr, DTU);
7258
7259 // Check for and eliminate duplicate PHI nodes in this block.
7260 Changed |= EliminateDuplicatePHINodes(BB);
7261
7262 // Check for and remove branches that will always cause undefined behavior.
7263 if (removeUndefIntroducingPredecessor(BB, DTU))
7264 return requestResimplify();
7265
7266 // Merge basic blocks into their predecessor if there is only one distinct
7267 // pred, and if there is only one distinct successor of the predecessor, and
7268 // if there are no PHI nodes.
7269 if (MergeBlockIntoPredecessor(BB, DTU))
7270 return true;
7271
7272 if (SinkCommon && Options.SinkCommonInsts)
7273 if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7274 MergeCompatibleInvokes(BB, DTU)) {
7275 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7276 // so we may now how duplicate PHI's.
7277 // Let's rerun EliminateDuplicatePHINodes() first,
7278 // before FoldTwoEntryPHINode() potentially converts them into select's,
7279 // after which we'd need a whole EarlyCSE pass run to cleanup them.
7280 return true;
7281 }
7282
7283 IRBuilder<> Builder(BB);
7284
7285 if (Options.FoldTwoEntryPHINode) {
7286 // If there is a trivial two-entry PHI node in this basic block, and we can
7287 // eliminate it, do so now.
7288 if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7289 if (PN->getNumIncomingValues() == 2)
7290 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7291 return true;
7292 }
7293
7294 Instruction *Terminator = BB->getTerminator();
7295 Builder.SetInsertPoint(Terminator);
7296 switch (Terminator->getOpcode()) {
7297 case Instruction::Br:
7298 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7299 break;
7300 case Instruction::Resume:
7301 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7302 break;
7303 case Instruction::CleanupRet:
7304 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7305 break;
7306 case Instruction::Switch:
7307 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7308 break;
7309 case Instruction::Unreachable:
7310 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7311 break;
7312 case Instruction::IndirectBr:
7313 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7314 break;
7315 }
7316
7317 return Changed;
7318 }
7319
run(BasicBlock * BB)7320 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7321 bool Changed = false;
7322
7323 // Repeated simplify BB as long as resimplification is requested.
7324 do {
7325 Resimplify = false;
7326
7327 // Perform one round of simplifcation. Resimplify flag will be set if
7328 // another iteration is requested.
7329 Changed |= simplifyOnce(BB);
7330 } while (Resimplify);
7331
7332 return Changed;
7333 }
7334
simplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const SimplifyCFGOptions & Options,ArrayRef<WeakVH> LoopHeaders)7335 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7336 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7337 ArrayRef<WeakVH> LoopHeaders) {
7338 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7339 Options)
7340 .run(BB);
7341 }
7342