xref: /aosp_15_r20/external/swiftshader/third_party/llvm-16.0/llvm/lib/Transforms/Scalar/SROA.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/DomTreeUpdater.h"
42 #include "llvm/Analysis/GlobalsModRef.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/PtrUseVisitor.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantFolder.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DIBuilder.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DebugInfo.h"
53 #include "llvm/IR/DebugInfoMetadata.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/GlobalAlias.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstVisitor.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Transforms/Scalar.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <cstddef>
88 #include <cstdint>
89 #include <cstring>
90 #include <iterator>
91 #include <string>
92 #include <tuple>
93 #include <utility>
94 #include <vector>
95 
96 using namespace llvm;
97 using namespace llvm::sroa;
98 
99 #define DEBUG_TYPE "sroa"
100 
101 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
102 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
103 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
104 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
105 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
106 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
107 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
108 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
109 STATISTIC(NumLoadsPredicated,
110           "Number of loads rewritten into predicated loads to allow promotion");
111 STATISTIC(
112     NumStoresPredicated,
113     "Number of stores rewritten into predicated loads to allow promotion");
114 STATISTIC(NumDeleted, "Number of instructions deleted");
115 STATISTIC(NumVectorized, "Number of vectorized aggregates");
116 
117 /// Hidden option to experiment with completely strict handling of inbounds
118 /// GEPs.
119 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
120                                         cl::Hidden);
121 namespace {
122 /// Find linked dbg.assign and generate a new one with the correct
123 /// FragmentInfo. Link Inst to the new dbg.assign.  If Value is nullptr the
124 /// value component is copied from the old dbg.assign to the new.
125 /// \param OldAlloca             Alloca for the variable before splitting.
126 /// \param RelativeOffsetInBits  Offset into \p OldAlloca relative to the
127 ///                              offset prior to splitting (change in offset).
128 /// \param SliceSizeInBits       New number of bits being written to.
129 /// \param OldInst               Instruction that is being split.
130 /// \param Inst                  New instruction performing this part of the
131 ///                              split store.
132 /// \param Dest                  Store destination.
133 /// \param Value                 Stored value.
134 /// \param DL                    Datalayout.
migrateDebugInfo(AllocaInst * OldAlloca,uint64_t RelativeOffsetInBits,uint64_t SliceSizeInBits,Instruction * OldInst,Instruction * Inst,Value * Dest,Value * Value,const DataLayout & DL)135 static void migrateDebugInfo(AllocaInst *OldAlloca,
136                              uint64_t RelativeOffsetInBits,
137                              uint64_t SliceSizeInBits, Instruction *OldInst,
138                              Instruction *Inst, Value *Dest, Value *Value,
139                              const DataLayout &DL) {
140   auto MarkerRange = at::getAssignmentMarkers(OldInst);
141   // Nothing to do if OldInst has no linked dbg.assign intrinsics.
142   if (MarkerRange.empty())
143     return;
144 
145   LLVM_DEBUG(dbgs() << "  migrateDebugInfo\n");
146   LLVM_DEBUG(dbgs() << "    OldAlloca: " << *OldAlloca << "\n");
147   LLVM_DEBUG(dbgs() << "    RelativeOffset: " << RelativeOffsetInBits << "\n");
148   LLVM_DEBUG(dbgs() << "    SliceSizeInBits: " << SliceSizeInBits << "\n");
149   LLVM_DEBUG(dbgs() << "    OldInst: " << *OldInst << "\n");
150   LLVM_DEBUG(dbgs() << "    Inst: " << *Inst << "\n");
151   LLVM_DEBUG(dbgs() << "    Dest: " << *Dest << "\n");
152   if (Value)
153     LLVM_DEBUG(dbgs() << "    Value: " << *Value << "\n");
154 
155   // The new inst needs a DIAssignID unique metadata tag (if OldInst has
156   // one). It shouldn't already have one: assert this assumption.
157   assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID));
158   DIAssignID *NewID = nullptr;
159   auto &Ctx = Inst->getContext();
160   DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false);
161   uint64_t AllocaSizeInBits = *OldAlloca->getAllocationSizeInBits(DL);
162   assert(OldAlloca->isStaticAlloca());
163 
164   for (DbgAssignIntrinsic *DbgAssign : MarkerRange) {
165     LLVM_DEBUG(dbgs() << "      existing dbg.assign is: " << *DbgAssign
166                       << "\n");
167     auto *Expr = DbgAssign->getExpression();
168 
169     // Check if the dbg.assign already describes a fragment.
170     auto GetCurrentFragSize = [AllocaSizeInBits, DbgAssign,
171                                Expr]() -> uint64_t {
172       if (auto FI = Expr->getFragmentInfo())
173         return FI->SizeInBits;
174       if (auto VarSize = DbgAssign->getVariable()->getSizeInBits())
175         return *VarSize;
176       // The variable type has an unspecified size. This can happen in the
177       // case of DW_TAG_unspecified_type types, e.g.  std::nullptr_t. Because
178       // there is no fragment and we do not know the size of the variable type,
179       // we'll guess by looking at the alloca.
180       return AllocaSizeInBits;
181     };
182     uint64_t CurrentFragSize = GetCurrentFragSize();
183     bool MakeNewFragment = CurrentFragSize != SliceSizeInBits;
184     assert(MakeNewFragment || RelativeOffsetInBits == 0);
185 
186     assert(SliceSizeInBits <= AllocaSizeInBits);
187     if (MakeNewFragment) {
188       assert(RelativeOffsetInBits + SliceSizeInBits <= CurrentFragSize);
189       auto E = DIExpression::createFragmentExpression(
190           Expr, RelativeOffsetInBits, SliceSizeInBits);
191       assert(E && "Failed to create fragment expr!");
192       Expr = *E;
193     }
194 
195     // If we haven't created a DIAssignID ID do that now and attach it to Inst.
196     if (!NewID) {
197       NewID = DIAssignID::getDistinct(Ctx);
198       Inst->setMetadata(LLVMContext::MD_DIAssignID, NewID);
199     }
200 
201     Value = Value ? Value : DbgAssign->getValue();
202     auto *NewAssign = DIB.insertDbgAssign(
203         Inst, Value, DbgAssign->getVariable(), Expr, Dest,
204         DIExpression::get(Ctx, std::nullopt), DbgAssign->getDebugLoc());
205 
206     // We could use more precision here at the cost of some additional (code)
207     // complexity - if the original dbg.assign was adjacent to its store, we
208     // could position this new dbg.assign adjacent to its store rather than the
209     // old dbg.assgn. That would result in interleaved dbg.assigns rather than
210     // what we get now:
211     //    split store !1
212     //    split store !2
213     //    dbg.assign !1
214     //    dbg.assign !2
215     // This (current behaviour) results results in debug assignments being
216     // noted as slightly offset (in code) from the store. In practice this
217     // should have little effect on the debugging experience due to the fact
218     // that all the split stores should get the same line number.
219     NewAssign->moveBefore(DbgAssign);
220 
221     NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
222     LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign
223                       << "\n");
224   }
225 }
226 
227 /// A custom IRBuilder inserter which prefixes all names, but only in
228 /// Assert builds.
229 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
230   std::string Prefix;
231 
getNameWithPrefix(const Twine & Name) const232   Twine getNameWithPrefix(const Twine &Name) const {
233     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
234   }
235 
236 public:
SetNamePrefix(const Twine & P)237   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
238 
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt) const239   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
240                     BasicBlock::iterator InsertPt) const override {
241     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
242                                            InsertPt);
243   }
244 };
245 
246 /// Provide a type for IRBuilder that drops names in release builds.
247 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
248 
249 /// A used slice of an alloca.
250 ///
251 /// This structure represents a slice of an alloca used by some instruction. It
252 /// stores both the begin and end offsets of this use, a pointer to the use
253 /// itself, and a flag indicating whether we can classify the use as splittable
254 /// or not when forming partitions of the alloca.
255 class Slice {
256   /// The beginning offset of the range.
257   uint64_t BeginOffset = 0;
258 
259   /// The ending offset, not included in the range.
260   uint64_t EndOffset = 0;
261 
262   /// Storage for both the use of this slice and whether it can be
263   /// split.
264   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
265 
266 public:
267   Slice() = default;
268 
Slice(uint64_t BeginOffset,uint64_t EndOffset,Use * U,bool IsSplittable)269   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
270       : BeginOffset(BeginOffset), EndOffset(EndOffset),
271         UseAndIsSplittable(U, IsSplittable) {}
272 
beginOffset() const273   uint64_t beginOffset() const { return BeginOffset; }
endOffset() const274   uint64_t endOffset() const { return EndOffset; }
275 
isSplittable() const276   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
makeUnsplittable()277   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
278 
getUse() const279   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
280 
isDead() const281   bool isDead() const { return getUse() == nullptr; }
kill()282   void kill() { UseAndIsSplittable.setPointer(nullptr); }
283 
284   /// Support for ordering ranges.
285   ///
286   /// This provides an ordering over ranges such that start offsets are
287   /// always increasing, and within equal start offsets, the end offsets are
288   /// decreasing. Thus the spanning range comes first in a cluster with the
289   /// same start position.
operator <(const Slice & RHS) const290   bool operator<(const Slice &RHS) const {
291     if (beginOffset() < RHS.beginOffset())
292       return true;
293     if (beginOffset() > RHS.beginOffset())
294       return false;
295     if (isSplittable() != RHS.isSplittable())
296       return !isSplittable();
297     if (endOffset() > RHS.endOffset())
298       return true;
299     return false;
300   }
301 
302   /// Support comparison with a single offset to allow binary searches.
operator <(const Slice & LHS,uint64_t RHSOffset)303   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
304                                               uint64_t RHSOffset) {
305     return LHS.beginOffset() < RHSOffset;
306   }
operator <(uint64_t LHSOffset,const Slice & RHS)307   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
308                                               const Slice &RHS) {
309     return LHSOffset < RHS.beginOffset();
310   }
311 
operator ==(const Slice & RHS) const312   bool operator==(const Slice &RHS) const {
313     return isSplittable() == RHS.isSplittable() &&
314            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
315   }
operator !=(const Slice & RHS) const316   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
317 };
318 
319 } // end anonymous namespace
320 
321 /// Representation of the alloca slices.
322 ///
323 /// This class represents the slices of an alloca which are formed by its
324 /// various uses. If a pointer escapes, we can't fully build a representation
325 /// for the slices used and we reflect that in this structure. The uses are
326 /// stored, sorted by increasing beginning offset and with unsplittable slices
327 /// starting at a particular offset before splittable slices.
328 class llvm::sroa::AllocaSlices {
329 public:
330   /// Construct the slices of a particular alloca.
331   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
332 
333   /// Test whether a pointer to the allocation escapes our analysis.
334   ///
335   /// If this is true, the slices are never fully built and should be
336   /// ignored.
isEscaped() const337   bool isEscaped() const { return PointerEscapingInstr; }
338 
339   /// Support for iterating over the slices.
340   /// @{
341   using iterator = SmallVectorImpl<Slice>::iterator;
342   using range = iterator_range<iterator>;
343 
begin()344   iterator begin() { return Slices.begin(); }
end()345   iterator end() { return Slices.end(); }
346 
347   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
348   using const_range = iterator_range<const_iterator>;
349 
begin() const350   const_iterator begin() const { return Slices.begin(); }
end() const351   const_iterator end() const { return Slices.end(); }
352   /// @}
353 
354   /// Erase a range of slices.
erase(iterator Start,iterator Stop)355   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
356 
357   /// Insert new slices for this alloca.
358   ///
359   /// This moves the slices into the alloca's slices collection, and re-sorts
360   /// everything so that the usual ordering properties of the alloca's slices
361   /// hold.
insert(ArrayRef<Slice> NewSlices)362   void insert(ArrayRef<Slice> NewSlices) {
363     int OldSize = Slices.size();
364     Slices.append(NewSlices.begin(), NewSlices.end());
365     auto SliceI = Slices.begin() + OldSize;
366     llvm::sort(SliceI, Slices.end());
367     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
368   }
369 
370   // Forward declare the iterator and range accessor for walking the
371   // partitions.
372   class partition_iterator;
373   iterator_range<partition_iterator> partitions();
374 
375   /// Access the dead users for this alloca.
getDeadUsers() const376   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
377 
378   /// Access Uses that should be dropped if the alloca is promotable.
getDeadUsesIfPromotable() const379   ArrayRef<Use *> getDeadUsesIfPromotable() const {
380     return DeadUseIfPromotable;
381   }
382 
383   /// Access the dead operands referring to this alloca.
384   ///
385   /// These are operands which have cannot actually be used to refer to the
386   /// alloca as they are outside its range and the user doesn't correct for
387   /// that. These mostly consist of PHI node inputs and the like which we just
388   /// need to replace with undef.
getDeadOperands() const389   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
390 
391 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
392   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
393   void printSlice(raw_ostream &OS, const_iterator I,
394                   StringRef Indent = "  ") const;
395   void printUse(raw_ostream &OS, const_iterator I,
396                 StringRef Indent = "  ") const;
397   void print(raw_ostream &OS) const;
398   void dump(const_iterator I) const;
399   void dump() const;
400 #endif
401 
402 private:
403   template <typename DerivedT, typename RetT = void> class BuilderBase;
404   class SliceBuilder;
405 
406   friend class AllocaSlices::SliceBuilder;
407 
408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
409   /// Handle to alloca instruction to simplify method interfaces.
410   AllocaInst &AI;
411 #endif
412 
413   /// The instruction responsible for this alloca not having a known set
414   /// of slices.
415   ///
416   /// When an instruction (potentially) escapes the pointer to the alloca, we
417   /// store a pointer to that here and abort trying to form slices of the
418   /// alloca. This will be null if the alloca slices are analyzed successfully.
419   Instruction *PointerEscapingInstr;
420 
421   /// The slices of the alloca.
422   ///
423   /// We store a vector of the slices formed by uses of the alloca here. This
424   /// vector is sorted by increasing begin offset, and then the unsplittable
425   /// slices before the splittable ones. See the Slice inner class for more
426   /// details.
427   SmallVector<Slice, 8> Slices;
428 
429   /// Instructions which will become dead if we rewrite the alloca.
430   ///
431   /// Note that these are not separated by slice. This is because we expect an
432   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
433   /// all these instructions can simply be removed and replaced with poison as
434   /// they come from outside of the allocated space.
435   SmallVector<Instruction *, 8> DeadUsers;
436 
437   /// Uses which will become dead if can promote the alloca.
438   SmallVector<Use *, 8> DeadUseIfPromotable;
439 
440   /// Operands which will become dead if we rewrite the alloca.
441   ///
442   /// These are operands that in their particular use can be replaced with
443   /// poison when we rewrite the alloca. These show up in out-of-bounds inputs
444   /// to PHI nodes and the like. They aren't entirely dead (there might be
445   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
446   /// want to swap this particular input for poison to simplify the use lists of
447   /// the alloca.
448   SmallVector<Use *, 8> DeadOperands;
449 };
450 
451 /// A partition of the slices.
452 ///
453 /// An ephemeral representation for a range of slices which can be viewed as
454 /// a partition of the alloca. This range represents a span of the alloca's
455 /// memory which cannot be split, and provides access to all of the slices
456 /// overlapping some part of the partition.
457 ///
458 /// Objects of this type are produced by traversing the alloca's slices, but
459 /// are only ephemeral and not persistent.
460 class llvm::sroa::Partition {
461 private:
462   friend class AllocaSlices;
463   friend class AllocaSlices::partition_iterator;
464 
465   using iterator = AllocaSlices::iterator;
466 
467   /// The beginning and ending offsets of the alloca for this
468   /// partition.
469   uint64_t BeginOffset = 0, EndOffset = 0;
470 
471   /// The start and end iterators of this partition.
472   iterator SI, SJ;
473 
474   /// A collection of split slice tails overlapping the partition.
475   SmallVector<Slice *, 4> SplitTails;
476 
477   /// Raw constructor builds an empty partition starting and ending at
478   /// the given iterator.
Partition(iterator SI)479   Partition(iterator SI) : SI(SI), SJ(SI) {}
480 
481 public:
482   /// The start offset of this partition.
483   ///
484   /// All of the contained slices start at or after this offset.
beginOffset() const485   uint64_t beginOffset() const { return BeginOffset; }
486 
487   /// The end offset of this partition.
488   ///
489   /// All of the contained slices end at or before this offset.
endOffset() const490   uint64_t endOffset() const { return EndOffset; }
491 
492   /// The size of the partition.
493   ///
494   /// Note that this can never be zero.
size() const495   uint64_t size() const {
496     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
497     return EndOffset - BeginOffset;
498   }
499 
500   /// Test whether this partition contains no slices, and merely spans
501   /// a region occupied by split slices.
empty() const502   bool empty() const { return SI == SJ; }
503 
504   /// \name Iterate slices that start within the partition.
505   /// These may be splittable or unsplittable. They have a begin offset >= the
506   /// partition begin offset.
507   /// @{
508   // FIXME: We should probably define a "concat_iterator" helper and use that
509   // to stitch together pointee_iterators over the split tails and the
510   // contiguous iterators of the partition. That would give a much nicer
511   // interface here. We could then additionally expose filtered iterators for
512   // split, unsplit, and unsplittable splices based on the usage patterns.
begin() const513   iterator begin() const { return SI; }
end() const514   iterator end() const { return SJ; }
515   /// @}
516 
517   /// Get the sequence of split slice tails.
518   ///
519   /// These tails are of slices which start before this partition but are
520   /// split and overlap into the partition. We accumulate these while forming
521   /// partitions.
splitSliceTails() const522   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
523 };
524 
525 /// An iterator over partitions of the alloca's slices.
526 ///
527 /// This iterator implements the core algorithm for partitioning the alloca's
528 /// slices. It is a forward iterator as we don't support backtracking for
529 /// efficiency reasons, and re-use a single storage area to maintain the
530 /// current set of split slices.
531 ///
532 /// It is templated on the slice iterator type to use so that it can operate
533 /// with either const or non-const slice iterators.
534 class AllocaSlices::partition_iterator
535     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
536                                   Partition> {
537   friend class AllocaSlices;
538 
539   /// Most of the state for walking the partitions is held in a class
540   /// with a nice interface for examining them.
541   Partition P;
542 
543   /// We need to keep the end of the slices to know when to stop.
544   AllocaSlices::iterator SE;
545 
546   /// We also need to keep track of the maximum split end offset seen.
547   /// FIXME: Do we really?
548   uint64_t MaxSplitSliceEndOffset = 0;
549 
550   /// Sets the partition to be empty at given iterator, and sets the
551   /// end iterator.
partition_iterator(AllocaSlices::iterator SI,AllocaSlices::iterator SE)552   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
553       : P(SI), SE(SE) {
554     // If not already at the end, advance our state to form the initial
555     // partition.
556     if (SI != SE)
557       advance();
558   }
559 
560   /// Advance the iterator to the next partition.
561   ///
562   /// Requires that the iterator not be at the end of the slices.
advance()563   void advance() {
564     assert((P.SI != SE || !P.SplitTails.empty()) &&
565            "Cannot advance past the end of the slices!");
566 
567     // Clear out any split uses which have ended.
568     if (!P.SplitTails.empty()) {
569       if (P.EndOffset >= MaxSplitSliceEndOffset) {
570         // If we've finished all splits, this is easy.
571         P.SplitTails.clear();
572         MaxSplitSliceEndOffset = 0;
573       } else {
574         // Remove the uses which have ended in the prior partition. This
575         // cannot change the max split slice end because we just checked that
576         // the prior partition ended prior to that max.
577         llvm::erase_if(P.SplitTails,
578                        [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
579         assert(llvm::any_of(P.SplitTails,
580                             [&](Slice *S) {
581                               return S->endOffset() == MaxSplitSliceEndOffset;
582                             }) &&
583                "Could not find the current max split slice offset!");
584         assert(llvm::all_of(P.SplitTails,
585                             [&](Slice *S) {
586                               return S->endOffset() <= MaxSplitSliceEndOffset;
587                             }) &&
588                "Max split slice end offset is not actually the max!");
589       }
590     }
591 
592     // If P.SI is already at the end, then we've cleared the split tail and
593     // now have an end iterator.
594     if (P.SI == SE) {
595       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
596       return;
597     }
598 
599     // If we had a non-empty partition previously, set up the state for
600     // subsequent partitions.
601     if (P.SI != P.SJ) {
602       // Accumulate all the splittable slices which started in the old
603       // partition into the split list.
604       for (Slice &S : P)
605         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
606           P.SplitTails.push_back(&S);
607           MaxSplitSliceEndOffset =
608               std::max(S.endOffset(), MaxSplitSliceEndOffset);
609         }
610 
611       // Start from the end of the previous partition.
612       P.SI = P.SJ;
613 
614       // If P.SI is now at the end, we at most have a tail of split slices.
615       if (P.SI == SE) {
616         P.BeginOffset = P.EndOffset;
617         P.EndOffset = MaxSplitSliceEndOffset;
618         return;
619       }
620 
621       // If the we have split slices and the next slice is after a gap and is
622       // not splittable immediately form an empty partition for the split
623       // slices up until the next slice begins.
624       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
625           !P.SI->isSplittable()) {
626         P.BeginOffset = P.EndOffset;
627         P.EndOffset = P.SI->beginOffset();
628         return;
629       }
630     }
631 
632     // OK, we need to consume new slices. Set the end offset based on the
633     // current slice, and step SJ past it. The beginning offset of the
634     // partition is the beginning offset of the next slice unless we have
635     // pre-existing split slices that are continuing, in which case we begin
636     // at the prior end offset.
637     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
638     P.EndOffset = P.SI->endOffset();
639     ++P.SJ;
640 
641     // There are two strategies to form a partition based on whether the
642     // partition starts with an unsplittable slice or a splittable slice.
643     if (!P.SI->isSplittable()) {
644       // When we're forming an unsplittable region, it must always start at
645       // the first slice and will extend through its end.
646       assert(P.BeginOffset == P.SI->beginOffset());
647 
648       // Form a partition including all of the overlapping slices with this
649       // unsplittable slice.
650       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
651         if (!P.SJ->isSplittable())
652           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
653         ++P.SJ;
654       }
655 
656       // We have a partition across a set of overlapping unsplittable
657       // partitions.
658       return;
659     }
660 
661     // If we're starting with a splittable slice, then we need to form
662     // a synthetic partition spanning it and any other overlapping splittable
663     // splices.
664     assert(P.SI->isSplittable() && "Forming a splittable partition!");
665 
666     // Collect all of the overlapping splittable slices.
667     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
668            P.SJ->isSplittable()) {
669       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
670       ++P.SJ;
671     }
672 
673     // Back upiP.EndOffset if we ended the span early when encountering an
674     // unsplittable slice. This synthesizes the early end offset of
675     // a partition spanning only splittable slices.
676     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
677       assert(!P.SJ->isSplittable());
678       P.EndOffset = P.SJ->beginOffset();
679     }
680   }
681 
682 public:
operator ==(const partition_iterator & RHS) const683   bool operator==(const partition_iterator &RHS) const {
684     assert(SE == RHS.SE &&
685            "End iterators don't match between compared partition iterators!");
686 
687     // The observed positions of partitions is marked by the P.SI iterator and
688     // the emptiness of the split slices. The latter is only relevant when
689     // P.SI == SE, as the end iterator will additionally have an empty split
690     // slices list, but the prior may have the same P.SI and a tail of split
691     // slices.
692     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
693       assert(P.SJ == RHS.P.SJ &&
694              "Same set of slices formed two different sized partitions!");
695       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
696              "Same slice position with differently sized non-empty split "
697              "slice tails!");
698       return true;
699     }
700     return false;
701   }
702 
operator ++()703   partition_iterator &operator++() {
704     advance();
705     return *this;
706   }
707 
operator *()708   Partition &operator*() { return P; }
709 };
710 
711 /// A forward range over the partitions of the alloca's slices.
712 ///
713 /// This accesses an iterator range over the partitions of the alloca's
714 /// slices. It computes these partitions on the fly based on the overlapping
715 /// offsets of the slices and the ability to split them. It will visit "empty"
716 /// partitions to cover regions of the alloca only accessed via split
717 /// slices.
partitions()718 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
719   return make_range(partition_iterator(begin(), end()),
720                     partition_iterator(end(), end()));
721 }
722 
foldSelectInst(SelectInst & SI)723 static Value *foldSelectInst(SelectInst &SI) {
724   // If the condition being selected on is a constant or the same value is
725   // being selected between, fold the select. Yes this does (rarely) happen
726   // early on.
727   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
728     return SI.getOperand(1 + CI->isZero());
729   if (SI.getOperand(1) == SI.getOperand(2))
730     return SI.getOperand(1);
731 
732   return nullptr;
733 }
734 
735 /// A helper that folds a PHI node or a select.
foldPHINodeOrSelectInst(Instruction & I)736 static Value *foldPHINodeOrSelectInst(Instruction &I) {
737   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
738     // If PN merges together the same value, return that value.
739     return PN->hasConstantValue();
740   }
741   return foldSelectInst(cast<SelectInst>(I));
742 }
743 
744 /// Builder for the alloca slices.
745 ///
746 /// This class builds a set of alloca slices by recursively visiting the uses
747 /// of an alloca and making a slice for each load and store at each offset.
748 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
749   friend class PtrUseVisitor<SliceBuilder>;
750   friend class InstVisitor<SliceBuilder>;
751 
752   using Base = PtrUseVisitor<SliceBuilder>;
753 
754   const uint64_t AllocSize;
755   AllocaSlices &AS;
756 
757   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
758   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
759 
760   /// Set to de-duplicate dead instructions found in the use walk.
761   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
762 
763 public:
SliceBuilder(const DataLayout & DL,AllocaInst & AI,AllocaSlices & AS)764   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
765       : PtrUseVisitor<SliceBuilder>(DL),
766         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue()),
767         AS(AS) {}
768 
769 private:
markAsDead(Instruction & I)770   void markAsDead(Instruction &I) {
771     if (VisitedDeadInsts.insert(&I).second)
772       AS.DeadUsers.push_back(&I);
773   }
774 
insertUse(Instruction & I,const APInt & Offset,uint64_t Size,bool IsSplittable=false)775   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
776                  bool IsSplittable = false) {
777     // Completely skip uses which have a zero size or start either before or
778     // past the end of the allocation.
779     if (Size == 0 || Offset.uge(AllocSize)) {
780       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
781                         << Offset
782                         << " which has zero size or starts outside of the "
783                         << AllocSize << " byte alloca:\n"
784                         << "    alloca: " << AS.AI << "\n"
785                         << "       use: " << I << "\n");
786       return markAsDead(I);
787     }
788 
789     uint64_t BeginOffset = Offset.getZExtValue();
790     uint64_t EndOffset = BeginOffset + Size;
791 
792     // Clamp the end offset to the end of the allocation. Note that this is
793     // formulated to handle even the case where "BeginOffset + Size" overflows.
794     // This may appear superficially to be something we could ignore entirely,
795     // but that is not so! There may be widened loads or PHI-node uses where
796     // some instructions are dead but not others. We can't completely ignore
797     // them, and so have to record at least the information here.
798     assert(AllocSize >= BeginOffset); // Established above.
799     if (Size > AllocSize - BeginOffset) {
800       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
801                         << Offset << " to remain within the " << AllocSize
802                         << " byte alloca:\n"
803                         << "    alloca: " << AS.AI << "\n"
804                         << "       use: " << I << "\n");
805       EndOffset = AllocSize;
806     }
807 
808     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
809   }
810 
visitBitCastInst(BitCastInst & BC)811   void visitBitCastInst(BitCastInst &BC) {
812     if (BC.use_empty())
813       return markAsDead(BC);
814 
815     return Base::visitBitCastInst(BC);
816   }
817 
visitAddrSpaceCastInst(AddrSpaceCastInst & ASC)818   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
819     if (ASC.use_empty())
820       return markAsDead(ASC);
821 
822     return Base::visitAddrSpaceCastInst(ASC);
823   }
824 
visitGetElementPtrInst(GetElementPtrInst & GEPI)825   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
826     if (GEPI.use_empty())
827       return markAsDead(GEPI);
828 
829     if (SROAStrictInbounds && GEPI.isInBounds()) {
830       // FIXME: This is a manually un-factored variant of the basic code inside
831       // of GEPs with checking of the inbounds invariant specified in the
832       // langref in a very strict sense. If we ever want to enable
833       // SROAStrictInbounds, this code should be factored cleanly into
834       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
835       // by writing out the code here where we have the underlying allocation
836       // size readily available.
837       APInt GEPOffset = Offset;
838       const DataLayout &DL = GEPI.getModule()->getDataLayout();
839       for (gep_type_iterator GTI = gep_type_begin(GEPI),
840                              GTE = gep_type_end(GEPI);
841            GTI != GTE; ++GTI) {
842         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
843         if (!OpC)
844           break;
845 
846         // Handle a struct index, which adds its field offset to the pointer.
847         if (StructType *STy = GTI.getStructTypeOrNull()) {
848           unsigned ElementIdx = OpC->getZExtValue();
849           const StructLayout *SL = DL.getStructLayout(STy);
850           GEPOffset +=
851               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
852         } else {
853           // For array or vector indices, scale the index by the size of the
854           // type.
855           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
856           GEPOffset +=
857               Index *
858               APInt(Offset.getBitWidth(),
859                     DL.getTypeAllocSize(GTI.getIndexedType()).getFixedValue());
860         }
861 
862         // If this index has computed an intermediate pointer which is not
863         // inbounds, then the result of the GEP is a poison value and we can
864         // delete it and all uses.
865         if (GEPOffset.ugt(AllocSize))
866           return markAsDead(GEPI);
867       }
868     }
869 
870     return Base::visitGetElementPtrInst(GEPI);
871   }
872 
handleLoadOrStore(Type * Ty,Instruction & I,const APInt & Offset,uint64_t Size,bool IsVolatile)873   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
874                          uint64_t Size, bool IsVolatile) {
875     // We allow splitting of non-volatile loads and stores where the type is an
876     // integer type. These may be used to implement 'memcpy' or other "transfer
877     // of bits" patterns.
878     bool IsSplittable =
879         Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty);
880 
881     insertUse(I, Offset, Size, IsSplittable);
882   }
883 
visitLoadInst(LoadInst & LI)884   void visitLoadInst(LoadInst &LI) {
885     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
886            "All simple FCA loads should have been pre-split");
887 
888     if (!IsOffsetKnown)
889       return PI.setAborted(&LI);
890 
891     if (isa<ScalableVectorType>(LI.getType()))
892       return PI.setAborted(&LI);
893 
894     uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedValue();
895     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
896   }
897 
visitStoreInst(StoreInst & SI)898   void visitStoreInst(StoreInst &SI) {
899     Value *ValOp = SI.getValueOperand();
900     if (ValOp == *U)
901       return PI.setEscapedAndAborted(&SI);
902     if (!IsOffsetKnown)
903       return PI.setAborted(&SI);
904 
905     if (isa<ScalableVectorType>(ValOp->getType()))
906       return PI.setAborted(&SI);
907 
908     uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedValue();
909 
910     // If this memory access can be shown to *statically* extend outside the
911     // bounds of the allocation, it's behavior is undefined, so simply
912     // ignore it. Note that this is more strict than the generic clamping
913     // behavior of insertUse. We also try to handle cases which might run the
914     // risk of overflow.
915     // FIXME: We should instead consider the pointer to have escaped if this
916     // function is being instrumented for addressing bugs or race conditions.
917     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
918       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
919                         << Offset << " which extends past the end of the "
920                         << AllocSize << " byte alloca:\n"
921                         << "    alloca: " << AS.AI << "\n"
922                         << "       use: " << SI << "\n");
923       return markAsDead(SI);
924     }
925 
926     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
927            "All simple FCA stores should have been pre-split");
928     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
929   }
930 
visitMemSetInst(MemSetInst & II)931   void visitMemSetInst(MemSetInst &II) {
932     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
933     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
934     if ((Length && Length->getValue() == 0) ||
935         (IsOffsetKnown && Offset.uge(AllocSize)))
936       // Zero-length mem transfer intrinsics can be ignored entirely.
937       return markAsDead(II);
938 
939     if (!IsOffsetKnown)
940       return PI.setAborted(&II);
941 
942     insertUse(II, Offset, Length ? Length->getLimitedValue()
943                                  : AllocSize - Offset.getLimitedValue(),
944               (bool)Length);
945   }
946 
visitMemTransferInst(MemTransferInst & II)947   void visitMemTransferInst(MemTransferInst &II) {
948     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
949     if (Length && Length->getValue() == 0)
950       // Zero-length mem transfer intrinsics can be ignored entirely.
951       return markAsDead(II);
952 
953     // Because we can visit these intrinsics twice, also check to see if the
954     // first time marked this instruction as dead. If so, skip it.
955     if (VisitedDeadInsts.count(&II))
956       return;
957 
958     if (!IsOffsetKnown)
959       return PI.setAborted(&II);
960 
961     // This side of the transfer is completely out-of-bounds, and so we can
962     // nuke the entire transfer. However, we also need to nuke the other side
963     // if already added to our partitions.
964     // FIXME: Yet another place we really should bypass this when
965     // instrumenting for ASan.
966     if (Offset.uge(AllocSize)) {
967       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
968           MemTransferSliceMap.find(&II);
969       if (MTPI != MemTransferSliceMap.end())
970         AS.Slices[MTPI->second].kill();
971       return markAsDead(II);
972     }
973 
974     uint64_t RawOffset = Offset.getLimitedValue();
975     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
976 
977     // Check for the special case where the same exact value is used for both
978     // source and dest.
979     if (*U == II.getRawDest() && *U == II.getRawSource()) {
980       // For non-volatile transfers this is a no-op.
981       if (!II.isVolatile())
982         return markAsDead(II);
983 
984       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
985     }
986 
987     // If we have seen both source and destination for a mem transfer, then
988     // they both point to the same alloca.
989     bool Inserted;
990     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
991     std::tie(MTPI, Inserted) =
992         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
993     unsigned PrevIdx = MTPI->second;
994     if (!Inserted) {
995       Slice &PrevP = AS.Slices[PrevIdx];
996 
997       // Check if the begin offsets match and this is a non-volatile transfer.
998       // In that case, we can completely elide the transfer.
999       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
1000         PrevP.kill();
1001         return markAsDead(II);
1002       }
1003 
1004       // Otherwise we have an offset transfer within the same alloca. We can't
1005       // split those.
1006       PrevP.makeUnsplittable();
1007     }
1008 
1009     // Insert the use now that we've fixed up the splittable nature.
1010     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
1011 
1012     // Check that we ended up with a valid index in the map.
1013     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
1014            "Map index doesn't point back to a slice with this user.");
1015   }
1016 
1017   // Disable SRoA for any intrinsics except for lifetime invariants and
1018   // invariant group.
1019   // FIXME: What about debug intrinsics? This matches old behavior, but
1020   // doesn't make sense.
visitIntrinsicInst(IntrinsicInst & II)1021   void visitIntrinsicInst(IntrinsicInst &II) {
1022     if (II.isDroppable()) {
1023       AS.DeadUseIfPromotable.push_back(U);
1024       return;
1025     }
1026 
1027     if (!IsOffsetKnown)
1028       return PI.setAborted(&II);
1029 
1030     if (II.isLifetimeStartOrEnd()) {
1031       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
1032       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
1033                                Length->getLimitedValue());
1034       insertUse(II, Offset, Size, true);
1035       return;
1036     }
1037 
1038     if (II.isLaunderOrStripInvariantGroup()) {
1039       enqueueUsers(II);
1040       return;
1041     }
1042 
1043     Base::visitIntrinsicInst(II);
1044   }
1045 
hasUnsafePHIOrSelectUse(Instruction * Root,uint64_t & Size)1046   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
1047     // We consider any PHI or select that results in a direct load or store of
1048     // the same offset to be a viable use for slicing purposes. These uses
1049     // are considered unsplittable and the size is the maximum loaded or stored
1050     // size.
1051     SmallPtrSet<Instruction *, 4> Visited;
1052     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
1053     Visited.insert(Root);
1054     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
1055     const DataLayout &DL = Root->getModule()->getDataLayout();
1056     // If there are no loads or stores, the access is dead. We mark that as
1057     // a size zero access.
1058     Size = 0;
1059     do {
1060       Instruction *I, *UsedI;
1061       std::tie(UsedI, I) = Uses.pop_back_val();
1062 
1063       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1064         Size =
1065             std::max(Size, DL.getTypeStoreSize(LI->getType()).getFixedValue());
1066         continue;
1067       }
1068       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1069         Value *Op = SI->getOperand(0);
1070         if (Op == UsedI)
1071           return SI;
1072         Size =
1073             std::max(Size, DL.getTypeStoreSize(Op->getType()).getFixedValue());
1074         continue;
1075       }
1076 
1077       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
1078         if (!GEP->hasAllZeroIndices())
1079           return GEP;
1080       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
1081                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
1082         return I;
1083       }
1084 
1085       for (User *U : I->users())
1086         if (Visited.insert(cast<Instruction>(U)).second)
1087           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
1088     } while (!Uses.empty());
1089 
1090     return nullptr;
1091   }
1092 
visitPHINodeOrSelectInst(Instruction & I)1093   void visitPHINodeOrSelectInst(Instruction &I) {
1094     assert(isa<PHINode>(I) || isa<SelectInst>(I));
1095     if (I.use_empty())
1096       return markAsDead(I);
1097 
1098     // If this is a PHI node before a catchswitch, we cannot insert any non-PHI
1099     // instructions in this BB, which may be required during rewriting. Bail out
1100     // on these cases.
1101     if (isa<PHINode>(I) &&
1102         I.getParent()->getFirstInsertionPt() == I.getParent()->end())
1103       return PI.setAborted(&I);
1104 
1105     // TODO: We could use simplifyInstruction here to fold PHINodes and
1106     // SelectInsts. However, doing so requires to change the current
1107     // dead-operand-tracking mechanism. For instance, suppose neither loading
1108     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1109     // trap either.  However, if we simply replace %U with undef using the
1110     // current dead-operand-tracking mechanism, "load (select undef, undef,
1111     // %other)" may trap because the select may return the first operand
1112     // "undef".
1113     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1114       if (Result == *U)
1115         // If the result of the constant fold will be the pointer, recurse
1116         // through the PHI/select as if we had RAUW'ed it.
1117         enqueueUsers(I);
1118       else
1119         // Otherwise the operand to the PHI/select is dead, and we can replace
1120         // it with poison.
1121         AS.DeadOperands.push_back(U);
1122 
1123       return;
1124     }
1125 
1126     if (!IsOffsetKnown)
1127       return PI.setAborted(&I);
1128 
1129     // See if we already have computed info on this node.
1130     uint64_t &Size = PHIOrSelectSizes[&I];
1131     if (!Size) {
1132       // This is a new PHI/Select, check for an unsafe use of it.
1133       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1134         return PI.setAborted(UnsafeI);
1135     }
1136 
1137     // For PHI and select operands outside the alloca, we can't nuke the entire
1138     // phi or select -- the other side might still be relevant, so we special
1139     // case them here and use a separate structure to track the operands
1140     // themselves which should be replaced with poison.
1141     // FIXME: This should instead be escaped in the event we're instrumenting
1142     // for address sanitization.
1143     if (Offset.uge(AllocSize)) {
1144       AS.DeadOperands.push_back(U);
1145       return;
1146     }
1147 
1148     insertUse(I, Offset, Size);
1149   }
1150 
visitPHINode(PHINode & PN)1151   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1152 
visitSelectInst(SelectInst & SI)1153   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1154 
1155   /// Disable SROA entirely if there are unhandled users of the alloca.
visitInstruction(Instruction & I)1156   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1157 };
1158 
AllocaSlices(const DataLayout & DL,AllocaInst & AI)1159 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1160     :
1161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1162       AI(AI),
1163 #endif
1164       PointerEscapingInstr(nullptr) {
1165   SliceBuilder PB(DL, AI, *this);
1166   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1167   if (PtrI.isEscaped() || PtrI.isAborted()) {
1168     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1169     // possibly by just storing the PtrInfo in the AllocaSlices.
1170     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1171                                                   : PtrI.getAbortingInst();
1172     assert(PointerEscapingInstr && "Did not track a bad instruction");
1173     return;
1174   }
1175 
1176   llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1177 
1178   // Sort the uses. This arranges for the offsets to be in ascending order,
1179   // and the sizes to be in descending order.
1180   llvm::stable_sort(Slices);
1181 }
1182 
1183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1184 
print(raw_ostream & OS,const_iterator I,StringRef Indent) const1185 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1186                          StringRef Indent) const {
1187   printSlice(OS, I, Indent);
1188   OS << "\n";
1189   printUse(OS, I, Indent);
1190 }
1191 
printSlice(raw_ostream & OS,const_iterator I,StringRef Indent) const1192 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1193                               StringRef Indent) const {
1194   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1195      << " slice #" << (I - begin())
1196      << (I->isSplittable() ? " (splittable)" : "");
1197 }
1198 
printUse(raw_ostream & OS,const_iterator I,StringRef Indent) const1199 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1200                             StringRef Indent) const {
1201   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1202 }
1203 
print(raw_ostream & OS) const1204 void AllocaSlices::print(raw_ostream &OS) const {
1205   if (PointerEscapingInstr) {
1206     OS << "Can't analyze slices for alloca: " << AI << "\n"
1207        << "  A pointer to this alloca escaped by:\n"
1208        << "  " << *PointerEscapingInstr << "\n";
1209     return;
1210   }
1211 
1212   OS << "Slices of alloca: " << AI << "\n";
1213   for (const_iterator I = begin(), E = end(); I != E; ++I)
1214     print(OS, I);
1215 }
1216 
dump(const_iterator I) const1217 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1218   print(dbgs(), I);
1219 }
dump() const1220 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1221 
1222 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1223 
1224 /// Walk the range of a partitioning looking for a common type to cover this
1225 /// sequence of slices.
1226 static std::pair<Type *, IntegerType *>
findCommonType(AllocaSlices::const_iterator B,AllocaSlices::const_iterator E,uint64_t EndOffset)1227 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1228                uint64_t EndOffset) {
1229   Type *Ty = nullptr;
1230   bool TyIsCommon = true;
1231   IntegerType *ITy = nullptr;
1232 
1233   // Note that we need to look at *every* alloca slice's Use to ensure we
1234   // always get consistent results regardless of the order of slices.
1235   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1236     Use *U = I->getUse();
1237     if (isa<IntrinsicInst>(*U->getUser()))
1238       continue;
1239     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1240       continue;
1241 
1242     Type *UserTy = nullptr;
1243     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1244       UserTy = LI->getType();
1245     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1246       UserTy = SI->getValueOperand()->getType();
1247     }
1248 
1249     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1250       // If the type is larger than the partition, skip it. We only encounter
1251       // this for split integer operations where we want to use the type of the
1252       // entity causing the split. Also skip if the type is not a byte width
1253       // multiple.
1254       if (UserITy->getBitWidth() % 8 != 0 ||
1255           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1256         continue;
1257 
1258       // Track the largest bitwidth integer type used in this way in case there
1259       // is no common type.
1260       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1261         ITy = UserITy;
1262     }
1263 
1264     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1265     // depend on types skipped above.
1266     if (!UserTy || (Ty && Ty != UserTy))
1267       TyIsCommon = false; // Give up on anything but an iN type.
1268     else
1269       Ty = UserTy;
1270   }
1271 
1272   return {TyIsCommon ? Ty : nullptr, ITy};
1273 }
1274 
1275 /// PHI instructions that use an alloca and are subsequently loaded can be
1276 /// rewritten to load both input pointers in the pred blocks and then PHI the
1277 /// results, allowing the load of the alloca to be promoted.
1278 /// From this:
1279 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1280 ///   %V = load i32* %P2
1281 /// to:
1282 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1283 ///   ...
1284 ///   %V2 = load i32* %Other
1285 ///   ...
1286 ///   %V = phi [i32 %V1, i32 %V2]
1287 ///
1288 /// We can do this to a select if its only uses are loads and if the operands
1289 /// to the select can be loaded unconditionally.
1290 ///
1291 /// FIXME: This should be hoisted into a generic utility, likely in
1292 /// Transforms/Util/Local.h
isSafePHIToSpeculate(PHINode & PN)1293 static bool isSafePHIToSpeculate(PHINode &PN) {
1294   const DataLayout &DL = PN.getModule()->getDataLayout();
1295 
1296   // For now, we can only do this promotion if the load is in the same block
1297   // as the PHI, and if there are no stores between the phi and load.
1298   // TODO: Allow recursive phi users.
1299   // TODO: Allow stores.
1300   BasicBlock *BB = PN.getParent();
1301   Align MaxAlign;
1302   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1303   Type *LoadType = nullptr;
1304   for (User *U : PN.users()) {
1305     LoadInst *LI = dyn_cast<LoadInst>(U);
1306     if (!LI || !LI->isSimple())
1307       return false;
1308 
1309     // For now we only allow loads in the same block as the PHI.  This is
1310     // a common case that happens when instcombine merges two loads through
1311     // a PHI.
1312     if (LI->getParent() != BB)
1313       return false;
1314 
1315     if (LoadType) {
1316       if (LoadType != LI->getType())
1317         return false;
1318     } else {
1319       LoadType = LI->getType();
1320     }
1321 
1322     // Ensure that there are no instructions between the PHI and the load that
1323     // could store.
1324     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1325       if (BBI->mayWriteToMemory())
1326         return false;
1327 
1328     MaxAlign = std::max(MaxAlign, LI->getAlign());
1329   }
1330 
1331   if (!LoadType)
1332     return false;
1333 
1334   APInt LoadSize =
1335       APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedValue());
1336 
1337   // We can only transform this if it is safe to push the loads into the
1338   // predecessor blocks. The only thing to watch out for is that we can't put
1339   // a possibly trapping load in the predecessor if it is a critical edge.
1340   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1341     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1342     Value *InVal = PN.getIncomingValue(Idx);
1343 
1344     // If the value is produced by the terminator of the predecessor (an
1345     // invoke) or it has side-effects, there is no valid place to put a load
1346     // in the predecessor.
1347     if (TI == InVal || TI->mayHaveSideEffects())
1348       return false;
1349 
1350     // If the predecessor has a single successor, then the edge isn't
1351     // critical.
1352     if (TI->getNumSuccessors() == 1)
1353       continue;
1354 
1355     // If this pointer is always safe to load, or if we can prove that there
1356     // is already a load in the block, then we can move the load to the pred
1357     // block.
1358     if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI))
1359       continue;
1360 
1361     return false;
1362   }
1363 
1364   return true;
1365 }
1366 
speculatePHINodeLoads(IRBuilderTy & IRB,PHINode & PN)1367 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) {
1368   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1369 
1370   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1371   Type *LoadTy = SomeLoad->getType();
1372   IRB.SetInsertPoint(&PN);
1373   PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1374                                  PN.getName() + ".sroa.speculated");
1375 
1376   // Get the AA tags and alignment to use from one of the loads. It does not
1377   // matter which one we get and if any differ.
1378   AAMDNodes AATags = SomeLoad->getAAMetadata();
1379   Align Alignment = SomeLoad->getAlign();
1380 
1381   // Rewrite all loads of the PN to use the new PHI.
1382   while (!PN.use_empty()) {
1383     LoadInst *LI = cast<LoadInst>(PN.user_back());
1384     LI->replaceAllUsesWith(NewPN);
1385     LI->eraseFromParent();
1386   }
1387 
1388   // Inject loads into all of the pred blocks.
1389   DenseMap<BasicBlock*, Value*> InjectedLoads;
1390   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1391     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1392     Value *InVal = PN.getIncomingValue(Idx);
1393 
1394     // A PHI node is allowed to have multiple (duplicated) entries for the same
1395     // basic block, as long as the value is the same. So if we already injected
1396     // a load in the predecessor, then we should reuse the same load for all
1397     // duplicated entries.
1398     if (Value* V = InjectedLoads.lookup(Pred)) {
1399       NewPN->addIncoming(V, Pred);
1400       continue;
1401     }
1402 
1403     Instruction *TI = Pred->getTerminator();
1404     IRB.SetInsertPoint(TI);
1405 
1406     LoadInst *Load = IRB.CreateAlignedLoad(
1407         LoadTy, InVal, Alignment,
1408         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1409     ++NumLoadsSpeculated;
1410     if (AATags)
1411       Load->setAAMetadata(AATags);
1412     NewPN->addIncoming(Load, Pred);
1413     InjectedLoads[Pred] = Load;
1414   }
1415 
1416   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1417   PN.eraseFromParent();
1418 }
1419 
1420 sroa::SelectHandSpeculativity &
setAsSpeculatable(bool isTrueVal)1421 sroa::SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) {
1422   if (isTrueVal)
1423     Bitfield::set<sroa::SelectHandSpeculativity::TrueVal>(Storage, true);
1424   else
1425     Bitfield::set<sroa::SelectHandSpeculativity::FalseVal>(Storage, true);
1426   return *this;
1427 }
1428 
isSpeculatable(bool isTrueVal) const1429 bool sroa::SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const {
1430   return isTrueVal
1431              ? Bitfield::get<sroa::SelectHandSpeculativity::TrueVal>(Storage)
1432              : Bitfield::get<sroa::SelectHandSpeculativity::FalseVal>(Storage);
1433 }
1434 
areAllSpeculatable() const1435 bool sroa::SelectHandSpeculativity::areAllSpeculatable() const {
1436   return isSpeculatable(/*isTrueVal=*/true) &&
1437          isSpeculatable(/*isTrueVal=*/false);
1438 }
1439 
areAnySpeculatable() const1440 bool sroa::SelectHandSpeculativity::areAnySpeculatable() const {
1441   return isSpeculatable(/*isTrueVal=*/true) ||
1442          isSpeculatable(/*isTrueVal=*/false);
1443 }
areNoneSpeculatable() const1444 bool sroa::SelectHandSpeculativity::areNoneSpeculatable() const {
1445   return !areAnySpeculatable();
1446 }
1447 
1448 static sroa::SelectHandSpeculativity
isSafeLoadOfSelectToSpeculate(LoadInst & LI,SelectInst & SI,bool PreserveCFG)1449 isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) {
1450   assert(LI.isSimple() && "Only for simple loads");
1451   sroa::SelectHandSpeculativity Spec;
1452 
1453   const DataLayout &DL = SI.getModule()->getDataLayout();
1454   for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()})
1455     if (isSafeToLoadUnconditionally(Value, LI.getType(), LI.getAlign(), DL,
1456                                     &LI))
1457       Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue());
1458     else if (PreserveCFG)
1459       return Spec;
1460 
1461   return Spec;
1462 }
1463 
1464 std::optional<sroa::RewriteableMemOps>
isSafeSelectToSpeculate(SelectInst & SI,bool PreserveCFG)1465 SROAPass::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) {
1466   RewriteableMemOps Ops;
1467 
1468   for (User *U : SI.users()) {
1469     if (auto *BC = dyn_cast<BitCastInst>(U); BC && BC->hasOneUse())
1470       U = *BC->user_begin();
1471 
1472     if (auto *Store = dyn_cast<StoreInst>(U)) {
1473       // Note that atomic stores can be transformed; atomic semantics do not
1474       // have any meaning for a local alloca. Stores are not speculatable,
1475       // however, so if we can't turn it into a predicated store, we are done.
1476       if (Store->isVolatile() || PreserveCFG)
1477         return {}; // Give up on this `select`.
1478       Ops.emplace_back(Store);
1479       continue;
1480     }
1481 
1482     auto *LI = dyn_cast<LoadInst>(U);
1483 
1484     // Note that atomic loads can be transformed;
1485     // atomic semantics do not have any meaning for a local alloca.
1486     if (!LI || LI->isVolatile())
1487       return {}; // Give up on this `select`.
1488 
1489     PossiblySpeculatableLoad Load(LI);
1490     if (!LI->isSimple()) {
1491       // If the `load` is not simple, we can't speculatively execute it,
1492       // but we could handle this via a CFG modification. But can we?
1493       if (PreserveCFG)
1494         return {}; // Give up on this `select`.
1495       Ops.emplace_back(Load);
1496       continue;
1497     }
1498 
1499     sroa::SelectHandSpeculativity Spec =
1500         isSafeLoadOfSelectToSpeculate(*LI, SI, PreserveCFG);
1501     if (PreserveCFG && !Spec.areAllSpeculatable())
1502       return {}; // Give up on this `select`.
1503 
1504     Load.setInt(Spec);
1505     Ops.emplace_back(Load);
1506   }
1507 
1508   return Ops;
1509 }
1510 
speculateSelectInstLoads(SelectInst & SI,LoadInst & LI,IRBuilderTy & IRB)1511 static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI,
1512                                      IRBuilderTy &IRB) {
1513   LLVM_DEBUG(dbgs() << "    original load: " << SI << "\n");
1514 
1515   Value *TV = SI.getTrueValue();
1516   Value *FV = SI.getFalseValue();
1517   // Replace the given load of the select with a select of two loads.
1518 
1519   assert(LI.isSimple() && "We only speculate simple loads");
1520 
1521   IRB.SetInsertPoint(&LI);
1522 
1523   if (auto *TypedPtrTy = LI.getPointerOperandType();
1524       !TypedPtrTy->isOpaquePointerTy() && SI.getType() != TypedPtrTy) {
1525     TV = IRB.CreateBitOrPointerCast(TV, TypedPtrTy, "");
1526     FV = IRB.CreateBitOrPointerCast(FV, TypedPtrTy, "");
1527   }
1528 
1529   LoadInst *TL =
1530       IRB.CreateAlignedLoad(LI.getType(), TV, LI.getAlign(),
1531                             LI.getName() + ".sroa.speculate.load.true");
1532   LoadInst *FL =
1533       IRB.CreateAlignedLoad(LI.getType(), FV, LI.getAlign(),
1534                             LI.getName() + ".sroa.speculate.load.false");
1535   NumLoadsSpeculated += 2;
1536 
1537   // Transfer alignment and AA info if present.
1538   TL->setAlignment(LI.getAlign());
1539   FL->setAlignment(LI.getAlign());
1540 
1541   AAMDNodes Tags = LI.getAAMetadata();
1542   if (Tags) {
1543     TL->setAAMetadata(Tags);
1544     FL->setAAMetadata(Tags);
1545   }
1546 
1547   Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1548                               LI.getName() + ".sroa.speculated");
1549 
1550   LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1551   LI.replaceAllUsesWith(V);
1552 }
1553 
1554 template <typename T>
rewriteMemOpOfSelect(SelectInst & SI,T & I,sroa::SelectHandSpeculativity Spec,DomTreeUpdater & DTU)1555 static void rewriteMemOpOfSelect(SelectInst &SI, T &I,
1556                                  sroa::SelectHandSpeculativity Spec,
1557                                  DomTreeUpdater &DTU) {
1558   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!");
1559   LLVM_DEBUG(dbgs() << "    original mem op: " << I << "\n");
1560   BasicBlock *Head = I.getParent();
1561   Instruction *ThenTerm = nullptr;
1562   Instruction *ElseTerm = nullptr;
1563   if (Spec.areNoneSpeculatable())
1564     SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm,
1565                                   SI.getMetadata(LLVMContext::MD_prof), &DTU);
1566   else {
1567     SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false,
1568                               SI.getMetadata(LLVMContext::MD_prof), &DTU,
1569                               /*LI=*/nullptr, /*ThenBlock=*/nullptr);
1570     if (Spec.isSpeculatable(/*isTrueVal=*/true))
1571       cast<BranchInst>(Head->getTerminator())->swapSuccessors();
1572   }
1573   auto *HeadBI = cast<BranchInst>(Head->getTerminator());
1574   Spec = {}; // Do not use `Spec` beyond this point.
1575   BasicBlock *Tail = I.getParent();
1576   Tail->setName(Head->getName() + ".cont");
1577   PHINode *PN;
1578   if (isa<LoadInst>(I))
1579     PN = PHINode::Create(I.getType(), 2, "", &I);
1580   for (BasicBlock *SuccBB : successors(Head)) {
1581     bool IsThen = SuccBB == HeadBI->getSuccessor(0);
1582     int SuccIdx = IsThen ? 0 : 1;
1583     auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB;
1584     if (NewMemOpBB != Head) {
1585       NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else"));
1586       if (isa<LoadInst>(I))
1587         ++NumLoadsPredicated;
1588       else
1589         ++NumStoresPredicated;
1590     } else
1591       ++NumLoadsSpeculated;
1592     auto &CondMemOp = cast<T>(*I.clone());
1593     CondMemOp.insertBefore(NewMemOpBB->getTerminator());
1594     Value *Ptr = SI.getOperand(1 + SuccIdx);
1595     if (auto *PtrTy = Ptr->getType();
1596         !PtrTy->isOpaquePointerTy() &&
1597         PtrTy != CondMemOp.getPointerOperandType())
1598       Ptr = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
1599           Ptr, CondMemOp.getPointerOperandType(), "", &CondMemOp);
1600     CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr);
1601     if (isa<LoadInst>(I)) {
1602       CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else") + ".val");
1603       PN->addIncoming(&CondMemOp, NewMemOpBB);
1604     } else
1605       LLVM_DEBUG(dbgs() << "                 to: " << CondMemOp << "\n");
1606   }
1607   if (isa<LoadInst>(I)) {
1608     PN->takeName(&I);
1609     LLVM_DEBUG(dbgs() << "          to: " << *PN << "\n");
1610     I.replaceAllUsesWith(PN);
1611   }
1612 }
1613 
rewriteMemOpOfSelect(SelectInst & SelInst,Instruction & I,sroa::SelectHandSpeculativity Spec,DomTreeUpdater & DTU)1614 static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I,
1615                                  sroa::SelectHandSpeculativity Spec,
1616                                  DomTreeUpdater &DTU) {
1617   if (auto *LI = dyn_cast<LoadInst>(&I))
1618     rewriteMemOpOfSelect(SelInst, *LI, Spec, DTU);
1619   else if (auto *SI = dyn_cast<StoreInst>(&I))
1620     rewriteMemOpOfSelect(SelInst, *SI, Spec, DTU);
1621   else
1622     llvm_unreachable_internal("Only for load and store.");
1623 }
1624 
rewriteSelectInstMemOps(SelectInst & SI,const sroa::RewriteableMemOps & Ops,IRBuilderTy & IRB,DomTreeUpdater * DTU)1625 static bool rewriteSelectInstMemOps(SelectInst &SI,
1626                                     const sroa::RewriteableMemOps &Ops,
1627                                     IRBuilderTy &IRB, DomTreeUpdater *DTU) {
1628   bool CFGChanged = false;
1629   LLVM_DEBUG(dbgs() << "    original select: " << SI << "\n");
1630 
1631   for (const RewriteableMemOp &Op : Ops) {
1632     sroa::SelectHandSpeculativity Spec;
1633     Instruction *I;
1634     if (auto *const *US = std::get_if<UnspeculatableStore>(&Op)) {
1635       I = *US;
1636     } else {
1637       auto PSL = std::get<PossiblySpeculatableLoad>(Op);
1638       I = PSL.getPointer();
1639       Spec = PSL.getInt();
1640     }
1641     if (Spec.areAllSpeculatable()) {
1642       speculateSelectInstLoads(SI, cast<LoadInst>(*I), IRB);
1643     } else {
1644       assert(DTU && "Should not get here when not allowed to modify the CFG!");
1645       rewriteMemOpOfSelect(SI, *I, Spec, *DTU);
1646       CFGChanged = true;
1647     }
1648     I->eraseFromParent();
1649   }
1650 
1651   for (User *U : make_early_inc_range(SI.users()))
1652     cast<BitCastInst>(U)->eraseFromParent();
1653   SI.eraseFromParent();
1654   return CFGChanged;
1655 }
1656 
1657 /// Build a GEP out of a base pointer and indices.
1658 ///
1659 /// This will return the BasePtr if that is valid, or build a new GEP
1660 /// instruction using the IRBuilder if GEP-ing is needed.
buildGEP(IRBuilderTy & IRB,Value * BasePtr,SmallVectorImpl<Value * > & Indices,const Twine & NamePrefix)1661 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1662                        SmallVectorImpl<Value *> &Indices,
1663                        const Twine &NamePrefix) {
1664   if (Indices.empty())
1665     return BasePtr;
1666 
1667   // A single zero index is a no-op, so check for this and avoid building a GEP
1668   // in that case.
1669   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1670     return BasePtr;
1671 
1672   // buildGEP() is only called for non-opaque pointers.
1673   return IRB.CreateInBoundsGEP(
1674       BasePtr->getType()->getNonOpaquePointerElementType(), BasePtr, Indices,
1675       NamePrefix + "sroa_idx");
1676 }
1677 
1678 /// Get a natural GEP off of the BasePtr walking through Ty toward
1679 /// TargetTy without changing the offset of the pointer.
1680 ///
1681 /// This routine assumes we've already established a properly offset GEP with
1682 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1683 /// zero-indices down through type layers until we find one the same as
1684 /// TargetTy. If we can't find one with the same type, we at least try to use
1685 /// one with the same size. If none of that works, we just produce the GEP as
1686 /// indicated by Indices to have the correct offset.
getNaturalGEPWithType(IRBuilderTy & IRB,const DataLayout & DL,Value * BasePtr,Type * Ty,Type * TargetTy,SmallVectorImpl<Value * > & Indices,const Twine & NamePrefix)1687 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1688                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1689                                     SmallVectorImpl<Value *> &Indices,
1690                                     const Twine &NamePrefix) {
1691   if (Ty == TargetTy)
1692     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1693 
1694   // Offset size to use for the indices.
1695   unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1696 
1697   // See if we can descend into a struct and locate a field with the correct
1698   // type.
1699   unsigned NumLayers = 0;
1700   Type *ElementTy = Ty;
1701   do {
1702     if (ElementTy->isPointerTy())
1703       break;
1704 
1705     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1706       ElementTy = ArrayTy->getElementType();
1707       Indices.push_back(IRB.getIntN(OffsetSize, 0));
1708     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1709       ElementTy = VectorTy->getElementType();
1710       Indices.push_back(IRB.getInt32(0));
1711     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1712       if (STy->element_begin() == STy->element_end())
1713         break; // Nothing left to descend into.
1714       ElementTy = *STy->element_begin();
1715       Indices.push_back(IRB.getInt32(0));
1716     } else {
1717       break;
1718     }
1719     ++NumLayers;
1720   } while (ElementTy != TargetTy);
1721   if (ElementTy != TargetTy)
1722     Indices.erase(Indices.end() - NumLayers, Indices.end());
1723 
1724   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1725 }
1726 
1727 /// Get a natural GEP from a base pointer to a particular offset and
1728 /// resulting in a particular type.
1729 ///
1730 /// The goal is to produce a "natural" looking GEP that works with the existing
1731 /// composite types to arrive at the appropriate offset and element type for
1732 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1733 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1734 /// Indices, and setting Ty to the result subtype.
1735 ///
1736 /// If no natural GEP can be constructed, this function returns null.
getNaturalGEPWithOffset(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,APInt Offset,Type * TargetTy,SmallVectorImpl<Value * > & Indices,const Twine & NamePrefix)1737 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1738                                       Value *Ptr, APInt Offset, Type *TargetTy,
1739                                       SmallVectorImpl<Value *> &Indices,
1740                                       const Twine &NamePrefix) {
1741   PointerType *Ty = cast<PointerType>(Ptr->getType());
1742 
1743   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1744   // an i8.
1745   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1746     return nullptr;
1747 
1748   Type *ElementTy = Ty->getNonOpaquePointerElementType();
1749   if (!ElementTy->isSized())
1750     return nullptr; // We can't GEP through an unsized element.
1751 
1752   SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset);
1753   if (Offset != 0)
1754     return nullptr;
1755 
1756   for (const APInt &Index : IntIndices)
1757     Indices.push_back(IRB.getInt(Index));
1758   return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices,
1759                                NamePrefix);
1760 }
1761 
1762 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1763 /// resulting pointer has PointerTy.
1764 ///
1765 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1766 /// and produces the pointer type desired. Where it cannot, it will try to use
1767 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1768 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1769 /// bitcast to the type.
1770 ///
1771 /// The strategy for finding the more natural GEPs is to peel off layers of the
1772 /// pointer, walking back through bit casts and GEPs, searching for a base
1773 /// pointer from which we can compute a natural GEP with the desired
1774 /// properties. The algorithm tries to fold as many constant indices into
1775 /// a single GEP as possible, thus making each GEP more independent of the
1776 /// surrounding code.
getAdjustedPtr(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,APInt Offset,Type * PointerTy,const Twine & NamePrefix)1777 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1778                              APInt Offset, Type *PointerTy,
1779                              const Twine &NamePrefix) {
1780   // Create i8 GEP for opaque pointers.
1781   if (Ptr->getType()->isOpaquePointerTy()) {
1782     if (Offset != 0)
1783       Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset),
1784                                   NamePrefix + "sroa_idx");
1785     return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy,
1786                                                    NamePrefix + "sroa_cast");
1787   }
1788 
1789   // Even though we don't look through PHI nodes, we could be called on an
1790   // instruction in an unreachable block, which may be on a cycle.
1791   SmallPtrSet<Value *, 4> Visited;
1792   Visited.insert(Ptr);
1793   SmallVector<Value *, 4> Indices;
1794 
1795   // We may end up computing an offset pointer that has the wrong type. If we
1796   // never are able to compute one directly that has the correct type, we'll
1797   // fall back to it, so keep it and the base it was computed from around here.
1798   Value *OffsetPtr = nullptr;
1799   Value *OffsetBasePtr;
1800 
1801   // Remember any i8 pointer we come across to re-use if we need to do a raw
1802   // byte offset.
1803   Value *Int8Ptr = nullptr;
1804   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1805 
1806   PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1807   Type *TargetTy = TargetPtrTy->getNonOpaquePointerElementType();
1808 
1809   // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1810   // address space from the expected `PointerTy` (the pointer to be used).
1811   // Adjust the pointer type based the original storage pointer.
1812   auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1813   PointerTy = TargetTy->getPointerTo(AS);
1814 
1815   do {
1816     // First fold any existing GEPs into the offset.
1817     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1818       APInt GEPOffset(Offset.getBitWidth(), 0);
1819       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1820         break;
1821       Offset += GEPOffset;
1822       Ptr = GEP->getPointerOperand();
1823       if (!Visited.insert(Ptr).second)
1824         break;
1825     }
1826 
1827     // See if we can perform a natural GEP here.
1828     Indices.clear();
1829     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1830                                            Indices, NamePrefix)) {
1831       // If we have a new natural pointer at the offset, clear out any old
1832       // offset pointer we computed. Unless it is the base pointer or
1833       // a non-instruction, we built a GEP we don't need. Zap it.
1834       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1835         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1836           assert(I->use_empty() && "Built a GEP with uses some how!");
1837           I->eraseFromParent();
1838         }
1839       OffsetPtr = P;
1840       OffsetBasePtr = Ptr;
1841       // If we also found a pointer of the right type, we're done.
1842       if (P->getType() == PointerTy)
1843         break;
1844     }
1845 
1846     // Stash this pointer if we've found an i8*.
1847     if (Ptr->getType()->isIntegerTy(8)) {
1848       Int8Ptr = Ptr;
1849       Int8PtrOffset = Offset;
1850     }
1851 
1852     // Peel off a layer of the pointer and update the offset appropriately.
1853     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1854       Ptr = cast<Operator>(Ptr)->getOperand(0);
1855     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1856       if (GA->isInterposable())
1857         break;
1858       Ptr = GA->getAliasee();
1859     } else {
1860       break;
1861     }
1862     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1863   } while (Visited.insert(Ptr).second);
1864 
1865   if (!OffsetPtr) {
1866     if (!Int8Ptr) {
1867       Int8Ptr = IRB.CreateBitCast(
1868           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1869           NamePrefix + "sroa_raw_cast");
1870       Int8PtrOffset = Offset;
1871     }
1872 
1873     OffsetPtr = Int8PtrOffset == 0
1874                     ? Int8Ptr
1875                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1876                                             IRB.getInt(Int8PtrOffset),
1877                                             NamePrefix + "sroa_raw_idx");
1878   }
1879   Ptr = OffsetPtr;
1880 
1881   // On the off chance we were targeting i8*, guard the bitcast here.
1882   if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1883     Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1884                                                   TargetPtrTy,
1885                                                   NamePrefix + "sroa_cast");
1886   }
1887 
1888   return Ptr;
1889 }
1890 
1891 /// Compute the adjusted alignment for a load or store from an offset.
getAdjustedAlignment(Instruction * I,uint64_t Offset)1892 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1893   return commonAlignment(getLoadStoreAlignment(I), Offset);
1894 }
1895 
1896 /// Test whether we can convert a value from the old to the new type.
1897 ///
1898 /// This predicate should be used to guard calls to convertValue in order to
1899 /// ensure that we only try to convert viable values. The strategy is that we
1900 /// will peel off single element struct and array wrappings to get to an
1901 /// underlying value, and convert that value.
canConvertValue(const DataLayout & DL,Type * OldTy,Type * NewTy)1902 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1903   if (OldTy == NewTy)
1904     return true;
1905 
1906   // For integer types, we can't handle any bit-width differences. This would
1907   // break both vector conversions with extension and introduce endianness
1908   // issues when in conjunction with loads and stores.
1909   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1910     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1911                cast<IntegerType>(NewTy)->getBitWidth() &&
1912            "We can't have the same bitwidth for different int types");
1913     return false;
1914   }
1915 
1916   if (DL.getTypeSizeInBits(NewTy).getFixedValue() !=
1917       DL.getTypeSizeInBits(OldTy).getFixedValue())
1918     return false;
1919   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1920     return false;
1921 
1922   // We can convert pointers to integers and vice-versa. Same for vectors
1923   // of pointers and integers.
1924   OldTy = OldTy->getScalarType();
1925   NewTy = NewTy->getScalarType();
1926   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1927     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1928       unsigned OldAS = OldTy->getPointerAddressSpace();
1929       unsigned NewAS = NewTy->getPointerAddressSpace();
1930       // Convert pointers if they are pointers from the same address space or
1931       // different integral (not non-integral) address spaces with the same
1932       // pointer size.
1933       return OldAS == NewAS ||
1934              (!DL.isNonIntegralAddressSpace(OldAS) &&
1935               !DL.isNonIntegralAddressSpace(NewAS) &&
1936               DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1937     }
1938 
1939     // We can convert integers to integral pointers, but not to non-integral
1940     // pointers.
1941     if (OldTy->isIntegerTy())
1942       return !DL.isNonIntegralPointerType(NewTy);
1943 
1944     // We can convert integral pointers to integers, but non-integral pointers
1945     // need to remain pointers.
1946     if (!DL.isNonIntegralPointerType(OldTy))
1947       return NewTy->isIntegerTy();
1948 
1949     return false;
1950   }
1951 
1952   if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy())
1953     return false;
1954 
1955   return true;
1956 }
1957 
1958 /// Generic routine to convert an SSA value to a value of a different
1959 /// type.
1960 ///
1961 /// This will try various different casting techniques, such as bitcasts,
1962 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1963 /// two types for viability with this routine.
convertValue(const DataLayout & DL,IRBuilderTy & IRB,Value * V,Type * NewTy)1964 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1965                            Type *NewTy) {
1966   Type *OldTy = V->getType();
1967   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1968 
1969   if (OldTy == NewTy)
1970     return V;
1971 
1972   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1973          "Integer types must be the exact same to convert.");
1974 
1975   // See if we need inttoptr for this type pair. May require additional bitcast.
1976   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1977     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1978     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1979     // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1980     // Directly handle i64 to i8*
1981     return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1982                               NewTy);
1983   }
1984 
1985   // See if we need ptrtoint for this type pair. May require additional bitcast.
1986   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1987     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1988     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1989     // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1990     // Expand i8* to i64 --> i8* to i64 to i64
1991     return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1992                              NewTy);
1993   }
1994 
1995   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1996     unsigned OldAS = OldTy->getPointerAddressSpace();
1997     unsigned NewAS = NewTy->getPointerAddressSpace();
1998     // To convert pointers with different address spaces (they are already
1999     // checked convertible, i.e. they have the same pointer size), so far we
2000     // cannot use `bitcast` (which has restrict on the same address space) or
2001     // `addrspacecast` (which is not always no-op casting). Instead, use a pair
2002     // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
2003     // size.
2004     if (OldAS != NewAS) {
2005       assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
2006       return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
2007                                 NewTy);
2008     }
2009   }
2010 
2011   return IRB.CreateBitCast(V, NewTy);
2012 }
2013 
2014 /// Test whether the given slice use can be promoted to a vector.
2015 ///
2016 /// This function is called to test each entry in a partition which is slated
2017 /// for a single slice.
isVectorPromotionViableForSlice(Partition & P,const Slice & S,VectorType * Ty,uint64_t ElementSize,const DataLayout & DL)2018 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
2019                                             VectorType *Ty,
2020                                             uint64_t ElementSize,
2021                                             const DataLayout &DL) {
2022   // First validate the slice offsets.
2023   uint64_t BeginOffset =
2024       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
2025   uint64_t BeginIndex = BeginOffset / ElementSize;
2026   if (BeginIndex * ElementSize != BeginOffset ||
2027       BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
2028     return false;
2029   uint64_t EndOffset =
2030       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
2031   uint64_t EndIndex = EndOffset / ElementSize;
2032   if (EndIndex * ElementSize != EndOffset ||
2033       EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
2034     return false;
2035 
2036   assert(EndIndex > BeginIndex && "Empty vector!");
2037   uint64_t NumElements = EndIndex - BeginIndex;
2038   Type *SliceTy = (NumElements == 1)
2039                       ? Ty->getElementType()
2040                       : FixedVectorType::get(Ty->getElementType(), NumElements);
2041 
2042   Type *SplitIntTy =
2043       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
2044 
2045   Use *U = S.getUse();
2046 
2047   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2048     if (MI->isVolatile())
2049       return false;
2050     if (!S.isSplittable())
2051       return false; // Skip any unsplittable intrinsics.
2052   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2053     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
2054       return false;
2055   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2056     if (LI->isVolatile())
2057       return false;
2058     Type *LTy = LI->getType();
2059     // Disable vector promotion when there are loads or stores of an FCA.
2060     if (LTy->isStructTy())
2061       return false;
2062     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2063       assert(LTy->isIntegerTy());
2064       LTy = SplitIntTy;
2065     }
2066     if (!canConvertValue(DL, SliceTy, LTy))
2067       return false;
2068   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2069     if (SI->isVolatile())
2070       return false;
2071     Type *STy = SI->getValueOperand()->getType();
2072     // Disable vector promotion when there are loads or stores of an FCA.
2073     if (STy->isStructTy())
2074       return false;
2075     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2076       assert(STy->isIntegerTy());
2077       STy = SplitIntTy;
2078     }
2079     if (!canConvertValue(DL, STy, SliceTy))
2080       return false;
2081   } else {
2082     return false;
2083   }
2084 
2085   return true;
2086 }
2087 
2088 /// Test whether a vector type is viable for promotion.
2089 ///
2090 /// This implements the necessary checking for \c isVectorPromotionViable over
2091 /// all slices of the alloca for the given VectorType.
checkVectorTypeForPromotion(Partition & P,VectorType * VTy,const DataLayout & DL)2092 static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy,
2093                                         const DataLayout &DL) {
2094   uint64_t ElementSize =
2095       DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue();
2096 
2097   // While the definition of LLVM vectors is bitpacked, we don't support sizes
2098   // that aren't byte sized.
2099   if (ElementSize % 8)
2100     return false;
2101   assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 &&
2102          "vector size not a multiple of element size?");
2103   ElementSize /= 8;
2104 
2105   for (const Slice &S : P)
2106     if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
2107       return false;
2108 
2109   for (const Slice *S : P.splitSliceTails())
2110     if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
2111       return false;
2112 
2113   return true;
2114 }
2115 
2116 /// Test whether the given alloca partitioning and range of slices can be
2117 /// promoted to a vector.
2118 ///
2119 /// This is a quick test to check whether we can rewrite a particular alloca
2120 /// partition (and its newly formed alloca) into a vector alloca with only
2121 /// whole-vector loads and stores such that it could be promoted to a vector
2122 /// SSA value. We only can ensure this for a limited set of operations, and we
2123 /// don't want to do the rewrites unless we are confident that the result will
2124 /// be promotable, so we have an early test here.
isVectorPromotionViable(Partition & P,const DataLayout & DL)2125 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
2126   // Collect the candidate types for vector-based promotion. Also track whether
2127   // we have different element types.
2128   SmallVector<VectorType *, 4> CandidateTys;
2129   Type *CommonEltTy = nullptr;
2130   VectorType *CommonVecPtrTy = nullptr;
2131   bool HaveVecPtrTy = false;
2132   bool HaveCommonEltTy = true;
2133   bool HaveCommonVecPtrTy = true;
2134   auto CheckCandidateType = [&](Type *Ty) {
2135     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2136       // Return if bitcast to vectors is different for total size in bits.
2137       if (!CandidateTys.empty()) {
2138         VectorType *V = CandidateTys[0];
2139         if (DL.getTypeSizeInBits(VTy).getFixedValue() !=
2140             DL.getTypeSizeInBits(V).getFixedValue()) {
2141           CandidateTys.clear();
2142           return;
2143         }
2144       }
2145       CandidateTys.push_back(VTy);
2146       Type *EltTy = VTy->getElementType();
2147 
2148       if (!CommonEltTy)
2149         CommonEltTy = EltTy;
2150       else if (CommonEltTy != EltTy)
2151         HaveCommonEltTy = false;
2152 
2153       if (EltTy->isPointerTy()) {
2154         HaveVecPtrTy = true;
2155         if (!CommonVecPtrTy)
2156           CommonVecPtrTy = VTy;
2157         else if (CommonVecPtrTy != VTy)
2158           HaveCommonVecPtrTy = false;
2159       }
2160     }
2161   };
2162   // Consider any loads or stores that are the exact size of the slice.
2163   for (const Slice &S : P)
2164     if (S.beginOffset() == P.beginOffset() &&
2165         S.endOffset() == P.endOffset()) {
2166       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
2167         CheckCandidateType(LI->getType());
2168       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
2169         CheckCandidateType(SI->getValueOperand()->getType());
2170     }
2171 
2172   // If we didn't find a vector type, nothing to do here.
2173   if (CandidateTys.empty())
2174     return nullptr;
2175 
2176   // Pointer-ness is sticky, if we had a vector-of-pointers candidate type,
2177   // then we should choose it, not some other alternative.
2178   // But, we can't perform a no-op pointer address space change via bitcast,
2179   // so if we didn't have a common pointer element type, bail.
2180   if (HaveVecPtrTy && !HaveCommonVecPtrTy)
2181     return nullptr;
2182 
2183   // Try to pick the "best" element type out of the choices.
2184   if (!HaveCommonEltTy && HaveVecPtrTy) {
2185     // If there was a pointer element type, there's really only one choice.
2186     CandidateTys.clear();
2187     CandidateTys.push_back(CommonVecPtrTy);
2188   } else if (!HaveCommonEltTy && !HaveVecPtrTy) {
2189     // Integer-ify vector types.
2190     for (VectorType *&VTy : CandidateTys) {
2191       if (!VTy->getElementType()->isIntegerTy())
2192         VTy = cast<VectorType>(VTy->getWithNewType(IntegerType::getIntNTy(
2193             VTy->getContext(), VTy->getScalarSizeInBits())));
2194     }
2195 
2196     // Rank the remaining candidate vector types. This is easy because we know
2197     // they're all integer vectors. We sort by ascending number of elements.
2198     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
2199       (void)DL;
2200       assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() ==
2201                  DL.getTypeSizeInBits(LHSTy).getFixedValue() &&
2202              "Cannot have vector types of different sizes!");
2203       assert(RHSTy->getElementType()->isIntegerTy() &&
2204              "All non-integer types eliminated!");
2205       assert(LHSTy->getElementType()->isIntegerTy() &&
2206              "All non-integer types eliminated!");
2207       return cast<FixedVectorType>(RHSTy)->getNumElements() <
2208              cast<FixedVectorType>(LHSTy)->getNumElements();
2209     };
2210     llvm::sort(CandidateTys, RankVectorTypes);
2211     CandidateTys.erase(
2212         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
2213         CandidateTys.end());
2214   } else {
2215 // The only way to have the same element type in every vector type is to
2216 // have the same vector type. Check that and remove all but one.
2217 #ifndef NDEBUG
2218     for (VectorType *VTy : CandidateTys) {
2219       assert(VTy->getElementType() == CommonEltTy &&
2220              "Unaccounted for element type!");
2221       assert(VTy == CandidateTys[0] &&
2222              "Different vector types with the same element type!");
2223     }
2224 #endif
2225     CandidateTys.resize(1);
2226   }
2227 
2228   // FIXME: hack. Do we have a named constant for this?
2229   // SDAG SDNode can't have more than 65535 operands.
2230   llvm::erase_if(CandidateTys, [](VectorType *VTy) {
2231     return cast<FixedVectorType>(VTy)->getNumElements() >
2232            std::numeric_limits<unsigned short>::max();
2233   });
2234 
2235   for (VectorType *VTy : CandidateTys)
2236     if (checkVectorTypeForPromotion(P, VTy, DL))
2237       return VTy;
2238 
2239   return nullptr;
2240 }
2241 
2242 /// Test whether a slice of an alloca is valid for integer widening.
2243 ///
2244 /// This implements the necessary checking for the \c isIntegerWideningViable
2245 /// test below on a single slice of the alloca.
isIntegerWideningViableForSlice(const Slice & S,uint64_t AllocBeginOffset,Type * AllocaTy,const DataLayout & DL,bool & WholeAllocaOp)2246 static bool isIntegerWideningViableForSlice(const Slice &S,
2247                                             uint64_t AllocBeginOffset,
2248                                             Type *AllocaTy,
2249                                             const DataLayout &DL,
2250                                             bool &WholeAllocaOp) {
2251   uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedValue();
2252 
2253   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2254   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2255 
2256   Use *U = S.getUse();
2257 
2258   // Lifetime intrinsics operate over the whole alloca whose sizes are usually
2259   // larger than other load/store slices (RelEnd > Size). But lifetime are
2260   // always promotable and should not impact other slices' promotability of the
2261   // partition.
2262   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2263     if (II->isLifetimeStartOrEnd() || II->isDroppable())
2264       return true;
2265   }
2266 
2267   // We can't reasonably handle cases where the load or store extends past
2268   // the end of the alloca's type and into its padding.
2269   if (RelEnd > Size)
2270     return false;
2271 
2272   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2273     if (LI->isVolatile())
2274       return false;
2275     // We can't handle loads that extend past the allocated memory.
2276     if (DL.getTypeStoreSize(LI->getType()).getFixedValue() > Size)
2277       return false;
2278     // So far, AllocaSliceRewriter does not support widening split slice tails
2279     // in rewriteIntegerLoad.
2280     if (S.beginOffset() < AllocBeginOffset)
2281       return false;
2282     // Note that we don't count vector loads or stores as whole-alloca
2283     // operations which enable integer widening because we would prefer to use
2284     // vector widening instead.
2285     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2286       WholeAllocaOp = true;
2287     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2288       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2289         return false;
2290     } else if (RelBegin != 0 || RelEnd != Size ||
2291                !canConvertValue(DL, AllocaTy, LI->getType())) {
2292       // Non-integer loads need to be convertible from the alloca type so that
2293       // they are promotable.
2294       return false;
2295     }
2296   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2297     Type *ValueTy = SI->getValueOperand()->getType();
2298     if (SI->isVolatile())
2299       return false;
2300     // We can't handle stores that extend past the allocated memory.
2301     if (DL.getTypeStoreSize(ValueTy).getFixedValue() > Size)
2302       return false;
2303     // So far, AllocaSliceRewriter does not support widening split slice tails
2304     // in rewriteIntegerStore.
2305     if (S.beginOffset() < AllocBeginOffset)
2306       return false;
2307     // Note that we don't count vector loads or stores as whole-alloca
2308     // operations which enable integer widening because we would prefer to use
2309     // vector widening instead.
2310     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2311       WholeAllocaOp = true;
2312     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2313       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2314         return false;
2315     } else if (RelBegin != 0 || RelEnd != Size ||
2316                !canConvertValue(DL, ValueTy, AllocaTy)) {
2317       // Non-integer stores need to be convertible to the alloca type so that
2318       // they are promotable.
2319       return false;
2320     }
2321   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2322     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2323       return false;
2324     if (!S.isSplittable())
2325       return false; // Skip any unsplittable intrinsics.
2326   } else {
2327     return false;
2328   }
2329 
2330   return true;
2331 }
2332 
2333 /// Test whether the given alloca partition's integer operations can be
2334 /// widened to promotable ones.
2335 ///
2336 /// This is a quick test to check whether we can rewrite the integer loads and
2337 /// stores to a particular alloca into wider loads and stores and be able to
2338 /// promote the resulting alloca.
isIntegerWideningViable(Partition & P,Type * AllocaTy,const DataLayout & DL)2339 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2340                                     const DataLayout &DL) {
2341   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedValue();
2342   // Don't create integer types larger than the maximum bitwidth.
2343   if (SizeInBits > IntegerType::MAX_INT_BITS)
2344     return false;
2345 
2346   // Don't try to handle allocas with bit-padding.
2347   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedValue())
2348     return false;
2349 
2350   // We need to ensure that an integer type with the appropriate bitwidth can
2351   // be converted to the alloca type, whatever that is. We don't want to force
2352   // the alloca itself to have an integer type if there is a more suitable one.
2353   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2354   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2355       !canConvertValue(DL, IntTy, AllocaTy))
2356     return false;
2357 
2358   // While examining uses, we ensure that the alloca has a covering load or
2359   // store. We don't want to widen the integer operations only to fail to
2360   // promote due to some other unsplittable entry (which we may make splittable
2361   // later). However, if there are only splittable uses, go ahead and assume
2362   // that we cover the alloca.
2363   // FIXME: We shouldn't consider split slices that happen to start in the
2364   // partition here...
2365   bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2366 
2367   for (const Slice &S : P)
2368     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2369                                          WholeAllocaOp))
2370       return false;
2371 
2372   for (const Slice *S : P.splitSliceTails())
2373     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2374                                          WholeAllocaOp))
2375       return false;
2376 
2377   return WholeAllocaOp;
2378 }
2379 
extractInteger(const DataLayout & DL,IRBuilderTy & IRB,Value * V,IntegerType * Ty,uint64_t Offset,const Twine & Name)2380 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2381                              IntegerType *Ty, uint64_t Offset,
2382                              const Twine &Name) {
2383   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2384   IntegerType *IntTy = cast<IntegerType>(V->getType());
2385   assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2386              DL.getTypeStoreSize(IntTy).getFixedValue() &&
2387          "Element extends past full value");
2388   uint64_t ShAmt = 8 * Offset;
2389   if (DL.isBigEndian())
2390     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2391                  DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2392   if (ShAmt) {
2393     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2394     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2395   }
2396   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2397          "Cannot extract to a larger integer!");
2398   if (Ty != IntTy) {
2399     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2400     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2401   }
2402   return V;
2403 }
2404 
insertInteger(const DataLayout & DL,IRBuilderTy & IRB,Value * Old,Value * V,uint64_t Offset,const Twine & Name)2405 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2406                             Value *V, uint64_t Offset, const Twine &Name) {
2407   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2408   IntegerType *Ty = cast<IntegerType>(V->getType());
2409   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2410          "Cannot insert a larger integer!");
2411   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2412   if (Ty != IntTy) {
2413     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2414     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2415   }
2416   assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2417              DL.getTypeStoreSize(IntTy).getFixedValue() &&
2418          "Element store outside of alloca store");
2419   uint64_t ShAmt = 8 * Offset;
2420   if (DL.isBigEndian())
2421     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2422                  DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2423   if (ShAmt) {
2424     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2425     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2426   }
2427 
2428   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2429     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2430     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2431     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2432     V = IRB.CreateOr(Old, V, Name + ".insert");
2433     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2434   }
2435   return V;
2436 }
2437 
extractVector(IRBuilderTy & IRB,Value * V,unsigned BeginIndex,unsigned EndIndex,const Twine & Name)2438 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2439                             unsigned EndIndex, const Twine &Name) {
2440   auto *VecTy = cast<FixedVectorType>(V->getType());
2441   unsigned NumElements = EndIndex - BeginIndex;
2442   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2443 
2444   if (NumElements == VecTy->getNumElements())
2445     return V;
2446 
2447   if (NumElements == 1) {
2448     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2449                                  Name + ".extract");
2450     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2451     return V;
2452   }
2453 
2454   auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex));
2455   V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2456   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2457   return V;
2458 }
2459 
insertVector(IRBuilderTy & IRB,Value * Old,Value * V,unsigned BeginIndex,const Twine & Name)2460 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2461                            unsigned BeginIndex, const Twine &Name) {
2462   VectorType *VecTy = cast<VectorType>(Old->getType());
2463   assert(VecTy && "Can only insert a vector into a vector");
2464 
2465   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2466   if (!Ty) {
2467     // Single element to insert.
2468     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2469                                 Name + ".insert");
2470     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2471     return V;
2472   }
2473 
2474   assert(cast<FixedVectorType>(Ty)->getNumElements() <=
2475              cast<FixedVectorType>(VecTy)->getNumElements() &&
2476          "Too many elements!");
2477   if (cast<FixedVectorType>(Ty)->getNumElements() ==
2478       cast<FixedVectorType>(VecTy)->getNumElements()) {
2479     assert(V->getType() == VecTy && "Vector type mismatch");
2480     return V;
2481   }
2482   unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2483 
2484   // When inserting a smaller vector into the larger to store, we first
2485   // use a shuffle vector to widen it with undef elements, and then
2486   // a second shuffle vector to select between the loaded vector and the
2487   // incoming vector.
2488   SmallVector<int, 8> Mask;
2489   Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2490   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2491     if (i >= BeginIndex && i < EndIndex)
2492       Mask.push_back(i - BeginIndex);
2493     else
2494       Mask.push_back(-1);
2495   V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2496   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2497 
2498   SmallVector<Constant *, 8> Mask2;
2499   Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2500   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2501     Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2502 
2503   V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2504 
2505   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2506   return V;
2507 }
2508 
2509 /// Visitor to rewrite instructions using p particular slice of an alloca
2510 /// to use a new alloca.
2511 ///
2512 /// Also implements the rewriting to vector-based accesses when the partition
2513 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2514 /// lives here.
2515 class llvm::sroa::AllocaSliceRewriter
2516     : public InstVisitor<AllocaSliceRewriter, bool> {
2517   // Befriend the base class so it can delegate to private visit methods.
2518   friend class InstVisitor<AllocaSliceRewriter, bool>;
2519 
2520   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2521 
2522   const DataLayout &DL;
2523   AllocaSlices &AS;
2524   SROAPass &Pass;
2525   AllocaInst &OldAI, &NewAI;
2526   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2527   Type *NewAllocaTy;
2528 
2529   // This is a convenience and flag variable that will be null unless the new
2530   // alloca's integer operations should be widened to this integer type due to
2531   // passing isIntegerWideningViable above. If it is non-null, the desired
2532   // integer type will be stored here for easy access during rewriting.
2533   IntegerType *IntTy;
2534 
2535   // If we are rewriting an alloca partition which can be written as pure
2536   // vector operations, we stash extra information here. When VecTy is
2537   // non-null, we have some strict guarantees about the rewritten alloca:
2538   //   - The new alloca is exactly the size of the vector type here.
2539   //   - The accesses all either map to the entire vector or to a single
2540   //     element.
2541   //   - The set of accessing instructions is only one of those handled above
2542   //     in isVectorPromotionViable. Generally these are the same access kinds
2543   //     which are promotable via mem2reg.
2544   VectorType *VecTy;
2545   Type *ElementTy;
2546   uint64_t ElementSize;
2547 
2548   // The original offset of the slice currently being rewritten relative to
2549   // the original alloca.
2550   uint64_t BeginOffset = 0;
2551   uint64_t EndOffset = 0;
2552 
2553   // The new offsets of the slice currently being rewritten relative to the
2554   // original alloca.
2555   uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2556 
2557   uint64_t RelativeOffset = 0;
2558   uint64_t SliceSize = 0;
2559   bool IsSplittable = false;
2560   bool IsSplit = false;
2561   Use *OldUse = nullptr;
2562   Instruction *OldPtr = nullptr;
2563 
2564   // Track post-rewrite users which are PHI nodes and Selects.
2565   SmallSetVector<PHINode *, 8> &PHIUsers;
2566   SmallSetVector<SelectInst *, 8> &SelectUsers;
2567 
2568   // Utility IR builder, whose name prefix is setup for each visited use, and
2569   // the insertion point is set to point to the user.
2570   IRBuilderTy IRB;
2571 
2572   // Return the new alloca, addrspacecasted if required to avoid changing the
2573   // addrspace of a volatile access.
getPtrToNewAI(unsigned AddrSpace,bool IsVolatile)2574   Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) {
2575     if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace())
2576       return &NewAI;
2577 
2578     Type *AccessTy = NewAI.getAllocatedType()->getPointerTo(AddrSpace);
2579     return IRB.CreateAddrSpaceCast(&NewAI, AccessTy);
2580   }
2581 
2582 public:
AllocaSliceRewriter(const DataLayout & DL,AllocaSlices & AS,SROAPass & Pass,AllocaInst & OldAI,AllocaInst & NewAI,uint64_t NewAllocaBeginOffset,uint64_t NewAllocaEndOffset,bool IsIntegerPromotable,VectorType * PromotableVecTy,SmallSetVector<PHINode *,8> & PHIUsers,SmallSetVector<SelectInst *,8> & SelectUsers)2583   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass,
2584                       AllocaInst &OldAI, AllocaInst &NewAI,
2585                       uint64_t NewAllocaBeginOffset,
2586                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2587                       VectorType *PromotableVecTy,
2588                       SmallSetVector<PHINode *, 8> &PHIUsers,
2589                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2590       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2591         NewAllocaBeginOffset(NewAllocaBeginOffset),
2592         NewAllocaEndOffset(NewAllocaEndOffset),
2593         NewAllocaTy(NewAI.getAllocatedType()),
2594         IntTy(
2595             IsIntegerPromotable
2596                 ? Type::getIntNTy(NewAI.getContext(),
2597                                   DL.getTypeSizeInBits(NewAI.getAllocatedType())
2598                                       .getFixedValue())
2599                 : nullptr),
2600         VecTy(PromotableVecTy),
2601         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2602         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8
2603                           : 0),
2604         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2605         IRB(NewAI.getContext(), ConstantFolder()) {
2606     if (VecTy) {
2607       assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 &&
2608              "Only multiple-of-8 sized vector elements are viable");
2609       ++NumVectorized;
2610     }
2611     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2612   }
2613 
visit(AllocaSlices::const_iterator I)2614   bool visit(AllocaSlices::const_iterator I) {
2615     bool CanSROA = true;
2616     BeginOffset = I->beginOffset();
2617     EndOffset = I->endOffset();
2618     IsSplittable = I->isSplittable();
2619     IsSplit =
2620         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2621     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2622     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2623     LLVM_DEBUG(dbgs() << "\n");
2624 
2625     // Compute the intersecting offset range.
2626     assert(BeginOffset < NewAllocaEndOffset);
2627     assert(EndOffset > NewAllocaBeginOffset);
2628     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2629     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2630 
2631     RelativeOffset = NewBeginOffset - BeginOffset;
2632     SliceSize = NewEndOffset - NewBeginOffset;
2633     LLVM_DEBUG(dbgs() << "   Begin:(" << BeginOffset << ", " << EndOffset
2634                       << ") NewBegin:(" << NewBeginOffset << ", "
2635                       << NewEndOffset << ") NewAllocaBegin:("
2636                       << NewAllocaBeginOffset << ", " << NewAllocaEndOffset
2637                       << ")\n");
2638     assert(IsSplit || RelativeOffset == 0);
2639     OldUse = I->getUse();
2640     OldPtr = cast<Instruction>(OldUse->get());
2641 
2642     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2643     IRB.SetInsertPoint(OldUserI);
2644     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2645     IRB.getInserter().SetNamePrefix(
2646         Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2647 
2648     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2649     if (VecTy || IntTy)
2650       assert(CanSROA);
2651     return CanSROA;
2652   }
2653 
2654 private:
2655   // Make sure the other visit overloads are visible.
2656   using Base::visit;
2657 
2658   // Every instruction which can end up as a user must have a rewrite rule.
visitInstruction(Instruction & I)2659   bool visitInstruction(Instruction &I) {
2660     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2661     llvm_unreachable("No rewrite rule for this instruction!");
2662   }
2663 
getNewAllocaSlicePtr(IRBuilderTy & IRB,Type * PointerTy)2664   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2665     // Note that the offset computation can use BeginOffset or NewBeginOffset
2666     // interchangeably for unsplit slices.
2667     assert(IsSplit || BeginOffset == NewBeginOffset);
2668     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2669 
2670 #ifndef NDEBUG
2671     StringRef OldName = OldPtr->getName();
2672     // Skip through the last '.sroa.' component of the name.
2673     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2674     if (LastSROAPrefix != StringRef::npos) {
2675       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2676       // Look for an SROA slice index.
2677       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2678       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2679         // Strip the index and look for the offset.
2680         OldName = OldName.substr(IndexEnd + 1);
2681         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2682         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2683           // Strip the offset.
2684           OldName = OldName.substr(OffsetEnd + 1);
2685       }
2686     }
2687     // Strip any SROA suffixes as well.
2688     OldName = OldName.substr(0, OldName.find(".sroa_"));
2689 #endif
2690 
2691     return getAdjustedPtr(IRB, DL, &NewAI,
2692                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2693                           PointerTy,
2694 #ifndef NDEBUG
2695                           Twine(OldName) + "."
2696 #else
2697                           Twine()
2698 #endif
2699                           );
2700   }
2701 
2702   /// Compute suitable alignment to access this slice of the *new*
2703   /// alloca.
2704   ///
2705   /// You can optionally pass a type to this routine and if that type's ABI
2706   /// alignment is itself suitable, this will return zero.
getSliceAlign()2707   Align getSliceAlign() {
2708     return commonAlignment(NewAI.getAlign(),
2709                            NewBeginOffset - NewAllocaBeginOffset);
2710   }
2711 
getIndex(uint64_t Offset)2712   unsigned getIndex(uint64_t Offset) {
2713     assert(VecTy && "Can only call getIndex when rewriting a vector");
2714     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2715     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2716     uint32_t Index = RelOffset / ElementSize;
2717     assert(Index * ElementSize == RelOffset);
2718     return Index;
2719   }
2720 
deleteIfTriviallyDead(Value * V)2721   void deleteIfTriviallyDead(Value *V) {
2722     Instruction *I = cast<Instruction>(V);
2723     if (isInstructionTriviallyDead(I))
2724       Pass.DeadInsts.push_back(I);
2725   }
2726 
rewriteVectorizedLoadInst(LoadInst & LI)2727   Value *rewriteVectorizedLoadInst(LoadInst &LI) {
2728     unsigned BeginIndex = getIndex(NewBeginOffset);
2729     unsigned EndIndex = getIndex(NewEndOffset);
2730     assert(EndIndex > BeginIndex && "Empty vector!");
2731 
2732     LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2733                                            NewAI.getAlign(), "load");
2734 
2735     Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2736                             LLVMContext::MD_access_group});
2737     return extractVector(IRB, Load, BeginIndex, EndIndex, "vec");
2738   }
2739 
rewriteIntegerLoad(LoadInst & LI)2740   Value *rewriteIntegerLoad(LoadInst &LI) {
2741     assert(IntTy && "We cannot insert an integer to the alloca");
2742     assert(!LI.isVolatile());
2743     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2744                                      NewAI.getAlign(), "load");
2745     V = convertValue(DL, IRB, V, IntTy);
2746     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2747     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2748     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2749       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2750       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2751     }
2752     // It is possible that the extracted type is not the load type. This
2753     // happens if there is a load past the end of the alloca, and as
2754     // a consequence the slice is narrower but still a candidate for integer
2755     // lowering. To handle this case, we just zero extend the extracted
2756     // integer.
2757     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2758            "Can only handle an extract for an overly wide load");
2759     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2760       V = IRB.CreateZExt(V, LI.getType());
2761     return V;
2762   }
2763 
visitLoadInst(LoadInst & LI)2764   bool visitLoadInst(LoadInst &LI) {
2765     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2766     Value *OldOp = LI.getOperand(0);
2767     assert(OldOp == OldPtr);
2768 
2769     AAMDNodes AATags = LI.getAAMetadata();
2770 
2771     unsigned AS = LI.getPointerAddressSpace();
2772 
2773     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2774                              : LI.getType();
2775     const bool IsLoadPastEnd =
2776         DL.getTypeStoreSize(TargetTy).getFixedValue() > SliceSize;
2777     bool IsPtrAdjusted = false;
2778     Value *V;
2779     if (VecTy) {
2780       V = rewriteVectorizedLoadInst(LI);
2781     } else if (IntTy && LI.getType()->isIntegerTy()) {
2782       V = rewriteIntegerLoad(LI);
2783     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2784                NewEndOffset == NewAllocaEndOffset &&
2785                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2786                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2787                  TargetTy->isIntegerTy()))) {
2788       Value *NewPtr =
2789           getPtrToNewAI(LI.getPointerAddressSpace(), LI.isVolatile());
2790       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), NewPtr,
2791                                               NewAI.getAlign(), LI.isVolatile(),
2792                                               LI.getName());
2793       if (LI.isVolatile())
2794         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2795       if (NewLI->isAtomic())
2796         NewLI->setAlignment(LI.getAlign());
2797 
2798       // Copy any metadata that is valid for the new load. This may require
2799       // conversion to a different kind of metadata, e.g. !nonnull might change
2800       // to !range or vice versa.
2801       copyMetadataForLoad(*NewLI, LI);
2802 
2803       // Do this after copyMetadataForLoad() to preserve the TBAA shift.
2804       if (AATags)
2805         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2806 
2807       // Try to preserve nonnull metadata
2808       V = NewLI;
2809 
2810       // If this is an integer load past the end of the slice (which means the
2811       // bytes outside the slice are undef or this load is dead) just forcibly
2812       // fix the integer size with correct handling of endianness.
2813       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2814         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2815           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2816             V = IRB.CreateZExt(V, TITy, "load.ext");
2817             if (DL.isBigEndian())
2818               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2819                                 "endian_shift");
2820           }
2821     } else {
2822       Type *LTy = TargetTy->getPointerTo(AS);
2823       LoadInst *NewLI =
2824           IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2825                                 getSliceAlign(), LI.isVolatile(), LI.getName());
2826       if (AATags)
2827         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2828       if (LI.isVolatile())
2829         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2830       NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2831                                LLVMContext::MD_access_group});
2832 
2833       V = NewLI;
2834       IsPtrAdjusted = true;
2835     }
2836     V = convertValue(DL, IRB, V, TargetTy);
2837 
2838     if (IsSplit) {
2839       assert(!LI.isVolatile());
2840       assert(LI.getType()->isIntegerTy() &&
2841              "Only integer type loads and stores are split");
2842       assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() &&
2843              "Split load isn't smaller than original load");
2844       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2845              "Non-byte-multiple bit width");
2846       // Move the insertion point just past the load so that we can refer to it.
2847       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2848       // Create a placeholder value with the same type as LI to use as the
2849       // basis for the new value. This allows us to replace the uses of LI with
2850       // the computed value, and then replace the placeholder with LI, leaving
2851       // LI only used for this computation.
2852       Value *Placeholder = new LoadInst(
2853           LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "",
2854           false, Align(1));
2855       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2856                         "insert");
2857       LI.replaceAllUsesWith(V);
2858       Placeholder->replaceAllUsesWith(&LI);
2859       Placeholder->deleteValue();
2860     } else {
2861       LI.replaceAllUsesWith(V);
2862     }
2863 
2864     Pass.DeadInsts.push_back(&LI);
2865     deleteIfTriviallyDead(OldOp);
2866     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2867     return !LI.isVolatile() && !IsPtrAdjusted;
2868   }
2869 
rewriteVectorizedStoreInst(Value * V,StoreInst & SI,Value * OldOp,AAMDNodes AATags)2870   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2871                                   AAMDNodes AATags) {
2872     // Capture V for the purpose of debug-info accounting once it's converted
2873     // to a vector store.
2874     Value *OrigV = V;
2875     if (V->getType() != VecTy) {
2876       unsigned BeginIndex = getIndex(NewBeginOffset);
2877       unsigned EndIndex = getIndex(NewEndOffset);
2878       assert(EndIndex > BeginIndex && "Empty vector!");
2879       unsigned NumElements = EndIndex - BeginIndex;
2880       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2881              "Too many elements!");
2882       Type *SliceTy = (NumElements == 1)
2883                           ? ElementTy
2884                           : FixedVectorType::get(ElementTy, NumElements);
2885       if (V->getType() != SliceTy)
2886         V = convertValue(DL, IRB, V, SliceTy);
2887 
2888       // Mix in the existing elements.
2889       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2890                                          NewAI.getAlign(), "load");
2891       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2892     }
2893     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2894     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2895                              LLVMContext::MD_access_group});
2896     if (AATags)
2897       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2898     Pass.DeadInsts.push_back(&SI);
2899 
2900     // NOTE: Careful to use OrigV rather than V.
2901     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store,
2902                      Store->getPointerOperand(), OrigV, DL);
2903     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2904     return true;
2905   }
2906 
rewriteIntegerStore(Value * V,StoreInst & SI,AAMDNodes AATags)2907   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2908     assert(IntTy && "We cannot extract an integer from the alloca");
2909     assert(!SI.isVolatile());
2910     if (DL.getTypeSizeInBits(V->getType()).getFixedValue() !=
2911         IntTy->getBitWidth()) {
2912       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2913                                          NewAI.getAlign(), "oldload");
2914       Old = convertValue(DL, IRB, Old, IntTy);
2915       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2916       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2917       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2918     }
2919     V = convertValue(DL, IRB, V, NewAllocaTy);
2920     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2921     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2922                              LLVMContext::MD_access_group});
2923     if (AATags)
2924       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2925 
2926     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store,
2927                      Store->getPointerOperand(), Store->getValueOperand(), DL);
2928 
2929     Pass.DeadInsts.push_back(&SI);
2930     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2931     return true;
2932   }
2933 
visitStoreInst(StoreInst & SI)2934   bool visitStoreInst(StoreInst &SI) {
2935     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2936     Value *OldOp = SI.getOperand(1);
2937     assert(OldOp == OldPtr);
2938 
2939     AAMDNodes AATags = SI.getAAMetadata();
2940     Value *V = SI.getValueOperand();
2941 
2942     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2943     // alloca that should be re-examined after promoting this alloca.
2944     if (V->getType()->isPointerTy())
2945       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2946         Pass.PostPromotionWorklist.insert(AI);
2947 
2948     if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedValue()) {
2949       assert(!SI.isVolatile());
2950       assert(V->getType()->isIntegerTy() &&
2951              "Only integer type loads and stores are split");
2952       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2953              "Non-byte-multiple bit width");
2954       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2955       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2956                          "extract");
2957     }
2958 
2959     if (VecTy)
2960       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2961     if (IntTy && V->getType()->isIntegerTy())
2962       return rewriteIntegerStore(V, SI, AATags);
2963 
2964     const bool IsStorePastEnd =
2965         DL.getTypeStoreSize(V->getType()).getFixedValue() > SliceSize;
2966     StoreInst *NewSI;
2967     if (NewBeginOffset == NewAllocaBeginOffset &&
2968         NewEndOffset == NewAllocaEndOffset &&
2969         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2970          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2971           V->getType()->isIntegerTy()))) {
2972       // If this is an integer store past the end of slice (and thus the bytes
2973       // past that point are irrelevant or this is unreachable), truncate the
2974       // value prior to storing.
2975       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2976         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2977           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2978             if (DL.isBigEndian())
2979               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2980                                  "endian_shift");
2981             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2982           }
2983 
2984       V = convertValue(DL, IRB, V, NewAllocaTy);
2985       Value *NewPtr =
2986           getPtrToNewAI(SI.getPointerAddressSpace(), SI.isVolatile());
2987 
2988       NewSI =
2989           IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), SI.isVolatile());
2990     } else {
2991       unsigned AS = SI.getPointerAddressSpace();
2992       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2993       NewSI =
2994           IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
2995     }
2996     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2997                              LLVMContext::MD_access_group});
2998     if (AATags)
2999       NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3000     if (SI.isVolatile())
3001       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
3002     if (NewSI->isAtomic())
3003       NewSI->setAlignment(SI.getAlign());
3004 
3005     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, NewSI,
3006                      NewSI->getPointerOperand(), NewSI->getValueOperand(), DL);
3007 
3008     Pass.DeadInsts.push_back(&SI);
3009     deleteIfTriviallyDead(OldOp);
3010 
3011     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
3012     return NewSI->getPointerOperand() == &NewAI &&
3013            NewSI->getValueOperand()->getType() == NewAllocaTy &&
3014            !SI.isVolatile();
3015   }
3016 
3017   /// Compute an integer value from splatting an i8 across the given
3018   /// number of bytes.
3019   ///
3020   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
3021   /// call this routine.
3022   /// FIXME: Heed the advice above.
3023   ///
3024   /// \param V The i8 value to splat.
3025   /// \param Size The number of bytes in the output (assuming i8 is one byte)
getIntegerSplat(Value * V,unsigned Size)3026   Value *getIntegerSplat(Value *V, unsigned Size) {
3027     assert(Size > 0 && "Expected a positive number of bytes.");
3028     IntegerType *VTy = cast<IntegerType>(V->getType());
3029     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
3030     if (Size == 1)
3031       return V;
3032 
3033     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
3034     V = IRB.CreateMul(
3035         IRB.CreateZExt(V, SplatIntTy, "zext"),
3036         IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy),
3037                        IRB.CreateZExt(Constant::getAllOnesValue(V->getType()),
3038                                       SplatIntTy)),
3039         "isplat");
3040     return V;
3041   }
3042 
3043   /// Compute a vector splat for a given element value.
getVectorSplat(Value * V,unsigned NumElements)3044   Value *getVectorSplat(Value *V, unsigned NumElements) {
3045     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
3046     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
3047     return V;
3048   }
3049 
visitMemSetInst(MemSetInst & II)3050   bool visitMemSetInst(MemSetInst &II) {
3051     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3052     assert(II.getRawDest() == OldPtr);
3053 
3054     AAMDNodes AATags = II.getAAMetadata();
3055 
3056     // If the memset has a variable size, it cannot be split, just adjust the
3057     // pointer to the new alloca.
3058     if (!isa<ConstantInt>(II.getLength())) {
3059       assert(!IsSplit);
3060       assert(NewBeginOffset == BeginOffset);
3061       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
3062       II.setDestAlignment(getSliceAlign());
3063       // In theory we should call migrateDebugInfo here. However, we do not
3064       // emit dbg.assign intrinsics for mem intrinsics storing through non-
3065       // constant geps, or storing a variable number of bytes.
3066       assert(at::getAssignmentMarkers(&II).empty() &&
3067              "AT: Unexpected link to non-const GEP");
3068       deleteIfTriviallyDead(OldPtr);
3069       return false;
3070     }
3071 
3072     // Record this instruction for deletion.
3073     Pass.DeadInsts.push_back(&II);
3074 
3075     Type *AllocaTy = NewAI.getAllocatedType();
3076     Type *ScalarTy = AllocaTy->getScalarType();
3077 
3078     const bool CanContinue = [&]() {
3079       if (VecTy || IntTy)
3080         return true;
3081       if (BeginOffset > NewAllocaBeginOffset ||
3082           EndOffset < NewAllocaEndOffset)
3083         return false;
3084       // Length must be in range for FixedVectorType.
3085       auto *C = cast<ConstantInt>(II.getLength());
3086       const uint64_t Len = C->getLimitedValue();
3087       if (Len > std::numeric_limits<unsigned>::max())
3088         return false;
3089       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
3090       auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
3091       return canConvertValue(DL, SrcTy, AllocaTy) &&
3092              DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedValue());
3093     }();
3094 
3095     // If this doesn't map cleanly onto the alloca type, and that type isn't
3096     // a single value type, just emit a memset.
3097     if (!CanContinue) {
3098       Type *SizeTy = II.getLength()->getType();
3099       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3100       MemIntrinsic *New = cast<MemIntrinsic>(IRB.CreateMemSet(
3101           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
3102           MaybeAlign(getSliceAlign()), II.isVolatile()));
3103       if (AATags)
3104         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3105 
3106       migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
3107                        New->getRawDest(), nullptr, DL);
3108 
3109       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3110       return false;
3111     }
3112 
3113     // If we can represent this as a simple value, we have to build the actual
3114     // value to store, which requires expanding the byte present in memset to
3115     // a sensible representation for the alloca type. This is essentially
3116     // splatting the byte to a sufficiently wide integer, splatting it across
3117     // any desired vector width, and bitcasting to the final type.
3118     Value *V;
3119 
3120     if (VecTy) {
3121       // If this is a memset of a vectorized alloca, insert it.
3122       assert(ElementTy == ScalarTy);
3123 
3124       unsigned BeginIndex = getIndex(NewBeginOffset);
3125       unsigned EndIndex = getIndex(NewEndOffset);
3126       assert(EndIndex > BeginIndex && "Empty vector!");
3127       unsigned NumElements = EndIndex - BeginIndex;
3128       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
3129              "Too many elements!");
3130 
3131       Value *Splat = getIntegerSplat(
3132           II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8);
3133       Splat = convertValue(DL, IRB, Splat, ElementTy);
3134       if (NumElements > 1)
3135         Splat = getVectorSplat(Splat, NumElements);
3136 
3137       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3138                                          NewAI.getAlign(), "oldload");
3139       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
3140     } else if (IntTy) {
3141       // If this is a memset on an alloca where we can widen stores, insert the
3142       // set integer.
3143       assert(!II.isVolatile());
3144 
3145       uint64_t Size = NewEndOffset - NewBeginOffset;
3146       V = getIntegerSplat(II.getValue(), Size);
3147 
3148       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
3149                     EndOffset != NewAllocaBeginOffset)) {
3150         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3151                                            NewAI.getAlign(), "oldload");
3152         Old = convertValue(DL, IRB, Old, IntTy);
3153         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3154         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
3155       } else {
3156         assert(V->getType() == IntTy &&
3157                "Wrong type for an alloca wide integer!");
3158       }
3159       V = convertValue(DL, IRB, V, AllocaTy);
3160     } else {
3161       // Established these invariants above.
3162       assert(NewBeginOffset == NewAllocaBeginOffset);
3163       assert(NewEndOffset == NewAllocaEndOffset);
3164 
3165       V = getIntegerSplat(II.getValue(),
3166                           DL.getTypeSizeInBits(ScalarTy).getFixedValue() / 8);
3167       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
3168         V = getVectorSplat(
3169             V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
3170 
3171       V = convertValue(DL, IRB, V, AllocaTy);
3172     }
3173 
3174     Value *NewPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3175     StoreInst *New =
3176         IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), II.isVolatile());
3177     New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3178                            LLVMContext::MD_access_group});
3179     if (AATags)
3180       New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3181 
3182     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
3183                      New->getPointerOperand(), V, DL);
3184 
3185     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3186     return !II.isVolatile();
3187   }
3188 
visitMemTransferInst(MemTransferInst & II)3189   bool visitMemTransferInst(MemTransferInst &II) {
3190     // Rewriting of memory transfer instructions can be a bit tricky. We break
3191     // them into two categories: split intrinsics and unsplit intrinsics.
3192 
3193     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3194 
3195     AAMDNodes AATags = II.getAAMetadata();
3196 
3197     bool IsDest = &II.getRawDestUse() == OldUse;
3198     assert((IsDest && II.getRawDest() == OldPtr) ||
3199            (!IsDest && II.getRawSource() == OldPtr));
3200 
3201     Align SliceAlign = getSliceAlign();
3202     // For unsplit intrinsics, we simply modify the source and destination
3203     // pointers in place. This isn't just an optimization, it is a matter of
3204     // correctness. With unsplit intrinsics we may be dealing with transfers
3205     // within a single alloca before SROA ran, or with transfers that have
3206     // a variable length. We may also be dealing with memmove instead of
3207     // memcpy, and so simply updating the pointers is the necessary for us to
3208     // update both source and dest of a single call.
3209     if (!IsSplittable) {
3210       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3211       if (IsDest) {
3212         // Update the address component of linked dbg.assigns.
3213         for (auto *DAI : at::getAssignmentMarkers(&II)) {
3214           if (any_of(DAI->location_ops(),
3215                      [&](Value *V) { return V == II.getDest(); }) ||
3216               DAI->getAddress() == II.getDest())
3217             DAI->replaceVariableLocationOp(II.getDest(), AdjustedPtr);
3218         }
3219         II.setDest(AdjustedPtr);
3220         II.setDestAlignment(SliceAlign);
3221       } else {
3222         II.setSource(AdjustedPtr);
3223         II.setSourceAlignment(SliceAlign);
3224       }
3225 
3226       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
3227       deleteIfTriviallyDead(OldPtr);
3228       return false;
3229     }
3230     // For split transfer intrinsics we have an incredibly useful assurance:
3231     // the source and destination do not reside within the same alloca, and at
3232     // least one of them does not escape. This means that we can replace
3233     // memmove with memcpy, and we don't need to worry about all manner of
3234     // downsides to splitting and transforming the operations.
3235 
3236     // If this doesn't map cleanly onto the alloca type, and that type isn't
3237     // a single value type, just emit a memcpy.
3238     bool EmitMemCpy =
3239         !VecTy && !IntTy &&
3240         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
3241          SliceSize !=
3242              DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedValue() ||
3243          !NewAI.getAllocatedType()->isSingleValueType());
3244 
3245     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
3246     // size hasn't been shrunk based on analysis of the viable range, this is
3247     // a no-op.
3248     if (EmitMemCpy && &OldAI == &NewAI) {
3249       // Ensure the start lines up.
3250       assert(NewBeginOffset == BeginOffset);
3251 
3252       // Rewrite the size as needed.
3253       if (NewEndOffset != EndOffset)
3254         II.setLength(ConstantInt::get(II.getLength()->getType(),
3255                                       NewEndOffset - NewBeginOffset));
3256       return false;
3257     }
3258     // Record this instruction for deletion.
3259     Pass.DeadInsts.push_back(&II);
3260 
3261     // Strip all inbounds GEPs and pointer casts to try to dig out any root
3262     // alloca that should be re-examined after rewriting this instruction.
3263     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
3264     if (AllocaInst *AI =
3265             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
3266       assert(AI != &OldAI && AI != &NewAI &&
3267              "Splittable transfers cannot reach the same alloca on both ends.");
3268       Pass.Worklist.insert(AI);
3269     }
3270 
3271     Type *OtherPtrTy = OtherPtr->getType();
3272     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
3273 
3274     // Compute the relative offset for the other pointer within the transfer.
3275     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
3276     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
3277     Align OtherAlign =
3278         (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
3279     OtherAlign =
3280         commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
3281 
3282     if (EmitMemCpy) {
3283       // Compute the other pointer, folding as much as possible to produce
3284       // a single, simple GEP in most cases.
3285       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3286                                 OtherPtr->getName() + ".");
3287 
3288       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3289       Type *SizeTy = II.getLength()->getType();
3290       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3291 
3292       Value *DestPtr, *SrcPtr;
3293       MaybeAlign DestAlign, SrcAlign;
3294       // Note: IsDest is true iff we're copying into the new alloca slice
3295       if (IsDest) {
3296         DestPtr = OurPtr;
3297         DestAlign = SliceAlign;
3298         SrcPtr = OtherPtr;
3299         SrcAlign = OtherAlign;
3300       } else {
3301         DestPtr = OtherPtr;
3302         DestAlign = OtherAlign;
3303         SrcPtr = OurPtr;
3304         SrcAlign = SliceAlign;
3305       }
3306       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
3307                                        Size, II.isVolatile());
3308       if (AATags)
3309         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3310 
3311       migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
3312                        DestPtr, nullptr, DL);
3313       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3314       return false;
3315     }
3316 
3317     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3318                          NewEndOffset == NewAllocaEndOffset;
3319     uint64_t Size = NewEndOffset - NewBeginOffset;
3320     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3321     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3322     unsigned NumElements = EndIndex - BeginIndex;
3323     IntegerType *SubIntTy =
3324         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3325 
3326     // Reset the other pointer type to match the register type we're going to
3327     // use, but using the address space of the original other pointer.
3328     Type *OtherTy;
3329     if (VecTy && !IsWholeAlloca) {
3330       if (NumElements == 1)
3331         OtherTy = VecTy->getElementType();
3332       else
3333         OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3334     } else if (IntTy && !IsWholeAlloca) {
3335       OtherTy = SubIntTy;
3336     } else {
3337       OtherTy = NewAllocaTy;
3338     }
3339     OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3340 
3341     Value *AdjPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3342                                    OtherPtr->getName() + ".");
3343     MaybeAlign SrcAlign = OtherAlign;
3344     MaybeAlign DstAlign = SliceAlign;
3345     if (!IsDest)
3346       std::swap(SrcAlign, DstAlign);
3347 
3348     Value *SrcPtr;
3349     Value *DstPtr;
3350 
3351     if (IsDest) {
3352       DstPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3353       SrcPtr = AdjPtr;
3354     } else {
3355       DstPtr = AdjPtr;
3356       SrcPtr = getPtrToNewAI(II.getSourceAddressSpace(), II.isVolatile());
3357     }
3358 
3359     Value *Src;
3360     if (VecTy && !IsWholeAlloca && !IsDest) {
3361       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3362                                   NewAI.getAlign(), "load");
3363       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3364     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3365       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3366                                   NewAI.getAlign(), "load");
3367       Src = convertValue(DL, IRB, Src, IntTy);
3368       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3369       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3370     } else {
3371       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3372                                              II.isVolatile(), "copyload");
3373       Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3374                               LLVMContext::MD_access_group});
3375       if (AATags)
3376         Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3377       Src = Load;
3378     }
3379 
3380     if (VecTy && !IsWholeAlloca && IsDest) {
3381       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3382                                          NewAI.getAlign(), "oldload");
3383       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3384     } else if (IntTy && !IsWholeAlloca && IsDest) {
3385       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3386                                          NewAI.getAlign(), "oldload");
3387       Old = convertValue(DL, IRB, Old, IntTy);
3388       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3389       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3390       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3391     }
3392 
3393     StoreInst *Store = cast<StoreInst>(
3394         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3395     Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3396                              LLVMContext::MD_access_group});
3397     if (AATags)
3398       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3399 
3400     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, Store,
3401                      DstPtr, Src, DL);
3402     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3403     return !II.isVolatile();
3404   }
3405 
visitIntrinsicInst(IntrinsicInst & II)3406   bool visitIntrinsicInst(IntrinsicInst &II) {
3407     assert((II.isLifetimeStartOrEnd() || II.isDroppable()) &&
3408            "Unexpected intrinsic!");
3409     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3410 
3411     // Record this instruction for deletion.
3412     Pass.DeadInsts.push_back(&II);
3413 
3414     if (II.isDroppable()) {
3415       assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
3416       // TODO For now we forget assumed information, this can be improved.
3417       OldPtr->dropDroppableUsesIn(II);
3418       return true;
3419     }
3420 
3421     assert(II.getArgOperand(1) == OldPtr);
3422     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3423     // Therefore, we drop lifetime intrinsics which don't cover the whole
3424     // alloca.
3425     // (In theory, intrinsics which partially cover an alloca could be
3426     // promoted, but PromoteMemToReg doesn't handle that case.)
3427     // FIXME: Check whether the alloca is promotable before dropping the
3428     // lifetime intrinsics?
3429     if (NewBeginOffset != NewAllocaBeginOffset ||
3430         NewEndOffset != NewAllocaEndOffset)
3431       return true;
3432 
3433     ConstantInt *Size =
3434         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3435                          NewEndOffset - NewBeginOffset);
3436     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3437     // for the new alloca slice.
3438     Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3439     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3440     Value *New;
3441     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3442       New = IRB.CreateLifetimeStart(Ptr, Size);
3443     else
3444       New = IRB.CreateLifetimeEnd(Ptr, Size);
3445 
3446     (void)New;
3447     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3448 
3449     return true;
3450   }
3451 
fixLoadStoreAlign(Instruction & Root)3452   void fixLoadStoreAlign(Instruction &Root) {
3453     // This algorithm implements the same visitor loop as
3454     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3455     // or store found.
3456     SmallPtrSet<Instruction *, 4> Visited;
3457     SmallVector<Instruction *, 4> Uses;
3458     Visited.insert(&Root);
3459     Uses.push_back(&Root);
3460     do {
3461       Instruction *I = Uses.pop_back_val();
3462 
3463       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3464         LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3465         continue;
3466       }
3467       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3468         SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3469         continue;
3470       }
3471 
3472       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3473              isa<PHINode>(I) || isa<SelectInst>(I) ||
3474              isa<GetElementPtrInst>(I));
3475       for (User *U : I->users())
3476         if (Visited.insert(cast<Instruction>(U)).second)
3477           Uses.push_back(cast<Instruction>(U));
3478     } while (!Uses.empty());
3479   }
3480 
visitPHINode(PHINode & PN)3481   bool visitPHINode(PHINode &PN) {
3482     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3483     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3484     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3485 
3486     // We would like to compute a new pointer in only one place, but have it be
3487     // as local as possible to the PHI. To do that, we re-use the location of
3488     // the old pointer, which necessarily must be in the right position to
3489     // dominate the PHI.
3490     IRBuilderBase::InsertPointGuard Guard(IRB);
3491     if (isa<PHINode>(OldPtr))
3492       IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3493     else
3494       IRB.SetInsertPoint(OldPtr);
3495     IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3496 
3497     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3498     // Replace the operands which were using the old pointer.
3499     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3500 
3501     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3502     deleteIfTriviallyDead(OldPtr);
3503 
3504     // Fix the alignment of any loads or stores using this PHI node.
3505     fixLoadStoreAlign(PN);
3506 
3507     // PHIs can't be promoted on their own, but often can be speculated. We
3508     // check the speculation outside of the rewriter so that we see the
3509     // fully-rewritten alloca.
3510     PHIUsers.insert(&PN);
3511     return true;
3512   }
3513 
visitSelectInst(SelectInst & SI)3514   bool visitSelectInst(SelectInst &SI) {
3515     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3516     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3517            "Pointer isn't an operand!");
3518     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3519     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3520 
3521     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3522     // Replace the operands which were using the old pointer.
3523     if (SI.getOperand(1) == OldPtr)
3524       SI.setOperand(1, NewPtr);
3525     if (SI.getOperand(2) == OldPtr)
3526       SI.setOperand(2, NewPtr);
3527 
3528     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3529     deleteIfTriviallyDead(OldPtr);
3530 
3531     // Fix the alignment of any loads or stores using this select.
3532     fixLoadStoreAlign(SI);
3533 
3534     // Selects can't be promoted on their own, but often can be speculated. We
3535     // check the speculation outside of the rewriter so that we see the
3536     // fully-rewritten alloca.
3537     SelectUsers.insert(&SI);
3538     return true;
3539   }
3540 };
3541 
3542 namespace {
3543 
3544 /// Visitor to rewrite aggregate loads and stores as scalar.
3545 ///
3546 /// This pass aggressively rewrites all aggregate loads and stores on
3547 /// a particular pointer (or any pointer derived from it which we can identify)
3548 /// with scalar loads and stores.
3549 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3550   // Befriend the base class so it can delegate to private visit methods.
3551   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3552 
3553   /// Queue of pointer uses to analyze and potentially rewrite.
3554   SmallVector<Use *, 8> Queue;
3555 
3556   /// Set to prevent us from cycling with phi nodes and loops.
3557   SmallPtrSet<User *, 8> Visited;
3558 
3559   /// The current pointer use being rewritten. This is used to dig up the used
3560   /// value (as opposed to the user).
3561   Use *U = nullptr;
3562 
3563   /// Used to calculate offsets, and hence alignment, of subobjects.
3564   const DataLayout &DL;
3565 
3566   IRBuilderTy &IRB;
3567 
3568 public:
AggLoadStoreRewriter(const DataLayout & DL,IRBuilderTy & IRB)3569   AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB)
3570       : DL(DL), IRB(IRB) {}
3571 
3572   /// Rewrite loads and stores through a pointer and all pointers derived from
3573   /// it.
rewrite(Instruction & I)3574   bool rewrite(Instruction &I) {
3575     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3576     enqueueUsers(I);
3577     bool Changed = false;
3578     while (!Queue.empty()) {
3579       U = Queue.pop_back_val();
3580       Changed |= visit(cast<Instruction>(U->getUser()));
3581     }
3582     return Changed;
3583   }
3584 
3585 private:
3586   /// Enqueue all the users of the given instruction for further processing.
3587   /// This uses a set to de-duplicate users.
enqueueUsers(Instruction & I)3588   void enqueueUsers(Instruction &I) {
3589     for (Use &U : I.uses())
3590       if (Visited.insert(U.getUser()).second)
3591         Queue.push_back(&U);
3592   }
3593 
3594   // Conservative default is to not rewrite anything.
visitInstruction(Instruction & I)3595   bool visitInstruction(Instruction &I) { return false; }
3596 
3597   /// Generic recursive split emission class.
3598   template <typename Derived> class OpSplitter {
3599   protected:
3600     /// The builder used to form new instructions.
3601     IRBuilderTy &IRB;
3602 
3603     /// The indices which to be used with insert- or extractvalue to select the
3604     /// appropriate value within the aggregate.
3605     SmallVector<unsigned, 4> Indices;
3606 
3607     /// The indices to a GEP instruction which will move Ptr to the correct slot
3608     /// within the aggregate.
3609     SmallVector<Value *, 4> GEPIndices;
3610 
3611     /// The base pointer of the original op, used as a base for GEPing the
3612     /// split operations.
3613     Value *Ptr;
3614 
3615     /// The base pointee type being GEPed into.
3616     Type *BaseTy;
3617 
3618     /// Known alignment of the base pointer.
3619     Align BaseAlign;
3620 
3621     /// To calculate offset of each component so we can correctly deduce
3622     /// alignments.
3623     const DataLayout &DL;
3624 
3625     /// Initialize the splitter with an insertion point, Ptr and start with a
3626     /// single zero GEP index.
OpSplitter(Instruction * InsertionPoint,Value * Ptr,Type * BaseTy,Align BaseAlign,const DataLayout & DL,IRBuilderTy & IRB)3627     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3628                Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB)
3629         : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy),
3630           BaseAlign(BaseAlign), DL(DL) {
3631       IRB.SetInsertPoint(InsertionPoint);
3632     }
3633 
3634   public:
3635     /// Generic recursive split emission routine.
3636     ///
3637     /// This method recursively splits an aggregate op (load or store) into
3638     /// scalar or vector ops. It splits recursively until it hits a single value
3639     /// and emits that single value operation via the template argument.
3640     ///
3641     /// The logic of this routine relies on GEPs and insertvalue and
3642     /// extractvalue all operating with the same fundamental index list, merely
3643     /// formatted differently (GEPs need actual values).
3644     ///
3645     /// \param Ty  The type being split recursively into smaller ops.
3646     /// \param Agg The aggregate value being built up or stored, depending on
3647     /// whether this is splitting a load or a store respectively.
emitSplitOps(Type * Ty,Value * & Agg,const Twine & Name)3648     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3649       if (Ty->isSingleValueType()) {
3650         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3651         return static_cast<Derived *>(this)->emitFunc(
3652             Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3653       }
3654 
3655       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3656         unsigned OldSize = Indices.size();
3657         (void)OldSize;
3658         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3659              ++Idx) {
3660           assert(Indices.size() == OldSize && "Did not return to the old size");
3661           Indices.push_back(Idx);
3662           GEPIndices.push_back(IRB.getInt32(Idx));
3663           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3664           GEPIndices.pop_back();
3665           Indices.pop_back();
3666         }
3667         return;
3668       }
3669 
3670       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3671         unsigned OldSize = Indices.size();
3672         (void)OldSize;
3673         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3674              ++Idx) {
3675           assert(Indices.size() == OldSize && "Did not return to the old size");
3676           Indices.push_back(Idx);
3677           GEPIndices.push_back(IRB.getInt32(Idx));
3678           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3679           GEPIndices.pop_back();
3680           Indices.pop_back();
3681         }
3682         return;
3683       }
3684 
3685       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3686     }
3687   };
3688 
3689   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3690     AAMDNodes AATags;
3691 
LoadOpSplitter__anon54bbb7c80c11::AggLoadStoreRewriter::LoadOpSplitter3692     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3693                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL,
3694                    IRBuilderTy &IRB)
3695         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL,
3696                                      IRB),
3697           AATags(AATags) {}
3698 
3699     /// Emit a leaf load of a single value. This is called at the leaves of the
3700     /// recursive emission to actually load values.
emitFunc__anon54bbb7c80c11::AggLoadStoreRewriter::LoadOpSplitter3701     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3702       assert(Ty->isSingleValueType());
3703       // Load the single value and insert it using the indices.
3704       Value *GEP =
3705           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3706       LoadInst *Load =
3707           IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3708 
3709       APInt Offset(
3710           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3711       if (AATags &&
3712           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3713         Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3714 
3715       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3716       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3717     }
3718   };
3719 
visitLoadInst(LoadInst & LI)3720   bool visitLoadInst(LoadInst &LI) {
3721     assert(LI.getPointerOperand() == *U);
3722     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3723       return false;
3724 
3725     // We have an aggregate being loaded, split it apart.
3726     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3727     LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(),
3728                             getAdjustedAlignment(&LI, 0), DL, IRB);
3729     Value *V = PoisonValue::get(LI.getType());
3730     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3731     Visited.erase(&LI);
3732     LI.replaceAllUsesWith(V);
3733     LI.eraseFromParent();
3734     return true;
3735   }
3736 
3737   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
StoreOpSplitter__anon54bbb7c80c11::AggLoadStoreRewriter::StoreOpSplitter3738     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3739                     AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign,
3740                     const DataLayout &DL, IRBuilderTy &IRB)
3741         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3742                                       DL, IRB),
3743           AATags(AATags), AggStore(AggStore) {}
3744     AAMDNodes AATags;
3745     StoreInst *AggStore;
3746     /// Emit a leaf store of a single value. This is called at the leaves of the
3747     /// recursive emission to actually produce stores.
emitFunc__anon54bbb7c80c11::AggLoadStoreRewriter::StoreOpSplitter3748     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3749       assert(Ty->isSingleValueType());
3750       // Extract the single value and store it using the indices.
3751       //
3752       // The gep and extractvalue values are factored out of the CreateStore
3753       // call to make the output independent of the argument evaluation order.
3754       Value *ExtractValue =
3755           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3756       Value *InBoundsGEP =
3757           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3758       StoreInst *Store =
3759           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3760 
3761       APInt Offset(
3762           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3763       if (AATags &&
3764           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3765         Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3766 
3767       // migrateDebugInfo requires the base Alloca. Walk to it from this gep.
3768       // If we cannot (because there's an intervening non-const or unbounded
3769       // gep) then we wouldn't expect to see dbg.assign intrinsics linked to
3770       // this instruction.
3771       APInt OffsetInBytes(DL.getTypeSizeInBits(Ptr->getType()), false);
3772       Value *Base = InBoundsGEP->stripAndAccumulateInBoundsConstantOffsets(
3773           DL, OffsetInBytes);
3774       if (auto *OldAI = dyn_cast<AllocaInst>(Base)) {
3775         uint64_t SizeInBits =
3776             DL.getTypeSizeInBits(Store->getValueOperand()->getType());
3777         migrateDebugInfo(OldAI, OffsetInBytes.getZExtValue() * 8, SizeInBits,
3778                          AggStore, Store, Store->getPointerOperand(),
3779                          Store->getValueOperand(), DL);
3780       } else {
3781         assert(at::getAssignmentMarkers(Store).empty() &&
3782                "AT: unexpected debug.assign linked to store through "
3783                "unbounded GEP");
3784       }
3785       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3786     }
3787   };
3788 
visitStoreInst(StoreInst & SI)3789   bool visitStoreInst(StoreInst &SI) {
3790     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3791       return false;
3792     Value *V = SI.getValueOperand();
3793     if (V->getType()->isSingleValueType())
3794       return false;
3795 
3796     // We have an aggregate being stored, split it apart.
3797     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3798     StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI,
3799                              getAdjustedAlignment(&SI, 0), DL, IRB);
3800     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3801     Visited.erase(&SI);
3802     SI.eraseFromParent();
3803     return true;
3804   }
3805 
visitBitCastInst(BitCastInst & BC)3806   bool visitBitCastInst(BitCastInst &BC) {
3807     enqueueUsers(BC);
3808     return false;
3809   }
3810 
visitAddrSpaceCastInst(AddrSpaceCastInst & ASC)3811   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3812     enqueueUsers(ASC);
3813     return false;
3814   }
3815 
3816   // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
foldGEPSelect(GetElementPtrInst & GEPI)3817   bool foldGEPSelect(GetElementPtrInst &GEPI) {
3818     if (!GEPI.hasAllConstantIndices())
3819       return false;
3820 
3821     SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3822 
3823     LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):"
3824                       << "\n    original: " << *Sel
3825                       << "\n              " << GEPI);
3826 
3827     IRB.SetInsertPoint(&GEPI);
3828     SmallVector<Value *, 4> Index(GEPI.indices());
3829     bool IsInBounds = GEPI.isInBounds();
3830 
3831     Type *Ty = GEPI.getSourceElementType();
3832     Value *True = Sel->getTrueValue();
3833     Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep",
3834                                  IsInBounds);
3835 
3836     Value *False = Sel->getFalseValue();
3837 
3838     Value *NFalse = IRB.CreateGEP(Ty, False, Index,
3839                                   False->getName() + ".sroa.gep", IsInBounds);
3840 
3841     Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3842                                    Sel->getName() + ".sroa.sel");
3843     Visited.erase(&GEPI);
3844     GEPI.replaceAllUsesWith(NSel);
3845     GEPI.eraseFromParent();
3846     Instruction *NSelI = cast<Instruction>(NSel);
3847     Visited.insert(NSelI);
3848     enqueueUsers(*NSelI);
3849 
3850     LLVM_DEBUG(dbgs() << "\n          to: " << *NTrue
3851                       << "\n              " << *NFalse
3852                       << "\n              " << *NSel << '\n');
3853 
3854     return true;
3855   }
3856 
3857   // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
foldGEPPhi(GetElementPtrInst & GEPI)3858   bool foldGEPPhi(GetElementPtrInst &GEPI) {
3859     if (!GEPI.hasAllConstantIndices())
3860       return false;
3861 
3862     PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
3863     if (GEPI.getParent() != PHI->getParent() ||
3864         llvm::any_of(PHI->incoming_values(), [](Value *In)
3865           { Instruction *I = dyn_cast<Instruction>(In);
3866             return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
3867                    succ_empty(I->getParent()) ||
3868                    !I->getParent()->isLegalToHoistInto();
3869           }))
3870       return false;
3871 
3872     LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):"
3873                       << "\n    original: " << *PHI
3874                       << "\n              " << GEPI
3875                       << "\n          to: ");
3876 
3877     SmallVector<Value *, 4> Index(GEPI.indices());
3878     bool IsInBounds = GEPI.isInBounds();
3879     IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI());
3880     PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(),
3881                                    PHI->getName() + ".sroa.phi");
3882     for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
3883       BasicBlock *B = PHI->getIncomingBlock(I);
3884       Value *NewVal = nullptr;
3885       int Idx = NewPN->getBasicBlockIndex(B);
3886       if (Idx >= 0) {
3887         NewVal = NewPN->getIncomingValue(Idx);
3888       } else {
3889         Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
3890 
3891         IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator()));
3892         Type *Ty = GEPI.getSourceElementType();
3893         NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep",
3894                                IsInBounds);
3895       }
3896       NewPN->addIncoming(NewVal, B);
3897     }
3898 
3899     Visited.erase(&GEPI);
3900     GEPI.replaceAllUsesWith(NewPN);
3901     GEPI.eraseFromParent();
3902     Visited.insert(NewPN);
3903     enqueueUsers(*NewPN);
3904 
3905     LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
3906                  dbgs() << "\n              " << *In;
3907                dbgs() << "\n              " << *NewPN << '\n');
3908 
3909     return true;
3910   }
3911 
visitGetElementPtrInst(GetElementPtrInst & GEPI)3912   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3913     if (isa<SelectInst>(GEPI.getPointerOperand()) &&
3914         foldGEPSelect(GEPI))
3915       return true;
3916 
3917     if (isa<PHINode>(GEPI.getPointerOperand()) &&
3918         foldGEPPhi(GEPI))
3919       return true;
3920 
3921     enqueueUsers(GEPI);
3922     return false;
3923   }
3924 
visitPHINode(PHINode & PN)3925   bool visitPHINode(PHINode &PN) {
3926     enqueueUsers(PN);
3927     return false;
3928   }
3929 
visitSelectInst(SelectInst & SI)3930   bool visitSelectInst(SelectInst &SI) {
3931     enqueueUsers(SI);
3932     return false;
3933   }
3934 };
3935 
3936 } // end anonymous namespace
3937 
3938 /// Strip aggregate type wrapping.
3939 ///
3940 /// This removes no-op aggregate types wrapping an underlying type. It will
3941 /// strip as many layers of types as it can without changing either the type
3942 /// size or the allocated size.
stripAggregateTypeWrapping(const DataLayout & DL,Type * Ty)3943 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3944   if (Ty->isSingleValueType())
3945     return Ty;
3946 
3947   uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue();
3948   uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue();
3949 
3950   Type *InnerTy;
3951   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3952     InnerTy = ArrTy->getElementType();
3953   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3954     const StructLayout *SL = DL.getStructLayout(STy);
3955     unsigned Index = SL->getElementContainingOffset(0);
3956     InnerTy = STy->getElementType(Index);
3957   } else {
3958     return Ty;
3959   }
3960 
3961   if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedValue() ||
3962       TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedValue())
3963     return Ty;
3964 
3965   return stripAggregateTypeWrapping(DL, InnerTy);
3966 }
3967 
3968 /// Try to find a partition of the aggregate type passed in for a given
3969 /// offset and size.
3970 ///
3971 /// This recurses through the aggregate type and tries to compute a subtype
3972 /// based on the offset and size. When the offset and size span a sub-section
3973 /// of an array, it will even compute a new array type for that sub-section,
3974 /// and the same for structs.
3975 ///
3976 /// Note that this routine is very strict and tries to find a partition of the
3977 /// type which produces the *exact* right offset and size. It is not forgiving
3978 /// when the size or offset cause either end of type-based partition to be off.
3979 /// Also, this is a best-effort routine. It is reasonable to give up and not
3980 /// return a type if necessary.
getTypePartition(const DataLayout & DL,Type * Ty,uint64_t Offset,uint64_t Size)3981 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3982                               uint64_t Size) {
3983   if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size)
3984     return stripAggregateTypeWrapping(DL, Ty);
3985   if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() ||
3986       (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size)
3987     return nullptr;
3988 
3989   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
3990      Type *ElementTy;
3991      uint64_t TyNumElements;
3992      if (auto *AT = dyn_cast<ArrayType>(Ty)) {
3993        ElementTy = AT->getElementType();
3994        TyNumElements = AT->getNumElements();
3995      } else {
3996        // FIXME: This isn't right for vectors with non-byte-sized or
3997        // non-power-of-two sized elements.
3998        auto *VT = cast<FixedVectorType>(Ty);
3999        ElementTy = VT->getElementType();
4000        TyNumElements = VT->getNumElements();
4001     }
4002     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4003     uint64_t NumSkippedElements = Offset / ElementSize;
4004     if (NumSkippedElements >= TyNumElements)
4005       return nullptr;
4006     Offset -= NumSkippedElements * ElementSize;
4007 
4008     // First check if we need to recurse.
4009     if (Offset > 0 || Size < ElementSize) {
4010       // Bail if the partition ends in a different array element.
4011       if ((Offset + Size) > ElementSize)
4012         return nullptr;
4013       // Recurse through the element type trying to peel off offset bytes.
4014       return getTypePartition(DL, ElementTy, Offset, Size);
4015     }
4016     assert(Offset == 0);
4017 
4018     if (Size == ElementSize)
4019       return stripAggregateTypeWrapping(DL, ElementTy);
4020     assert(Size > ElementSize);
4021     uint64_t NumElements = Size / ElementSize;
4022     if (NumElements * ElementSize != Size)
4023       return nullptr;
4024     return ArrayType::get(ElementTy, NumElements);
4025   }
4026 
4027   StructType *STy = dyn_cast<StructType>(Ty);
4028   if (!STy)
4029     return nullptr;
4030 
4031   const StructLayout *SL = DL.getStructLayout(STy);
4032   if (Offset >= SL->getSizeInBytes())
4033     return nullptr;
4034   uint64_t EndOffset = Offset + Size;
4035   if (EndOffset > SL->getSizeInBytes())
4036     return nullptr;
4037 
4038   unsigned Index = SL->getElementContainingOffset(Offset);
4039   Offset -= SL->getElementOffset(Index);
4040 
4041   Type *ElementTy = STy->getElementType(Index);
4042   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4043   if (Offset >= ElementSize)
4044     return nullptr; // The offset points into alignment padding.
4045 
4046   // See if any partition must be contained by the element.
4047   if (Offset > 0 || Size < ElementSize) {
4048     if ((Offset + Size) > ElementSize)
4049       return nullptr;
4050     return getTypePartition(DL, ElementTy, Offset, Size);
4051   }
4052   assert(Offset == 0);
4053 
4054   if (Size == ElementSize)
4055     return stripAggregateTypeWrapping(DL, ElementTy);
4056 
4057   StructType::element_iterator EI = STy->element_begin() + Index,
4058                                EE = STy->element_end();
4059   if (EndOffset < SL->getSizeInBytes()) {
4060     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
4061     if (Index == EndIndex)
4062       return nullptr; // Within a single element and its padding.
4063 
4064     // Don't try to form "natural" types if the elements don't line up with the
4065     // expected size.
4066     // FIXME: We could potentially recurse down through the last element in the
4067     // sub-struct to find a natural end point.
4068     if (SL->getElementOffset(EndIndex) != EndOffset)
4069       return nullptr;
4070 
4071     assert(Index < EndIndex);
4072     EE = STy->element_begin() + EndIndex;
4073   }
4074 
4075   // Try to build up a sub-structure.
4076   StructType *SubTy =
4077       StructType::get(STy->getContext(), ArrayRef(EI, EE), STy->isPacked());
4078   const StructLayout *SubSL = DL.getStructLayout(SubTy);
4079   if (Size != SubSL->getSizeInBytes())
4080     return nullptr; // The sub-struct doesn't have quite the size needed.
4081 
4082   return SubTy;
4083 }
4084 
4085 /// Pre-split loads and stores to simplify rewriting.
4086 ///
4087 /// We want to break up the splittable load+store pairs as much as
4088 /// possible. This is important to do as a preprocessing step, as once we
4089 /// start rewriting the accesses to partitions of the alloca we lose the
4090 /// necessary information to correctly split apart paired loads and stores
4091 /// which both point into this alloca. The case to consider is something like
4092 /// the following:
4093 ///
4094 ///   %a = alloca [12 x i8]
4095 ///   %gep1 = getelementptr i8, ptr %a, i32 0
4096 ///   %gep2 = getelementptr i8, ptr %a, i32 4
4097 ///   %gep3 = getelementptr i8, ptr %a, i32 8
4098 ///   store float 0.0, ptr %gep1
4099 ///   store float 1.0, ptr %gep2
4100 ///   %v = load i64, ptr %gep1
4101 ///   store i64 %v, ptr %gep2
4102 ///   %f1 = load float, ptr %gep2
4103 ///   %f2 = load float, ptr %gep3
4104 ///
4105 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
4106 /// promote everything so we recover the 2 SSA values that should have been
4107 /// there all along.
4108 ///
4109 /// \returns true if any changes are made.
presplitLoadsAndStores(AllocaInst & AI,AllocaSlices & AS)4110 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
4111   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
4112 
4113   // Track the loads and stores which are candidates for pre-splitting here, in
4114   // the order they first appear during the partition scan. These give stable
4115   // iteration order and a basis for tracking which loads and stores we
4116   // actually split.
4117   SmallVector<LoadInst *, 4> Loads;
4118   SmallVector<StoreInst *, 4> Stores;
4119 
4120   // We need to accumulate the splits required of each load or store where we
4121   // can find them via a direct lookup. This is important to cross-check loads
4122   // and stores against each other. We also track the slice so that we can kill
4123   // all the slices that end up split.
4124   struct SplitOffsets {
4125     Slice *S;
4126     std::vector<uint64_t> Splits;
4127   };
4128   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
4129 
4130   // Track loads out of this alloca which cannot, for any reason, be pre-split.
4131   // This is important as we also cannot pre-split stores of those loads!
4132   // FIXME: This is all pretty gross. It means that we can be more aggressive
4133   // in pre-splitting when the load feeding the store happens to come from
4134   // a separate alloca. Put another way, the effectiveness of SROA would be
4135   // decreased by a frontend which just concatenated all of its local allocas
4136   // into one big flat alloca. But defeating such patterns is exactly the job
4137   // SROA is tasked with! Sadly, to not have this discrepancy we would have
4138   // change store pre-splitting to actually force pre-splitting of the load
4139   // that feeds it *and all stores*. That makes pre-splitting much harder, but
4140   // maybe it would make it more principled?
4141   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
4142 
4143   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
4144   for (auto &P : AS.partitions()) {
4145     for (Slice &S : P) {
4146       Instruction *I = cast<Instruction>(S.getUse()->getUser());
4147       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
4148         // If this is a load we have to track that it can't participate in any
4149         // pre-splitting. If this is a store of a load we have to track that
4150         // that load also can't participate in any pre-splitting.
4151         if (auto *LI = dyn_cast<LoadInst>(I))
4152           UnsplittableLoads.insert(LI);
4153         else if (auto *SI = dyn_cast<StoreInst>(I))
4154           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
4155             UnsplittableLoads.insert(LI);
4156         continue;
4157       }
4158       assert(P.endOffset() > S.beginOffset() &&
4159              "Empty or backwards partition!");
4160 
4161       // Determine if this is a pre-splittable slice.
4162       if (auto *LI = dyn_cast<LoadInst>(I)) {
4163         assert(!LI->isVolatile() && "Cannot split volatile loads!");
4164 
4165         // The load must be used exclusively to store into other pointers for
4166         // us to be able to arbitrarily pre-split it. The stores must also be
4167         // simple to avoid changing semantics.
4168         auto IsLoadSimplyStored = [](LoadInst *LI) {
4169           for (User *LU : LI->users()) {
4170             auto *SI = dyn_cast<StoreInst>(LU);
4171             if (!SI || !SI->isSimple())
4172               return false;
4173           }
4174           return true;
4175         };
4176         if (!IsLoadSimplyStored(LI)) {
4177           UnsplittableLoads.insert(LI);
4178           continue;
4179         }
4180 
4181         Loads.push_back(LI);
4182       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
4183         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
4184           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
4185           continue;
4186         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
4187         if (!StoredLoad || !StoredLoad->isSimple())
4188           continue;
4189         assert(!SI->isVolatile() && "Cannot split volatile stores!");
4190 
4191         Stores.push_back(SI);
4192       } else {
4193         // Other uses cannot be pre-split.
4194         continue;
4195       }
4196 
4197       // Record the initial split.
4198       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
4199       auto &Offsets = SplitOffsetsMap[I];
4200       assert(Offsets.Splits.empty() &&
4201              "Should not have splits the first time we see an instruction!");
4202       Offsets.S = &S;
4203       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
4204     }
4205 
4206     // Now scan the already split slices, and add a split for any of them which
4207     // we're going to pre-split.
4208     for (Slice *S : P.splitSliceTails()) {
4209       auto SplitOffsetsMapI =
4210           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
4211       if (SplitOffsetsMapI == SplitOffsetsMap.end())
4212         continue;
4213       auto &Offsets = SplitOffsetsMapI->second;
4214 
4215       assert(Offsets.S == S && "Found a mismatched slice!");
4216       assert(!Offsets.Splits.empty() &&
4217              "Cannot have an empty set of splits on the second partition!");
4218       assert(Offsets.Splits.back() ==
4219                  P.beginOffset() - Offsets.S->beginOffset() &&
4220              "Previous split does not end where this one begins!");
4221 
4222       // Record each split. The last partition's end isn't needed as the size
4223       // of the slice dictates that.
4224       if (S->endOffset() > P.endOffset())
4225         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
4226     }
4227   }
4228 
4229   // We may have split loads where some of their stores are split stores. For
4230   // such loads and stores, we can only pre-split them if their splits exactly
4231   // match relative to their starting offset. We have to verify this prior to
4232   // any rewriting.
4233   llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
4234     // Lookup the load we are storing in our map of split
4235     // offsets.
4236     auto *LI = cast<LoadInst>(SI->getValueOperand());
4237     // If it was completely unsplittable, then we're done,
4238     // and this store can't be pre-split.
4239     if (UnsplittableLoads.count(LI))
4240       return true;
4241 
4242     auto LoadOffsetsI = SplitOffsetsMap.find(LI);
4243     if (LoadOffsetsI == SplitOffsetsMap.end())
4244       return false; // Unrelated loads are definitely safe.
4245     auto &LoadOffsets = LoadOffsetsI->second;
4246 
4247     // Now lookup the store's offsets.
4248     auto &StoreOffsets = SplitOffsetsMap[SI];
4249 
4250     // If the relative offsets of each split in the load and
4251     // store match exactly, then we can split them and we
4252     // don't need to remove them here.
4253     if (LoadOffsets.Splits == StoreOffsets.Splits)
4254       return false;
4255 
4256     LLVM_DEBUG(dbgs() << "    Mismatched splits for load and store:\n"
4257                       << "      " << *LI << "\n"
4258                       << "      " << *SI << "\n");
4259 
4260     // We've found a store and load that we need to split
4261     // with mismatched relative splits. Just give up on them
4262     // and remove both instructions from our list of
4263     // candidates.
4264     UnsplittableLoads.insert(LI);
4265     return true;
4266   });
4267   // Now we have to go *back* through all the stores, because a later store may
4268   // have caused an earlier store's load to become unsplittable and if it is
4269   // unsplittable for the later store, then we can't rely on it being split in
4270   // the earlier store either.
4271   llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
4272     auto *LI = cast<LoadInst>(SI->getValueOperand());
4273     return UnsplittableLoads.count(LI);
4274   });
4275   // Once we've established all the loads that can't be split for some reason,
4276   // filter any that made it into our list out.
4277   llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
4278     return UnsplittableLoads.count(LI);
4279   });
4280 
4281   // If no loads or stores are left, there is no pre-splitting to be done for
4282   // this alloca.
4283   if (Loads.empty() && Stores.empty())
4284     return false;
4285 
4286   // From here on, we can't fail and will be building new accesses, so rig up
4287   // an IR builder.
4288   IRBuilderTy IRB(&AI);
4289 
4290   // Collect the new slices which we will merge into the alloca slices.
4291   SmallVector<Slice, 4> NewSlices;
4292 
4293   // Track any allocas we end up splitting loads and stores for so we iterate
4294   // on them.
4295   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
4296 
4297   // At this point, we have collected all of the loads and stores we can
4298   // pre-split, and the specific splits needed for them. We actually do the
4299   // splitting in a specific order in order to handle when one of the loads in
4300   // the value operand to one of the stores.
4301   //
4302   // First, we rewrite all of the split loads, and just accumulate each split
4303   // load in a parallel structure. We also build the slices for them and append
4304   // them to the alloca slices.
4305   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
4306   std::vector<LoadInst *> SplitLoads;
4307   const DataLayout &DL = AI.getModule()->getDataLayout();
4308   for (LoadInst *LI : Loads) {
4309     SplitLoads.clear();
4310 
4311     auto &Offsets = SplitOffsetsMap[LI];
4312     unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset();
4313     assert(LI->getType()->getIntegerBitWidth() % 8 == 0 &&
4314            "Load must have type size equal to store size");
4315     assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize &&
4316            "Load must be >= slice size");
4317 
4318     uint64_t BaseOffset = Offsets.S->beginOffset();
4319     assert(BaseOffset + SliceSize > BaseOffset &&
4320            "Cannot represent alloca access size using 64-bit integers!");
4321 
4322     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
4323     IRB.SetInsertPoint(LI);
4324 
4325     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
4326 
4327     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4328     int Idx = 0, Size = Offsets.Splits.size();
4329     for (;;) {
4330       auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8);
4331       auto AS = LI->getPointerAddressSpace();
4332       auto *PartPtrTy = PartTy->getPointerTo(AS);
4333       LoadInst *PLoad = IRB.CreateAlignedLoad(
4334           PartTy,
4335           getAdjustedPtr(IRB, DL, BasePtr,
4336                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4337                          PartPtrTy, BasePtr->getName() + "."),
4338           getAdjustedAlignment(LI, PartOffset),
4339           /*IsVolatile*/ false, LI->getName());
4340       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4341                                 LLVMContext::MD_access_group});
4342 
4343       // Append this load onto the list of split loads so we can find it later
4344       // to rewrite the stores.
4345       SplitLoads.push_back(PLoad);
4346 
4347       // Now build a new slice for the alloca.
4348       NewSlices.push_back(
4349           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4350                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4351                 /*IsSplittable*/ false));
4352       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4353                         << ", " << NewSlices.back().endOffset()
4354                         << "): " << *PLoad << "\n");
4355 
4356       // See if we've handled all the splits.
4357       if (Idx >= Size)
4358         break;
4359 
4360       // Setup the next partition.
4361       PartOffset = Offsets.Splits[Idx];
4362       ++Idx;
4363       PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset;
4364     }
4365 
4366     // Now that we have the split loads, do the slow walk over all uses of the
4367     // load and rewrite them as split stores, or save the split loads to use
4368     // below if the store is going to be split there anyways.
4369     bool DeferredStores = false;
4370     for (User *LU : LI->users()) {
4371       StoreInst *SI = cast<StoreInst>(LU);
4372       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4373         DeferredStores = true;
4374         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4375                           << "\n");
4376         continue;
4377       }
4378 
4379       Value *StoreBasePtr = SI->getPointerOperand();
4380       IRB.SetInsertPoint(SI);
4381 
4382       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4383 
4384       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4385         LoadInst *PLoad = SplitLoads[Idx];
4386         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4387         auto *PartPtrTy =
4388             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
4389 
4390         auto AS = SI->getPointerAddressSpace();
4391         StoreInst *PStore = IRB.CreateAlignedStore(
4392             PLoad,
4393             getAdjustedPtr(IRB, DL, StoreBasePtr,
4394                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4395                            PartPtrTy, StoreBasePtr->getName() + "."),
4396             getAdjustedAlignment(SI, PartOffset),
4397             /*IsVolatile*/ false);
4398         PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4399                                    LLVMContext::MD_access_group,
4400                                    LLVMContext::MD_DIAssignID});
4401         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4402       }
4403 
4404       // We want to immediately iterate on any allocas impacted by splitting
4405       // this store, and we have to track any promotable alloca (indicated by
4406       // a direct store) as needing to be resplit because it is no longer
4407       // promotable.
4408       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4409         ResplitPromotableAllocas.insert(OtherAI);
4410         Worklist.insert(OtherAI);
4411       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4412                      StoreBasePtr->stripInBoundsOffsets())) {
4413         Worklist.insert(OtherAI);
4414       }
4415 
4416       // Mark the original store as dead.
4417       DeadInsts.push_back(SI);
4418     }
4419 
4420     // Save the split loads if there are deferred stores among the users.
4421     if (DeferredStores)
4422       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4423 
4424     // Mark the original load as dead and kill the original slice.
4425     DeadInsts.push_back(LI);
4426     Offsets.S->kill();
4427   }
4428 
4429   // Second, we rewrite all of the split stores. At this point, we know that
4430   // all loads from this alloca have been split already. For stores of such
4431   // loads, we can simply look up the pre-existing split loads. For stores of
4432   // other loads, we split those loads first and then write split stores of
4433   // them.
4434   for (StoreInst *SI : Stores) {
4435     auto *LI = cast<LoadInst>(SI->getValueOperand());
4436     IntegerType *Ty = cast<IntegerType>(LI->getType());
4437     assert(Ty->getBitWidth() % 8 == 0);
4438     uint64_t StoreSize = Ty->getBitWidth() / 8;
4439     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4440 
4441     auto &Offsets = SplitOffsetsMap[SI];
4442     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4443            "Slice size should always match load size exactly!");
4444     uint64_t BaseOffset = Offsets.S->beginOffset();
4445     assert(BaseOffset + StoreSize > BaseOffset &&
4446            "Cannot represent alloca access size using 64-bit integers!");
4447 
4448     Value *LoadBasePtr = LI->getPointerOperand();
4449     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4450 
4451     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4452 
4453     // Check whether we have an already split load.
4454     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4455     std::vector<LoadInst *> *SplitLoads = nullptr;
4456     if (SplitLoadsMapI != SplitLoadsMap.end()) {
4457       SplitLoads = &SplitLoadsMapI->second;
4458       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4459              "Too few split loads for the number of splits in the store!");
4460     } else {
4461       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4462     }
4463 
4464     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4465     int Idx = 0, Size = Offsets.Splits.size();
4466     for (;;) {
4467       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4468       auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
4469       auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
4470 
4471       // Either lookup a split load or create one.
4472       LoadInst *PLoad;
4473       if (SplitLoads) {
4474         PLoad = (*SplitLoads)[Idx];
4475       } else {
4476         IRB.SetInsertPoint(LI);
4477         auto AS = LI->getPointerAddressSpace();
4478         PLoad = IRB.CreateAlignedLoad(
4479             PartTy,
4480             getAdjustedPtr(IRB, DL, LoadBasePtr,
4481                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4482                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4483             getAdjustedAlignment(LI, PartOffset),
4484             /*IsVolatile*/ false, LI->getName());
4485         PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4486                                   LLVMContext::MD_access_group});
4487       }
4488 
4489       // And store this partition.
4490       IRB.SetInsertPoint(SI);
4491       auto AS = SI->getPointerAddressSpace();
4492       StoreInst *PStore = IRB.CreateAlignedStore(
4493           PLoad,
4494           getAdjustedPtr(IRB, DL, StoreBasePtr,
4495                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4496                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4497           getAdjustedAlignment(SI, PartOffset),
4498           /*IsVolatile*/ false);
4499       PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4500                                  LLVMContext::MD_access_group});
4501 
4502       // Now build a new slice for the alloca.
4503       NewSlices.push_back(
4504           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4505                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4506                 /*IsSplittable*/ false));
4507       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4508                         << ", " << NewSlices.back().endOffset()
4509                         << "): " << *PStore << "\n");
4510       if (!SplitLoads) {
4511         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4512       }
4513 
4514       // See if we've finished all the splits.
4515       if (Idx >= Size)
4516         break;
4517 
4518       // Setup the next partition.
4519       PartOffset = Offsets.Splits[Idx];
4520       ++Idx;
4521       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4522     }
4523 
4524     // We want to immediately iterate on any allocas impacted by splitting
4525     // this load, which is only relevant if it isn't a load of this alloca and
4526     // thus we didn't already split the loads above. We also have to keep track
4527     // of any promotable allocas we split loads on as they can no longer be
4528     // promoted.
4529     if (!SplitLoads) {
4530       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4531         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4532         ResplitPromotableAllocas.insert(OtherAI);
4533         Worklist.insert(OtherAI);
4534       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4535                      LoadBasePtr->stripInBoundsOffsets())) {
4536         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4537         Worklist.insert(OtherAI);
4538       }
4539     }
4540 
4541     // Mark the original store as dead now that we've split it up and kill its
4542     // slice. Note that we leave the original load in place unless this store
4543     // was its only use. It may in turn be split up if it is an alloca load
4544     // for some other alloca, but it may be a normal load. This may introduce
4545     // redundant loads, but where those can be merged the rest of the optimizer
4546     // should handle the merging, and this uncovers SSA splits which is more
4547     // important. In practice, the original loads will almost always be fully
4548     // split and removed eventually, and the splits will be merged by any
4549     // trivial CSE, including instcombine.
4550     if (LI->hasOneUse()) {
4551       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4552       DeadInsts.push_back(LI);
4553     }
4554     DeadInsts.push_back(SI);
4555     Offsets.S->kill();
4556   }
4557 
4558   // Remove the killed slices that have ben pre-split.
4559   llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4560 
4561   // Insert our new slices. This will sort and merge them into the sorted
4562   // sequence.
4563   AS.insert(NewSlices);
4564 
4565   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4566 #ifndef NDEBUG
4567   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4568     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4569 #endif
4570 
4571   // Finally, don't try to promote any allocas that new require re-splitting.
4572   // They have already been added to the worklist above.
4573   llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4574     return ResplitPromotableAllocas.count(AI);
4575   });
4576 
4577   return true;
4578 }
4579 
4580 /// Rewrite an alloca partition's users.
4581 ///
4582 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4583 /// to rewrite uses of an alloca partition to be conducive for SSA value
4584 /// promotion. If the partition needs a new, more refined alloca, this will
4585 /// build that new alloca, preserving as much type information as possible, and
4586 /// rewrite the uses of the old alloca to point at the new one and have the
4587 /// appropriate new offsets. It also evaluates how successful the rewrite was
4588 /// at enabling promotion and if it was successful queues the alloca to be
4589 /// promoted.
rewritePartition(AllocaInst & AI,AllocaSlices & AS,Partition & P)4590 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4591                                        Partition &P) {
4592   // Try to compute a friendly type for this partition of the alloca. This
4593   // won't always succeed, in which case we fall back to a legal integer type
4594   // or an i8 array of an appropriate size.
4595   Type *SliceTy = nullptr;
4596   VectorType *SliceVecTy = nullptr;
4597   const DataLayout &DL = AI.getModule()->getDataLayout();
4598   std::pair<Type *, IntegerType *> CommonUseTy =
4599       findCommonType(P.begin(), P.end(), P.endOffset());
4600   // Do all uses operate on the same type?
4601   if (CommonUseTy.first)
4602     if (DL.getTypeAllocSize(CommonUseTy.first).getFixedValue() >= P.size()) {
4603       SliceTy = CommonUseTy.first;
4604       SliceVecTy = dyn_cast<VectorType>(SliceTy);
4605     }
4606   // If not, can we find an appropriate subtype in the original allocated type?
4607   if (!SliceTy)
4608     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4609                                                  P.beginOffset(), P.size()))
4610       SliceTy = TypePartitionTy;
4611 
4612   // If still not, can we use the largest bitwidth integer type used?
4613   if (!SliceTy && CommonUseTy.second)
4614     if (DL.getTypeAllocSize(CommonUseTy.second).getFixedValue() >= P.size()) {
4615       SliceTy = CommonUseTy.second;
4616       SliceVecTy = dyn_cast<VectorType>(SliceTy);
4617     }
4618   if ((!SliceTy || (SliceTy->isArrayTy() &&
4619                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4620       DL.isLegalInteger(P.size() * 8)) {
4621     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4622   }
4623 
4624   // If the common use types are not viable for promotion then attempt to find
4625   // another type that is viable.
4626   if (SliceVecTy && !checkVectorTypeForPromotion(P, SliceVecTy, DL))
4627     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4628                                                  P.beginOffset(), P.size())) {
4629       VectorType *TypePartitionVecTy = dyn_cast<VectorType>(TypePartitionTy);
4630       if (TypePartitionVecTy &&
4631           checkVectorTypeForPromotion(P, TypePartitionVecTy, DL))
4632         SliceTy = TypePartitionTy;
4633     }
4634 
4635   if (!SliceTy)
4636     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4637   assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size());
4638 
4639   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4640 
4641   VectorType *VecTy =
4642       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4643   if (VecTy)
4644     SliceTy = VecTy;
4645 
4646   // Check for the case where we're going to rewrite to a new alloca of the
4647   // exact same type as the original, and with the same access offsets. In that
4648   // case, re-use the existing alloca, but still run through the rewriter to
4649   // perform phi and select speculation.
4650   // P.beginOffset() can be non-zero even with the same type in a case with
4651   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4652   AllocaInst *NewAI;
4653   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4654     NewAI = &AI;
4655     // FIXME: We should be able to bail at this point with "nothing changed".
4656     // FIXME: We might want to defer PHI speculation until after here.
4657     // FIXME: return nullptr;
4658   } else {
4659     // Make sure the alignment is compatible with P.beginOffset().
4660     const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4661     // If we will get at least this much alignment from the type alone, leave
4662     // the alloca's alignment unconstrained.
4663     const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4664     NewAI = new AllocaInst(
4665         SliceTy, AI.getAddressSpace(), nullptr,
4666         IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4667         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4668     // Copy the old AI debug location over to the new one.
4669     NewAI->setDebugLoc(AI.getDebugLoc());
4670     ++NumNewAllocas;
4671   }
4672 
4673   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4674                     << "[" << P.beginOffset() << "," << P.endOffset()
4675                     << ") to: " << *NewAI << "\n");
4676 
4677   // Track the high watermark on the worklist as it is only relevant for
4678   // promoted allocas. We will reset it to this point if the alloca is not in
4679   // fact scheduled for promotion.
4680   unsigned PPWOldSize = PostPromotionWorklist.size();
4681   unsigned NumUses = 0;
4682   SmallSetVector<PHINode *, 8> PHIUsers;
4683   SmallSetVector<SelectInst *, 8> SelectUsers;
4684 
4685   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4686                                P.endOffset(), IsIntegerPromotable, VecTy,
4687                                PHIUsers, SelectUsers);
4688   bool Promotable = true;
4689   for (Slice *S : P.splitSliceTails()) {
4690     Promotable &= Rewriter.visit(S);
4691     ++NumUses;
4692   }
4693   for (Slice &S : P) {
4694     Promotable &= Rewriter.visit(&S);
4695     ++NumUses;
4696   }
4697 
4698   NumAllocaPartitionUses += NumUses;
4699   MaxUsesPerAllocaPartition.updateMax(NumUses);
4700 
4701   // Now that we've processed all the slices in the new partition, check if any
4702   // PHIs or Selects would block promotion.
4703   for (PHINode *PHI : PHIUsers)
4704     if (!isSafePHIToSpeculate(*PHI)) {
4705       Promotable = false;
4706       PHIUsers.clear();
4707       SelectUsers.clear();
4708       break;
4709     }
4710 
4711   SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2>
4712       NewSelectsToRewrite;
4713   NewSelectsToRewrite.reserve(SelectUsers.size());
4714   for (SelectInst *Sel : SelectUsers) {
4715     std::optional<RewriteableMemOps> Ops =
4716         isSafeSelectToSpeculate(*Sel, PreserveCFG);
4717     if (!Ops) {
4718       Promotable = false;
4719       PHIUsers.clear();
4720       SelectUsers.clear();
4721       NewSelectsToRewrite.clear();
4722       break;
4723     }
4724     NewSelectsToRewrite.emplace_back(std::make_pair(Sel, *Ops));
4725   }
4726 
4727   if (Promotable) {
4728     for (Use *U : AS.getDeadUsesIfPromotable()) {
4729       auto *OldInst = dyn_cast<Instruction>(U->get());
4730       Value::dropDroppableUse(*U);
4731       if (OldInst)
4732         if (isInstructionTriviallyDead(OldInst))
4733           DeadInsts.push_back(OldInst);
4734     }
4735     if (PHIUsers.empty() && SelectUsers.empty()) {
4736       // Promote the alloca.
4737       PromotableAllocas.push_back(NewAI);
4738     } else {
4739       // If we have either PHIs or Selects to speculate, add them to those
4740       // worklists and re-queue the new alloca so that we promote in on the
4741       // next iteration.
4742       for (PHINode *PHIUser : PHIUsers)
4743         SpeculatablePHIs.insert(PHIUser);
4744       SelectsToRewrite.reserve(SelectsToRewrite.size() +
4745                                NewSelectsToRewrite.size());
4746       for (auto &&KV : llvm::make_range(
4747                std::make_move_iterator(NewSelectsToRewrite.begin()),
4748                std::make_move_iterator(NewSelectsToRewrite.end())))
4749         SelectsToRewrite.insert(std::move(KV));
4750       Worklist.insert(NewAI);
4751     }
4752   } else {
4753     // Drop any post-promotion work items if promotion didn't happen.
4754     while (PostPromotionWorklist.size() > PPWOldSize)
4755       PostPromotionWorklist.pop_back();
4756 
4757     // We couldn't promote and we didn't create a new partition, nothing
4758     // happened.
4759     if (NewAI == &AI)
4760       return nullptr;
4761 
4762     // If we can't promote the alloca, iterate on it to check for new
4763     // refinements exposed by splitting the current alloca. Don't iterate on an
4764     // alloca which didn't actually change and didn't get promoted.
4765     Worklist.insert(NewAI);
4766   }
4767 
4768   return NewAI;
4769 }
4770 
4771 /// Walks the slices of an alloca and form partitions based on them,
4772 /// rewriting each of their uses.
splitAlloca(AllocaInst & AI,AllocaSlices & AS)4773 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4774   if (AS.begin() == AS.end())
4775     return false;
4776 
4777   unsigned NumPartitions = 0;
4778   bool Changed = false;
4779   const DataLayout &DL = AI.getModule()->getDataLayout();
4780 
4781   // First try to pre-split loads and stores.
4782   Changed |= presplitLoadsAndStores(AI, AS);
4783 
4784   // Now that we have identified any pre-splitting opportunities,
4785   // mark loads and stores unsplittable except for the following case.
4786   // We leave a slice splittable if all other slices are disjoint or fully
4787   // included in the slice, such as whole-alloca loads and stores.
4788   // If we fail to split these during pre-splitting, we want to force them
4789   // to be rewritten into a partition.
4790   bool IsSorted = true;
4791 
4792   uint64_t AllocaSize =
4793       DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue();
4794   const uint64_t MaxBitVectorSize = 1024;
4795   if (AllocaSize <= MaxBitVectorSize) {
4796     // If a byte boundary is included in any load or store, a slice starting or
4797     // ending at the boundary is not splittable.
4798     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4799     for (Slice &S : AS)
4800       for (unsigned O = S.beginOffset() + 1;
4801            O < S.endOffset() && O < AllocaSize; O++)
4802         SplittableOffset.reset(O);
4803 
4804     for (Slice &S : AS) {
4805       if (!S.isSplittable())
4806         continue;
4807 
4808       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4809           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4810         continue;
4811 
4812       if (isa<LoadInst>(S.getUse()->getUser()) ||
4813           isa<StoreInst>(S.getUse()->getUser())) {
4814         S.makeUnsplittable();
4815         IsSorted = false;
4816       }
4817     }
4818   }
4819   else {
4820     // We only allow whole-alloca splittable loads and stores
4821     // for a large alloca to avoid creating too large BitVector.
4822     for (Slice &S : AS) {
4823       if (!S.isSplittable())
4824         continue;
4825 
4826       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4827         continue;
4828 
4829       if (isa<LoadInst>(S.getUse()->getUser()) ||
4830           isa<StoreInst>(S.getUse()->getUser())) {
4831         S.makeUnsplittable();
4832         IsSorted = false;
4833       }
4834     }
4835   }
4836 
4837   if (!IsSorted)
4838     llvm::sort(AS);
4839 
4840   /// Describes the allocas introduced by rewritePartition in order to migrate
4841   /// the debug info.
4842   struct Fragment {
4843     AllocaInst *Alloca;
4844     uint64_t Offset;
4845     uint64_t Size;
4846     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4847       : Alloca(AI), Offset(O), Size(S) {}
4848   };
4849   SmallVector<Fragment, 4> Fragments;
4850 
4851   // Rewrite each partition.
4852   for (auto &P : AS.partitions()) {
4853     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4854       Changed = true;
4855       if (NewAI != &AI) {
4856         uint64_t SizeOfByte = 8;
4857         uint64_t AllocaSize =
4858             DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedValue();
4859         // Don't include any padding.
4860         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4861         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4862       }
4863     }
4864     ++NumPartitions;
4865   }
4866 
4867   NumAllocaPartitions += NumPartitions;
4868   MaxPartitionsPerAlloca.updateMax(NumPartitions);
4869 
4870   // Migrate debug information from the old alloca to the new alloca(s)
4871   // and the individual partitions.
4872   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4873   for (auto *DbgAssign : at::getAssignmentMarkers(&AI))
4874     DbgDeclares.push_back(DbgAssign);
4875   for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) {
4876     auto *Expr = DbgDeclare->getExpression();
4877     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4878     uint64_t AllocaSize =
4879         DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedValue();
4880     for (auto Fragment : Fragments) {
4881       // Create a fragment expression describing the new partition or reuse AI's
4882       // expression if there is only one partition.
4883       auto *FragmentExpr = Expr;
4884       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4885         // If this alloca is already a scalar replacement of a larger aggregate,
4886         // Fragment.Offset describes the offset inside the scalar.
4887         auto ExprFragment = Expr->getFragmentInfo();
4888         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4889         uint64_t Start = Offset + Fragment.Offset;
4890         uint64_t Size = Fragment.Size;
4891         if (ExprFragment) {
4892           uint64_t AbsEnd =
4893               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4894           if (Start >= AbsEnd) {
4895             // No need to describe a SROAed padding.
4896             continue;
4897           }
4898           Size = std::min(Size, AbsEnd - Start);
4899         }
4900         // The new, smaller fragment is stenciled out from the old fragment.
4901         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4902           assert(Start >= OrigFragment->OffsetInBits &&
4903                  "new fragment is outside of original fragment");
4904           Start -= OrigFragment->OffsetInBits;
4905         }
4906 
4907         // The alloca may be larger than the variable.
4908         auto VarSize = DbgDeclare->getVariable()->getSizeInBits();
4909         if (VarSize) {
4910           if (Size > *VarSize)
4911             Size = *VarSize;
4912           if (Size == 0 || Start + Size > *VarSize)
4913             continue;
4914         }
4915 
4916         // Avoid creating a fragment expression that covers the entire variable.
4917         if (!VarSize || *VarSize != Size) {
4918           if (auto E =
4919                   DIExpression::createFragmentExpression(Expr, Start, Size))
4920             FragmentExpr = *E;
4921           else
4922             continue;
4923         }
4924       }
4925 
4926       // Remove any existing intrinsics on the new alloca describing
4927       // the variable fragment.
4928       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) {
4929         auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS,
4930                                        const DbgVariableIntrinsic *RHS) {
4931           return LHS->getVariable() == RHS->getVariable() &&
4932                  LHS->getDebugLoc()->getInlinedAt() ==
4933                      RHS->getDebugLoc()->getInlinedAt();
4934         };
4935         if (SameVariableFragment(OldDII, DbgDeclare))
4936           OldDII->eraseFromParent();
4937       }
4938 
4939       if (auto *DbgAssign = dyn_cast<DbgAssignIntrinsic>(DbgDeclare)) {
4940         if (!Fragment.Alloca->hasMetadata(LLVMContext::MD_DIAssignID)) {
4941           Fragment.Alloca->setMetadata(
4942               LLVMContext::MD_DIAssignID,
4943               DIAssignID::getDistinct(AI.getContext()));
4944         }
4945         auto *NewAssign = DIB.insertDbgAssign(
4946             Fragment.Alloca, DbgAssign->getValue(), DbgAssign->getVariable(),
4947             FragmentExpr, Fragment.Alloca, DbgAssign->getAddressExpression(),
4948             DbgAssign->getDebugLoc());
4949         NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
4950         LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign
4951                           << "\n");
4952       } else {
4953         DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(),
4954                           FragmentExpr, DbgDeclare->getDebugLoc(), &AI);
4955       }
4956     }
4957   }
4958   return Changed;
4959 }
4960 
4961 /// Clobber a use with poison, deleting the used value if it becomes dead.
clobberUse(Use & U)4962 void SROAPass::clobberUse(Use &U) {
4963   Value *OldV = U;
4964   // Replace the use with an poison value.
4965   U = PoisonValue::get(OldV->getType());
4966 
4967   // Check for this making an instruction dead. We have to garbage collect
4968   // all the dead instructions to ensure the uses of any alloca end up being
4969   // minimal.
4970   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4971     if (isInstructionTriviallyDead(OldI)) {
4972       DeadInsts.push_back(OldI);
4973     }
4974 }
4975 
4976 /// Analyze an alloca for SROA.
4977 ///
4978 /// This analyzes the alloca to ensure we can reason about it, builds
4979 /// the slices of the alloca, and then hands it off to be split and
4980 /// rewritten as needed.
4981 std::pair<bool /*Changed*/, bool /*CFGChanged*/>
runOnAlloca(AllocaInst & AI)4982 SROAPass::runOnAlloca(AllocaInst &AI) {
4983   bool Changed = false;
4984   bool CFGChanged = false;
4985 
4986   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4987   ++NumAllocasAnalyzed;
4988 
4989   // Special case dead allocas, as they're trivial.
4990   if (AI.use_empty()) {
4991     AI.eraseFromParent();
4992     Changed = true;
4993     return {Changed, CFGChanged};
4994   }
4995   const DataLayout &DL = AI.getModule()->getDataLayout();
4996 
4997   // Skip alloca forms that this analysis can't handle.
4998   auto *AT = AI.getAllocatedType();
4999   if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
5000       DL.getTypeAllocSize(AT).getFixedValue() == 0)
5001     return {Changed, CFGChanged};
5002 
5003   // First, split any FCA loads and stores touching this alloca to promote
5004   // better splitting and promotion opportunities.
5005   IRBuilderTy IRB(&AI);
5006   AggLoadStoreRewriter AggRewriter(DL, IRB);
5007   Changed |= AggRewriter.rewrite(AI);
5008 
5009   // Build the slices using a recursive instruction-visiting builder.
5010   AllocaSlices AS(DL, AI);
5011   LLVM_DEBUG(AS.print(dbgs()));
5012   if (AS.isEscaped())
5013     return {Changed, CFGChanged};
5014 
5015   // Delete all the dead users of this alloca before splitting and rewriting it.
5016   for (Instruction *DeadUser : AS.getDeadUsers()) {
5017     // Free up everything used by this instruction.
5018     for (Use &DeadOp : DeadUser->operands())
5019       clobberUse(DeadOp);
5020 
5021     // Now replace the uses of this instruction.
5022     DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType()));
5023 
5024     // And mark it for deletion.
5025     DeadInsts.push_back(DeadUser);
5026     Changed = true;
5027   }
5028   for (Use *DeadOp : AS.getDeadOperands()) {
5029     clobberUse(*DeadOp);
5030     Changed = true;
5031   }
5032 
5033   // No slices to split. Leave the dead alloca for a later pass to clean up.
5034   if (AS.begin() == AS.end())
5035     return {Changed, CFGChanged};
5036 
5037   Changed |= splitAlloca(AI, AS);
5038 
5039   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
5040   while (!SpeculatablePHIs.empty())
5041     speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val());
5042 
5043   LLVM_DEBUG(dbgs() << "  Rewriting Selects\n");
5044   auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector();
5045   while (!RemainingSelectsToRewrite.empty()) {
5046     const auto [K, V] = RemainingSelectsToRewrite.pop_back_val();
5047     CFGChanged |=
5048         rewriteSelectInstMemOps(*K, V, IRB, PreserveCFG ? nullptr : DTU);
5049   }
5050 
5051   return {Changed, CFGChanged};
5052 }
5053 
5054 /// Delete the dead instructions accumulated in this run.
5055 ///
5056 /// Recursively deletes the dead instructions we've accumulated. This is done
5057 /// at the very end to maximize locality of the recursive delete and to
5058 /// minimize the problems of invalidated instruction pointers as such pointers
5059 /// are used heavily in the intermediate stages of the algorithm.
5060 ///
5061 /// We also record the alloca instructions deleted here so that they aren't
5062 /// subsequently handed to mem2reg to promote.
deleteDeadInstructions(SmallPtrSetImpl<AllocaInst * > & DeletedAllocas)5063 bool SROAPass::deleteDeadInstructions(
5064     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
5065   bool Changed = false;
5066   while (!DeadInsts.empty()) {
5067     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
5068     if (!I)
5069       continue;
5070     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
5071 
5072     // If the instruction is an alloca, find the possible dbg.declare connected
5073     // to it, and remove it too. We must do this before calling RAUW or we will
5074     // not be able to find it.
5075     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5076       DeletedAllocas.insert(AI);
5077       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
5078         OldDII->eraseFromParent();
5079     }
5080 
5081     at::deleteAssignmentMarkers(I);
5082     I->replaceAllUsesWith(UndefValue::get(I->getType()));
5083 
5084     for (Use &Operand : I->operands())
5085       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
5086         // Zero out the operand and see if it becomes trivially dead.
5087         Operand = nullptr;
5088         if (isInstructionTriviallyDead(U))
5089           DeadInsts.push_back(U);
5090       }
5091 
5092     ++NumDeleted;
5093     I->eraseFromParent();
5094     Changed = true;
5095   }
5096   return Changed;
5097 }
5098 
5099 /// Promote the allocas, using the best available technique.
5100 ///
5101 /// This attempts to promote whatever allocas have been identified as viable in
5102 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
5103 /// This function returns whether any promotion occurred.
promoteAllocas(Function & F)5104 bool SROAPass::promoteAllocas(Function &F) {
5105   if (PromotableAllocas.empty())
5106     return false;
5107 
5108   NumPromoted += PromotableAllocas.size();
5109 
5110   LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
5111   PromoteMemToReg(PromotableAllocas, DTU->getDomTree(), AC);
5112   PromotableAllocas.clear();
5113   return true;
5114 }
5115 
runImpl(Function & F,DomTreeUpdater & RunDTU,AssumptionCache & RunAC)5116 PreservedAnalyses SROAPass::runImpl(Function &F, DomTreeUpdater &RunDTU,
5117                                     AssumptionCache &RunAC) {
5118   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
5119   C = &F.getContext();
5120   DTU = &RunDTU;
5121   AC = &RunAC;
5122 
5123   BasicBlock &EntryBB = F.getEntryBlock();
5124   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
5125        I != E; ++I) {
5126     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5127       if (isa<ScalableVectorType>(AI->getAllocatedType())) {
5128         if (isAllocaPromotable(AI))
5129           PromotableAllocas.push_back(AI);
5130       } else {
5131         Worklist.insert(AI);
5132       }
5133     }
5134   }
5135 
5136   bool Changed = false;
5137   bool CFGChanged = false;
5138   // A set of deleted alloca instruction pointers which should be removed from
5139   // the list of promotable allocas.
5140   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
5141 
5142   do {
5143     while (!Worklist.empty()) {
5144       auto [IterationChanged, IterationCFGChanged] =
5145           runOnAlloca(*Worklist.pop_back_val());
5146       Changed |= IterationChanged;
5147       CFGChanged |= IterationCFGChanged;
5148 
5149       Changed |= deleteDeadInstructions(DeletedAllocas);
5150 
5151       // Remove the deleted allocas from various lists so that we don't try to
5152       // continue processing them.
5153       if (!DeletedAllocas.empty()) {
5154         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
5155         Worklist.remove_if(IsInSet);
5156         PostPromotionWorklist.remove_if(IsInSet);
5157         llvm::erase_if(PromotableAllocas, IsInSet);
5158         DeletedAllocas.clear();
5159       }
5160     }
5161 
5162     Changed |= promoteAllocas(F);
5163 
5164     Worklist = PostPromotionWorklist;
5165     PostPromotionWorklist.clear();
5166   } while (!Worklist.empty());
5167 
5168   assert((!CFGChanged || Changed) && "Can not only modify the CFG.");
5169   assert((!CFGChanged || !PreserveCFG) &&
5170          "Should not have modified the CFG when told to preserve it.");
5171 
5172   if (!Changed)
5173     return PreservedAnalyses::all();
5174 
5175   PreservedAnalyses PA;
5176   if (!CFGChanged)
5177     PA.preserveSet<CFGAnalyses>();
5178   PA.preserve<DominatorTreeAnalysis>();
5179   return PA;
5180 }
5181 
runImpl(Function & F,DominatorTree & RunDT,AssumptionCache & RunAC)5182 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT,
5183                                     AssumptionCache &RunAC) {
5184   DomTreeUpdater DTU(RunDT, DomTreeUpdater::UpdateStrategy::Lazy);
5185   return runImpl(F, DTU, RunAC);
5186 }
5187 
run(Function & F,FunctionAnalysisManager & AM)5188 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) {
5189   return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
5190                  AM.getResult<AssumptionAnalysis>(F));
5191 }
5192 
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)5193 void SROAPass::printPipeline(
5194     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
5195   static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline(
5196       OS, MapClassName2PassName);
5197   OS << (PreserveCFG ? "<preserve-cfg>" : "<modify-cfg>");
5198 }
5199 
SROAPass(SROAOptions PreserveCFG_)5200 SROAPass::SROAPass(SROAOptions PreserveCFG_)
5201     : PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {}
5202 
5203 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
5204 ///
5205 /// This is in the llvm namespace purely to allow it to be a friend of the \c
5206 /// SROA pass.
5207 class llvm::sroa::SROALegacyPass : public FunctionPass {
5208   /// The SROA implementation.
5209   SROAPass Impl;
5210 
5211 public:
5212   static char ID;
5213 
SROALegacyPass(SROAOptions PreserveCFG=SROAOptions::PreserveCFG)5214   SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG)
5215       : FunctionPass(ID), Impl(PreserveCFG) {
5216     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
5217   }
5218 
runOnFunction(Function & F)5219   bool runOnFunction(Function &F) override {
5220     if (skipFunction(F))
5221       return false;
5222 
5223     auto PA = Impl.runImpl(
5224         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
5225         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
5226     return !PA.areAllPreserved();
5227   }
5228 
getAnalysisUsage(AnalysisUsage & AU) const5229   void getAnalysisUsage(AnalysisUsage &AU) const override {
5230     AU.addRequired<AssumptionCacheTracker>();
5231     AU.addRequired<DominatorTreeWrapperPass>();
5232     AU.addPreserved<GlobalsAAWrapperPass>();
5233     AU.addPreserved<DominatorTreeWrapperPass>();
5234   }
5235 
getPassName() const5236   StringRef getPassName() const override { return "SROA"; }
5237 };
5238 
5239 char SROALegacyPass::ID = 0;
5240 
createSROAPass(bool PreserveCFG)5241 FunctionPass *llvm::createSROAPass(bool PreserveCFG) {
5242   return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG
5243                                         : SROAOptions::ModifyCFG);
5244 }
5245 
5246 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
5247                       "Scalar Replacement Of Aggregates", false, false)
5248 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5249 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5250 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
5251                     false, false)
5252