xref: /aosp_15_r20/art/compiler/optimizing/nodes.cc (revision 795d594fd825385562da6b089ea9b2033f3abf5a)
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "nodes.h"
17 
18 #include <algorithm>
19 #include <cfloat>
20 #include <functional>
21 #include <optional>
22 
23 #include "art_method-inl.h"
24 #include "base/arena_allocator.h"
25 #include "base/arena_bit_vector.h"
26 #include "base/bit_utils.h"
27 #include "base/bit_vector-inl.h"
28 #include "base/bit_vector.h"
29 #include "base/iteration_range.h"
30 #include "base/logging.h"
31 #include "base/malloc_arena_pool.h"
32 #include "base/scoped_arena_allocator.h"
33 #include "base/scoped_arena_containers.h"
34 #include "base/stl_util.h"
35 #include "class_linker-inl.h"
36 #include "class_root-inl.h"
37 #include "code_generator.h"
38 #include "common_dominator.h"
39 #include "intrinsic_objects.h"
40 #include "intrinsics.h"
41 #include "intrinsics_list.h"
42 #include "mirror/class-inl.h"
43 #include "scoped_thread_state_change-inl.h"
44 #include "ssa_builder.h"
45 
46 namespace art HIDDEN {
47 
48 // Enable floating-point static evaluation during constant folding
49 // only if all floating-point operations and constants evaluate in the
50 // range and precision of the type used (i.e., 32-bit float, 64-bit
51 // double).
52 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
53 
AddBlock(HBasicBlock * block)54 void HGraph::AddBlock(HBasicBlock* block) {
55   block->SetBlockId(blocks_.size());
56   blocks_.push_back(block);
57 }
58 
FindBackEdges(ArenaBitVector * visited)59 void HGraph::FindBackEdges(ArenaBitVector* visited) {
60   // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
61   DCHECK_EQ(visited->GetHighestBitSet(), -1);
62 
63   // Allocate memory from local ScopedArenaAllocator.
64   ScopedArenaAllocator allocator(GetArenaStack());
65   // Nodes that we're currently visiting, indexed by block id.
66   ArenaBitVector visiting(
67       &allocator, blocks_.size(), /* expandable= */ false, kArenaAllocGraphBuilder);
68   // Number of successors visited from a given node, indexed by block id.
69   ScopedArenaVector<size_t> successors_visited(blocks_.size(),
70                                                0u,
71                                                allocator.Adapter(kArenaAllocGraphBuilder));
72   // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
73   ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
74   constexpr size_t kDefaultWorklistSize = 8;
75   worklist.reserve(kDefaultWorklistSize);
76   visited->SetBit(entry_block_->GetBlockId());
77   visiting.SetBit(entry_block_->GetBlockId());
78   worklist.push_back(entry_block_);
79 
80   while (!worklist.empty()) {
81     HBasicBlock* current = worklist.back();
82     uint32_t current_id = current->GetBlockId();
83     if (successors_visited[current_id] == current->GetSuccessors().size()) {
84       visiting.ClearBit(current_id);
85       worklist.pop_back();
86     } else {
87       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
88       uint32_t successor_id = successor->GetBlockId();
89       if (visiting.IsBitSet(successor_id)) {
90         DCHECK(ContainsElement(worklist, successor));
91         successor->AddBackEdge(current);
92       } else if (!visited->IsBitSet(successor_id)) {
93         visited->SetBit(successor_id);
94         visiting.SetBit(successor_id);
95         worklist.push_back(successor);
96       }
97     }
98   }
99 }
100 
101 // Remove the environment use records of the instruction for users.
RemoveEnvironmentUses(HInstruction * instruction)102 void RemoveEnvironmentUses(HInstruction* instruction) {
103   for (HEnvironment* environment = instruction->GetEnvironment();
104        environment != nullptr;
105        environment = environment->GetParent()) {
106     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
107       if (environment->GetInstructionAt(i) != nullptr) {
108         environment->RemoveAsUserOfInput(i);
109       }
110     }
111   }
112 }
113 
114 // Return whether the instruction has an environment and it's used by others.
HasEnvironmentUsedByOthers(HInstruction * instruction)115 bool HasEnvironmentUsedByOthers(HInstruction* instruction) {
116   for (HEnvironment* environment = instruction->GetEnvironment();
117        environment != nullptr;
118        environment = environment->GetParent()) {
119     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
120       HInstruction* user = environment->GetInstructionAt(i);
121       if (user != nullptr) {
122         return true;
123       }
124     }
125   }
126   return false;
127 }
128 
129 // Reset environment records of the instruction itself.
ResetEnvironmentInputRecords(HInstruction * instruction)130 void ResetEnvironmentInputRecords(HInstruction* instruction) {
131   for (HEnvironment* environment = instruction->GetEnvironment();
132        environment != nullptr;
133        environment = environment->GetParent()) {
134     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
135       DCHECK(environment->GetHolder() == instruction);
136       if (environment->GetInstructionAt(i) != nullptr) {
137         environment->SetRawEnvAt(i, nullptr);
138       }
139     }
140   }
141 }
142 
RemoveAsUser(HInstruction * instruction)143 static void RemoveAsUser(HInstruction* instruction) {
144   instruction->RemoveAsUserOfAllInputs();
145   RemoveEnvironmentUses(instruction);
146 }
147 
RemoveDeadBlocksInstructionsAsUsersAndDisconnect(const ArenaBitVector & visited) const148 void HGraph::RemoveDeadBlocksInstructionsAsUsersAndDisconnect(const ArenaBitVector& visited) const {
149   for (size_t i = 0; i < blocks_.size(); ++i) {
150     if (!visited.IsBitSet(i)) {
151       HBasicBlock* block = blocks_[i];
152       if (block == nullptr) continue;
153 
154       // Remove as user.
155       for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
156         RemoveAsUser(it.Current());
157       }
158       for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
159         RemoveAsUser(it.Current());
160       }
161 
162       // Remove non-catch phi uses, and disconnect the block.
163       block->DisconnectFromSuccessors(&visited);
164     }
165   }
166 }
167 
168 // This method assumes `insn` has been removed from all users with the exception of catch
169 // phis because of missing exceptional edges in the graph. It removes the
170 // instruction from catch phi uses, together with inputs of other catch phis in
171 // the catch block at the same index, as these must be dead too.
RemoveCatchPhiUsesOfDeadInstruction(HInstruction * insn)172 static void RemoveCatchPhiUsesOfDeadInstruction(HInstruction* insn) {
173   DCHECK(!insn->HasEnvironmentUses());
174   while (insn->HasNonEnvironmentUses()) {
175     const HUseListNode<HInstruction*>& use = insn->GetUses().front();
176     size_t use_index = use.GetIndex();
177     HBasicBlock* user_block = use.GetUser()->GetBlock();
178     DCHECK(use.GetUser()->IsPhi());
179     DCHECK(user_block->IsCatchBlock());
180     for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
181       phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
182     }
183   }
184 }
185 
RemoveDeadBlocks(const ArenaBitVector & visited)186 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
187   DCHECK(reverse_post_order_.empty()) << "We shouldn't have dominance information.";
188   for (size_t i = 0; i < blocks_.size(); ++i) {
189     if (!visited.IsBitSet(i)) {
190       HBasicBlock* block = blocks_[i];
191       if (block == nullptr) continue;
192 
193       // Remove all remaining uses (which should be only catch phi uses), and the instructions.
194       block->RemoveCatchPhiUsesAndInstruction(/* building_dominator_tree = */ true);
195 
196       // Remove the block from the list of blocks, so that further analyses
197       // never see it.
198       blocks_[i] = nullptr;
199       if (block->IsExitBlock()) {
200         SetExitBlock(nullptr);
201       }
202       // Mark the block as removed. This is used by the HGraphBuilder to discard
203       // the block as a branch target.
204       block->SetGraph(nullptr);
205     }
206   }
207 }
208 
BuildDominatorTree()209 GraphAnalysisResult HGraph::BuildDominatorTree() {
210   // Allocate memory from local ScopedArenaAllocator.
211   ScopedArenaAllocator allocator(GetArenaStack());
212 
213   ArenaBitVector visited(&allocator, blocks_.size(), false, kArenaAllocGraphBuilder);
214 
215   // (1) Find the back edges in the graph doing a DFS traversal.
216   FindBackEdges(&visited);
217 
218   // (2) Remove instructions and phis from blocks not visited during
219   //     the initial DFS as users from other instructions, so that
220   //     users can be safely removed before uses later.
221   //     Also disconnect the block from its successors, updating the successor's phis if needed.
222   RemoveDeadBlocksInstructionsAsUsersAndDisconnect(visited);
223 
224   // (3) Remove blocks not visited during the initial DFS.
225   //     Step (5) requires dead blocks to be removed from the
226   //     predecessors list of live blocks.
227   RemoveDeadBlocks(visited);
228 
229   // (4) Simplify the CFG now, so that we don't need to recompute
230   //     dominators and the reverse post order.
231   SimplifyCFG();
232 
233   // (5) Compute the dominance information and the reverse post order.
234   ComputeDominanceInformation();
235 
236   // (6) Analyze loops discovered through back edge analysis, and
237   //     set the loop information on each block.
238   GraphAnalysisResult result = AnalyzeLoops();
239   if (result != kAnalysisSuccess) {
240     return result;
241   }
242 
243   // (7) Precompute per-block try membership before entering the SSA builder,
244   //     which needs the information to build catch block phis from values of
245   //     locals at throwing instructions inside try blocks.
246   ComputeTryBlockInformation();
247 
248   return kAnalysisSuccess;
249 }
250 
RecomputeDominatorTree()251 GraphAnalysisResult HGraph::RecomputeDominatorTree() {
252   DCHECK(!HasIrreducibleLoops()) << "Recomputing loop information in graphs with irreducible loops "
253                                  << "is unsupported, as it could lead to loop header changes";
254   ClearLoopInformation();
255   ClearDominanceInformation();
256   return BuildDominatorTree();
257 }
258 
ClearDominanceInformation()259 void HGraph::ClearDominanceInformation() {
260   for (HBasicBlock* block : GetActiveBlocks()) {
261     block->ClearDominanceInformation();
262   }
263   reverse_post_order_.clear();
264 }
265 
ClearLoopInformation()266 void HGraph::ClearLoopInformation() {
267   SetHasLoops(false);
268   SetHasIrreducibleLoops(false);
269   for (HBasicBlock* block : GetActiveBlocks()) {
270     block->SetLoopInformation(nullptr);
271   }
272 }
273 
ClearDominanceInformation()274 void HBasicBlock::ClearDominanceInformation() {
275   dominated_blocks_.clear();
276   dominator_ = nullptr;
277 }
278 
GetFirstInstructionDisregardMoves() const279 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
280   HInstruction* instruction = GetFirstInstruction();
281   while (instruction->IsParallelMove()) {
282     instruction = instruction->GetNext();
283   }
284   return instruction;
285 }
286 
UpdateDominatorOfSuccessor(HBasicBlock * block,HBasicBlock * successor)287 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
288   DCHECK(ContainsElement(block->GetSuccessors(), successor));
289 
290   HBasicBlock* old_dominator = successor->GetDominator();
291   HBasicBlock* new_dominator =
292       (old_dominator == nullptr) ? block
293                                  : CommonDominator::ForPair(old_dominator, block);
294 
295   if (old_dominator == new_dominator) {
296     return false;
297   } else {
298     successor->SetDominator(new_dominator);
299     return true;
300   }
301 }
302 
ComputeDominanceInformation()303 void HGraph::ComputeDominanceInformation() {
304   DCHECK(reverse_post_order_.empty());
305   reverse_post_order_.reserve(blocks_.size());
306   reverse_post_order_.push_back(entry_block_);
307 
308   // Allocate memory from local ScopedArenaAllocator.
309   ScopedArenaAllocator allocator(GetArenaStack());
310   // Number of visits of a given node, indexed by block id.
311   ScopedArenaVector<size_t> visits(blocks_.size(), 0u, allocator.Adapter(kArenaAllocGraphBuilder));
312   // Number of successors visited from a given node, indexed by block id.
313   ScopedArenaVector<size_t> successors_visited(blocks_.size(),
314                                                0u,
315                                                allocator.Adapter(kArenaAllocGraphBuilder));
316   // Nodes for which we need to visit successors.
317   ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
318   constexpr size_t kDefaultWorklistSize = 8;
319   worklist.reserve(kDefaultWorklistSize);
320   worklist.push_back(entry_block_);
321 
322   while (!worklist.empty()) {
323     HBasicBlock* current = worklist.back();
324     uint32_t current_id = current->GetBlockId();
325     if (successors_visited[current_id] == current->GetSuccessors().size()) {
326       worklist.pop_back();
327     } else {
328       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
329       UpdateDominatorOfSuccessor(current, successor);
330 
331       // Once all the forward edges have been visited, we know the immediate
332       // dominator of the block. We can then start visiting its successors.
333       if (++visits[successor->GetBlockId()] ==
334           successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
335         reverse_post_order_.push_back(successor);
336         worklist.push_back(successor);
337       }
338     }
339   }
340 
341   // Check if the graph has back edges not dominated by their respective headers.
342   // If so, we need to update the dominators of those headers and recursively of
343   // their successors. We do that with a fix-point iteration over all blocks.
344   // The algorithm is guaranteed to terminate because it loops only if the sum
345   // of all dominator chains has decreased in the current iteration.
346   bool must_run_fix_point = false;
347   for (HBasicBlock* block : blocks_) {
348     if (block != nullptr &&
349         block->IsLoopHeader() &&
350         block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
351       must_run_fix_point = true;
352       break;
353     }
354   }
355   if (must_run_fix_point) {
356     bool update_occurred = true;
357     while (update_occurred) {
358       update_occurred = false;
359       for (HBasicBlock* block : GetReversePostOrder()) {
360         for (HBasicBlock* successor : block->GetSuccessors()) {
361           update_occurred |= UpdateDominatorOfSuccessor(block, successor);
362         }
363       }
364     }
365   }
366 
367   // Make sure that there are no remaining blocks whose dominator information
368   // needs to be updated.
369   if (kIsDebugBuild) {
370     for (HBasicBlock* block : GetReversePostOrder()) {
371       for (HBasicBlock* successor : block->GetSuccessors()) {
372         DCHECK(!UpdateDominatorOfSuccessor(block, successor));
373       }
374     }
375   }
376 
377   // Populate `dominated_blocks_` information after computing all dominators.
378   // The potential presence of irreducible loops requires to do it after.
379   for (HBasicBlock* block : GetReversePostOrder()) {
380     if (!block->IsEntryBlock()) {
381       block->GetDominator()->AddDominatedBlock(block);
382     }
383   }
384 }
385 
SplitEdge(HBasicBlock * block,HBasicBlock * successor)386 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
387   HBasicBlock* new_block = new (allocator_) HBasicBlock(this, successor->GetDexPc());
388   AddBlock(new_block);
389   // Use `InsertBetween` to ensure the predecessor index and successor index of
390   // `block` and `successor` are preserved.
391   new_block->InsertBetween(block, successor);
392   return new_block;
393 }
394 
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)395 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
396   // Insert a new node between `block` and `successor` to split the
397   // critical edge.
398   HBasicBlock* new_block = SplitEdge(block, successor);
399   new_block->AddInstruction(new (allocator_) HGoto(successor->GetDexPc()));
400   if (successor->IsLoopHeader()) {
401     // If we split at a back edge boundary, make the new block the back edge.
402     HLoopInformation* info = successor->GetLoopInformation();
403     if (info->IsBackEdge(*block)) {
404       info->RemoveBackEdge(block);
405       info->AddBackEdge(new_block);
406     }
407   }
408 }
409 
SplitEdgeAndUpdateRPO(HBasicBlock * block,HBasicBlock * successor)410 HBasicBlock* HGraph::SplitEdgeAndUpdateRPO(HBasicBlock* block, HBasicBlock* successor) {
411   HBasicBlock* new_block = SplitEdge(block, successor);
412   // In the RPO we have {... , block, ... , successor}. We want to insert `new_block` right after
413   // `block` to have a consistent RPO without recomputing the whole graph's RPO.
414   reverse_post_order_.insert(
415       reverse_post_order_.begin() + IndexOfElement(reverse_post_order_, block) + 1, new_block);
416   return new_block;
417 }
418 
419 // Reorder phi inputs to match reordering of the block's predecessors.
FixPhisAfterPredecessorsReodering(HBasicBlock * block,size_t first,size_t second)420 static void FixPhisAfterPredecessorsReodering(HBasicBlock* block, size_t first, size_t second) {
421   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
422     HPhi* phi = it.Current()->AsPhi();
423     HInstruction* first_instr = phi->InputAt(first);
424     HInstruction* second_instr = phi->InputAt(second);
425     phi->ReplaceInput(first_instr, second);
426     phi->ReplaceInput(second_instr, first);
427   }
428 }
429 
430 // Make sure that the first predecessor of a loop header is the incoming block.
OrderLoopHeaderPredecessors(HBasicBlock * header)431 void HGraph::OrderLoopHeaderPredecessors(HBasicBlock* header) {
432   DCHECK(header->IsLoopHeader());
433   HLoopInformation* info = header->GetLoopInformation();
434   if (info->IsBackEdge(*header->GetPredecessors()[0])) {
435     HBasicBlock* to_swap = header->GetPredecessors()[0];
436     for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
437       HBasicBlock* predecessor = header->GetPredecessors()[pred];
438       if (!info->IsBackEdge(*predecessor)) {
439         header->predecessors_[pred] = to_swap;
440         header->predecessors_[0] = predecessor;
441         FixPhisAfterPredecessorsReodering(header, 0, pred);
442         break;
443       }
444     }
445   }
446 }
447 
448 // Transform control flow of the loop to a single preheader format (don't touch the data flow).
449 // New_preheader can be already among the header predecessors - this situation will be correctly
450 // processed.
FixControlForNewSinglePreheader(HBasicBlock * header,HBasicBlock * new_preheader)451 static void FixControlForNewSinglePreheader(HBasicBlock* header, HBasicBlock* new_preheader) {
452   HLoopInformation* loop_info = header->GetLoopInformation();
453   for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
454     HBasicBlock* predecessor = header->GetPredecessors()[pred];
455     if (!loop_info->IsBackEdge(*predecessor) && predecessor != new_preheader) {
456       predecessor->ReplaceSuccessor(header, new_preheader);
457       pred--;
458     }
459   }
460 }
461 
462 //             == Before ==                                               == After ==
463 //      _________         _________                               _________         _________
464 //     | B0      |       | B1      |      (old preheaders)       | B0      |       | B1      |
465 //     |=========|       |=========|                             |=========|       |=========|
466 //     | i0 = .. |       | i1 = .. |                             | i0 = .. |       | i1 = .. |
467 //     |_________|       |_________|                             |_________|       |_________|
468 //           \               /                                         \              /
469 //            \             /                                        ___v____________v___
470 //             \           /               (new preheader)          | B20 <- B0, B1      |
471 //              |         |                                         |====================|
472 //              |         |                                         | i20 = phi(i0, i1)  |
473 //              |         |                                         |____________________|
474 //              |         |                                                   |
475 //    /\        |         |        /\                           /\            |              /\
476 //   /  v_______v_________v_______v  \                         /  v___________v_____________v  \
477 //  |  | B10 <- B0, B1, B2, B3     |  |                       |  | B10 <- B20, B2, B3        |  |
478 //  |  |===========================|  |       (header)        |  |===========================|  |
479 //  |  | i10 = phi(i0, i1, i2, i3) |  |                       |  | i10 = phi(i20, i2, i3)    |  |
480 //  |  |___________________________|  |                       |  |___________________________|  |
481 //  |        /               \        |                       |        /               \        |
482 //  |      ...              ...       |                       |      ...              ...       |
483 //  |   _________         _________   |                       |   _________         _________   |
484 //  |  | B2      |       | B3      |  |                       |  | B2      |       | B3      |  |
485 //  |  |=========|       |=========|  |     (back edges)      |  |=========|       |=========|  |
486 //  |  | i2 = .. |       | i3 = .. |  |                       |  | i2 = .. |       | i3 = .. |  |
487 //  |  |_________|       |_________|  |                       |  |_________|       |_________|  |
488 //   \     /                   \     /                         \     /                   \     /
489 //    \___/                     \___/                           \___/                     \___/
490 //
TransformLoopToSinglePreheaderFormat(HBasicBlock * header)491 void HGraph::TransformLoopToSinglePreheaderFormat(HBasicBlock* header) {
492   HLoopInformation* loop_info = header->GetLoopInformation();
493 
494   HBasicBlock* preheader = new (allocator_) HBasicBlock(this, header->GetDexPc());
495   AddBlock(preheader);
496   preheader->AddInstruction(new (allocator_) HGoto(header->GetDexPc()));
497 
498   // If the old header has no Phis then we only need to fix the control flow.
499   if (header->GetPhis().IsEmpty()) {
500     FixControlForNewSinglePreheader(header, preheader);
501     preheader->AddSuccessor(header);
502     return;
503   }
504 
505   // Find the first non-back edge block in the header's predecessors list.
506   size_t first_nonbackedge_pred_pos = 0;
507   bool found = false;
508   for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
509     HBasicBlock* predecessor = header->GetPredecessors()[pred];
510     if (!loop_info->IsBackEdge(*predecessor)) {
511       first_nonbackedge_pred_pos = pred;
512       found = true;
513       break;
514     }
515   }
516 
517   DCHECK(found);
518 
519   // Fix the data-flow.
520   for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
521     HPhi* header_phi = it.Current()->AsPhi();
522 
523     HPhi* preheader_phi = new (GetAllocator()) HPhi(GetAllocator(),
524                                                     header_phi->GetRegNumber(),
525                                                     0,
526                                                     header_phi->GetType());
527     if (header_phi->GetType() == DataType::Type::kReference) {
528       preheader_phi->SetReferenceTypeInfoIfValid(header_phi->GetReferenceTypeInfo());
529     }
530     preheader->AddPhi(preheader_phi);
531 
532     HInstruction* orig_input = header_phi->InputAt(first_nonbackedge_pred_pos);
533     header_phi->ReplaceInput(preheader_phi, first_nonbackedge_pred_pos);
534     preheader_phi->AddInput(orig_input);
535 
536     for (size_t input_pos = first_nonbackedge_pred_pos + 1;
537          input_pos < header_phi->InputCount();
538          input_pos++) {
539       HInstruction* input = header_phi->InputAt(input_pos);
540       HBasicBlock* pred_block = header->GetPredecessors()[input_pos];
541 
542       if (loop_info->Contains(*pred_block)) {
543         DCHECK(loop_info->IsBackEdge(*pred_block));
544       } else {
545         preheader_phi->AddInput(input);
546         header_phi->RemoveInputAt(input_pos);
547         input_pos--;
548       }
549     }
550   }
551 
552   // Fix the control-flow.
553   HBasicBlock* first_pred = header->GetPredecessors()[first_nonbackedge_pred_pos];
554   preheader->InsertBetween(first_pred, header);
555 
556   FixControlForNewSinglePreheader(header, preheader);
557 }
558 
SimplifyLoop(HBasicBlock * header)559 void HGraph::SimplifyLoop(HBasicBlock* header) {
560   HLoopInformation* info = header->GetLoopInformation();
561 
562   // Make sure the loop has only one pre header. This simplifies SSA building by having
563   // to just look at the pre header to know which locals are initialized at entry of the
564   // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
565   // this graph.
566   size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
567   if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
568     TransformLoopToSinglePreheaderFormat(header);
569   }
570 
571   OrderLoopHeaderPredecessors(header);
572 
573   HInstruction* first_instruction = header->GetFirstInstruction();
574   if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
575     // Called from DeadBlockElimination. Update SuspendCheck pointer.
576     info->SetSuspendCheck(first_instruction->AsSuspendCheck());
577   }
578 }
579 
ComputeTryBlockInformation()580 void HGraph::ComputeTryBlockInformation() {
581   // Iterate in reverse post order to propagate try membership information from
582   // predecessors to their successors.
583   bool graph_has_try_catch = false;
584 
585   for (HBasicBlock* block : GetReversePostOrder()) {
586     if (block->IsEntryBlock() || block->IsCatchBlock()) {
587       // Catch blocks after simplification have only exceptional predecessors
588       // and hence are never in tries.
589       continue;
590     }
591 
592     // Infer try membership from the first predecessor. Having simplified loops,
593     // the first predecessor can never be a back edge and therefore it must have
594     // been visited already and had its try membership set.
595     HBasicBlock* first_predecessor = block->GetPredecessors()[0];
596     DCHECK_IMPLIES(block->IsLoopHeader(),
597                    !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
598     const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
599     graph_has_try_catch |= try_entry != nullptr;
600     if (try_entry != nullptr &&
601         (block->GetTryCatchInformation() == nullptr ||
602          try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
603       // We are either setting try block membership for the first time or it
604       // has changed.
605       block->SetTryCatchInformation(new (allocator_) TryCatchInformation(*try_entry));
606     }
607   }
608 
609   SetHasTryCatch(graph_has_try_catch);
610 }
611 
SimplifyCFG()612 void HGraph::SimplifyCFG() {
613 // Simplify the CFG for future analysis, and code generation:
614   // (1): Split critical edges.
615   // (2): Simplify loops by having only one preheader.
616   // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
617   // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
618   for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
619     HBasicBlock* block = blocks_[block_id];
620     if (block == nullptr) continue;
621     if (block->GetSuccessors().size() > 1) {
622       // Only split normal-flow edges. We cannot split exceptional edges as they
623       // are synthesized (approximate real control flow), and we do not need to
624       // anyway. Moves that would be inserted there are performed by the runtime.
625       ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
626       for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
627         HBasicBlock* successor = normal_successors[j];
628         DCHECK(!successor->IsCatchBlock());
629         if (successor == exit_block_) {
630           // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
631           // do not want to split because Goto->Exit is not allowed.
632           DCHECK(block->IsSingleTryBoundary());
633         } else if (successor->GetPredecessors().size() > 1) {
634           SplitCriticalEdge(block, successor);
635           // SplitCriticalEdge could have invalidated the `normal_successors`
636           // ArrayRef. We must re-acquire it.
637           normal_successors = block->GetNormalSuccessors();
638           DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
639           DCHECK_EQ(e, normal_successors.size());
640         }
641       }
642     }
643     if (block->IsLoopHeader()) {
644       SimplifyLoop(block);
645     } else if (!block->IsEntryBlock() &&
646                block->GetFirstInstruction() != nullptr &&
647                block->GetFirstInstruction()->IsSuspendCheck()) {
648       // We are being called by the dead code elimiation pass, and what used to be
649       // a loop got dismantled. Just remove the suspend check.
650       block->RemoveInstruction(block->GetFirstInstruction());
651     }
652   }
653 }
654 
AnalyzeLoops() const655 GraphAnalysisResult HGraph::AnalyzeLoops() const {
656   // We iterate post order to ensure we visit inner loops before outer loops.
657   // `PopulateRecursive` needs this guarantee to know whether a natural loop
658   // contains an irreducible loop.
659   for (HBasicBlock* block : GetPostOrder()) {
660     if (block->IsLoopHeader()) {
661       if (block->IsCatchBlock()) {
662         // TODO: Dealing with exceptional back edges could be tricky because
663         //       they only approximate the real control flow. Bail out for now.
664         VLOG(compiler) << "Not compiled: Exceptional back edges";
665         return kAnalysisFailThrowCatchLoop;
666       }
667       block->GetLoopInformation()->Populate();
668     }
669   }
670   return kAnalysisSuccess;
671 }
672 
Dump(std::ostream & os)673 void HLoopInformation::Dump(std::ostream& os) {
674   os << "header: " << header_->GetBlockId() << std::endl;
675   os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
676   for (HBasicBlock* block : back_edges_) {
677     os << "back edge: " << block->GetBlockId() << std::endl;
678   }
679   for (HBasicBlock* block : header_->GetPredecessors()) {
680     os << "predecessor: " << block->GetBlockId() << std::endl;
681   }
682   for (uint32_t idx : blocks_.Indexes()) {
683     os << "  in loop: " << idx << std::endl;
684   }
685 }
686 
687 template <class InstructionType, typename ValueType>
CreateConstant(ValueType value,ArenaSafeMap<ValueType,InstructionType * > * cache)688 InstructionType* HGraph::CreateConstant(ValueType value,
689                                         ArenaSafeMap<ValueType, InstructionType*>* cache) {
690   // Try to find an existing constant of the given value.
691   InstructionType* constant = nullptr;
692   auto cached_constant = cache->find(value);
693   if (cached_constant != cache->end()) {
694     constant = cached_constant->second;
695   }
696 
697   // If not found or previously deleted, create and cache a new instruction.
698   // Don't bother reviving a previously deleted instruction, for simplicity.
699   if (constant == nullptr || constant->GetBlock() == nullptr) {
700     constant = new (allocator_) InstructionType(value);
701     cache->Overwrite(value, constant);
702     InsertConstant(constant);
703   }
704   return constant;
705 }
706 
InsertConstant(HConstant * constant)707 void HGraph::InsertConstant(HConstant* constant) {
708   // New constants are inserted before the SuspendCheck at the bottom of the
709   // entry block. Note that this method can be called from the graph builder and
710   // the entry block therefore may not end with SuspendCheck->Goto yet.
711   HInstruction* insert_before = nullptr;
712 
713   HInstruction* gota = entry_block_->GetLastInstruction();
714   if (gota != nullptr && gota->IsGoto()) {
715     HInstruction* suspend_check = gota->GetPrevious();
716     if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
717       insert_before = suspend_check;
718     } else {
719       insert_before = gota;
720     }
721   }
722 
723   if (insert_before == nullptr) {
724     entry_block_->AddInstruction(constant);
725   } else {
726     entry_block_->InsertInstructionBefore(constant, insert_before);
727   }
728 }
729 
GetNullConstant()730 HNullConstant* HGraph::GetNullConstant() {
731   // For simplicity, don't bother reviving the cached null constant if it is
732   // not null and not in a block. Otherwise, we need to clear the instruction
733   // id and/or any invariants the graph is assuming when adding new instructions.
734   if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
735     cached_null_constant_ = new (allocator_) HNullConstant();
736     cached_null_constant_->SetReferenceTypeInfo(GetInexactObjectRti());
737     InsertConstant(cached_null_constant_);
738   }
739   if (kIsDebugBuild) {
740     ScopedObjectAccess soa(Thread::Current());
741     DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
742   }
743   return cached_null_constant_;
744 }
745 
GetIntConstant(int32_t value)746 HIntConstant* HGraph::GetIntConstant(int32_t value) {
747   return CreateConstant(value, &cached_int_constants_);
748 }
749 
GetLongConstant(int64_t value)750 HLongConstant* HGraph::GetLongConstant(int64_t value) {
751   return CreateConstant(value, &cached_long_constants_);
752 }
753 
GetFloatConstant(float value)754 HFloatConstant* HGraph::GetFloatConstant(float value) {
755   return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_);
756 }
757 
GetDoubleConstant(double value)758 HDoubleConstant* HGraph::GetDoubleConstant(double value) {
759   return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_);
760 }
761 
GetCurrentMethod()762 HCurrentMethod* HGraph::GetCurrentMethod() {
763   // For simplicity, don't bother reviving the cached current method if it is
764   // not null and not in a block. Otherwise, we need to clear the instruction
765   // id and/or any invariants the graph is assuming when adding new instructions.
766   if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
767     cached_current_method_ = new (allocator_) HCurrentMethod(
768         Is64BitInstructionSet(instruction_set_) ? DataType::Type::kInt64 : DataType::Type::kInt32,
769         entry_block_->GetDexPc());
770     if (entry_block_->GetFirstInstruction() == nullptr) {
771       entry_block_->AddInstruction(cached_current_method_);
772     } else {
773       entry_block_->InsertInstructionBefore(
774           cached_current_method_, entry_block_->GetFirstInstruction());
775     }
776   }
777   return cached_current_method_;
778 }
779 
GetMethodName() const780 const char* HGraph::GetMethodName() const {
781   const dex::MethodId& method_id = dex_file_.GetMethodId(method_idx_);
782   return dex_file_.GetMethodName(method_id);
783 }
784 
PrettyMethod(bool with_signature) const785 std::string HGraph::PrettyMethod(bool with_signature) const {
786   return dex_file_.PrettyMethod(method_idx_, with_signature);
787 }
788 
GetConstant(DataType::Type type,int64_t value)789 HConstant* HGraph::GetConstant(DataType::Type type, int64_t value) {
790   switch (type) {
791     case DataType::Type::kBool:
792       DCHECK(IsUint<1>(value));
793       FALLTHROUGH_INTENDED;
794     case DataType::Type::kUint8:
795     case DataType::Type::kInt8:
796     case DataType::Type::kUint16:
797     case DataType::Type::kInt16:
798     case DataType::Type::kInt32:
799       DCHECK(IsInt(DataType::Size(type) * kBitsPerByte, value));
800       return GetIntConstant(static_cast<int32_t>(value));
801 
802     case DataType::Type::kInt64:
803       return GetLongConstant(value);
804 
805     default:
806       LOG(FATAL) << "Unsupported constant type";
807       UNREACHABLE();
808   }
809 }
810 
CacheFloatConstant(HFloatConstant * constant)811 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
812   int32_t value = bit_cast<int32_t, float>(constant->GetValue());
813   DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
814   cached_float_constants_.Overwrite(value, constant);
815 }
816 
CacheDoubleConstant(HDoubleConstant * constant)817 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
818   int64_t value = bit_cast<int64_t, double>(constant->GetValue());
819   DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
820   cached_double_constants_.Overwrite(value, constant);
821 }
822 
Add(HBasicBlock * block)823 void HLoopInformation::Add(HBasicBlock* block) {
824   blocks_.SetBit(block->GetBlockId());
825 }
826 
Remove(HBasicBlock * block)827 void HLoopInformation::Remove(HBasicBlock* block) {
828   blocks_.ClearBit(block->GetBlockId());
829 }
830 
PopulateRecursive(HBasicBlock * block)831 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
832   if (blocks_.IsBitSet(block->GetBlockId())) {
833     return;
834   }
835 
836   blocks_.SetBit(block->GetBlockId());
837   block->SetInLoop(this);
838   if (block->IsLoopHeader()) {
839     // We're visiting loops in post-order, so inner loops must have been
840     // populated already.
841     DCHECK(block->GetLoopInformation()->IsPopulated());
842     if (block->GetLoopInformation()->IsIrreducible()) {
843       contains_irreducible_loop_ = true;
844     }
845   }
846   for (HBasicBlock* predecessor : block->GetPredecessors()) {
847     PopulateRecursive(predecessor);
848   }
849 }
850 
PopulateIrreducibleRecursive(HBasicBlock * block,ArenaBitVector * finalized)851 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
852   size_t block_id = block->GetBlockId();
853 
854   // If `block` is in `finalized`, we know its membership in the loop has been
855   // decided and it does not need to be revisited.
856   if (finalized->IsBitSet(block_id)) {
857     return;
858   }
859 
860   bool is_finalized = false;
861   if (block->IsLoopHeader()) {
862     // If we hit a loop header in an irreducible loop, we first check if the
863     // pre header of that loop belongs to the currently analyzed loop. If it does,
864     // then we visit the back edges.
865     // Note that we cannot use GetPreHeader, as the loop may have not been populated
866     // yet.
867     HBasicBlock* pre_header = block->GetPredecessors()[0];
868     PopulateIrreducibleRecursive(pre_header, finalized);
869     if (blocks_.IsBitSet(pre_header->GetBlockId())) {
870       block->SetInLoop(this);
871       blocks_.SetBit(block_id);
872       finalized->SetBit(block_id);
873       is_finalized = true;
874 
875       HLoopInformation* info = block->GetLoopInformation();
876       for (HBasicBlock* back_edge : info->GetBackEdges()) {
877         PopulateIrreducibleRecursive(back_edge, finalized);
878       }
879     }
880   } else {
881     // Visit all predecessors. If one predecessor is part of the loop, this
882     // block is also part of this loop.
883     for (HBasicBlock* predecessor : block->GetPredecessors()) {
884       PopulateIrreducibleRecursive(predecessor, finalized);
885       if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
886         block->SetInLoop(this);
887         blocks_.SetBit(block_id);
888         finalized->SetBit(block_id);
889         is_finalized = true;
890       }
891     }
892   }
893 
894   // All predecessors have been recursively visited. Mark finalized if not marked yet.
895   if (!is_finalized) {
896     finalized->SetBit(block_id);
897   }
898 }
899 
Populate()900 void HLoopInformation::Populate() {
901   DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
902   // Populate this loop: starting with the back edge, recursively add predecessors
903   // that are not already part of that loop. Set the header as part of the loop
904   // to end the recursion.
905   // This is a recursive implementation of the algorithm described in
906   // "Advanced Compiler Design & Implementation" (Muchnick) p192.
907   HGraph* graph = header_->GetGraph();
908   blocks_.SetBit(header_->GetBlockId());
909   header_->SetInLoop(this);
910 
911   bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
912 
913   if (is_irreducible_loop) {
914     // Allocate memory from local ScopedArenaAllocator.
915     ScopedArenaAllocator allocator(graph->GetArenaStack());
916     ArenaBitVector visited(&allocator,
917                            graph->GetBlocks().size(),
918                            /* expandable= */ false,
919                            kArenaAllocGraphBuilder);
920     // Stop marking blocks at the loop header.
921     visited.SetBit(header_->GetBlockId());
922 
923     for (HBasicBlock* back_edge : GetBackEdges()) {
924       PopulateIrreducibleRecursive(back_edge, &visited);
925     }
926   } else {
927     for (HBasicBlock* back_edge : GetBackEdges()) {
928       PopulateRecursive(back_edge);
929     }
930   }
931 
932   if (!is_irreducible_loop && graph->IsCompilingOsr()) {
933     // When compiling in OSR mode, all loops in the compiled method may be entered
934     // from the interpreter. We treat this OSR entry point just like an extra entry
935     // to an irreducible loop, so we need to mark the method's loops as irreducible.
936     // This does not apply to inlined loops which do not act as OSR entry points.
937     if (suspend_check_ == nullptr) {
938       // Just building the graph in OSR mode, this loop is not inlined. We never build an
939       // inner graph in OSR mode as we can do OSR transition only from the outer method.
940       is_irreducible_loop = true;
941     } else {
942       // Look at the suspend check's environment to determine if the loop was inlined.
943       DCHECK(suspend_check_->HasEnvironment());
944       if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
945         is_irreducible_loop = true;
946       }
947     }
948   }
949   if (is_irreducible_loop) {
950     irreducible_ = true;
951     contains_irreducible_loop_ = true;
952     graph->SetHasIrreducibleLoops(true);
953   }
954   graph->SetHasLoops(true);
955 }
956 
PopulateInnerLoopUpwards(HLoopInformation * inner_loop)957 void HLoopInformation::PopulateInnerLoopUpwards(HLoopInformation* inner_loop) {
958   DCHECK(inner_loop->GetPreHeader()->GetLoopInformation() == this);
959   blocks_.Union(&inner_loop->blocks_);
960   HLoopInformation* outer_loop = GetPreHeader()->GetLoopInformation();
961   if (outer_loop != nullptr) {
962     outer_loop->PopulateInnerLoopUpwards(this);
963   }
964 }
965 
GetPreHeader() const966 HBasicBlock* HLoopInformation::GetPreHeader() const {
967   HBasicBlock* block = header_->GetPredecessors()[0];
968   DCHECK(irreducible_ || (block == header_->GetDominator()));
969   return block;
970 }
971 
Contains(const HBasicBlock & block) const972 bool HLoopInformation::Contains(const HBasicBlock& block) const {
973   return blocks_.IsBitSet(block.GetBlockId());
974 }
975 
IsIn(const HLoopInformation & other) const976 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
977   return other.blocks_.IsBitSet(header_->GetBlockId());
978 }
979 
IsDefinedOutOfTheLoop(HInstruction * instruction) const980 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
981   return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
982 }
983 
GetLifetimeEnd() const984 size_t HLoopInformation::GetLifetimeEnd() const {
985   size_t last_position = 0;
986   for (HBasicBlock* back_edge : GetBackEdges()) {
987     last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
988   }
989   return last_position;
990 }
991 
HasBackEdgeNotDominatedByHeader() const992 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
993   for (HBasicBlock* back_edge : GetBackEdges()) {
994     DCHECK(back_edge->GetDominator() != nullptr);
995     if (!header_->Dominates(back_edge)) {
996       return true;
997     }
998   }
999   return false;
1000 }
1001 
DominatesAllBackEdges(HBasicBlock * block)1002 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
1003   for (HBasicBlock* back_edge : GetBackEdges()) {
1004     if (!block->Dominates(back_edge)) {
1005       return false;
1006     }
1007   }
1008   return true;
1009 }
1010 
1011 
HasExitEdge() const1012 bool HLoopInformation::HasExitEdge() const {
1013   // Determine if this loop has at least one exit edge.
1014   HBlocksInLoopReversePostOrderIterator it_loop(*this);
1015   for (; !it_loop.Done(); it_loop.Advance()) {
1016     for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
1017       if (!Contains(*successor)) {
1018         return true;
1019       }
1020     }
1021   }
1022   return false;
1023 }
1024 
Dominates(const HBasicBlock * other) const1025 bool HBasicBlock::Dominates(const HBasicBlock* other) const {
1026   // Walk up the dominator tree from `other`, to find out if `this`
1027   // is an ancestor.
1028   const HBasicBlock* current = other;
1029   while (current != nullptr) {
1030     if (current == this) {
1031       return true;
1032     }
1033     current = current->GetDominator();
1034   }
1035   return false;
1036 }
1037 
UpdateInputsUsers(HInstruction * instruction)1038 static void UpdateInputsUsers(HInstruction* instruction) {
1039   HInputsRef inputs = instruction->GetInputs();
1040   for (size_t i = 0; i < inputs.size(); ++i) {
1041     inputs[i]->AddUseAt(instruction, i);
1042   }
1043   // Environment should be created later.
1044   DCHECK(!instruction->HasEnvironment());
1045 }
1046 
ReplaceAndRemovePhiWith(HPhi * initial,HPhi * replacement)1047 void HBasicBlock::ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement) {
1048   DCHECK(initial->GetBlock() == this);
1049   InsertPhiAfter(replacement, initial);
1050   initial->ReplaceWith(replacement);
1051   RemovePhi(initial);
1052 }
1053 
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)1054 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
1055                                                   HInstruction* replacement) {
1056   DCHECK(initial->GetBlock() == this);
1057   if (initial->IsControlFlow()) {
1058     // We can only replace a control flow instruction with another control flow instruction.
1059     DCHECK(replacement->IsControlFlow());
1060     DCHECK_EQ(replacement->GetId(), -1);
1061     DCHECK_EQ(replacement->GetType(), DataType::Type::kVoid);
1062     DCHECK_EQ(initial->GetBlock(), this);
1063     DCHECK_EQ(initial->GetType(), DataType::Type::kVoid);
1064     DCHECK(initial->GetUses().empty());
1065     DCHECK(initial->GetEnvUses().empty());
1066     replacement->SetBlock(this);
1067     replacement->SetId(GetGraph()->GetNextInstructionId());
1068     instructions_.InsertInstructionBefore(replacement, initial);
1069     UpdateInputsUsers(replacement);
1070   } else {
1071     InsertInstructionBefore(replacement, initial);
1072     initial->ReplaceWith(replacement);
1073   }
1074   RemoveInstruction(initial);
1075 }
1076 
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)1077 static void Add(HInstructionList* instruction_list,
1078                 HBasicBlock* block,
1079                 HInstruction* instruction) {
1080   DCHECK(instruction->GetBlock() == nullptr);
1081   DCHECK_EQ(instruction->GetId(), -1);
1082   instruction->SetBlock(block);
1083   instruction->SetId(block->GetGraph()->GetNextInstructionId());
1084   UpdateInputsUsers(instruction);
1085   instruction_list->AddInstruction(instruction);
1086 }
1087 
AddInstruction(HInstruction * instruction)1088 void HBasicBlock::AddInstruction(HInstruction* instruction) {
1089   Add(&instructions_, this, instruction);
1090 }
1091 
AddPhi(HPhi * phi)1092 void HBasicBlock::AddPhi(HPhi* phi) {
1093   Add(&phis_, this, phi);
1094 }
1095 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)1096 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1097   DCHECK(!cursor->IsPhi());
1098   DCHECK(!instruction->IsPhi());
1099   DCHECK_EQ(instruction->GetId(), -1);
1100   DCHECK_NE(cursor->GetId(), -1);
1101   DCHECK_EQ(cursor->GetBlock(), this);
1102   DCHECK(!instruction->IsControlFlow());
1103   instruction->SetBlock(this);
1104   instruction->SetId(GetGraph()->GetNextInstructionId());
1105   UpdateInputsUsers(instruction);
1106   instructions_.InsertInstructionBefore(instruction, cursor);
1107 }
1108 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)1109 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1110   DCHECK(!cursor->IsPhi());
1111   DCHECK(!instruction->IsPhi());
1112   DCHECK_EQ(instruction->GetId(), -1);
1113   DCHECK_NE(cursor->GetId(), -1);
1114   DCHECK_EQ(cursor->GetBlock(), this);
1115   DCHECK(!instruction->IsControlFlow());
1116   DCHECK(!cursor->IsControlFlow());
1117   instruction->SetBlock(this);
1118   instruction->SetId(GetGraph()->GetNextInstructionId());
1119   UpdateInputsUsers(instruction);
1120   instructions_.InsertInstructionAfter(instruction, cursor);
1121 }
1122 
InsertPhiAfter(HPhi * phi,HPhi * cursor)1123 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
1124   DCHECK_EQ(phi->GetId(), -1);
1125   DCHECK_NE(cursor->GetId(), -1);
1126   DCHECK_EQ(cursor->GetBlock(), this);
1127   phi->SetBlock(this);
1128   phi->SetId(GetGraph()->GetNextInstructionId());
1129   UpdateInputsUsers(phi);
1130   phis_.InsertInstructionAfter(phi, cursor);
1131 }
1132 
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)1133 static void Remove(HInstructionList* instruction_list,
1134                    HBasicBlock* block,
1135                    HInstruction* instruction,
1136                    bool ensure_safety) {
1137   DCHECK_EQ(block, instruction->GetBlock());
1138   instruction->SetBlock(nullptr);
1139   instruction_list->RemoveInstruction(instruction);
1140   if (ensure_safety) {
1141     DCHECK(instruction->GetUses().empty());
1142     DCHECK(instruction->GetEnvUses().empty());
1143     RemoveAsUser(instruction);
1144   }
1145 }
1146 
RemoveInstruction(HInstruction * instruction,bool ensure_safety)1147 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
1148   DCHECK(!instruction->IsPhi());
1149   Remove(&instructions_, this, instruction, ensure_safety);
1150 }
1151 
RemovePhi(HPhi * phi,bool ensure_safety)1152 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
1153   Remove(&phis_, this, phi, ensure_safety);
1154 }
1155 
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)1156 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
1157   if (instruction->IsPhi()) {
1158     RemovePhi(instruction->AsPhi(), ensure_safety);
1159   } else {
1160     RemoveInstruction(instruction, ensure_safety);
1161   }
1162 }
1163 
CopyFrom(ArrayRef<HInstruction * const> locals)1164 void HEnvironment::CopyFrom(ArrayRef<HInstruction* const> locals) {
1165   for (size_t i = 0; i < locals.size(); i++) {
1166     HInstruction* instruction = locals[i];
1167     SetRawEnvAt(i, instruction);
1168     if (instruction != nullptr) {
1169       instruction->AddEnvUseAt(this, i);
1170     }
1171   }
1172 }
1173 
CopyFrom(const HEnvironment * env)1174 void HEnvironment::CopyFrom(const HEnvironment* env) {
1175   for (size_t i = 0; i < env->Size(); i++) {
1176     HInstruction* instruction = env->GetInstructionAt(i);
1177     SetRawEnvAt(i, instruction);
1178     if (instruction != nullptr) {
1179       instruction->AddEnvUseAt(this, i);
1180     }
1181   }
1182 }
1183 
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)1184 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
1185                                                  HBasicBlock* loop_header) {
1186   DCHECK(loop_header->IsLoopHeader());
1187   for (size_t i = 0; i < env->Size(); i++) {
1188     HInstruction* instruction = env->GetInstructionAt(i);
1189     SetRawEnvAt(i, instruction);
1190     if (instruction == nullptr) {
1191       continue;
1192     }
1193     if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
1194       // At the end of the loop pre-header, the corresponding value for instruction
1195       // is the first input of the phi.
1196       HInstruction* initial = instruction->AsPhi()->InputAt(0);
1197       SetRawEnvAt(i, initial);
1198       initial->AddEnvUseAt(this, i);
1199     } else {
1200       instruction->AddEnvUseAt(this, i);
1201     }
1202   }
1203 }
1204 
RemoveAsUserOfInput(size_t index) const1205 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
1206   const HUserRecord<HEnvironment*>& env_use = GetVRegs()[index];
1207   HInstruction* user = env_use.GetInstruction();
1208   auto before_env_use_node = env_use.GetBeforeUseNode();
1209   user->env_uses_.erase_after(before_env_use_node);
1210   user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
1211 }
1212 
ReplaceInput(HInstruction * replacement,size_t index)1213 void HEnvironment::ReplaceInput(HInstruction* replacement, size_t index) {
1214   const HUserRecord<HEnvironment*>& env_use_record = GetVRegs()[index];
1215   HInstruction* orig_instr = env_use_record.GetInstruction();
1216 
1217   DCHECK(orig_instr != replacement);
1218 
1219   HUseList<HEnvironment*>::iterator before_use_node = env_use_record.GetBeforeUseNode();
1220   // Note: fixup_end remains valid across splice_after().
1221   auto fixup_end = replacement->env_uses_.empty() ? replacement->env_uses_.begin()
1222                                                   : ++replacement->env_uses_.begin();
1223   replacement->env_uses_.splice_after(replacement->env_uses_.before_begin(),
1224                                       env_use_record.GetInstruction()->env_uses_,
1225                                       before_use_node);
1226   replacement->FixUpUserRecordsAfterEnvUseInsertion(fixup_end);
1227   orig_instr->FixUpUserRecordsAfterEnvUseRemoval(before_use_node);
1228 }
1229 
Dump(std::ostream & os,bool dump_args)1230 std::ostream& HInstruction::Dump(std::ostream& os, bool dump_args) {
1231   // Note: Handle the case where the instruction has been removed from
1232   // the graph to support debugging output for failed gtests.
1233   HGraph* graph = (GetBlock() != nullptr) ? GetBlock()->GetGraph() : nullptr;
1234   HGraphVisualizer::DumpInstruction(&os, graph, this);
1235   if (dump_args) {
1236     // Allocate memory from local ScopedArenaAllocator.
1237     std::optional<MallocArenaPool> local_arena_pool;
1238     std::optional<ArenaStack> local_arena_stack;
1239     if (UNLIKELY(graph == nullptr)) {
1240       local_arena_pool.emplace();
1241       local_arena_stack.emplace(&local_arena_pool.value());
1242     }
1243     ScopedArenaAllocator allocator(
1244         graph != nullptr ? graph->GetArenaStack() : &local_arena_stack.value());
1245     // Instructions that we already visited. We print each instruction only once.
1246     ArenaBitVector visited(&allocator,
1247                            (graph != nullptr) ? graph->GetCurrentInstructionId() : 0u,
1248                            /* expandable= */ (graph == nullptr),
1249                            kArenaAllocMisc);
1250     visited.SetBit(GetId());
1251     // Keep a queue of instructions with their indentations.
1252     ScopedArenaDeque<std::pair<HInstruction*, size_t>> queue(allocator.Adapter(kArenaAllocMisc));
1253     auto add_args = [&queue](HInstruction* instruction, size_t indentation) {
1254       for (HInstruction* arg : ReverseRange(instruction->GetInputs())) {
1255         queue.emplace_front(arg, indentation);
1256       }
1257     };
1258     add_args(this, /*indentation=*/ 1u);
1259     while (!queue.empty()) {
1260       HInstruction* instruction;
1261       size_t indentation;
1262       std::tie(instruction, indentation) = queue.front();
1263       queue.pop_front();
1264       if (!visited.IsBitSet(instruction->GetId())) {
1265         visited.SetBit(instruction->GetId());
1266         os << '\n';
1267         for (size_t i = 0; i != indentation; ++i) {
1268           os << "  ";
1269         }
1270         HGraphVisualizer::DumpInstruction(&os, graph, instruction);
1271         add_args(instruction, indentation + 1u);
1272       }
1273     }
1274   }
1275   return os;
1276 }
1277 
GetNextDisregardingMoves() const1278 HInstruction* HInstruction::GetNextDisregardingMoves() const {
1279   HInstruction* next = GetNext();
1280   while (next != nullptr && next->IsParallelMove()) {
1281     next = next->GetNext();
1282   }
1283   return next;
1284 }
1285 
GetPreviousDisregardingMoves() const1286 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
1287   HInstruction* previous = GetPrevious();
1288   while (previous != nullptr && previous->IsParallelMove()) {
1289     previous = previous->GetPrevious();
1290   }
1291   return previous;
1292 }
1293 
AddInstruction(HInstruction * instruction)1294 void HInstructionList::AddInstruction(HInstruction* instruction) {
1295   if (first_instruction_ == nullptr) {
1296     DCHECK(last_instruction_ == nullptr);
1297     first_instruction_ = last_instruction_ = instruction;
1298   } else {
1299     DCHECK(last_instruction_ != nullptr);
1300     last_instruction_->next_ = instruction;
1301     instruction->previous_ = last_instruction_;
1302     last_instruction_ = instruction;
1303   }
1304 }
1305 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)1306 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1307   DCHECK(Contains(cursor));
1308   if (cursor == first_instruction_) {
1309     cursor->previous_ = instruction;
1310     instruction->next_ = cursor;
1311     first_instruction_ = instruction;
1312   } else {
1313     instruction->previous_ = cursor->previous_;
1314     instruction->next_ = cursor;
1315     cursor->previous_ = instruction;
1316     instruction->previous_->next_ = instruction;
1317   }
1318 }
1319 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)1320 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1321   DCHECK(Contains(cursor));
1322   if (cursor == last_instruction_) {
1323     cursor->next_ = instruction;
1324     instruction->previous_ = cursor;
1325     last_instruction_ = instruction;
1326   } else {
1327     instruction->next_ = cursor->next_;
1328     instruction->previous_ = cursor;
1329     cursor->next_ = instruction;
1330     instruction->next_->previous_ = instruction;
1331   }
1332 }
1333 
RemoveInstruction(HInstruction * instruction)1334 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
1335   if (instruction->previous_ != nullptr) {
1336     instruction->previous_->next_ = instruction->next_;
1337   }
1338   if (instruction->next_ != nullptr) {
1339     instruction->next_->previous_ = instruction->previous_;
1340   }
1341   if (instruction == first_instruction_) {
1342     first_instruction_ = instruction->next_;
1343   }
1344   if (instruction == last_instruction_) {
1345     last_instruction_ = instruction->previous_;
1346   }
1347 }
1348 
Contains(HInstruction * instruction) const1349 bool HInstructionList::Contains(HInstruction* instruction) const {
1350   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1351     if (it.Current() == instruction) {
1352       return true;
1353     }
1354   }
1355   return false;
1356 }
1357 
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const1358 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1359                                    const HInstruction* instruction2) const {
1360   DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1361   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1362     if (it.Current() == instruction2) {
1363       return false;
1364     }
1365     if (it.Current() == instruction1) {
1366       return true;
1367     }
1368   }
1369   LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1370   UNREACHABLE();
1371 }
1372 
Dominates(HInstruction * other_instruction) const1373 bool HInstruction::Dominates(HInstruction* other_instruction) const {
1374   return other_instruction == this || StrictlyDominates(other_instruction);
1375 }
1376 
StrictlyDominates(HInstruction * other_instruction) const1377 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1378   if (other_instruction == this) {
1379     // An instruction does not strictly dominate itself.
1380     return false;
1381   }
1382   HBasicBlock* block = GetBlock();
1383   HBasicBlock* other_block = other_instruction->GetBlock();
1384   if (block != other_block) {
1385     return GetBlock()->Dominates(other_instruction->GetBlock());
1386   } else {
1387     // If both instructions are in the same block, ensure this
1388     // instruction comes before `other_instruction`.
1389     if (IsPhi()) {
1390       if (!other_instruction->IsPhi()) {
1391         // Phis appear before non phi-instructions so this instruction
1392         // dominates `other_instruction`.
1393         return true;
1394       } else {
1395         // There is no order among phis.
1396         LOG(FATAL) << "There is no dominance between phis of a same block.";
1397         UNREACHABLE();
1398       }
1399     } else {
1400       // `this` is not a phi.
1401       if (other_instruction->IsPhi()) {
1402         // Phis appear before non phi-instructions so this instruction
1403         // does not dominate `other_instruction`.
1404         return false;
1405       } else {
1406         // Check whether this instruction comes before
1407         // `other_instruction` in the instruction list.
1408         return block->GetInstructions().FoundBefore(this, other_instruction);
1409       }
1410     }
1411   }
1412 }
1413 
RemoveEnvironment()1414 void HInstruction::RemoveEnvironment() {
1415   RemoveEnvironmentUses(this);
1416   environment_ = nullptr;
1417 }
1418 
ReplaceWith(HInstruction * other)1419 void HInstruction::ReplaceWith(HInstruction* other) {
1420   DCHECK(other != nullptr);
1421   // Note: fixup_end remains valid across splice_after().
1422   auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1423   other->uses_.splice_after(other->uses_.before_begin(), uses_);
1424   other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1425 
1426   // Note: env_fixup_end remains valid across splice_after().
1427   auto env_fixup_end =
1428       other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1429   other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1430   other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1431 
1432   DCHECK(uses_.empty());
1433   DCHECK(env_uses_.empty());
1434 }
1435 
ReplaceUsesDominatedBy(HInstruction * dominator,HInstruction * replacement,bool strictly_dominated)1436 void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator,
1437                                           HInstruction* replacement,
1438                                           bool strictly_dominated) {
1439   HBasicBlock* dominator_block = dominator->GetBlock();
1440   std::optional<ArenaBitVector> visited_blocks;
1441 
1442   // Lazily compute the dominated blocks to faster calculation of domination afterwards.
1443   auto maybe_generate_visited_blocks = [&visited_blocks, this, dominator_block]() {
1444     if (visited_blocks.has_value()) {
1445       return;
1446     }
1447     HGraph* graph = GetBlock()->GetGraph();
1448     visited_blocks.emplace(graph->GetAllocator(),
1449                            graph->GetBlocks().size(),
1450                            /* expandable= */ false,
1451                            kArenaAllocMisc);
1452     ScopedArenaAllocator allocator(graph->GetArenaStack());
1453     ScopedArenaQueue<const HBasicBlock*> worklist(allocator.Adapter(kArenaAllocMisc));
1454     worklist.push(dominator_block);
1455 
1456     while (!worklist.empty()) {
1457       const HBasicBlock* current = worklist.front();
1458       worklist.pop();
1459       visited_blocks->SetBit(current->GetBlockId());
1460       for (HBasicBlock* dominated : current->GetDominatedBlocks()) {
1461         if (visited_blocks->IsBitSet(dominated->GetBlockId())) {
1462           continue;
1463         }
1464         worklist.push(dominated);
1465       }
1466     }
1467   };
1468 
1469   const HUseList<HInstruction*>& uses = GetUses();
1470   for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1471     HInstruction* user = it->GetUser();
1472     HBasicBlock* block = user->GetBlock();
1473     size_t index = it->GetIndex();
1474     // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1475     ++it;
1476     bool dominated = false;
1477     if (dominator_block == block) {
1478       // Trickier case, call the other methods.
1479       dominated =
1480           strictly_dominated ? dominator->StrictlyDominates(user) : dominator->Dominates(user);
1481     } else {
1482       // Block domination.
1483       maybe_generate_visited_blocks();
1484       dominated = visited_blocks->IsBitSet(block->GetBlockId());
1485     }
1486 
1487     if (dominated) {
1488       user->ReplaceInput(replacement, index);
1489     } else if (user->IsPhi() && !user->AsPhi()->IsCatchPhi()) {
1490       // If the input flows from a block dominated by `dominator`, we can replace it.
1491       // We do not perform this for catch phis as we don't have control flow support
1492       // for their inputs.
1493       HBasicBlock* predecessor = block->GetPredecessors()[index];
1494       maybe_generate_visited_blocks();
1495       if (visited_blocks->IsBitSet(predecessor->GetBlockId())) {
1496         user->ReplaceInput(replacement, index);
1497       }
1498     }
1499   }
1500 }
1501 
ReplaceEnvUsesDominatedBy(HInstruction * dominator,HInstruction * replacement)1502 void HInstruction::ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1503   const HUseList<HEnvironment*>& uses = GetEnvUses();
1504   for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1505     HEnvironment* user = it->GetUser();
1506     size_t index = it->GetIndex();
1507     // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1508     ++it;
1509     if (dominator->StrictlyDominates(user->GetHolder())) {
1510       user->ReplaceInput(replacement, index);
1511     }
1512   }
1513 }
1514 
ReplaceInput(HInstruction * replacement,size_t index)1515 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1516   HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1517   if (input_use.GetInstruction() == replacement) {
1518     // Nothing to do.
1519     return;
1520   }
1521   HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1522   // Note: fixup_end remains valid across splice_after().
1523   auto fixup_end =
1524       replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1525   replacement->uses_.splice_after(replacement->uses_.before_begin(),
1526                                   input_use.GetInstruction()->uses_,
1527                                   before_use_node);
1528   replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1529   input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1530 }
1531 
EnvironmentSize() const1532 size_t HInstruction::EnvironmentSize() const {
1533   return HasEnvironment() ? environment_->Size() : 0;
1534 }
1535 
AddInput(HInstruction * input)1536 void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
1537   DCHECK(input->GetBlock() != nullptr);
1538   inputs_.push_back(HUserRecord<HInstruction*>(input));
1539   input->AddUseAt(this, inputs_.size() - 1);
1540 }
1541 
InsertInputAt(size_t index,HInstruction * input)1542 void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
1543   inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
1544   input->AddUseAt(this, index);
1545   // Update indexes in use nodes of inputs that have been pushed further back by the insert().
1546   for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
1547     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
1548     inputs_[i].GetUseNode()->SetIndex(i);
1549   }
1550 }
1551 
RemoveInputAt(size_t index)1552 void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
1553   RemoveAsUserOfInput(index);
1554   inputs_.erase(inputs_.begin() + index);
1555   // Update indexes in use nodes of inputs that have been pulled forward by the erase().
1556   for (size_t i = index, e = inputs_.size(); i < e; ++i) {
1557     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
1558     inputs_[i].GetUseNode()->SetIndex(i);
1559   }
1560 }
1561 
RemoveAllInputs()1562 void HVariableInputSizeInstruction::RemoveAllInputs() {
1563   RemoveAsUserOfAllInputs();
1564   DCHECK(!HasNonEnvironmentUses());
1565 
1566   inputs_.clear();
1567   DCHECK_EQ(0u, InputCount());
1568 }
1569 
RemoveConstructorFences(HInstruction * instruction)1570 size_t HConstructorFence::RemoveConstructorFences(HInstruction* instruction) {
1571   DCHECK(instruction->GetBlock() != nullptr);
1572   // Removing constructor fences only makes sense for instructions with an object return type.
1573   DCHECK_EQ(DataType::Type::kReference, instruction->GetType());
1574 
1575   // Return how many instructions were removed for statistic purposes.
1576   size_t remove_count = 0;
1577 
1578   // Efficient implementation that simultaneously (in one pass):
1579   // * Scans the uses list for all constructor fences.
1580   // * Deletes that constructor fence from the uses list of `instruction`.
1581   // * Deletes `instruction` from the constructor fence's inputs.
1582   // * Deletes the constructor fence if it now has 0 inputs.
1583 
1584   const HUseList<HInstruction*>& uses = instruction->GetUses();
1585   // Warning: Although this is "const", we might mutate the list when calling RemoveInputAt.
1586   for (auto it = uses.begin(), end = uses.end(); it != end; ) {
1587     const HUseListNode<HInstruction*>& use_node = *it;
1588     HInstruction* const use_instruction = use_node.GetUser();
1589 
1590     // Advance the iterator immediately once we fetch the use_node.
1591     // Warning: If the input is removed, the current iterator becomes invalid.
1592     ++it;
1593 
1594     if (use_instruction->IsConstructorFence()) {
1595       HConstructorFence* ctor_fence = use_instruction->AsConstructorFence();
1596       size_t input_index = use_node.GetIndex();
1597 
1598       // Process the candidate instruction for removal
1599       // from the graph.
1600 
1601       // Constructor fence instructions are never
1602       // used by other instructions.
1603       //
1604       // If we wanted to make this more generic, it
1605       // could be a runtime if statement.
1606       DCHECK(!ctor_fence->HasUses());
1607 
1608       // A constructor fence's return type is "kPrimVoid"
1609       // and therefore it can't have any environment uses.
1610       DCHECK(!ctor_fence->HasEnvironmentUses());
1611 
1612       // Remove the inputs first, otherwise removing the instruction
1613       // will try to remove its uses while we are already removing uses
1614       // and this operation will fail.
1615       DCHECK_EQ(instruction, ctor_fence->InputAt(input_index));
1616 
1617       // Removing the input will also remove the `use_node`.
1618       // (Do not look at `use_node` after this, it will be a dangling reference).
1619       ctor_fence->RemoveInputAt(input_index);
1620 
1621       // Once all inputs are removed, the fence is considered dead and
1622       // is removed.
1623       if (ctor_fence->InputCount() == 0u) {
1624         ctor_fence->GetBlock()->RemoveInstruction(ctor_fence);
1625         ++remove_count;
1626       }
1627     }
1628   }
1629 
1630   if (kIsDebugBuild) {
1631     // Post-condition checks:
1632     // * None of the uses of `instruction` are a constructor fence.
1633     // * The `instruction` itself did not get removed from a block.
1634     for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) {
1635       CHECK(!use_node.GetUser()->IsConstructorFence());
1636     }
1637     CHECK(instruction->GetBlock() != nullptr);
1638   }
1639 
1640   return remove_count;
1641 }
1642 
Merge(HConstructorFence * other)1643 void HConstructorFence::Merge(HConstructorFence* other) {
1644   // Do not delete yourself from the graph.
1645   DCHECK(this != other);
1646   // Don't try to merge with an instruction not associated with a block.
1647   DCHECK(other->GetBlock() != nullptr);
1648   // A constructor fence's return type is "kPrimVoid"
1649   // and therefore it cannot have any environment uses.
1650   DCHECK(!other->HasEnvironmentUses());
1651 
1652   auto has_input = [](HInstruction* haystack, HInstruction* needle) {
1653     // Check if `haystack` has `needle` as any of its inputs.
1654     for (size_t input_count = 0; input_count < haystack->InputCount(); ++input_count) {
1655       if (haystack->InputAt(input_count) == needle) {
1656         return true;
1657       }
1658     }
1659     return false;
1660   };
1661 
1662   // Add any inputs from `other` into `this` if it wasn't already an input.
1663   for (size_t input_count = 0; input_count < other->InputCount(); ++input_count) {
1664     HInstruction* other_input = other->InputAt(input_count);
1665     if (!has_input(this, other_input)) {
1666       AddInput(other_input);
1667     }
1668   }
1669 
1670   other->GetBlock()->RemoveInstruction(other);
1671 }
1672 
GetAssociatedAllocation(bool ignore_inputs)1673 HInstruction* HConstructorFence::GetAssociatedAllocation(bool ignore_inputs) {
1674   HInstruction* new_instance_inst = GetPrevious();
1675   // Check if the immediately preceding instruction is a new-instance/new-array.
1676   // Otherwise this fence is for protecting final fields.
1677   if (new_instance_inst != nullptr &&
1678       (new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) {
1679     if (ignore_inputs) {
1680       // If inputs are ignored, simply check if the predecessor is
1681       // *any* HNewInstance/HNewArray.
1682       //
1683       // Inputs are normally only ignored for prepare_for_register_allocation,
1684       // at which point *any* prior HNewInstance/Array can be considered
1685       // associated.
1686       return new_instance_inst;
1687     } else {
1688       // Normal case: There must be exactly 1 input and the previous instruction
1689       // must be that input.
1690       if (InputCount() == 1u && InputAt(0) == new_instance_inst) {
1691         return new_instance_inst;
1692       }
1693     }
1694   }
1695   return nullptr;
1696 }
1697 
1698 #define DEFINE_ACCEPT(name, super)                                             \
1699 void H##name::Accept(HGraphVisitor* visitor) {                                 \
1700   visitor->Visit##name(this);                                                  \
1701 }
1702 
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)1703 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1704 
1705 #undef DEFINE_ACCEPT
1706 
1707 void HGraphVisitor::VisitInsertionOrder() {
1708   for (HBasicBlock* block : graph_->GetActiveBlocks()) {
1709     VisitBasicBlock(block);
1710   }
1711 }
1712 
VisitReversePostOrder()1713 void HGraphVisitor::VisitReversePostOrder() {
1714   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
1715     VisitBasicBlock(block);
1716   }
1717 }
1718 
VisitBasicBlock(HBasicBlock * block)1719 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1720   VisitPhis(block);
1721   VisitNonPhiInstructions(block);
1722 }
1723 
VisitPhis(HBasicBlock * block)1724 void HGraphVisitor::VisitPhis(HBasicBlock* block) {
1725   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1726     DCHECK(it.Current()->IsPhi());
1727     VisitPhi(it.Current()->AsPhi());
1728   }
1729 }
1730 
VisitNonPhiInstructions(HBasicBlock * block)1731 void HGraphVisitor::VisitNonPhiInstructions(HBasicBlock* block) {
1732   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1733     DCHECK(!it.Current()->IsPhi());
1734     it.Current()->Accept(this);
1735   }
1736 }
1737 
TryStaticEvaluation() const1738 HConstant* HTypeConversion::TryStaticEvaluation() const { return TryStaticEvaluation(GetInput()); }
1739 
TryStaticEvaluation(HInstruction * input) const1740 HConstant* HTypeConversion::TryStaticEvaluation(HInstruction* input) const {
1741   HGraph* graph = input->GetBlock()->GetGraph();
1742   if (input->IsIntConstant()) {
1743     int32_t value = input->AsIntConstant()->GetValue();
1744     switch (GetResultType()) {
1745       case DataType::Type::kInt8:
1746         return graph->GetIntConstant(static_cast<int8_t>(value));
1747       case DataType::Type::kUint8:
1748         return graph->GetIntConstant(static_cast<uint8_t>(value));
1749       case DataType::Type::kInt16:
1750         return graph->GetIntConstant(static_cast<int16_t>(value));
1751       case DataType::Type::kUint16:
1752         return graph->GetIntConstant(static_cast<uint16_t>(value));
1753       case DataType::Type::kInt64:
1754         return graph->GetLongConstant(static_cast<int64_t>(value));
1755       case DataType::Type::kFloat32:
1756         return graph->GetFloatConstant(static_cast<float>(value));
1757       case DataType::Type::kFloat64:
1758         return graph->GetDoubleConstant(static_cast<double>(value));
1759       default:
1760         return nullptr;
1761     }
1762   } else if (input->IsLongConstant()) {
1763     int64_t value = input->AsLongConstant()->GetValue();
1764     switch (GetResultType()) {
1765       case DataType::Type::kInt8:
1766         return graph->GetIntConstant(static_cast<int8_t>(value));
1767       case DataType::Type::kUint8:
1768         return graph->GetIntConstant(static_cast<uint8_t>(value));
1769       case DataType::Type::kInt16:
1770         return graph->GetIntConstant(static_cast<int16_t>(value));
1771       case DataType::Type::kUint16:
1772         return graph->GetIntConstant(static_cast<uint16_t>(value));
1773       case DataType::Type::kInt32:
1774         return graph->GetIntConstant(static_cast<int32_t>(value));
1775       case DataType::Type::kFloat32:
1776         return graph->GetFloatConstant(static_cast<float>(value));
1777       case DataType::Type::kFloat64:
1778         return graph->GetDoubleConstant(static_cast<double>(value));
1779       default:
1780         return nullptr;
1781     }
1782   } else if (input->IsFloatConstant()) {
1783     float value = input->AsFloatConstant()->GetValue();
1784     switch (GetResultType()) {
1785       case DataType::Type::kInt32:
1786         if (std::isnan(value))
1787           return graph->GetIntConstant(0);
1788         if (value >= static_cast<float>(kPrimIntMax))
1789           return graph->GetIntConstant(kPrimIntMax);
1790         if (value <= kPrimIntMin)
1791           return graph->GetIntConstant(kPrimIntMin);
1792         return graph->GetIntConstant(static_cast<int32_t>(value));
1793       case DataType::Type::kInt64:
1794         if (std::isnan(value))
1795           return graph->GetLongConstant(0);
1796         if (value >= static_cast<float>(kPrimLongMax))
1797           return graph->GetLongConstant(kPrimLongMax);
1798         if (value <= kPrimLongMin)
1799           return graph->GetLongConstant(kPrimLongMin);
1800         return graph->GetLongConstant(static_cast<int64_t>(value));
1801       case DataType::Type::kFloat64:
1802         return graph->GetDoubleConstant(static_cast<double>(value));
1803       default:
1804         return nullptr;
1805     }
1806   } else if (input->IsDoubleConstant()) {
1807     double value = input->AsDoubleConstant()->GetValue();
1808     switch (GetResultType()) {
1809       case DataType::Type::kInt32:
1810         if (std::isnan(value))
1811           return graph->GetIntConstant(0);
1812         if (value >= kPrimIntMax)
1813           return graph->GetIntConstant(kPrimIntMax);
1814         if (value <= kPrimLongMin)
1815           return graph->GetIntConstant(kPrimIntMin);
1816         return graph->GetIntConstant(static_cast<int32_t>(value));
1817       case DataType::Type::kInt64:
1818         if (std::isnan(value))
1819           return graph->GetLongConstant(0);
1820         if (value >= static_cast<double>(kPrimLongMax))
1821           return graph->GetLongConstant(kPrimLongMax);
1822         if (value <= kPrimLongMin)
1823           return graph->GetLongConstant(kPrimLongMin);
1824         return graph->GetLongConstant(static_cast<int64_t>(value));
1825       case DataType::Type::kFloat32:
1826         return graph->GetFloatConstant(static_cast<float>(value));
1827       default:
1828         return nullptr;
1829     }
1830   }
1831   return nullptr;
1832 }
1833 
TryStaticEvaluation() const1834 HConstant* HUnaryOperation::TryStaticEvaluation() const { return TryStaticEvaluation(GetInput()); }
1835 
TryStaticEvaluation(HInstruction * input) const1836 HConstant* HUnaryOperation::TryStaticEvaluation(HInstruction* input) const {
1837   if (input->IsIntConstant()) {
1838     return Evaluate(input->AsIntConstant());
1839   } else if (input->IsLongConstant()) {
1840     return Evaluate(input->AsLongConstant());
1841   } else if (kEnableFloatingPointStaticEvaluation) {
1842     if (input->IsFloatConstant()) {
1843       return Evaluate(input->AsFloatConstant());
1844     } else if (input->IsDoubleConstant()) {
1845       return Evaluate(input->AsDoubleConstant());
1846     }
1847   }
1848   return nullptr;
1849 }
1850 
TryStaticEvaluation() const1851 HConstant* HBinaryOperation::TryStaticEvaluation() const {
1852   return TryStaticEvaluation(GetLeft(), GetRight());
1853 }
1854 
TryStaticEvaluation(HInstruction * left,HInstruction * right) const1855 HConstant* HBinaryOperation::TryStaticEvaluation(HInstruction* left, HInstruction* right) const {
1856   if (left->IsIntConstant() && right->IsIntConstant()) {
1857     return Evaluate(left->AsIntConstant(), right->AsIntConstant());
1858   } else if (left->IsLongConstant()) {
1859     if (right->IsIntConstant()) {
1860       // The binop(long, int) case is only valid for shifts and rotations.
1861       DCHECK(IsShl() || IsShr() || IsUShr() || IsRol() || IsRor()) << DebugName();
1862       return Evaluate(left->AsLongConstant(), right->AsIntConstant());
1863     } else if (right->IsLongConstant()) {
1864       return Evaluate(left->AsLongConstant(), right->AsLongConstant());
1865     }
1866   } else if (left->IsNullConstant() && right->IsNullConstant()) {
1867     // The binop(null, null) case is only valid for equal and not-equal conditions.
1868     DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1869     return Evaluate(left->AsNullConstant(), right->AsNullConstant());
1870   } else if (kEnableFloatingPointStaticEvaluation) {
1871     if (left->IsFloatConstant() && right->IsFloatConstant()) {
1872       return Evaluate(left->AsFloatConstant(), right->AsFloatConstant());
1873     } else if (left->IsDoubleConstant() && right->IsDoubleConstant()) {
1874       return Evaluate(left->AsDoubleConstant(), right->AsDoubleConstant());
1875     }
1876   }
1877   return nullptr;
1878 }
1879 
GetConstantRight() const1880 HConstant* HBinaryOperation::GetConstantRight() const {
1881   if (GetRight()->IsConstant()) {
1882     return GetRight()->AsConstant();
1883   } else if (IsCommutative() && GetLeft()->IsConstant()) {
1884     return GetLeft()->AsConstant();
1885   } else {
1886     return nullptr;
1887   }
1888 }
1889 
1890 // If `GetConstantRight()` returns one of the input, this returns the other
1891 // one. Otherwise it returns null.
GetLeastConstantLeft() const1892 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1893   HInstruction* most_constant_right = GetConstantRight();
1894   if (most_constant_right == nullptr) {
1895     return nullptr;
1896   } else if (most_constant_right == GetLeft()) {
1897     return GetRight();
1898   } else {
1899     return GetLeft();
1900   }
1901 }
1902 
operator <<(std::ostream & os,ComparisonBias rhs)1903 std::ostream& operator<<(std::ostream& os, ComparisonBias rhs) {
1904   // TODO: Replace with auto-generated operator<<.
1905   switch (rhs) {
1906     case ComparisonBias::kNoBias:
1907       return os << "none";
1908     case ComparisonBias::kGtBias:
1909       return os << "gt";
1910     case ComparisonBias::kLtBias:
1911       return os << "lt";
1912   }
1913 }
1914 
Create(HGraph * graph,IfCondition cond,HInstruction * lhs,HInstruction * rhs,uint32_t dex_pc)1915 HCondition* HCondition::Create(HGraph* graph,
1916                                IfCondition cond,
1917                                HInstruction* lhs,
1918                                HInstruction* rhs,
1919                                uint32_t dex_pc) {
1920   ArenaAllocator* allocator = graph->GetAllocator();
1921   switch (cond) {
1922     case kCondEQ: return new (allocator) HEqual(lhs, rhs, dex_pc);
1923     case kCondNE: return new (allocator) HNotEqual(lhs, rhs, dex_pc);
1924     case kCondLT: return new (allocator) HLessThan(lhs, rhs, dex_pc);
1925     case kCondLE: return new (allocator) HLessThanOrEqual(lhs, rhs, dex_pc);
1926     case kCondGT: return new (allocator) HGreaterThan(lhs, rhs, dex_pc);
1927     case kCondGE: return new (allocator) HGreaterThanOrEqual(lhs, rhs, dex_pc);
1928     case kCondB:  return new (allocator) HBelow(lhs, rhs, dex_pc);
1929     case kCondBE: return new (allocator) HBelowOrEqual(lhs, rhs, dex_pc);
1930     case kCondA:  return new (allocator) HAbove(lhs, rhs, dex_pc);
1931     case kCondAE: return new (allocator) HAboveOrEqual(lhs, rhs, dex_pc);
1932     default:
1933       LOG(FATAL) << "Unexpected condition " << cond;
1934       UNREACHABLE();
1935   }
1936 }
1937 
IsBeforeWhenDisregardMoves(HInstruction * instruction) const1938 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1939   return this == instruction->GetPreviousDisregardingMoves();
1940 }
1941 
Equals(const HInstruction * other) const1942 bool HInstruction::Equals(const HInstruction* other) const {
1943   if (GetKind() != other->GetKind()) return false;
1944   if (GetType() != other->GetType()) return false;
1945   if (!InstructionDataEquals(other)) return false;
1946   HConstInputsRef inputs = GetInputs();
1947   HConstInputsRef other_inputs = other->GetInputs();
1948   if (inputs.size() != other_inputs.size()) return false;
1949   for (size_t i = 0; i != inputs.size(); ++i) {
1950     if (inputs[i] != other_inputs[i]) return false;
1951   }
1952 
1953   DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1954   return true;
1955 }
1956 
operator <<(std::ostream & os,HInstruction::InstructionKind rhs)1957 std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs) {
1958 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1959   switch (rhs) {
1960     FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_CASE)
1961     default:
1962       os << "Unknown instruction kind " << static_cast<int>(rhs);
1963       break;
1964   }
1965 #undef DECLARE_CASE
1966   return os;
1967 }
1968 
operator <<(std::ostream & os,const HInstruction::NoArgsDump rhs)1969 std::ostream& operator<<(std::ostream& os, const HInstruction::NoArgsDump rhs) {
1970   // TODO Really this should be const but that would require const-ifying
1971   // graph-visualizer and HGraphVisitor which are tangled up everywhere.
1972   return const_cast<HInstruction*>(rhs.ins)->Dump(os, /* dump_args= */ false);
1973 }
1974 
operator <<(std::ostream & os,const HInstruction::ArgsDump rhs)1975 std::ostream& operator<<(std::ostream& os, const HInstruction::ArgsDump rhs) {
1976   // TODO Really this should be const but that would require const-ifying
1977   // graph-visualizer and HGraphVisitor which are tangled up everywhere.
1978   return const_cast<HInstruction*>(rhs.ins)->Dump(os, /* dump_args= */ true);
1979 }
1980 
operator <<(std::ostream & os,const HInstruction & rhs)1981 std::ostream& operator<<(std::ostream& os, const HInstruction& rhs) {
1982   return os << rhs.DumpWithoutArgs();
1983 }
1984 
operator <<(std::ostream & os,const HUseList<HInstruction * > & lst)1985 std::ostream& operator<<(std::ostream& os, const HUseList<HInstruction*>& lst) {
1986   os << "Instructions[";
1987   bool first = true;
1988   for (const auto& hi : lst) {
1989     if (!first) {
1990       os << ", ";
1991     }
1992     first = false;
1993     os << hi.GetUser()->DebugName() << "[id: " << hi.GetUser()->GetId()
1994        << ", blk: " << hi.GetUser()->GetBlock()->GetBlockId() << "]@" << hi.GetIndex();
1995   }
1996   os << "]";
1997   return os;
1998 }
1999 
operator <<(std::ostream & os,const HUseList<HEnvironment * > & lst)2000 std::ostream& operator<<(std::ostream& os, const HUseList<HEnvironment*>& lst) {
2001   os << "Environments[";
2002   bool first = true;
2003   for (const auto& hi : lst) {
2004     if (!first) {
2005       os << ", ";
2006     }
2007     first = false;
2008     os << *hi.GetUser()->GetHolder() << "@" << hi.GetIndex();
2009   }
2010   os << "]";
2011   return os;
2012 }
2013 
Dump(std::ostream & os,CodeGenerator * codegen,std::optional<std::reference_wrapper<const BlockNamer>> namer)2014 std::ostream& HGraph::Dump(std::ostream& os,
2015                            CodeGenerator* codegen,
2016                            std::optional<std::reference_wrapper<const BlockNamer>> namer) {
2017   HGraphVisualizer vis(&os, this, codegen, namer);
2018   vis.DumpGraphDebug();
2019   return os;
2020 }
2021 
MoveBefore(HInstruction * cursor,bool do_checks)2022 void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
2023   if (do_checks) {
2024     DCHECK(!IsPhi());
2025     DCHECK(!IsControlFlow());
2026     DCHECK(CanBeMoved() ||
2027            // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
2028            IsShouldDeoptimizeFlag());
2029     DCHECK(!cursor->IsPhi());
2030   }
2031 
2032   next_->previous_ = previous_;
2033   if (previous_ != nullptr) {
2034     previous_->next_ = next_;
2035   }
2036   if (block_->instructions_.first_instruction_ == this) {
2037     block_->instructions_.first_instruction_ = next_;
2038   }
2039   DCHECK_NE(block_->instructions_.last_instruction_, this);
2040 
2041   previous_ = cursor->previous_;
2042   if (previous_ != nullptr) {
2043     previous_->next_ = this;
2044   }
2045   next_ = cursor;
2046   cursor->previous_ = this;
2047   block_ = cursor->block_;
2048 
2049   if (block_->instructions_.first_instruction_ == cursor) {
2050     block_->instructions_.first_instruction_ = this;
2051   }
2052 }
2053 
MoveBeforeFirstUserAndOutOfLoops()2054 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
2055   DCHECK(!CanThrow());
2056   DCHECK(!HasSideEffects());
2057   DCHECK(!HasEnvironmentUses());
2058   DCHECK(HasNonEnvironmentUses());
2059   DCHECK(!IsPhi());  // Makes no sense for Phi.
2060   DCHECK_EQ(InputCount(), 0u);
2061 
2062   // Find the target block.
2063   auto uses_it = GetUses().begin();
2064   auto uses_end = GetUses().end();
2065   HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
2066   ++uses_it;
2067   while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
2068     ++uses_it;
2069   }
2070   if (uses_it != uses_end) {
2071     // This instruction has uses in two or more blocks. Find the common dominator.
2072     CommonDominator finder(target_block);
2073     for (; uses_it != uses_end; ++uses_it) {
2074       finder.Update(uses_it->GetUser()->GetBlock());
2075     }
2076     target_block = finder.Get();
2077     DCHECK(target_block != nullptr);
2078   }
2079   // Move to the first dominator not in a loop.
2080   while (target_block->IsInLoop()) {
2081     target_block = target_block->GetDominator();
2082     DCHECK(target_block != nullptr);
2083   }
2084 
2085   // Find insertion position.
2086   HInstruction* insert_pos = nullptr;
2087   for (const HUseListNode<HInstruction*>& use : GetUses()) {
2088     if (use.GetUser()->GetBlock() == target_block &&
2089         (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
2090       insert_pos = use.GetUser();
2091     }
2092   }
2093   if (insert_pos == nullptr) {
2094     // No user in `target_block`, insert before the control flow instruction.
2095     insert_pos = target_block->GetLastInstruction();
2096     DCHECK(insert_pos->IsControlFlow());
2097     // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
2098     if (insert_pos->IsIf()) {
2099       HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
2100       if (if_input == insert_pos->GetPrevious()) {
2101         insert_pos = if_input;
2102       }
2103     }
2104   }
2105   MoveBefore(insert_pos);
2106 }
2107 
SplitBefore(HInstruction * cursor,bool require_graph_not_in_ssa_form)2108 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor, bool require_graph_not_in_ssa_form) {
2109   DCHECK_IMPLIES(require_graph_not_in_ssa_form, !graph_->IsInSsaForm())
2110       << "Support for SSA form not implemented.";
2111   DCHECK_EQ(cursor->GetBlock(), this);
2112 
2113   HBasicBlock* new_block =
2114       new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
2115   new_block->instructions_.first_instruction_ = cursor;
2116   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
2117   instructions_.last_instruction_ = cursor->previous_;
2118   if (cursor->previous_ == nullptr) {
2119     instructions_.first_instruction_ = nullptr;
2120   } else {
2121     cursor->previous_->next_ = nullptr;
2122     cursor->previous_ = nullptr;
2123   }
2124 
2125   new_block->instructions_.SetBlockOfInstructions(new_block);
2126   AddInstruction(new (GetGraph()->GetAllocator()) HGoto(new_block->GetDexPc()));
2127 
2128   for (HBasicBlock* successor : GetSuccessors()) {
2129     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
2130   }
2131   new_block->successors_.swap(successors_);
2132   DCHECK(successors_.empty());
2133   AddSuccessor(new_block);
2134 
2135   GetGraph()->AddBlock(new_block);
2136   return new_block;
2137 }
2138 
CreateImmediateDominator()2139 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
2140   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
2141   DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
2142 
2143   HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
2144 
2145   for (HBasicBlock* predecessor : GetPredecessors()) {
2146     predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
2147   }
2148   new_block->predecessors_.swap(predecessors_);
2149   DCHECK(predecessors_.empty());
2150   AddPredecessor(new_block);
2151 
2152   GetGraph()->AddBlock(new_block);
2153   return new_block;
2154 }
2155 
SplitBeforeForInlining(HInstruction * cursor)2156 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
2157   DCHECK_EQ(cursor->GetBlock(), this);
2158 
2159   HBasicBlock* new_block =
2160       new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
2161   new_block->instructions_.first_instruction_ = cursor;
2162   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
2163   instructions_.last_instruction_ = cursor->previous_;
2164   if (cursor->previous_ == nullptr) {
2165     instructions_.first_instruction_ = nullptr;
2166   } else {
2167     cursor->previous_->next_ = nullptr;
2168     cursor->previous_ = nullptr;
2169   }
2170 
2171   new_block->instructions_.SetBlockOfInstructions(new_block);
2172 
2173   for (HBasicBlock* successor : GetSuccessors()) {
2174     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
2175   }
2176   new_block->successors_.swap(successors_);
2177   DCHECK(successors_.empty());
2178 
2179   for (HBasicBlock* dominated : GetDominatedBlocks()) {
2180     dominated->dominator_ = new_block;
2181   }
2182   new_block->dominated_blocks_.swap(dominated_blocks_);
2183   DCHECK(dominated_blocks_.empty());
2184   return new_block;
2185 }
2186 
SplitAfterForInlining(HInstruction * cursor)2187 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
2188   DCHECK(!cursor->IsControlFlow());
2189   DCHECK_NE(instructions_.last_instruction_, cursor);
2190   DCHECK_EQ(cursor->GetBlock(), this);
2191 
2192   HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
2193   new_block->instructions_.first_instruction_ = cursor->GetNext();
2194   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
2195   cursor->next_->previous_ = nullptr;
2196   cursor->next_ = nullptr;
2197   instructions_.last_instruction_ = cursor;
2198 
2199   new_block->instructions_.SetBlockOfInstructions(new_block);
2200   for (HBasicBlock* successor : GetSuccessors()) {
2201     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
2202   }
2203   new_block->successors_.swap(successors_);
2204   DCHECK(successors_.empty());
2205 
2206   for (HBasicBlock* dominated : GetDominatedBlocks()) {
2207     dominated->dominator_ = new_block;
2208   }
2209   new_block->dominated_blocks_.swap(dominated_blocks_);
2210   DCHECK(dominated_blocks_.empty());
2211   return new_block;
2212 }
2213 
ComputeTryEntryOfSuccessors() const2214 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
2215   if (EndsWithTryBoundary()) {
2216     HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
2217     if (try_boundary->IsEntry()) {
2218       DCHECK(!IsTryBlock());
2219       return try_boundary;
2220     } else {
2221       DCHECK(IsTryBlock());
2222       DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
2223       return nullptr;
2224     }
2225   } else if (IsTryBlock()) {
2226     return &try_catch_information_->GetTryEntry();
2227   } else {
2228     return nullptr;
2229   }
2230 }
2231 
HasThrowingInstructions() const2232 bool HBasicBlock::HasThrowingInstructions() const {
2233   for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
2234     if (it.Current()->CanThrow()) {
2235       return true;
2236     }
2237   }
2238   return false;
2239 }
2240 
HasOnlyOneInstruction(const HBasicBlock & block)2241 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
2242   return block.GetPhis().IsEmpty()
2243       && !block.GetInstructions().IsEmpty()
2244       && block.GetFirstInstruction() == block.GetLastInstruction();
2245 }
2246 
IsSingleGoto() const2247 bool HBasicBlock::IsSingleGoto() const {
2248   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
2249 }
2250 
IsSingleReturn() const2251 bool HBasicBlock::IsSingleReturn() const {
2252   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsReturn();
2253 }
2254 
IsSingleReturnOrReturnVoidAllowingPhis() const2255 bool HBasicBlock::IsSingleReturnOrReturnVoidAllowingPhis() const {
2256   return (GetFirstInstruction() == GetLastInstruction()) &&
2257          (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
2258 }
2259 
IsSingleTryBoundary() const2260 bool HBasicBlock::IsSingleTryBoundary() const {
2261   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
2262 }
2263 
EndsWithControlFlowInstruction() const2264 bool HBasicBlock::EndsWithControlFlowInstruction() const {
2265   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
2266 }
2267 
EndsWithReturn() const2268 bool HBasicBlock::EndsWithReturn() const {
2269   return !GetInstructions().IsEmpty() &&
2270       (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
2271 }
2272 
EndsWithIf() const2273 bool HBasicBlock::EndsWithIf() const {
2274   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
2275 }
2276 
EndsWithTryBoundary() const2277 bool HBasicBlock::EndsWithTryBoundary() const {
2278   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
2279 }
2280 
HasSinglePhi() const2281 bool HBasicBlock::HasSinglePhi() const {
2282   return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
2283 }
2284 
GetNormalSuccessors() const2285 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
2286   if (EndsWithTryBoundary()) {
2287     // The normal-flow successor of HTryBoundary is always stored at index zero.
2288     DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
2289     return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
2290   } else {
2291     // All successors of blocks not ending with TryBoundary are normal.
2292     return ArrayRef<HBasicBlock* const>(successors_);
2293   }
2294 }
2295 
GetExceptionalSuccessors() const2296 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
2297   if (EndsWithTryBoundary()) {
2298     return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
2299   } else {
2300     // Blocks not ending with TryBoundary do not have exceptional successors.
2301     return ArrayRef<HBasicBlock* const>();
2302   }
2303 }
2304 
HasSameExceptionHandlersAs(const HTryBoundary & other) const2305 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
2306   ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
2307   ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
2308 
2309   size_t length = handlers1.size();
2310   if (length != handlers2.size()) {
2311     return false;
2312   }
2313 
2314   // Exception handlers need to be stored in the same order.
2315   for (size_t i = 0; i < length; ++i) {
2316     if (handlers1[i] != handlers2[i]) {
2317       return false;
2318     }
2319   }
2320   return true;
2321 }
2322 
CountSize() const2323 size_t HInstructionList::CountSize() const {
2324   size_t size = 0;
2325   HInstruction* current = first_instruction_;
2326   for (; current != nullptr; current = current->GetNext()) {
2327     size++;
2328   }
2329   return size;
2330 }
2331 
SetBlockOfInstructions(HBasicBlock * block) const2332 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
2333   for (HInstruction* current = first_instruction_;
2334        current != nullptr;
2335        current = current->GetNext()) {
2336     current->SetBlock(block);
2337   }
2338 }
2339 
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)2340 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
2341   DCHECK(Contains(cursor));
2342   if (!instruction_list.IsEmpty()) {
2343     if (cursor == last_instruction_) {
2344       last_instruction_ = instruction_list.last_instruction_;
2345     } else {
2346       cursor->next_->previous_ = instruction_list.last_instruction_;
2347     }
2348     instruction_list.last_instruction_->next_ = cursor->next_;
2349     cursor->next_ = instruction_list.first_instruction_;
2350     instruction_list.first_instruction_->previous_ = cursor;
2351   }
2352 }
2353 
AddBefore(HInstruction * cursor,const HInstructionList & instruction_list)2354 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
2355   DCHECK(Contains(cursor));
2356   if (!instruction_list.IsEmpty()) {
2357     if (cursor == first_instruction_) {
2358       first_instruction_ = instruction_list.first_instruction_;
2359     } else {
2360       cursor->previous_->next_ = instruction_list.first_instruction_;
2361     }
2362     instruction_list.last_instruction_->next_ = cursor;
2363     instruction_list.first_instruction_->previous_ = cursor->previous_;
2364     cursor->previous_ = instruction_list.last_instruction_;
2365   }
2366 }
2367 
Add(const HInstructionList & instruction_list)2368 void HInstructionList::Add(const HInstructionList& instruction_list) {
2369   if (IsEmpty()) {
2370     first_instruction_ = instruction_list.first_instruction_;
2371     last_instruction_ = instruction_list.last_instruction_;
2372   } else {
2373     AddAfter(last_instruction_, instruction_list);
2374   }
2375 }
2376 
DisconnectAndDelete()2377 void HBasicBlock::DisconnectAndDelete() {
2378   // Dominators must be removed after all the blocks they dominate. This way
2379   // a loop header is removed last, a requirement for correct loop information
2380   // iteration.
2381   DCHECK(dominated_blocks_.empty());
2382 
2383   // The following steps gradually remove the block from all its dependants in
2384   // post order (b/27683071).
2385 
2386   // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
2387   //     We need to do this before step (4) which destroys the predecessor list.
2388   HBasicBlock* loop_update_start = this;
2389   if (IsLoopHeader()) {
2390     HLoopInformation* loop_info = GetLoopInformation();
2391     // All other blocks in this loop should have been removed because the header
2392     // was their dominator.
2393     // Note that we do not remove `this` from `loop_info` as it is unreachable.
2394     DCHECK(!loop_info->IsIrreducible());
2395     DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
2396     DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
2397     loop_update_start = loop_info->GetPreHeader();
2398   }
2399 
2400   // (2) Disconnect the block from its successors and update their phis.
2401   DisconnectFromSuccessors();
2402 
2403   // (3) Remove instructions and phis. Instructions should have no remaining uses
2404   //     except in catch phis. If an instruction is used by a catch phi at `index`,
2405   //     remove `index`-th input of all phis in the catch block since they are
2406   //     guaranteed dead. Note that we may miss dead inputs this way but the
2407   //     graph will always remain consistent.
2408   RemoveCatchPhiUsesAndInstruction(/* building_dominator_tree = */ false);
2409 
2410   // (4) Disconnect the block from its predecessors and update their
2411   //     control-flow instructions.
2412   for (HBasicBlock* predecessor : predecessors_) {
2413     // We should not see any back edges as they would have been removed by step (3).
2414     DCHECK_IMPLIES(IsInLoop(), !GetLoopInformation()->IsBackEdge(*predecessor));
2415 
2416     HInstruction* last_instruction = predecessor->GetLastInstruction();
2417     if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
2418       // This block is the only normal-flow successor of the TryBoundary which
2419       // makes `predecessor` dead. Since DCE removes blocks in post order,
2420       // exception handlers of this TryBoundary were already visited and any
2421       // remaining handlers therefore must be live. We remove `predecessor` from
2422       // their list of predecessors.
2423       DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
2424       while (predecessor->GetSuccessors().size() > 1) {
2425         HBasicBlock* handler = predecessor->GetSuccessors()[1];
2426         DCHECK(handler->IsCatchBlock());
2427         predecessor->RemoveSuccessor(handler);
2428         handler->RemovePredecessor(predecessor);
2429       }
2430     }
2431 
2432     predecessor->RemoveSuccessor(this);
2433     uint32_t num_pred_successors = predecessor->GetSuccessors().size();
2434     if (num_pred_successors == 1u) {
2435       // If we have one successor after removing one, then we must have
2436       // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
2437       // successor. Replace those with a HGoto.
2438       DCHECK(last_instruction->IsIf() ||
2439              last_instruction->IsPackedSwitch() ||
2440              (last_instruction->IsTryBoundary() && IsCatchBlock()));
2441       predecessor->RemoveInstruction(last_instruction);
2442       predecessor->AddInstruction(new (graph_->GetAllocator()) HGoto(last_instruction->GetDexPc()));
2443     } else if (num_pred_successors == 0u) {
2444       // The predecessor has no remaining successors and therefore must be dead.
2445       // We deliberately leave it without a control-flow instruction so that the
2446       // GraphChecker fails unless it is not removed during the pass too.
2447       predecessor->RemoveInstruction(last_instruction);
2448     } else {
2449       // There are multiple successors left. The removed block might be a successor
2450       // of a PackedSwitch which will be completely removed (perhaps replaced with
2451       // a Goto), or we are deleting a catch block from a TryBoundary. In either
2452       // case, leave `last_instruction` as is for now.
2453       DCHECK(last_instruction->IsPackedSwitch() ||
2454              (last_instruction->IsTryBoundary() && IsCatchBlock()));
2455     }
2456   }
2457   predecessors_.clear();
2458 
2459   // (5) Remove the block from all loops it is included in. Skip the inner-most
2460   //     loop if this is the loop header (see definition of `loop_update_start`)
2461   //     because the loop header's predecessor list has been destroyed in step (4).
2462   for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
2463     HLoopInformation* loop_info = it.Current();
2464     loop_info->Remove(this);
2465     if (loop_info->IsBackEdge(*this)) {
2466       // If this was the last back edge of the loop, we deliberately leave the
2467       // loop in an inconsistent state and will fail GraphChecker unless the
2468       // entire loop is removed during the pass.
2469       loop_info->RemoveBackEdge(this);
2470     }
2471   }
2472 
2473   // (6) Disconnect from the dominator.
2474   dominator_->RemoveDominatedBlock(this);
2475   SetDominator(nullptr);
2476 
2477   // (7) Delete from the graph, update reverse post order.
2478   graph_->DeleteDeadEmptyBlock(this);
2479 }
2480 
DisconnectFromSuccessors(const ArenaBitVector * visited)2481 void HBasicBlock::DisconnectFromSuccessors(const ArenaBitVector* visited) {
2482   for (HBasicBlock* successor : successors_) {
2483     // Delete this block from the list of predecessors.
2484     size_t this_index = successor->GetPredecessorIndexOf(this);
2485     successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
2486 
2487     if (visited != nullptr && !visited->IsBitSet(successor->GetBlockId())) {
2488       // `successor` itself is dead. Therefore, there is no need to update its phis.
2489       continue;
2490     }
2491 
2492     DCHECK(!successor->predecessors_.empty());
2493 
2494     // Remove this block's entries in the successor's phis. Skips exceptional
2495     // successors because catch phi inputs do not correspond to predecessor
2496     // blocks but throwing instructions. They are removed in `RemoveCatchPhiUses`.
2497     if (!successor->IsCatchBlock()) {
2498       if (successor->predecessors_.size() == 1u) {
2499         // The successor has just one predecessor left. Replace phis with the only
2500         // remaining input.
2501         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2502           HPhi* phi = phi_it.Current()->AsPhi();
2503           phi->ReplaceWith(phi->InputAt(1 - this_index));
2504           successor->RemovePhi(phi);
2505         }
2506       } else {
2507         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2508           phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
2509         }
2510       }
2511     }
2512   }
2513   successors_.clear();
2514 }
2515 
RemoveCatchPhiUsesAndInstruction(bool building_dominator_tree)2516 void HBasicBlock::RemoveCatchPhiUsesAndInstruction(bool building_dominator_tree) {
2517   for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
2518     HInstruction* insn = it.Current();
2519     RemoveCatchPhiUsesOfDeadInstruction(insn);
2520 
2521     // If we are building the dominator tree, we removed all input records previously.
2522     // `RemoveInstruction` will try to remove them again but that's not something we support and we
2523     // will crash. We check here since we won't be checking that in RemoveInstruction.
2524     if (building_dominator_tree) {
2525       DCHECK(insn->GetUses().empty());
2526       DCHECK(insn->GetEnvUses().empty());
2527     }
2528     RemoveInstruction(insn, /* ensure_safety= */ !building_dominator_tree);
2529   }
2530   for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
2531     HPhi* insn = it.Current()->AsPhi();
2532     RemoveCatchPhiUsesOfDeadInstruction(insn);
2533 
2534     // If we are building the dominator tree, we removed all input records previously.
2535     // `RemovePhi` will try to remove them again but that's not something we support and we
2536     // will crash. We check here since we won't be checking that in RemovePhi.
2537     if (building_dominator_tree) {
2538       DCHECK(insn->GetUses().empty());
2539       DCHECK(insn->GetEnvUses().empty());
2540     }
2541     RemovePhi(insn, /* ensure_safety= */ !building_dominator_tree);
2542   }
2543 }
2544 
MergeInstructionsWith(HBasicBlock * other)2545 void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
2546   DCHECK(EndsWithControlFlowInstruction());
2547   RemoveInstruction(GetLastInstruction());
2548   instructions_.Add(other->GetInstructions());
2549   other->instructions_.SetBlockOfInstructions(this);
2550   other->instructions_.Clear();
2551 }
2552 
MergeWith(HBasicBlock * other)2553 void HBasicBlock::MergeWith(HBasicBlock* other) {
2554   DCHECK_EQ(GetGraph(), other->GetGraph());
2555   DCHECK(ContainsElement(dominated_blocks_, other));
2556   DCHECK_EQ(GetSingleSuccessor(), other);
2557   DCHECK_EQ(other->GetSinglePredecessor(), this);
2558   DCHECK(other->GetPhis().IsEmpty());
2559 
2560   // Move instructions from `other` to `this`.
2561   MergeInstructionsWith(other);
2562 
2563   // Remove `other` from the loops it is included in.
2564   for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
2565     HLoopInformation* loop_info = it.Current();
2566     loop_info->Remove(other);
2567     if (loop_info->IsBackEdge(*other)) {
2568       loop_info->ReplaceBackEdge(other, this);
2569     }
2570   }
2571 
2572   // Update links to the successors of `other`.
2573   successors_.clear();
2574   for (HBasicBlock* successor : other->GetSuccessors()) {
2575     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2576   }
2577   successors_.swap(other->successors_);
2578   DCHECK(other->successors_.empty());
2579 
2580   // Update the dominator tree.
2581   RemoveDominatedBlock(other);
2582   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2583     dominated->SetDominator(this);
2584   }
2585   dominated_blocks_.insert(
2586       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2587   other->dominated_blocks_.clear();
2588   other->dominator_ = nullptr;
2589 
2590   // Clear the list of predecessors of `other` in preparation of deleting it.
2591   other->predecessors_.clear();
2592 
2593   // Delete `other` from the graph. The function updates reverse post order.
2594   graph_->DeleteDeadEmptyBlock(other);
2595 }
2596 
MergeWithInlined(HBasicBlock * other)2597 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
2598   DCHECK_NE(GetGraph(), other->GetGraph());
2599   DCHECK(GetDominatedBlocks().empty());
2600   DCHECK(GetSuccessors().empty());
2601   DCHECK(!EndsWithControlFlowInstruction());
2602   DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
2603   DCHECK(other->GetPhis().IsEmpty());
2604   DCHECK(!other->IsInLoop());
2605 
2606   // Move instructions from `other` to `this`.
2607   instructions_.Add(other->GetInstructions());
2608   other->instructions_.SetBlockOfInstructions(this);
2609 
2610   // Update links to the successors of `other`.
2611   successors_.clear();
2612   for (HBasicBlock* successor : other->GetSuccessors()) {
2613     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2614   }
2615   successors_.swap(other->successors_);
2616   DCHECK(other->successors_.empty());
2617 
2618   // Update the dominator tree.
2619   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2620     dominated->SetDominator(this);
2621   }
2622   dominated_blocks_.insert(
2623       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2624   other->dominated_blocks_.clear();
2625   other->dominator_ = nullptr;
2626   other->graph_ = nullptr;
2627 }
2628 
ReplaceWith(HBasicBlock * other)2629 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
2630   while (!GetPredecessors().empty()) {
2631     HBasicBlock* predecessor = GetPredecessors()[0];
2632     predecessor->ReplaceSuccessor(this, other);
2633   }
2634   while (!GetSuccessors().empty()) {
2635     HBasicBlock* successor = GetSuccessors()[0];
2636     successor->ReplacePredecessor(this, other);
2637   }
2638   for (HBasicBlock* dominated : GetDominatedBlocks()) {
2639     other->AddDominatedBlock(dominated);
2640   }
2641   GetDominator()->ReplaceDominatedBlock(this, other);
2642   other->SetDominator(GetDominator());
2643   dominator_ = nullptr;
2644   graph_ = nullptr;
2645 }
2646 
DeleteDeadEmptyBlock(HBasicBlock * block)2647 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
2648   DCHECK_EQ(block->GetGraph(), this);
2649   DCHECK(block->GetSuccessors().empty());
2650   DCHECK(block->GetPredecessors().empty());
2651   DCHECK(block->GetDominatedBlocks().empty());
2652   DCHECK(block->GetDominator() == nullptr);
2653   DCHECK(block->GetInstructions().IsEmpty());
2654   DCHECK(block->GetPhis().IsEmpty());
2655 
2656   if (block->IsExitBlock()) {
2657     SetExitBlock(nullptr);
2658   }
2659 
2660   RemoveElement(reverse_post_order_, block);
2661   blocks_[block->GetBlockId()] = nullptr;
2662   block->SetGraph(nullptr);
2663 }
2664 
UpdateLoopAndTryInformationOfNewBlock(HBasicBlock * block,HBasicBlock * reference,bool replace_if_back_edge,bool has_more_specific_try_catch_info)2665 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
2666                                                    HBasicBlock* reference,
2667                                                    bool replace_if_back_edge,
2668                                                    bool has_more_specific_try_catch_info) {
2669   if (block->IsLoopHeader()) {
2670     // Clear the information of which blocks are contained in that loop. Since the
2671     // information is stored as a bit vector based on block ids, we have to update
2672     // it, as those block ids were specific to the callee graph and we are now adding
2673     // these blocks to the caller graph.
2674     block->GetLoopInformation()->ClearAllBlocks();
2675   }
2676 
2677   // If not already in a loop, update the loop information.
2678   if (!block->IsInLoop()) {
2679     block->SetLoopInformation(reference->GetLoopInformation());
2680   }
2681 
2682   // If the block is in a loop, update all its outward loops.
2683   HLoopInformation* loop_info = block->GetLoopInformation();
2684   if (loop_info != nullptr) {
2685     for (HLoopInformationOutwardIterator loop_it(*block);
2686          !loop_it.Done();
2687          loop_it.Advance()) {
2688       loop_it.Current()->Add(block);
2689     }
2690     if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
2691       loop_info->ReplaceBackEdge(reference, block);
2692     }
2693   }
2694 
2695   DCHECK_IMPLIES(has_more_specific_try_catch_info, !reference->IsTryBlock())
2696       << "We don't allow to inline try catches inside of other try blocks.";
2697 
2698   // Update the TryCatchInformation, if we are not inlining a try catch.
2699   if (!has_more_specific_try_catch_info) {
2700     // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
2701     TryCatchInformation* try_catch_info =
2702         reference->IsTryBlock() ? reference->GetTryCatchInformation() : nullptr;
2703     block->SetTryCatchInformation(try_catch_info);
2704   }
2705 }
2706 
InlineInto(HGraph * outer_graph,HInvoke * invoke)2707 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
2708   DCHECK(HasExitBlock()) << "Unimplemented scenario";
2709   // Update the environments in this graph to have the invoke's environment
2710   // as parent.
2711   {
2712     // Skip the entry block, we do not need to update the entry's suspend check.
2713     for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
2714       for (HInstructionIterator instr_it(block->GetInstructions());
2715            !instr_it.Done();
2716            instr_it.Advance()) {
2717         HInstruction* current = instr_it.Current();
2718         if (current->NeedsEnvironment()) {
2719           DCHECK(current->HasEnvironment());
2720           current->GetEnvironment()->SetAndCopyParentChain(
2721               outer_graph->GetAllocator(), invoke->GetEnvironment());
2722         }
2723       }
2724     }
2725   }
2726 
2727   if (HasBoundsChecks()) {
2728     outer_graph->SetHasBoundsChecks(true);
2729   }
2730   if (HasLoops()) {
2731     outer_graph->SetHasLoops(true);
2732   }
2733   if (HasIrreducibleLoops()) {
2734     outer_graph->SetHasIrreducibleLoops(true);
2735   }
2736   if (HasDirectCriticalNativeCall()) {
2737     outer_graph->SetHasDirectCriticalNativeCall(true);
2738   }
2739   if (HasTryCatch()) {
2740     outer_graph->SetHasTryCatch(true);
2741   }
2742   if (HasMonitorOperations()) {
2743     outer_graph->SetHasMonitorOperations(true);
2744   }
2745   if (HasTraditionalSIMD()) {
2746     outer_graph->SetHasTraditionalSIMD(true);
2747   }
2748   if (HasPredicatedSIMD()) {
2749     outer_graph->SetHasPredicatedSIMD(true);
2750   }
2751   if (HasAlwaysThrowingInvokes()) {
2752     outer_graph->SetHasAlwaysThrowingInvokes(true);
2753   }
2754 
2755   HInstruction* return_value = nullptr;
2756   if (GetBlocks().size() == 3) {
2757     // Inliner already made sure we don't inline methods that always throw.
2758     DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
2759     // Simple case of an entry block, a body block, and an exit block.
2760     // Put the body block's instruction into `invoke`'s block.
2761     HBasicBlock* body = GetBlocks()[1];
2762     DCHECK(GetBlocks()[0]->IsEntryBlock());
2763     DCHECK(GetBlocks()[2]->IsExitBlock());
2764     DCHECK(!body->IsExitBlock());
2765     DCHECK(!body->IsInLoop());
2766     HInstruction* last = body->GetLastInstruction();
2767 
2768     // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2769     invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2770     body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2771 
2772     // Replace the invoke with the return value of the inlined graph.
2773     if (last->IsReturn()) {
2774       return_value = last->InputAt(0);
2775     } else {
2776       DCHECK(last->IsReturnVoid());
2777     }
2778 
2779     invoke->GetBlock()->RemoveInstruction(last);
2780   } else {
2781     // Need to inline multiple blocks. We split `invoke`'s block
2782     // into two blocks, merge the first block of the inlined graph into
2783     // the first half, and replace the exit block of the inlined graph
2784     // with the second half.
2785     ArenaAllocator* allocator = outer_graph->GetAllocator();
2786     HBasicBlock* at = invoke->GetBlock();
2787     // Note that we split before the invoke only to simplify polymorphic inlining.
2788     HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2789 
2790     HBasicBlock* first = entry_block_->GetSuccessors()[0];
2791     DCHECK(!first->IsInLoop());
2792     DCHECK(first->GetTryCatchInformation() == nullptr);
2793     at->MergeWithInlined(first);
2794     exit_block_->ReplaceWith(to);
2795 
2796     // Update the meta information surrounding blocks:
2797     // (1) the graph they are now in,
2798     // (2) the reverse post order of that graph,
2799     // (3) their potential loop information, inner and outer,
2800     // (4) try block membership.
2801     // Note that we do not need to update catch phi inputs because they
2802     // correspond to the register file of the outer method which the inlinee
2803     // cannot modify.
2804 
2805     // We don't add the entry block, the exit block, and the first block, which
2806     // has been merged with `at`.
2807     static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2808 
2809     // We add the `to` block.
2810     static constexpr int kNumberOfNewBlocksInCaller = 1;
2811     size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2812         + kNumberOfNewBlocksInCaller;
2813 
2814     // Find the location of `at` in the outer graph's reverse post order. The new
2815     // blocks will be added after it.
2816     size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2817     MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2818 
2819     // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2820     // and (4) to the blocks that apply.
2821     for (HBasicBlock* current : GetReversePostOrder()) {
2822       if (current != exit_block_ && current != entry_block_ && current != first) {
2823         DCHECK(current->GetGraph() == this);
2824         current->SetGraph(outer_graph);
2825         outer_graph->AddBlock(current);
2826         outer_graph->reverse_post_order_[++index_of_at] = current;
2827         UpdateLoopAndTryInformationOfNewBlock(current,
2828                                               at,
2829                                               /* replace_if_back_edge= */ false,
2830                                               current->GetTryCatchInformation() != nullptr);
2831       }
2832     }
2833 
2834     // Do (1), (2), (3) and (4) to `to`.
2835     to->SetGraph(outer_graph);
2836     outer_graph->AddBlock(to);
2837     outer_graph->reverse_post_order_[++index_of_at] = to;
2838     // Only `to` can become a back edge, as the inlined blocks
2839     // are predecessors of `to`.
2840     UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge= */ true);
2841 
2842     // Update all predecessors of the exit block (now the `to` block)
2843     // to not `HReturn` but `HGoto` instead. Special case throwing blocks
2844     // to now get the outer graph exit block as successor.
2845     HPhi* return_value_phi = nullptr;
2846     bool rerun_dominance = false;
2847     bool rerun_loop_analysis = false;
2848     for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
2849       HBasicBlock* predecessor = to->GetPredecessors()[pred];
2850       HInstruction* last = predecessor->GetLastInstruction();
2851 
2852       // At this point we might either have:
2853       // A) Return/ReturnVoid/Throw as the last instruction, or
2854       // B) `Return/ReturnVoid/Throw->TryBoundary` as the last instruction chain
2855 
2856       const bool saw_try_boundary = last->IsTryBoundary();
2857       if (saw_try_boundary) {
2858         DCHECK(predecessor->IsSingleTryBoundary());
2859         DCHECK(!last->AsTryBoundary()->IsEntry());
2860         predecessor = predecessor->GetSinglePredecessor();
2861         last = predecessor->GetLastInstruction();
2862       }
2863 
2864       if (last->IsThrow()) {
2865         if (at->IsTryBlock()) {
2866           DCHECK(!saw_try_boundary) << "We don't support inlining of try blocks into try blocks.";
2867           // Create a TryBoundary of kind:exit and point it to the Exit block.
2868           HBasicBlock* new_block = outer_graph->SplitEdge(predecessor, to);
2869           new_block->AddInstruction(
2870               new (allocator) HTryBoundary(HTryBoundary::BoundaryKind::kExit, last->GetDexPc()));
2871           new_block->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2872 
2873           // Copy information from the predecessor.
2874           new_block->SetLoopInformation(predecessor->GetLoopInformation());
2875           TryCatchInformation* try_catch_info = predecessor->GetTryCatchInformation();
2876           new_block->SetTryCatchInformation(try_catch_info);
2877           for (HBasicBlock* xhandler :
2878                try_catch_info->GetTryEntry().GetBlock()->GetExceptionalSuccessors()) {
2879             new_block->AddSuccessor(xhandler);
2880           }
2881           DCHECK(try_catch_info->GetTryEntry().HasSameExceptionHandlersAs(
2882               *new_block->GetLastInstruction()->AsTryBoundary()));
2883         } else {
2884           // We either have `Throw->TryBoundary` or `Throw`. We want to point the whole chain to the
2885           // exit, so we recompute `predecessor`
2886           predecessor = to->GetPredecessors()[pred];
2887           predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2888         }
2889 
2890         --pred;
2891         // We need to re-run dominance information, as the exit block now has
2892         // a new predecessor and potential new dominator.
2893         // TODO(solanes): See if it's worth it to hand-modify the domination chain instead of
2894         // rerunning the dominance for the whole graph.
2895         rerun_dominance = true;
2896         if (predecessor->GetLoopInformation() != nullptr) {
2897           // The loop information might have changed e.g. `predecessor` might not be in a loop
2898           // anymore. We only do this if `predecessor` has loop information as it is impossible for
2899           // predecessor to end up in a loop if it wasn't in one before.
2900           rerun_loop_analysis = true;
2901         }
2902       } else {
2903         if (last->IsReturnVoid()) {
2904           DCHECK(return_value == nullptr);
2905           DCHECK(return_value_phi == nullptr);
2906         } else {
2907           DCHECK(last->IsReturn());
2908           if (return_value_phi != nullptr) {
2909             return_value_phi->AddInput(last->InputAt(0));
2910           } else if (return_value == nullptr) {
2911             return_value = last->InputAt(0);
2912           } else {
2913             // There will be multiple returns.
2914             return_value_phi = new (allocator) HPhi(
2915                 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2916             to->AddPhi(return_value_phi);
2917             return_value_phi->AddInput(return_value);
2918             return_value_phi->AddInput(last->InputAt(0));
2919             return_value = return_value_phi;
2920           }
2921         }
2922         predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2923         predecessor->RemoveInstruction(last);
2924 
2925         if (saw_try_boundary) {
2926           predecessor = to->GetPredecessors()[pred];
2927           DCHECK(predecessor->EndsWithTryBoundary());
2928           DCHECK_EQ(predecessor->GetNormalSuccessors().size(), 1u);
2929           if (predecessor->GetSuccessors()[0]->GetPredecessors().size() > 1) {
2930             outer_graph->SplitCriticalEdge(predecessor, to);
2931             rerun_dominance = true;
2932             if (predecessor->GetLoopInformation() != nullptr) {
2933               rerun_loop_analysis = true;
2934             }
2935           }
2936         }
2937       }
2938     }
2939     if (rerun_loop_analysis) {
2940       outer_graph->RecomputeDominatorTree();
2941     } else if (rerun_dominance) {
2942       outer_graph->ClearDominanceInformation();
2943       outer_graph->ComputeDominanceInformation();
2944     }
2945   }
2946 
2947   // Walk over the entry block and:
2948   // - Move constants from the entry block to the outer_graph's entry block,
2949   // - Replace HParameterValue instructions with their real value.
2950   // - Remove suspend checks, that hold an environment.
2951   // We must do this after the other blocks have been inlined, otherwise ids of
2952   // constants could overlap with the inner graph.
2953   size_t parameter_index = 0;
2954   for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2955     HInstruction* current = it.Current();
2956     HInstruction* replacement = nullptr;
2957     if (current->IsNullConstant()) {
2958       replacement = outer_graph->GetNullConstant();
2959     } else if (current->IsIntConstant()) {
2960       replacement = outer_graph->GetIntConstant(current->AsIntConstant()->GetValue());
2961     } else if (current->IsLongConstant()) {
2962       replacement = outer_graph->GetLongConstant(current->AsLongConstant()->GetValue());
2963     } else if (current->IsFloatConstant()) {
2964       replacement = outer_graph->GetFloatConstant(current->AsFloatConstant()->GetValue());
2965     } else if (current->IsDoubleConstant()) {
2966       replacement = outer_graph->GetDoubleConstant(current->AsDoubleConstant()->GetValue());
2967     } else if (current->IsParameterValue()) {
2968       if (kIsDebugBuild &&
2969           invoke->IsInvokeStaticOrDirect() &&
2970           invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2971         // Ensure we do not use the last input of `invoke`, as it
2972         // contains a clinit check which is not an actual argument.
2973         size_t last_input_index = invoke->InputCount() - 1;
2974         DCHECK(parameter_index != last_input_index);
2975       }
2976       replacement = invoke->InputAt(parameter_index++);
2977     } else if (current->IsCurrentMethod()) {
2978       replacement = outer_graph->GetCurrentMethod();
2979     } else {
2980       // It is OK to ignore MethodEntryHook for inlined functions.
2981       // In debug mode we don't inline and in release mode method
2982       // tracing is best effort so OK to ignore them.
2983       DCHECK(current->IsGoto() || current->IsSuspendCheck() || current->IsMethodEntryHook());
2984       entry_block_->RemoveInstruction(current);
2985     }
2986     if (replacement != nullptr) {
2987       current->ReplaceWith(replacement);
2988       // If the current is the return value then we need to update the latter.
2989       if (current == return_value) {
2990         DCHECK_EQ(entry_block_, return_value->GetBlock());
2991         return_value = replacement;
2992       }
2993     }
2994   }
2995 
2996   return return_value;
2997 }
2998 
2999 /*
3000  * Loop will be transformed to:
3001  *       old_pre_header
3002  *             |
3003  *          if_block
3004  *           /    \
3005  *  true_block   false_block
3006  *           \    /
3007  *       new_pre_header
3008  *             |
3009  *           header
3010  */
TransformLoopHeaderForBCE(HBasicBlock * header)3011 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
3012   DCHECK(header->IsLoopHeader());
3013   HBasicBlock* old_pre_header = header->GetDominator();
3014 
3015   // Need extra block to avoid critical edge.
3016   HBasicBlock* if_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
3017   HBasicBlock* true_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
3018   HBasicBlock* false_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
3019   HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
3020   AddBlock(if_block);
3021   AddBlock(true_block);
3022   AddBlock(false_block);
3023   AddBlock(new_pre_header);
3024 
3025   header->ReplacePredecessor(old_pre_header, new_pre_header);
3026   old_pre_header->successors_.clear();
3027   old_pre_header->dominated_blocks_.clear();
3028 
3029   old_pre_header->AddSuccessor(if_block);
3030   if_block->AddSuccessor(true_block);  // True successor
3031   if_block->AddSuccessor(false_block);  // False successor
3032   true_block->AddSuccessor(new_pre_header);
3033   false_block->AddSuccessor(new_pre_header);
3034 
3035   old_pre_header->dominated_blocks_.push_back(if_block);
3036   if_block->SetDominator(old_pre_header);
3037   if_block->dominated_blocks_.push_back(true_block);
3038   true_block->SetDominator(if_block);
3039   if_block->dominated_blocks_.push_back(false_block);
3040   false_block->SetDominator(if_block);
3041   if_block->dominated_blocks_.push_back(new_pre_header);
3042   new_pre_header->SetDominator(if_block);
3043   new_pre_header->dominated_blocks_.push_back(header);
3044   header->SetDominator(new_pre_header);
3045 
3046   // Fix reverse post order.
3047   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
3048   MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
3049   reverse_post_order_[index_of_header++] = if_block;
3050   reverse_post_order_[index_of_header++] = true_block;
3051   reverse_post_order_[index_of_header++] = false_block;
3052   reverse_post_order_[index_of_header++] = new_pre_header;
3053 
3054   // The pre_header can never be a back edge of a loop.
3055   DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
3056          !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
3057   UpdateLoopAndTryInformationOfNewBlock(
3058       if_block, old_pre_header, /* replace_if_back_edge= */ false);
3059   UpdateLoopAndTryInformationOfNewBlock(
3060       true_block, old_pre_header, /* replace_if_back_edge= */ false);
3061   UpdateLoopAndTryInformationOfNewBlock(
3062       false_block, old_pre_header, /* replace_if_back_edge= */ false);
3063   UpdateLoopAndTryInformationOfNewBlock(
3064       new_pre_header, old_pre_header, /* replace_if_back_edge= */ false);
3065 }
3066 
3067 // Creates a new two-basic-block loop and inserts it between original loop header and
3068 // original loop exit; also adjusts dominators, post order and new LoopInformation.
TransformLoopForVectorization(HBasicBlock * header,HBasicBlock * body,HBasicBlock * exit)3069 HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
3070                                                    HBasicBlock* body,
3071                                                    HBasicBlock* exit) {
3072   DCHECK(header->IsLoopHeader());
3073   HLoopInformation* loop = header->GetLoopInformation();
3074 
3075   // Add new loop blocks.
3076   HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
3077   HBasicBlock* new_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
3078   HBasicBlock* new_body = new (allocator_) HBasicBlock(this, header->GetDexPc());
3079   AddBlock(new_pre_header);
3080   AddBlock(new_header);
3081   AddBlock(new_body);
3082 
3083   // Set up control flow.
3084   header->ReplaceSuccessor(exit, new_pre_header);
3085   new_pre_header->AddSuccessor(new_header);
3086   new_header->AddSuccessor(exit);
3087   new_header->AddSuccessor(new_body);
3088   new_body->AddSuccessor(new_header);
3089 
3090   // Set up dominators.
3091   header->ReplaceDominatedBlock(exit, new_pre_header);
3092   new_pre_header->SetDominator(header);
3093   new_pre_header->dominated_blocks_.push_back(new_header);
3094   new_header->SetDominator(new_pre_header);
3095   new_header->dominated_blocks_.push_back(new_body);
3096   new_body->SetDominator(new_header);
3097   new_header->dominated_blocks_.push_back(exit);
3098   exit->SetDominator(new_header);
3099 
3100   // Fix reverse post order.
3101   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
3102   MakeRoomFor(&reverse_post_order_, 2, index_of_header);
3103   reverse_post_order_[++index_of_header] = new_pre_header;
3104   reverse_post_order_[++index_of_header] = new_header;
3105   size_t index_of_body = IndexOfElement(reverse_post_order_, body);
3106   MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
3107   reverse_post_order_[index_of_body] = new_body;
3108 
3109   // Add gotos and suspend check (client must add conditional in header).
3110   new_pre_header->AddInstruction(new (allocator_) HGoto());
3111   HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(header->GetDexPc());
3112   new_header->AddInstruction(suspend_check);
3113   new_body->AddInstruction(new (allocator_) HGoto());
3114   DCHECK(loop->GetSuspendCheck() != nullptr);
3115   suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
3116       loop->GetSuspendCheck()->GetEnvironment(), header);
3117 
3118   // Update loop information.
3119   new_header->AddBackEdge(new_body);
3120   new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
3121   new_header->GetLoopInformation()->Populate();
3122   new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation());  // outward
3123   HLoopInformationOutwardIterator it(*new_header);
3124   for (it.Advance(); !it.Done(); it.Advance()) {
3125     it.Current()->Add(new_pre_header);
3126     it.Current()->Add(new_header);
3127     it.Current()->Add(new_body);
3128   }
3129   return new_pre_header;
3130 }
3131 
CheckAgainstUpperBound(ReferenceTypeInfo rti,ReferenceTypeInfo upper_bound_rti)3132 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti) {
3133   if (rti.IsValid()) {
3134     ScopedObjectAccess soa(Thread::Current());
3135     DCHECK(upper_bound_rti.IsSupertypeOf(rti))
3136         << " upper_bound_rti: " << upper_bound_rti
3137         << " rti: " << rti;
3138     DCHECK_IMPLIES(upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes(), rti.IsExact())
3139         << " upper_bound_rti: " << upper_bound_rti
3140         << " rti: " << rti;
3141   }
3142 }
3143 
SetReferenceTypeInfo(ReferenceTypeInfo rti)3144 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
3145   if (kIsDebugBuild) {
3146     DCHECK_EQ(GetType(), DataType::Type::kReference);
3147     DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
3148     if (IsBoundType()) {
3149       // Having the test here spares us from making the method virtual just for
3150       // the sake of a DCHECK.
3151       CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
3152     }
3153   }
3154   reference_type_handle_ = rti.GetTypeHandle();
3155   SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
3156 }
3157 
SetReferenceTypeInfoIfValid(ReferenceTypeInfo rti)3158 void HInstruction::SetReferenceTypeInfoIfValid(ReferenceTypeInfo rti) {
3159   if (rti.IsValid()) {
3160     SetReferenceTypeInfo(rti);
3161   }
3162 }
3163 
InstructionDataEquals(const HInstruction * other) const3164 bool HBoundType::InstructionDataEquals(const HInstruction* other) const {
3165   const HBoundType* other_bt = other->AsBoundType();
3166   ScopedObjectAccess soa(Thread::Current());
3167   return GetUpperBound().IsEqual(other_bt->GetUpperBound()) &&
3168          GetUpperCanBeNull() == other_bt->GetUpperCanBeNull() &&
3169          CanBeNull() == other_bt->CanBeNull();
3170 }
3171 
SetUpperBound(const ReferenceTypeInfo & upper_bound,bool can_be_null)3172 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
3173   if (kIsDebugBuild) {
3174     DCHECK(upper_bound.IsValid());
3175     DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
3176     CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
3177   }
3178   upper_bound_ = upper_bound;
3179   SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
3180 }
3181 
HasAnyEnvironmentUseBefore(HInstruction * other)3182 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
3183   // For now, assume that instructions in different blocks may use the
3184   // environment.
3185   // TODO: Use the control flow to decide if this is true.
3186   if (GetBlock() != other->GetBlock()) {
3187     return true;
3188   }
3189 
3190   // We know that we are in the same block. Walk from 'this' to 'other',
3191   // checking to see if there is any instruction with an environment.
3192   HInstruction* current = this;
3193   for (; current != other && current != nullptr; current = current->GetNext()) {
3194     // This is a conservative check, as the instruction result may not be in
3195     // the referenced environment.
3196     if (current->HasEnvironment()) {
3197       return true;
3198     }
3199   }
3200 
3201   // We should have been called with 'this' before 'other' in the block.
3202   // Just confirm this.
3203   DCHECK(current != nullptr);
3204   return false;
3205 }
3206 
SetIntrinsic(Intrinsics intrinsic,IntrinsicNeedsEnvironment needs_env,IntrinsicSideEffects side_effects,IntrinsicExceptions exceptions)3207 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
3208                            IntrinsicNeedsEnvironment needs_env,
3209                            IntrinsicSideEffects side_effects,
3210                            IntrinsicExceptions exceptions) {
3211   intrinsic_ = intrinsic;
3212   IntrinsicOptimizations opt(this);
3213 
3214   // Adjust method's side effects from intrinsic table.
3215   switch (side_effects) {
3216     case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
3217     case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
3218     case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
3219     case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
3220   }
3221 
3222   if (needs_env == kNoEnvironment) {
3223     opt.SetDoesNotNeedEnvironment();
3224   } else {
3225     // If we need an environment, that means there will be a call, which can trigger GC.
3226     SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
3227   }
3228   // Adjust method's exception status from intrinsic table.
3229   SetCanThrow(exceptions == kCanThrow);
3230 }
3231 
IsStringAlloc() const3232 bool HNewInstance::IsStringAlloc() const {
3233   return GetEntrypoint() == kQuickAllocStringObject;
3234 }
3235 
NeedsEnvironment() const3236 bool HInvoke::NeedsEnvironment() const {
3237   if (!IsIntrinsic()) {
3238     return true;
3239   }
3240   IntrinsicOptimizations opt(*this);
3241   return !opt.GetDoesNotNeedEnvironment();
3242 }
3243 
GetDexFileForPcRelativeDexCache() const3244 const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
3245   ArtMethod* caller = GetEnvironment()->GetMethod();
3246   ScopedObjectAccess soa(Thread::Current());
3247   // `caller` is null for a top-level graph representing a method whose declaring
3248   // class was not resolved.
3249   return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
3250 }
3251 
operator <<(std::ostream & os,HInvokeStaticOrDirect::ClinitCheckRequirement rhs)3252 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
3253   switch (rhs) {
3254     case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
3255       return os << "explicit";
3256     case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
3257       return os << "implicit";
3258     case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
3259       return os << "none";
3260   }
3261 }
3262 
CanBeNull() const3263 bool HInvokeStaticOrDirect::CanBeNull() const {
3264   if (IsStringInit()) {
3265     return false;
3266   }
3267   return HInvoke::CanBeNull();
3268 }
3269 
CanBeNull() const3270 bool HInvoke::CanBeNull() const {
3271   switch (GetIntrinsic()) {
3272     case Intrinsics::kThreadCurrentThread:
3273     case Intrinsics::kStringBufferAppend:
3274     case Intrinsics::kStringBufferToString:
3275     case Intrinsics::kStringBuilderAppendObject:
3276     case Intrinsics::kStringBuilderAppendString:
3277     case Intrinsics::kStringBuilderAppendCharSequence:
3278     case Intrinsics::kStringBuilderAppendCharArray:
3279     case Intrinsics::kStringBuilderAppendBoolean:
3280     case Intrinsics::kStringBuilderAppendChar:
3281     case Intrinsics::kStringBuilderAppendInt:
3282     case Intrinsics::kStringBuilderAppendLong:
3283     case Intrinsics::kStringBuilderAppendFloat:
3284     case Intrinsics::kStringBuilderAppendDouble:
3285     case Intrinsics::kStringBuilderToString:
3286 #define DEFINE_BOXED_CASE(name, unused1, unused2, unused3, unused4) \
3287     case Intrinsics::k##name##ValueOf:
3288     BOXED_TYPES(DEFINE_BOXED_CASE)
3289 #undef DEFINE_BOXED_CASE
3290       return false;
3291     default:
3292       return GetType() == DataType::Type::kReference;
3293   }
3294 }
3295 
CanDoImplicitNullCheckOn(HInstruction * obj) const3296 bool HInvokeVirtual::CanDoImplicitNullCheckOn(HInstruction* obj) const {
3297   if (obj != InputAt(0)) {
3298     return false;
3299   }
3300   switch (GetIntrinsic()) {
3301     case Intrinsics::kNone:
3302       return true;
3303     case Intrinsics::kReferenceRefersTo:
3304       return true;
3305     default:
3306       // TODO: Add implicit null checks in more intrinsics.
3307       return false;
3308   }
3309 }
3310 
InstructionDataEquals(const HInstruction * other) const3311 bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
3312   const HLoadClass* other_load_class = other->AsLoadClass();
3313   // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
3314   // names rather than type indexes. However, we shall also have to re-think the hash code.
3315   if (type_index_ != other_load_class->type_index_ ||
3316       GetPackedFields() != other_load_class->GetPackedFields()) {
3317     return false;
3318   }
3319   switch (GetLoadKind()) {
3320     case LoadKind::kBootImageRelRo:
3321     case LoadKind::kJitBootImageAddress:
3322     case LoadKind::kJitTableAddress: {
3323       ScopedObjectAccess soa(Thread::Current());
3324       return GetClass().Get() == other_load_class->GetClass().Get();
3325     }
3326     default:
3327       DCHECK(HasTypeReference(GetLoadKind()));
3328       return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
3329   }
3330 }
3331 
InstructionDataEquals(const HInstruction * other) const3332 bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
3333   const HLoadString* other_load_string = other->AsLoadString();
3334   // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
3335   // rather than their indexes. However, we shall also have to re-think the hash code.
3336   if (string_index_ != other_load_string->string_index_ ||
3337       GetPackedFields() != other_load_string->GetPackedFields()) {
3338     return false;
3339   }
3340   switch (GetLoadKind()) {
3341     case LoadKind::kBootImageRelRo:
3342     case LoadKind::kJitBootImageAddress:
3343     case LoadKind::kJitTableAddress: {
3344       ScopedObjectAccess soa(Thread::Current());
3345       return GetString().Get() == other_load_string->GetString().Get();
3346     }
3347     default:
3348       return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
3349   }
3350 }
3351 
RemoveEnvironmentUsers()3352 void HInstruction::RemoveEnvironmentUsers() {
3353   for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
3354     HEnvironment* user = use.GetUser();
3355     user->SetRawEnvAt(use.GetIndex(), nullptr);
3356   }
3357   env_uses_.clear();
3358 }
3359 
ReplaceInstrOrPhiByClone(HInstruction * instr)3360 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr) {
3361   HInstruction* clone = instr->Clone(instr->GetBlock()->GetGraph()->GetAllocator());
3362   HBasicBlock* block = instr->GetBlock();
3363 
3364   if (instr->IsPhi()) {
3365     HPhi* phi = instr->AsPhi();
3366     DCHECK(!phi->HasEnvironment());
3367     HPhi* phi_clone = clone->AsPhi();
3368     block->ReplaceAndRemovePhiWith(phi, phi_clone);
3369   } else {
3370     block->ReplaceAndRemoveInstructionWith(instr, clone);
3371     if (instr->HasEnvironment()) {
3372       clone->CopyEnvironmentFrom(instr->GetEnvironment());
3373       HLoopInformation* loop_info = block->GetLoopInformation();
3374       if (instr->IsSuspendCheck() && loop_info != nullptr) {
3375         loop_info->SetSuspendCheck(clone->AsSuspendCheck());
3376       }
3377     }
3378   }
3379   return clone;
3380 }
3381 
operator <<(std::ostream & os,const MoveOperands & rhs)3382 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
3383   os << "["
3384      << " source=" << rhs.GetSource()
3385      << " destination=" << rhs.GetDestination()
3386      << " type=" << rhs.GetType()
3387      << " instruction=";
3388   if (rhs.GetInstruction() != nullptr) {
3389     os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
3390   } else {
3391     os << "null";
3392   }
3393   os << " ]";
3394   return os;
3395 }
3396 
operator <<(std::ostream & os,TypeCheckKind rhs)3397 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
3398   switch (rhs) {
3399     case TypeCheckKind::kUnresolvedCheck:
3400       return os << "unresolved_check";
3401     case TypeCheckKind::kExactCheck:
3402       return os << "exact_check";
3403     case TypeCheckKind::kClassHierarchyCheck:
3404       return os << "class_hierarchy_check";
3405     case TypeCheckKind::kAbstractClassCheck:
3406       return os << "abstract_class_check";
3407     case TypeCheckKind::kInterfaceCheck:
3408       return os << "interface_check";
3409     case TypeCheckKind::kArrayObjectCheck:
3410       return os << "array_object_check";
3411     case TypeCheckKind::kArrayCheck:
3412       return os << "array_check";
3413     case TypeCheckKind::kBitstringCheck:
3414       return os << "bitstring_check";
3415   }
3416 }
3417 
3418 // Check that intrinsic enum values fit within space set aside in ArtMethod modifier flags.
3419 #define CHECK_INTRINSICS_ENUM_VALUES(Name, InvokeType, _, SideEffects, Exceptions, ...) \
3420   static_assert( \
3421     static_cast<uint32_t>(Intrinsics::k ## Name) <= (kAccIntrinsicBits >> CTZ(kAccIntrinsicBits)), \
3422     "Intrinsics enumeration space overflow.");
ART_INTRINSICS_LIST(CHECK_INTRINSICS_ENUM_VALUES)3423   ART_INTRINSICS_LIST(CHECK_INTRINSICS_ENUM_VALUES)
3424 #undef CHECK_INTRINSICS_ENUM_VALUES
3425 
3426 // Function that returns whether an intrinsic needs an environment or not.
3427 static inline IntrinsicNeedsEnvironment NeedsEnvironmentIntrinsic(Intrinsics i) {
3428   switch (i) {
3429     case Intrinsics::kNone:
3430       return kNeedsEnvironment;  // Non-sensical for intrinsic.
3431 #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \
3432     case Intrinsics::k ## Name: \
3433       return NeedsEnv;
3434       ART_INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3435 #undef OPTIMIZING_INTRINSICS
3436   }
3437   return kNeedsEnvironment;
3438 }
3439 
3440 // Function that returns whether an intrinsic has side effects.
GetSideEffectsIntrinsic(Intrinsics i)3441 static inline IntrinsicSideEffects GetSideEffectsIntrinsic(Intrinsics i) {
3442   switch (i) {
3443     case Intrinsics::kNone:
3444       return kAllSideEffects;
3445 #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \
3446     case Intrinsics::k ## Name: \
3447       return SideEffects;
3448       ART_INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3449 #undef OPTIMIZING_INTRINSICS
3450   }
3451   return kAllSideEffects;
3452 }
3453 
3454 // Function that returns whether an intrinsic can throw exceptions.
GetExceptionsIntrinsic(Intrinsics i)3455 static inline IntrinsicExceptions GetExceptionsIntrinsic(Intrinsics i) {
3456   switch (i) {
3457     case Intrinsics::kNone:
3458       return kCanThrow;
3459 #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \
3460     case Intrinsics::k ## Name: \
3461       return Exceptions;
3462       ART_INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3463 #undef OPTIMIZING_INTRINSICS
3464   }
3465   return kCanThrow;
3466 }
3467 
SetResolvedMethod(ArtMethod * method,bool enable_intrinsic_opt)3468 void HInvoke::SetResolvedMethod(ArtMethod* method, bool enable_intrinsic_opt) {
3469   if (method != nullptr && method->IsIntrinsic() && enable_intrinsic_opt) {
3470     Intrinsics intrinsic = method->GetIntrinsic();
3471     SetIntrinsic(intrinsic,
3472                  NeedsEnvironmentIntrinsic(intrinsic),
3473                  GetSideEffectsIntrinsic(intrinsic),
3474                  GetExceptionsIntrinsic(intrinsic));
3475   }
3476   resolved_method_ = method;
3477 }
3478 
IsGEZero(HInstruction * instruction)3479 bool IsGEZero(HInstruction* instruction) {
3480   DCHECK(instruction != nullptr);
3481   if (instruction->IsArrayLength()) {
3482     return true;
3483   } else if (instruction->IsMin()) {
3484     // Instruction MIN(>=0, >=0) is >= 0.
3485     return IsGEZero(instruction->InputAt(0)) &&
3486            IsGEZero(instruction->InputAt(1));
3487   } else if (instruction->IsAbs()) {
3488     // Instruction ABS(>=0) is >= 0.
3489     // NOTE: ABS(minint) = minint prevents assuming
3490     //       >= 0 without looking at the argument.
3491     return IsGEZero(instruction->InputAt(0));
3492   }
3493   int64_t value = -1;
3494   return IsInt64AndGet(instruction, &value) && value >= 0;
3495 }
3496 
3497 }  // namespace art
3498