1 // Copyright 2019 The libgav1 Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <algorithm>
16 #include <array>
17 #include <cassert>
18 #include <cstdint>
19 #include <cstdlib>
20 #include <cstring>
21 #include <memory>
22 #include <vector>
23
24 #include "src/buffer_pool.h"
25 #include "src/dsp/constants.h"
26 #include "src/motion_vector.h"
27 #include "src/obu_parser.h"
28 #include "src/prediction_mask.h"
29 #include "src/symbol_decoder_context.h"
30 #include "src/tile.h"
31 #include "src/utils/array_2d.h"
32 #include "src/utils/bit_mask_set.h"
33 #include "src/utils/block_parameters_holder.h"
34 #include "src/utils/common.h"
35 #include "src/utils/constants.h"
36 #include "src/utils/entropy_decoder.h"
37 #include "src/utils/logging.h"
38 #include "src/utils/segmentation.h"
39 #include "src/utils/segmentation_map.h"
40 #include "src/utils/types.h"
41
42 namespace libgav1 {
43 namespace {
44
45 constexpr int kDeltaQSmall = 3;
46 constexpr int kDeltaLfSmall = 3;
47
48 constexpr uint8_t kIntraYModeContext[kIntraPredictionModesY] = {
49 0, 1, 2, 3, 4, 4, 4, 4, 3, 0, 1, 2, 0};
50
51 constexpr uint8_t kSizeGroup[kMaxBlockSizes] = {
52 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 2, 2, 1, 2, 3, 3, 2, 3, 3, 3, 3, 3};
53
54 constexpr int kCompoundModeNewMvContexts = 5;
55 constexpr uint8_t kCompoundModeContextMap[3][kCompoundModeNewMvContexts] = {
56 {0, 1, 1, 1, 1}, {1, 2, 3, 4, 4}, {4, 4, 5, 6, 7}};
57
58 enum CflSign : uint8_t {
59 kCflSignZero = 0,
60 kCflSignNegative = 1,
61 kCflSignPositive = 2
62 };
63
64 // For each possible value of the combined signs (which is read from the
65 // bitstream), this array stores the following: sign_u, sign_v, alpha_u_context,
66 // alpha_v_context. Only positive entries are used. Entry at index i is computed
67 // as follows:
68 // sign_u = i / 3
69 // sign_v = i % 3
70 // alpha_u_context = i - 2
71 // alpha_v_context = (sign_v - 1) * 3 + sign_u
72 constexpr int8_t kCflAlphaLookup[kCflAlphaSignsSymbolCount][4] = {
73 {0, 1, -2, 0}, {0, 2, -1, 3}, {1, 0, 0, -2}, {1, 1, 1, 1},
74 {1, 2, 2, 4}, {2, 0, 3, -1}, {2, 1, 4, 2}, {2, 2, 5, 5},
75 };
76
77 constexpr BitMaskSet kPredictionModeHasNearMvMask(kPredictionModeNearMv,
78 kPredictionModeNearNearMv,
79 kPredictionModeNearNewMv,
80 kPredictionModeNewNearMv);
81
82 constexpr BitMaskSet kIsInterIntraModeAllowedMask(kBlock8x8, kBlock8x16,
83 kBlock16x8, kBlock16x16,
84 kBlock16x32, kBlock32x16,
85 kBlock32x32);
86
IsBackwardReference(ReferenceFrameType type)87 bool IsBackwardReference(ReferenceFrameType type) {
88 return type >= kReferenceFrameBackward && type <= kReferenceFrameAlternate;
89 }
90
IsSameDirectionReferencePair(ReferenceFrameType type1,ReferenceFrameType type2)91 bool IsSameDirectionReferencePair(ReferenceFrameType type1,
92 ReferenceFrameType type2) {
93 return (type1 >= kReferenceFrameBackward) ==
94 (type2 >= kReferenceFrameBackward);
95 }
96
97 // This is called neg_deinterleave() in the spec.
DecodeSegmentId(int diff,int reference,int max)98 int DecodeSegmentId(int diff, int reference, int max) {
99 if (reference == 0) return diff;
100 if (reference >= max - 1) return max - diff - 1;
101 const int value = ((diff & 1) != 0) ? reference + ((diff + 1) >> 1)
102 : reference - (diff >> 1);
103 const int reference2 = (reference << 1);
104 if (reference2 < max) {
105 return (diff <= reference2) ? value : diff;
106 }
107 return (diff <= ((max - reference - 1) << 1)) ? value : max - (diff + 1);
108 }
109
110 // This is called DrlCtxStack in section 7.10.2.14 of the spec.
111 // In the spec, the weights of all the nearest mvs are incremented by a bonus
112 // weight which is larger than any natural weight, and the weights of the mvs
113 // are compared with this bonus weight to determine their contexts. We replace
114 // this procedure by introducing |nearest_mv_count| in PredictionParameters,
115 // which records the count of the nearest mvs. Since all the nearest mvs are in
116 // the beginning of the mv stack, the |index| of a mv in the mv stack can be
117 // compared with |nearest_mv_count| to get that mv's context.
GetRefMvIndexContext(int nearest_mv_count,int index)118 int GetRefMvIndexContext(int nearest_mv_count, int index) {
119 if (index + 1 < nearest_mv_count) {
120 return 0;
121 }
122 if (index + 1 == nearest_mv_count) {
123 return 1;
124 }
125 return 2;
126 }
127
128 // Returns true if both the width and height of the block is less than 64.
IsBlockDimensionLessThan64(BlockSize size)129 bool IsBlockDimensionLessThan64(BlockSize size) {
130 return size <= kBlock32x32 && size != kBlock16x64;
131 }
132
GetUseCompoundReferenceContext(const Tile::Block & block)133 int GetUseCompoundReferenceContext(const Tile::Block& block) {
134 if (block.top_available[kPlaneY] && block.left_available[kPlaneY]) {
135 if (block.IsTopSingle() && block.IsLeftSingle()) {
136 return static_cast<int>(IsBackwardReference(block.TopReference(0))) ^
137 static_cast<int>(IsBackwardReference(block.LeftReference(0)));
138 }
139 if (block.IsTopSingle()) {
140 return 2 + static_cast<int>(IsBackwardReference(block.TopReference(0)) ||
141 block.IsTopIntra());
142 }
143 if (block.IsLeftSingle()) {
144 return 2 + static_cast<int>(IsBackwardReference(block.LeftReference(0)) ||
145 block.IsLeftIntra());
146 }
147 return 4;
148 }
149 if (block.top_available[kPlaneY]) {
150 return block.IsTopSingle()
151 ? static_cast<int>(IsBackwardReference(block.TopReference(0)))
152 : 3;
153 }
154 if (block.left_available[kPlaneY]) {
155 return block.IsLeftSingle()
156 ? static_cast<int>(IsBackwardReference(block.LeftReference(0)))
157 : 3;
158 }
159 return 1;
160 }
161
162 // Calculates count0 by calling block.CountReferences() on the frame types from
163 // type0_start to type0_end, inclusive, and summing the results.
164 // Calculates count1 by calling block.CountReferences() on the frame types from
165 // type1_start to type1_end, inclusive, and summing the results.
166 // Compares count0 with count1 and returns 0, 1 or 2.
167 //
168 // See count_refs and ref_count_ctx in 8.3.2.
GetReferenceContext(const Tile::Block & block,ReferenceFrameType type0_start,ReferenceFrameType type0_end,ReferenceFrameType type1_start,ReferenceFrameType type1_end)169 int GetReferenceContext(const Tile::Block& block,
170 ReferenceFrameType type0_start,
171 ReferenceFrameType type0_end,
172 ReferenceFrameType type1_start,
173 ReferenceFrameType type1_end) {
174 int count0 = 0;
175 int count1 = 0;
176 for (int type = type0_start; type <= type0_end; ++type) {
177 count0 += block.CountReferences(static_cast<ReferenceFrameType>(type));
178 }
179 for (int type = type1_start; type <= type1_end; ++type) {
180 count1 += block.CountReferences(static_cast<ReferenceFrameType>(type));
181 }
182 return (count0 < count1) ? 0 : (count0 == count1 ? 1 : 2);
183 }
184
185 } // namespace
186
ReadSegmentId(const Block & block)187 bool Tile::ReadSegmentId(const Block& block) {
188 // These two asserts ensure that current_frame_.segmentation_map() is not
189 // nullptr.
190 assert(frame_header_.segmentation.enabled);
191 assert(frame_header_.segmentation.update_map);
192 const SegmentationMap& map = *current_frame_.segmentation_map();
193 int top_left = -1;
194 if (block.top_available[kPlaneY] && block.left_available[kPlaneY]) {
195 top_left = map.segment_id(block.row4x4 - 1, block.column4x4 - 1);
196 }
197 int top = -1;
198 if (block.top_available[kPlaneY]) {
199 top = map.segment_id(block.row4x4 - 1, block.column4x4);
200 }
201 int left = -1;
202 if (block.left_available[kPlaneY]) {
203 left = map.segment_id(block.row4x4, block.column4x4 - 1);
204 }
205 int pred;
206 if (top == -1) {
207 pred = (left == -1) ? 0 : left;
208 } else if (left == -1) {
209 pred = top;
210 } else {
211 pred = (top_left == top) ? top : left;
212 }
213 BlockParameters& bp = *block.bp;
214 if (bp.skip) {
215 bp.prediction_parameters->segment_id = pred;
216 return true;
217 }
218 int context = 0;
219 if (top_left < 0) {
220 context = 0;
221 } else if (top_left == top && top_left == left) {
222 context = 2;
223 } else if (top_left == top || top_left == left || top == left) {
224 context = 1;
225 }
226 uint16_t* const segment_id_cdf =
227 symbol_decoder_context_.segment_id_cdf[context];
228 const int encoded_segment_id =
229 reader_.ReadSymbol<kMaxSegments>(segment_id_cdf);
230 bp.prediction_parameters->segment_id =
231 DecodeSegmentId(encoded_segment_id, pred,
232 frame_header_.segmentation.last_active_segment_id + 1);
233 // Check the bitstream conformance requirement in Section 6.10.8 of the spec.
234 if (bp.prediction_parameters->segment_id < 0 ||
235 bp.prediction_parameters->segment_id >
236 frame_header_.segmentation.last_active_segment_id) {
237 LIBGAV1_DLOG(
238 ERROR,
239 "Corrupted segment_ids: encoded %d, last active %d, postprocessed %d",
240 encoded_segment_id, frame_header_.segmentation.last_active_segment_id,
241 bp.prediction_parameters->segment_id);
242 return false;
243 }
244 return true;
245 }
246
ReadIntraSegmentId(const Block & block)247 bool Tile::ReadIntraSegmentId(const Block& block) {
248 BlockParameters& bp = *block.bp;
249 if (!frame_header_.segmentation.enabled) {
250 bp.prediction_parameters->segment_id = 0;
251 return true;
252 }
253 return ReadSegmentId(block);
254 }
255
ReadSkip(const Block & block)256 void Tile::ReadSkip(const Block& block) {
257 BlockParameters& bp = *block.bp;
258 if (frame_header_.segmentation.segment_id_pre_skip &&
259 frame_header_.segmentation.FeatureActive(
260 bp.prediction_parameters->segment_id, kSegmentFeatureSkip)) {
261 bp.skip = true;
262 return;
263 }
264 int context = 0;
265 if (block.top_available[kPlaneY] && block.bp_top->skip) {
266 ++context;
267 }
268 if (block.left_available[kPlaneY] && block.bp_left->skip) {
269 ++context;
270 }
271 uint16_t* const skip_cdf = symbol_decoder_context_.skip_cdf[context];
272 bp.skip = reader_.ReadSymbol(skip_cdf);
273 }
274
ReadSkipMode(const Block & block)275 bool Tile::ReadSkipMode(const Block& block) {
276 BlockParameters& bp = *block.bp;
277 if (!frame_header_.skip_mode_present ||
278 frame_header_.segmentation.FeatureActive(
279 bp.prediction_parameters->segment_id, kSegmentFeatureSkip) ||
280 frame_header_.segmentation.FeatureActive(
281 bp.prediction_parameters->segment_id,
282 kSegmentFeatureReferenceFrame) ||
283 frame_header_.segmentation.FeatureActive(
284 bp.prediction_parameters->segment_id, kSegmentFeatureGlobalMv) ||
285 IsBlockDimension4(block.size)) {
286 return false;
287 }
288 const int context =
289 (block.left_available[kPlaneY]
290 ? static_cast<int>(left_context_.skip_mode[block.left_context_index])
291 : 0) +
292 (block.top_available[kPlaneY]
293 ? static_cast<int>(
294 block.top_context->skip_mode[block.top_context_index])
295 : 0);
296 return reader_.ReadSymbol(symbol_decoder_context_.skip_mode_cdf[context]);
297 }
298
ReadCdef(const Block & block)299 void Tile::ReadCdef(const Block& block) {
300 BlockParameters& bp = *block.bp;
301 if (bp.skip || frame_header_.coded_lossless ||
302 !sequence_header_.enable_cdef || frame_header_.allow_intrabc ||
303 frame_header_.cdef.bits == 0) {
304 return;
305 }
306 int8_t* const cdef_index =
307 &cdef_index_[DivideBy16(block.row4x4)][DivideBy16(block.column4x4)];
308 int stride = cdef_index_.columns();
309 if (cdef_index[0] == -1) {
310 cdef_index[0] =
311 static_cast<int8_t>(reader_.ReadLiteral(frame_header_.cdef.bits));
312 if (block.size == kBlock128x128) {
313 // This condition is shorthand for block.width4x4 > 16 && block.height4x4
314 // > 16.
315 cdef_index[1] = cdef_index[0];
316 cdef_index[stride] = cdef_index[0];
317 cdef_index[stride + 1] = cdef_index[0];
318 } else if (block.width4x4 > 16) {
319 cdef_index[1] = cdef_index[0];
320 } else if (block.height4x4 > 16) {
321 cdef_index[stride] = cdef_index[0];
322 }
323 }
324 }
325
ReadAndClipDelta(uint16_t * const cdf,int delta_small,int scale,int min_value,int max_value,int value)326 int Tile::ReadAndClipDelta(uint16_t* const cdf, int delta_small, int scale,
327 int min_value, int max_value, int value) {
328 int abs = reader_.ReadSymbol<kDeltaSymbolCount>(cdf);
329 if (abs == delta_small) {
330 const int remaining_bit_count =
331 static_cast<int>(reader_.ReadLiteral(3)) + 1;
332 const int abs_remaining_bits =
333 static_cast<int>(reader_.ReadLiteral(remaining_bit_count));
334 abs = abs_remaining_bits + (1 << remaining_bit_count) + 1;
335 }
336 if (abs != 0) {
337 const bool sign = reader_.ReadBit() != 0;
338 const int scaled_abs = abs << scale;
339 const int reduced_delta = sign ? -scaled_abs : scaled_abs;
340 value += reduced_delta;
341 value = Clip3(value, min_value, max_value);
342 }
343 return value;
344 }
345
ReadQuantizerIndexDelta(const Block & block)346 void Tile::ReadQuantizerIndexDelta(const Block& block) {
347 assert(read_deltas_);
348 BlockParameters& bp = *block.bp;
349 if ((block.size == SuperBlockSize() && bp.skip)) {
350 return;
351 }
352 current_quantizer_index_ =
353 ReadAndClipDelta(symbol_decoder_context_.delta_q_cdf, kDeltaQSmall,
354 frame_header_.delta_q.scale, kMinLossyQuantizer,
355 kMaxQuantizer, current_quantizer_index_);
356 }
357
ReadLoopFilterDelta(const Block & block)358 void Tile::ReadLoopFilterDelta(const Block& block) {
359 assert(read_deltas_);
360 BlockParameters& bp = *block.bp;
361 if (!frame_header_.delta_lf.present ||
362 (block.size == SuperBlockSize() && bp.skip)) {
363 return;
364 }
365 int frame_lf_count = 1;
366 if (frame_header_.delta_lf.multi) {
367 frame_lf_count = kFrameLfCount - (PlaneCount() > 1 ? 0 : 2);
368 }
369 bool recompute_deblock_filter_levels = false;
370 for (int i = 0; i < frame_lf_count; ++i) {
371 uint16_t* const delta_lf_abs_cdf =
372 frame_header_.delta_lf.multi
373 ? symbol_decoder_context_.delta_lf_multi_cdf[i]
374 : symbol_decoder_context_.delta_lf_cdf;
375 const int8_t old_delta_lf = delta_lf_[i];
376 delta_lf_[i] = ReadAndClipDelta(
377 delta_lf_abs_cdf, kDeltaLfSmall, frame_header_.delta_lf.scale,
378 -kMaxLoopFilterValue, kMaxLoopFilterValue, delta_lf_[i]);
379 recompute_deblock_filter_levels =
380 recompute_deblock_filter_levels || (old_delta_lf != delta_lf_[i]);
381 }
382 delta_lf_all_zero_ =
383 (delta_lf_[0] | delta_lf_[1] | delta_lf_[2] | delta_lf_[3]) == 0;
384 if (!delta_lf_all_zero_ && recompute_deblock_filter_levels) {
385 post_filter_.ComputeDeblockFilterLevels(delta_lf_, deblock_filter_levels_);
386 }
387 }
388
ReadPredictionModeY(const Block & block,bool intra_y_mode)389 void Tile::ReadPredictionModeY(const Block& block, bool intra_y_mode) {
390 uint16_t* cdf;
391 if (intra_y_mode) {
392 const PredictionMode top_mode =
393 block.top_available[kPlaneY] ? block.bp_top->y_mode : kPredictionModeDc;
394 const PredictionMode left_mode = block.left_available[kPlaneY]
395 ? block.bp_left->y_mode
396 : kPredictionModeDc;
397 const int top_context = kIntraYModeContext[top_mode];
398 const int left_context = kIntraYModeContext[left_mode];
399 cdf = symbol_decoder_context_
400 .intra_frame_y_mode_cdf[top_context][left_context];
401 } else {
402 cdf = symbol_decoder_context_.y_mode_cdf[kSizeGroup[block.size]];
403 }
404 block.bp->y_mode = static_cast<PredictionMode>(
405 reader_.ReadSymbol<kIntraPredictionModesY>(cdf));
406 }
407
ReadIntraAngleInfo(const Block & block,PlaneType plane_type)408 void Tile::ReadIntraAngleInfo(const Block& block, PlaneType plane_type) {
409 BlockParameters& bp = *block.bp;
410 PredictionParameters& prediction_parameters =
411 *block.bp->prediction_parameters;
412 prediction_parameters.angle_delta[plane_type] = 0;
413 const PredictionMode mode = (plane_type == kPlaneTypeY)
414 ? bp.y_mode
415 : bp.prediction_parameters->uv_mode;
416 if (IsBlockSmallerThan8x8(block.size) || !IsDirectionalMode(mode)) return;
417 uint16_t* const cdf =
418 symbol_decoder_context_.angle_delta_cdf[mode - kPredictionModeVertical];
419 prediction_parameters.angle_delta[plane_type] =
420 reader_.ReadSymbol<kAngleDeltaSymbolCount>(cdf);
421 prediction_parameters.angle_delta[plane_type] -= kMaxAngleDelta;
422 }
423
ReadCflAlpha(const Block & block)424 void Tile::ReadCflAlpha(const Block& block) {
425 const int signs = reader_.ReadSymbol<kCflAlphaSignsSymbolCount>(
426 symbol_decoder_context_.cfl_alpha_signs_cdf);
427 const int8_t* const cfl_lookup = kCflAlphaLookup[signs];
428 const auto sign_u = static_cast<CflSign>(cfl_lookup[0]);
429 const auto sign_v = static_cast<CflSign>(cfl_lookup[1]);
430 PredictionParameters& prediction_parameters =
431 *block.bp->prediction_parameters;
432 prediction_parameters.cfl_alpha_u = 0;
433 if (sign_u != kCflSignZero) {
434 assert(cfl_lookup[2] >= 0);
435 prediction_parameters.cfl_alpha_u =
436 reader_.ReadSymbol<kCflAlphaSymbolCount>(
437 symbol_decoder_context_.cfl_alpha_cdf[cfl_lookup[2]]) +
438 1;
439 if (sign_u == kCflSignNegative) prediction_parameters.cfl_alpha_u *= -1;
440 }
441 prediction_parameters.cfl_alpha_v = 0;
442 if (sign_v != kCflSignZero) {
443 assert(cfl_lookup[3] >= 0);
444 prediction_parameters.cfl_alpha_v =
445 reader_.ReadSymbol<kCflAlphaSymbolCount>(
446 symbol_decoder_context_.cfl_alpha_cdf[cfl_lookup[3]]) +
447 1;
448 if (sign_v == kCflSignNegative) prediction_parameters.cfl_alpha_v *= -1;
449 }
450 }
451
ReadPredictionModeUV(const Block & block)452 void Tile::ReadPredictionModeUV(const Block& block) {
453 BlockParameters& bp = *block.bp;
454 bool chroma_from_luma_allowed;
455 if (frame_header_.segmentation
456 .lossless[bp.prediction_parameters->segment_id]) {
457 chroma_from_luma_allowed = block.residual_size[kPlaneU] == kBlock4x4;
458 } else {
459 chroma_from_luma_allowed = IsBlockDimensionLessThan64(block.size);
460 }
461 uint16_t* const cdf =
462 symbol_decoder_context_
463 .uv_mode_cdf[static_cast<int>(chroma_from_luma_allowed)][bp.y_mode];
464 if (chroma_from_luma_allowed) {
465 bp.prediction_parameters->uv_mode = static_cast<PredictionMode>(
466 reader_.ReadSymbol<kIntraPredictionModesUV>(cdf));
467 } else {
468 bp.prediction_parameters->uv_mode = static_cast<PredictionMode>(
469 reader_.ReadSymbol<kIntraPredictionModesUV - 1>(cdf));
470 }
471 }
472
ReadMotionVectorComponent(const Block & block,const int component)473 int Tile::ReadMotionVectorComponent(const Block& block, const int component) {
474 const int context =
475 static_cast<int>(block.bp->prediction_parameters->use_intra_block_copy);
476 const bool sign = reader_.ReadSymbol(
477 symbol_decoder_context_.mv_sign_cdf[component][context]);
478 const int mv_class = reader_.ReadSymbol<kMvClassSymbolCount>(
479 symbol_decoder_context_.mv_class_cdf[component][context]);
480 int magnitude = 1;
481 int value;
482 uint16_t* fraction_cdf;
483 uint16_t* precision_cdf;
484 if (mv_class == 0) {
485 value = static_cast<int>(reader_.ReadSymbol(
486 symbol_decoder_context_.mv_class0_bit_cdf[component][context]));
487 fraction_cdf = symbol_decoder_context_
488 .mv_class0_fraction_cdf[component][context][value];
489 precision_cdf = symbol_decoder_context_
490 .mv_class0_high_precision_cdf[component][context];
491 } else {
492 assert(mv_class <= kMvBitSymbolCount);
493 value = 0;
494 for (int i = 0; i < mv_class; ++i) {
495 const int bit = static_cast<int>(reader_.ReadSymbol(
496 symbol_decoder_context_.mv_bit_cdf[component][context][i]));
497 value |= bit << i;
498 }
499 magnitude += 2 << (mv_class + 2);
500 fraction_cdf = symbol_decoder_context_.mv_fraction_cdf[component][context];
501 precision_cdf =
502 symbol_decoder_context_.mv_high_precision_cdf[component][context];
503 }
504 const int fraction =
505 (frame_header_.force_integer_mv == 0)
506 ? reader_.ReadSymbol<kMvFractionSymbolCount>(fraction_cdf)
507 : 3;
508 const int precision =
509 frame_header_.allow_high_precision_mv
510 ? static_cast<int>(reader_.ReadSymbol(precision_cdf))
511 : 1;
512 magnitude += (value << 3) | (fraction << 1) | precision;
513 return sign ? -magnitude : magnitude;
514 }
515
ReadMotionVector(const Block & block,int index)516 void Tile::ReadMotionVector(const Block& block, int index) {
517 BlockParameters& bp = *block.bp;
518 const int context =
519 static_cast<int>(block.bp->prediction_parameters->use_intra_block_copy);
520 const auto mv_joint =
521 static_cast<MvJointType>(reader_.ReadSymbol<kNumMvJointTypes>(
522 symbol_decoder_context_.mv_joint_cdf[context]));
523 if (mv_joint == kMvJointTypeHorizontalZeroVerticalNonZero ||
524 mv_joint == kMvJointTypeNonZero) {
525 bp.mv.mv[index].mv[0] = ReadMotionVectorComponent(block, 0);
526 }
527 if (mv_joint == kMvJointTypeHorizontalNonZeroVerticalZero ||
528 mv_joint == kMvJointTypeNonZero) {
529 bp.mv.mv[index].mv[1] = ReadMotionVectorComponent(block, 1);
530 }
531 }
532
ReadFilterIntraModeInfo(const Block & block)533 void Tile::ReadFilterIntraModeInfo(const Block& block) {
534 BlockParameters& bp = *block.bp;
535 PredictionParameters& prediction_parameters =
536 *block.bp->prediction_parameters;
537 prediction_parameters.use_filter_intra = false;
538 if (!sequence_header_.enable_filter_intra || bp.y_mode != kPredictionModeDc ||
539 bp.prediction_parameters->palette_mode_info.size[kPlaneTypeY] != 0 ||
540 !IsBlockDimensionLessThan64(block.size)) {
541 return;
542 }
543 prediction_parameters.use_filter_intra = reader_.ReadSymbol(
544 symbol_decoder_context_.use_filter_intra_cdf[block.size]);
545 if (prediction_parameters.use_filter_intra) {
546 prediction_parameters.filter_intra_mode = static_cast<FilterIntraPredictor>(
547 reader_.ReadSymbol<kNumFilterIntraPredictors>(
548 symbol_decoder_context_.filter_intra_mode_cdf));
549 }
550 }
551
DecodeIntraModeInfo(const Block & block)552 bool Tile::DecodeIntraModeInfo(const Block& block) {
553 BlockParameters& bp = *block.bp;
554 bp.skip = false;
555 if (frame_header_.segmentation.segment_id_pre_skip &&
556 !ReadIntraSegmentId(block)) {
557 return false;
558 }
559 SetCdfContextSkipMode(block, false);
560 ReadSkip(block);
561 if (!frame_header_.segmentation.segment_id_pre_skip &&
562 !ReadIntraSegmentId(block)) {
563 return false;
564 }
565 ReadCdef(block);
566 if (read_deltas_) {
567 ReadQuantizerIndexDelta(block);
568 ReadLoopFilterDelta(block);
569 read_deltas_ = false;
570 }
571 PredictionParameters& prediction_parameters =
572 *block.bp->prediction_parameters;
573 prediction_parameters.use_intra_block_copy = false;
574 if (frame_header_.allow_intrabc) {
575 prediction_parameters.use_intra_block_copy =
576 reader_.ReadSymbol(symbol_decoder_context_.intra_block_copy_cdf);
577 }
578 if (prediction_parameters.use_intra_block_copy) {
579 bp.is_inter = true;
580 bp.reference_frame[0] = kReferenceFrameIntra;
581 bp.reference_frame[1] = kReferenceFrameNone;
582 bp.y_mode = kPredictionModeDc;
583 bp.prediction_parameters->uv_mode = kPredictionModeDc;
584 SetCdfContextUVMode(block);
585 prediction_parameters.motion_mode = kMotionModeSimple;
586 prediction_parameters.compound_prediction_type =
587 kCompoundPredictionTypeAverage;
588 bp.prediction_parameters->palette_mode_info.size[kPlaneTypeY] = 0;
589 bp.prediction_parameters->palette_mode_info.size[kPlaneTypeUV] = 0;
590 SetCdfContextPaletteSize(block);
591 bp.interpolation_filter[0] = kInterpolationFilterBilinear;
592 bp.interpolation_filter[1] = kInterpolationFilterBilinear;
593 MvContexts dummy_mode_contexts;
594 FindMvStack(block, /*is_compound=*/false, &dummy_mode_contexts);
595 return AssignIntraMv(block);
596 }
597 bp.is_inter = false;
598 return ReadIntraBlockModeInfo(block, /*intra_y_mode=*/true);
599 }
600
ComputePredictedSegmentId(const Block & block) const601 int8_t Tile::ComputePredictedSegmentId(const Block& block) const {
602 // If prev_segment_ids_ is null, treat it as if it pointed to a segmentation
603 // map containing all 0s.
604 if (prev_segment_ids_ == nullptr) return 0;
605
606 const int x_limit = std::min(frame_header_.columns4x4 - block.column4x4,
607 static_cast<int>(block.width4x4));
608 const int y_limit = std::min(frame_header_.rows4x4 - block.row4x4,
609 static_cast<int>(block.height4x4));
610 int8_t id = 7;
611 for (int y = 0; y < y_limit; ++y) {
612 for (int x = 0; x < x_limit; ++x) {
613 const int8_t prev_segment_id =
614 prev_segment_ids_->segment_id(block.row4x4 + y, block.column4x4 + x);
615 id = std::min(id, prev_segment_id);
616 }
617 }
618 return id;
619 }
620
SetCdfContextUsePredictedSegmentId(const Block & block,bool use_predicted_segment_id)621 void Tile::SetCdfContextUsePredictedSegmentId(const Block& block,
622 bool use_predicted_segment_id) {
623 memset(left_context_.use_predicted_segment_id + block.left_context_index,
624 static_cast<int>(use_predicted_segment_id), block.height4x4);
625 memset(block.top_context->use_predicted_segment_id + block.top_context_index,
626 static_cast<int>(use_predicted_segment_id), block.width4x4);
627 }
628
ReadInterSegmentId(const Block & block,bool pre_skip)629 bool Tile::ReadInterSegmentId(const Block& block, bool pre_skip) {
630 BlockParameters& bp = *block.bp;
631 if (!frame_header_.segmentation.enabled) {
632 bp.prediction_parameters->segment_id = 0;
633 return true;
634 }
635 if (!frame_header_.segmentation.update_map) {
636 bp.prediction_parameters->segment_id = ComputePredictedSegmentId(block);
637 return true;
638 }
639 if (pre_skip) {
640 if (!frame_header_.segmentation.segment_id_pre_skip) {
641 bp.prediction_parameters->segment_id = 0;
642 return true;
643 }
644 } else if (bp.skip) {
645 SetCdfContextUsePredictedSegmentId(block, false);
646 return ReadSegmentId(block);
647 }
648 if (frame_header_.segmentation.temporal_update) {
649 const int context =
650 (block.left_available[kPlaneY]
651 ? static_cast<int>(
652 left_context_
653 .use_predicted_segment_id[block.left_context_index])
654 : 0) +
655 (block.top_available[kPlaneY]
656 ? static_cast<int>(
657 block.top_context
658 ->use_predicted_segment_id[block.top_context_index])
659 : 0);
660 const bool use_predicted_segment_id = reader_.ReadSymbol(
661 symbol_decoder_context_.use_predicted_segment_id_cdf[context]);
662 SetCdfContextUsePredictedSegmentId(block, use_predicted_segment_id);
663 if (use_predicted_segment_id) {
664 bp.prediction_parameters->segment_id = ComputePredictedSegmentId(block);
665 return true;
666 }
667 }
668 return ReadSegmentId(block);
669 }
670
ReadIsInter(const Block & block,bool skip_mode)671 void Tile::ReadIsInter(const Block& block, bool skip_mode) {
672 BlockParameters& bp = *block.bp;
673 if (skip_mode) {
674 bp.is_inter = true;
675 return;
676 }
677 if (frame_header_.segmentation.FeatureActive(
678 bp.prediction_parameters->segment_id,
679 kSegmentFeatureReferenceFrame)) {
680 bp.is_inter = frame_header_.segmentation
681 .feature_data[bp.prediction_parameters->segment_id]
682 [kSegmentFeatureReferenceFrame] !=
683 kReferenceFrameIntra;
684 return;
685 }
686 if (frame_header_.segmentation.FeatureActive(
687 bp.prediction_parameters->segment_id, kSegmentFeatureGlobalMv)) {
688 bp.is_inter = true;
689 return;
690 }
691 int context = 0;
692 if (block.top_available[kPlaneY] && block.left_available[kPlaneY]) {
693 context = (block.IsTopIntra() && block.IsLeftIntra())
694 ? 3
695 : static_cast<int>(block.IsTopIntra() || block.IsLeftIntra());
696 } else if (block.top_available[kPlaneY] || block.left_available[kPlaneY]) {
697 context = 2 * static_cast<int>(block.top_available[kPlaneY]
698 ? block.IsTopIntra()
699 : block.IsLeftIntra());
700 }
701 bp.is_inter =
702 reader_.ReadSymbol(symbol_decoder_context_.is_inter_cdf[context]);
703 }
704
SetCdfContextPaletteSize(const Block & block)705 void Tile::SetCdfContextPaletteSize(const Block& block) {
706 const PaletteModeInfo& palette_mode_info =
707 block.bp->prediction_parameters->palette_mode_info;
708 for (int plane_type = kPlaneTypeY; plane_type <= kPlaneTypeUV; ++plane_type) {
709 memset(left_context_.palette_size[plane_type] + block.left_context_index,
710 palette_mode_info.size[plane_type], block.height4x4);
711 memset(
712 block.top_context->palette_size[plane_type] + block.top_context_index,
713 palette_mode_info.size[plane_type], block.width4x4);
714 if (palette_mode_info.size[plane_type] == 0) continue;
715 for (int i = block.left_context_index;
716 i < block.left_context_index + block.height4x4; ++i) {
717 memcpy(left_context_.palette_color[i][plane_type],
718 palette_mode_info.color[plane_type],
719 kMaxPaletteSize * sizeof(palette_mode_info.color[0][0]));
720 }
721 for (int i = block.top_context_index;
722 i < block.top_context_index + block.width4x4; ++i) {
723 memcpy(block.top_context->palette_color[i][plane_type],
724 palette_mode_info.color[plane_type],
725 kMaxPaletteSize * sizeof(palette_mode_info.color[0][0]));
726 }
727 }
728 }
729
SetCdfContextUVMode(const Block & block)730 void Tile::SetCdfContextUVMode(const Block& block) {
731 // BlockCdfContext.uv_mode is only used to compute is_smooth_prediction for
732 // the intra edge upsamplers in the subsequent blocks. They have some special
733 // rules for subsampled UV planes. For subsampled UV planes, update left
734 // context only if current block contains the last odd column and update top
735 // context only if current block contains the last odd row.
736 if (subsampling_x_[kPlaneU] == 0 || (block.column4x4 & 1) == 1 ||
737 block.width4x4 > 1) {
738 memset(left_context_.uv_mode + block.left_context_index,
739 block.bp->prediction_parameters->uv_mode, block.height4x4);
740 }
741 if (subsampling_y_[kPlaneU] == 0 || (block.row4x4 & 1) == 1 ||
742 block.height4x4 > 1) {
743 memset(block.top_context->uv_mode + block.top_context_index,
744 block.bp->prediction_parameters->uv_mode, block.width4x4);
745 }
746 }
747
ReadIntraBlockModeInfo(const Block & block,bool intra_y_mode)748 bool Tile::ReadIntraBlockModeInfo(const Block& block, bool intra_y_mode) {
749 BlockParameters& bp = *block.bp;
750 bp.reference_frame[0] = kReferenceFrameIntra;
751 bp.reference_frame[1] = kReferenceFrameNone;
752 ReadPredictionModeY(block, intra_y_mode);
753 ReadIntraAngleInfo(block, kPlaneTypeY);
754 if (block.HasChroma()) {
755 ReadPredictionModeUV(block);
756 if (bp.prediction_parameters->uv_mode == kPredictionModeChromaFromLuma) {
757 ReadCflAlpha(block);
758 }
759 if (block.left_available[kPlaneU]) {
760 const int smooth_row =
761 block.row4x4 + (~block.row4x4 & subsampling_y_[kPlaneU]);
762 const int smooth_column =
763 block.column4x4 - 1 - (block.column4x4 & subsampling_x_[kPlaneU]);
764 const BlockParameters& bp_left =
765 *block_parameters_holder_.Find(smooth_row, smooth_column);
766 bp.prediction_parameters->chroma_left_uses_smooth_prediction =
767 (bp_left.reference_frame[0] <= kReferenceFrameIntra) &&
768 kPredictionModeSmoothMask.Contains(
769 left_context_.uv_mode[CdfContextIndex(smooth_row)]);
770 }
771 if (block.top_available[kPlaneU]) {
772 const int smooth_row =
773 block.row4x4 - 1 - (block.row4x4 & subsampling_y_[kPlaneU]);
774 const int smooth_column =
775 block.column4x4 + (~block.column4x4 & subsampling_x_[kPlaneU]);
776 const BlockParameters& bp_top =
777 *block_parameters_holder_.Find(smooth_row, smooth_column);
778 bp.prediction_parameters->chroma_top_uses_smooth_prediction =
779 (bp_top.reference_frame[0] <= kReferenceFrameIntra) &&
780 kPredictionModeSmoothMask.Contains(
781 top_context_.get()[SuperBlockColumnIndex(smooth_column)]
782 .uv_mode[CdfContextIndex(smooth_column)]);
783 }
784 SetCdfContextUVMode(block);
785 ReadIntraAngleInfo(block, kPlaneTypeUV);
786 }
787 ReadPaletteModeInfo(block);
788 SetCdfContextPaletteSize(block);
789 ReadFilterIntraModeInfo(block);
790 return true;
791 }
792
ReadCompoundReferenceType(const Block & block)793 CompoundReferenceType Tile::ReadCompoundReferenceType(const Block& block) {
794 // compound and inter.
795 const bool top_comp_inter = block.top_available[kPlaneY] &&
796 !block.IsTopIntra() && !block.IsTopSingle();
797 const bool left_comp_inter = block.left_available[kPlaneY] &&
798 !block.IsLeftIntra() && !block.IsLeftSingle();
799 // unidirectional compound.
800 const bool top_uni_comp =
801 top_comp_inter && IsSameDirectionReferencePair(block.TopReference(0),
802 block.TopReference(1));
803 const bool left_uni_comp =
804 left_comp_inter && IsSameDirectionReferencePair(block.LeftReference(0),
805 block.LeftReference(1));
806 int context;
807 if (block.top_available[kPlaneY] && !block.IsTopIntra() &&
808 block.left_available[kPlaneY] && !block.IsLeftIntra()) {
809 const int same_direction = static_cast<int>(IsSameDirectionReferencePair(
810 block.TopReference(0), block.LeftReference(0)));
811 if (!top_comp_inter && !left_comp_inter) {
812 context = 1 + MultiplyBy2(same_direction);
813 } else if (!top_comp_inter) {
814 context = left_uni_comp ? 3 + same_direction : 1;
815 } else if (!left_comp_inter) {
816 context = top_uni_comp ? 3 + same_direction : 1;
817 } else {
818 if (!top_uni_comp && !left_uni_comp) {
819 context = 0;
820 } else if (!top_uni_comp || !left_uni_comp) {
821 context = 2;
822 } else {
823 context = 3 + static_cast<int>(
824 (block.TopReference(0) == kReferenceFrameBackward) ==
825 (block.LeftReference(0) == kReferenceFrameBackward));
826 }
827 }
828 } else if (block.top_available[kPlaneY] && block.left_available[kPlaneY]) {
829 if (top_comp_inter) {
830 context = 1 + MultiplyBy2(static_cast<int>(top_uni_comp));
831 } else if (left_comp_inter) {
832 context = 1 + MultiplyBy2(static_cast<int>(left_uni_comp));
833 } else {
834 context = 2;
835 }
836 } else if (top_comp_inter) {
837 context = MultiplyBy4(static_cast<int>(top_uni_comp));
838 } else if (left_comp_inter) {
839 context = MultiplyBy4(static_cast<int>(left_uni_comp));
840 } else {
841 context = 2;
842 }
843 return static_cast<CompoundReferenceType>(reader_.ReadSymbol(
844 symbol_decoder_context_.compound_reference_type_cdf[context]));
845 }
846
847 template <bool is_single, bool is_backward, int index>
GetReferenceCdf(const Block & block,CompoundReferenceType type)848 uint16_t* Tile::GetReferenceCdf(
849 const Block& block,
850 CompoundReferenceType type /*= kNumCompoundReferenceTypes*/) {
851 int context = 0;
852 if ((type == kCompoundReferenceUnidirectional && index == 0) ||
853 (is_single && index == 1)) {
854 // uni_comp_ref and single_ref_p1.
855 context =
856 GetReferenceContext(block, kReferenceFrameLast, kReferenceFrameGolden,
857 kReferenceFrameBackward, kReferenceFrameAlternate);
858 } else if (type == kCompoundReferenceUnidirectional && index == 1) {
859 // uni_comp_ref_p1.
860 context =
861 GetReferenceContext(block, kReferenceFrameLast2, kReferenceFrameLast2,
862 kReferenceFrameLast3, kReferenceFrameGolden);
863 } else if ((type == kCompoundReferenceUnidirectional && index == 2) ||
864 (type == kCompoundReferenceBidirectional && index == 2) ||
865 (is_single && index == 5)) {
866 // uni_comp_ref_p2, comp_ref_p2 and single_ref_p5.
867 context =
868 GetReferenceContext(block, kReferenceFrameLast3, kReferenceFrameLast3,
869 kReferenceFrameGolden, kReferenceFrameGolden);
870 } else if ((type == kCompoundReferenceBidirectional && index == 0) ||
871 (is_single && index == 3)) {
872 // comp_ref and single_ref_p3.
873 context =
874 GetReferenceContext(block, kReferenceFrameLast, kReferenceFrameLast2,
875 kReferenceFrameLast3, kReferenceFrameGolden);
876 } else if ((type == kCompoundReferenceBidirectional && index == 1) ||
877 (is_single && index == 4)) {
878 // comp_ref_p1 and single_ref_p4.
879 context =
880 GetReferenceContext(block, kReferenceFrameLast, kReferenceFrameLast,
881 kReferenceFrameLast2, kReferenceFrameLast2);
882 } else if ((is_single && index == 2) || (is_backward && index == 0)) {
883 // single_ref_p2 and comp_bwdref.
884 context = GetReferenceContext(
885 block, kReferenceFrameBackward, kReferenceFrameAlternate2,
886 kReferenceFrameAlternate, kReferenceFrameAlternate);
887 } else if ((is_single && index == 6) || (is_backward && index == 1)) {
888 // single_ref_p6 and comp_bwdref_p1.
889 context = GetReferenceContext(
890 block, kReferenceFrameBackward, kReferenceFrameBackward,
891 kReferenceFrameAlternate2, kReferenceFrameAlternate2);
892 }
893 // When using GCC 12.x for some targets the compiler reports a false positive
894 // with the context subscript when is_single=false, is_backward=false and
895 // index=0. GetReferenceContext() can only return values between 0 and 2.
896 #ifdef __GNUC__
897 #pragma GCC diagnostic push
898 #pragma GCC diagnostic ignored "-Warray-bounds"
899 #endif
900 assert(context >= 0 && context <= 2);
901 if (is_single) {
902 // The index parameter for single references is offset by one since the spec
903 // uses 1-based index for these elements.
904 return symbol_decoder_context_.single_reference_cdf[context][index - 1];
905 }
906 if (is_backward) {
907 return symbol_decoder_context_
908 .compound_backward_reference_cdf[context][index];
909 }
910 return symbol_decoder_context_.compound_reference_cdf[type][context][index];
911 #ifdef __GNUC__
912 #pragma GCC diagnostic pop
913 #endif
914 }
915
ReadReferenceFrames(const Block & block,bool skip_mode)916 void Tile::ReadReferenceFrames(const Block& block, bool skip_mode) {
917 BlockParameters& bp = *block.bp;
918 if (skip_mode) {
919 bp.reference_frame[0] = frame_header_.skip_mode_frame[0];
920 bp.reference_frame[1] = frame_header_.skip_mode_frame[1];
921 return;
922 }
923 if (frame_header_.segmentation.FeatureActive(
924 bp.prediction_parameters->segment_id,
925 kSegmentFeatureReferenceFrame)) {
926 bp.reference_frame[0] = static_cast<ReferenceFrameType>(
927 frame_header_.segmentation
928 .feature_data[bp.prediction_parameters->segment_id]
929 [kSegmentFeatureReferenceFrame]);
930 bp.reference_frame[1] = kReferenceFrameNone;
931 return;
932 }
933 if (frame_header_.segmentation.FeatureActive(
934 bp.prediction_parameters->segment_id, kSegmentFeatureSkip) ||
935 frame_header_.segmentation.FeatureActive(
936 bp.prediction_parameters->segment_id, kSegmentFeatureGlobalMv)) {
937 bp.reference_frame[0] = kReferenceFrameLast;
938 bp.reference_frame[1] = kReferenceFrameNone;
939 return;
940 }
941 const bool use_compound_reference =
942 frame_header_.reference_mode_select &&
943 std::min(block.width4x4, block.height4x4) >= 2 &&
944 reader_.ReadSymbol(symbol_decoder_context_.use_compound_reference_cdf
945 [GetUseCompoundReferenceContext(block)]);
946 if (use_compound_reference) {
947 CompoundReferenceType reference_type = ReadCompoundReferenceType(block);
948 if (reference_type == kCompoundReferenceUnidirectional) {
949 // uni_comp_ref.
950 if (reader_.ReadSymbol(
951 GetReferenceCdf<false, false, 0>(block, reference_type))) {
952 bp.reference_frame[0] = kReferenceFrameBackward;
953 bp.reference_frame[1] = kReferenceFrameAlternate;
954 return;
955 }
956 // uni_comp_ref_p1.
957 if (!reader_.ReadSymbol(
958 GetReferenceCdf<false, false, 1>(block, reference_type))) {
959 bp.reference_frame[0] = kReferenceFrameLast;
960 bp.reference_frame[1] = kReferenceFrameLast2;
961 return;
962 }
963 // uni_comp_ref_p2.
964 if (reader_.ReadSymbol(
965 GetReferenceCdf<false, false, 2>(block, reference_type))) {
966 bp.reference_frame[0] = kReferenceFrameLast;
967 bp.reference_frame[1] = kReferenceFrameGolden;
968 return;
969 }
970 bp.reference_frame[0] = kReferenceFrameLast;
971 bp.reference_frame[1] = kReferenceFrameLast3;
972 return;
973 }
974 assert(reference_type == kCompoundReferenceBidirectional);
975 // comp_ref.
976 if (reader_.ReadSymbol(
977 GetReferenceCdf<false, false, 0>(block, reference_type))) {
978 // comp_ref_p2.
979 bp.reference_frame[0] =
980 reader_.ReadSymbol(
981 GetReferenceCdf<false, false, 2>(block, reference_type))
982 ? kReferenceFrameGolden
983 : kReferenceFrameLast3;
984 } else {
985 // comp_ref_p1.
986 bp.reference_frame[0] =
987 reader_.ReadSymbol(
988 GetReferenceCdf<false, false, 1>(block, reference_type))
989 ? kReferenceFrameLast2
990 : kReferenceFrameLast;
991 }
992 // comp_bwdref.
993 if (reader_.ReadSymbol(GetReferenceCdf<false, true, 0>(block))) {
994 bp.reference_frame[1] = kReferenceFrameAlternate;
995 } else {
996 // comp_bwdref_p1.
997 bp.reference_frame[1] =
998 reader_.ReadSymbol(GetReferenceCdf<false, true, 1>(block))
999 ? kReferenceFrameAlternate2
1000 : kReferenceFrameBackward;
1001 }
1002 return;
1003 }
1004 assert(!use_compound_reference);
1005 bp.reference_frame[1] = kReferenceFrameNone;
1006 // single_ref_p1.
1007 if (reader_.ReadSymbol(GetReferenceCdf<true, false, 1>(block))) {
1008 // single_ref_p2.
1009 if (reader_.ReadSymbol(GetReferenceCdf<true, false, 2>(block))) {
1010 bp.reference_frame[0] = kReferenceFrameAlternate;
1011 return;
1012 }
1013 // single_ref_p6.
1014 bp.reference_frame[0] =
1015 reader_.ReadSymbol(GetReferenceCdf<true, false, 6>(block))
1016 ? kReferenceFrameAlternate2
1017 : kReferenceFrameBackward;
1018 return;
1019 }
1020 // single_ref_p3.
1021 if (reader_.ReadSymbol(GetReferenceCdf<true, false, 3>(block))) {
1022 // single_ref_p5.
1023 bp.reference_frame[0] =
1024 reader_.ReadSymbol(GetReferenceCdf<true, false, 5>(block))
1025 ? kReferenceFrameGolden
1026 : kReferenceFrameLast3;
1027 return;
1028 }
1029 // single_ref_p4.
1030 bp.reference_frame[0] =
1031 reader_.ReadSymbol(GetReferenceCdf<true, false, 4>(block))
1032 ? kReferenceFrameLast2
1033 : kReferenceFrameLast;
1034 }
1035
ReadInterPredictionModeY(const Block & block,const MvContexts & mode_contexts,bool skip_mode)1036 void Tile::ReadInterPredictionModeY(const Block& block,
1037 const MvContexts& mode_contexts,
1038 bool skip_mode) {
1039 BlockParameters& bp = *block.bp;
1040 if (skip_mode) {
1041 bp.y_mode = kPredictionModeNearestNearestMv;
1042 return;
1043 }
1044 if (frame_header_.segmentation.FeatureActive(
1045 bp.prediction_parameters->segment_id, kSegmentFeatureSkip) ||
1046 frame_header_.segmentation.FeatureActive(
1047 bp.prediction_parameters->segment_id, kSegmentFeatureGlobalMv)) {
1048 bp.y_mode = kPredictionModeGlobalMv;
1049 return;
1050 }
1051 if (bp.reference_frame[1] > kReferenceFrameIntra) {
1052 const int idx0 = mode_contexts.reference_mv >> 1;
1053 const int idx1 =
1054 std::min(mode_contexts.new_mv, kCompoundModeNewMvContexts - 1);
1055 const int context = kCompoundModeContextMap[idx0][idx1];
1056 const int offset = reader_.ReadSymbol<kNumCompoundInterPredictionModes>(
1057 symbol_decoder_context_.compound_prediction_mode_cdf[context]);
1058 bp.y_mode =
1059 static_cast<PredictionMode>(kPredictionModeNearestNearestMv + offset);
1060 return;
1061 }
1062 // new_mv.
1063 if (!reader_.ReadSymbol(
1064 symbol_decoder_context_.new_mv_cdf[mode_contexts.new_mv])) {
1065 bp.y_mode = kPredictionModeNewMv;
1066 return;
1067 }
1068 // zero_mv.
1069 if (!reader_.ReadSymbol(
1070 symbol_decoder_context_.zero_mv_cdf[mode_contexts.zero_mv])) {
1071 bp.y_mode = kPredictionModeGlobalMv;
1072 return;
1073 }
1074 // ref_mv.
1075 bp.y_mode =
1076 reader_.ReadSymbol(
1077 symbol_decoder_context_.reference_mv_cdf[mode_contexts.reference_mv])
1078 ? kPredictionModeNearMv
1079 : kPredictionModeNearestMv;
1080 }
1081
ReadRefMvIndex(const Block & block)1082 void Tile::ReadRefMvIndex(const Block& block) {
1083 BlockParameters& bp = *block.bp;
1084 PredictionParameters& prediction_parameters =
1085 *block.bp->prediction_parameters;
1086 prediction_parameters.ref_mv_index = 0;
1087 if (bp.y_mode != kPredictionModeNewMv &&
1088 bp.y_mode != kPredictionModeNewNewMv &&
1089 !kPredictionModeHasNearMvMask.Contains(bp.y_mode)) {
1090 return;
1091 }
1092 const int start =
1093 static_cast<int>(kPredictionModeHasNearMvMask.Contains(bp.y_mode));
1094 prediction_parameters.ref_mv_index = start;
1095 for (int i = start; i < start + 2; ++i) {
1096 if (prediction_parameters.ref_mv_count <= i + 1) break;
1097 // drl_mode in the spec.
1098 const bool ref_mv_index_bit = reader_.ReadSymbol(
1099 symbol_decoder_context_.ref_mv_index_cdf[GetRefMvIndexContext(
1100 prediction_parameters.nearest_mv_count, i)]);
1101 prediction_parameters.ref_mv_index = i + static_cast<int>(ref_mv_index_bit);
1102 if (!ref_mv_index_bit) return;
1103 }
1104 }
1105
ReadInterIntraMode(const Block & block,bool is_compound,bool skip_mode)1106 void Tile::ReadInterIntraMode(const Block& block, bool is_compound,
1107 bool skip_mode) {
1108 BlockParameters& bp = *block.bp;
1109 PredictionParameters& prediction_parameters =
1110 *block.bp->prediction_parameters;
1111 prediction_parameters.inter_intra_mode = kNumInterIntraModes;
1112 prediction_parameters.is_wedge_inter_intra = false;
1113 if (skip_mode || !sequence_header_.enable_interintra_compound ||
1114 is_compound || !kIsInterIntraModeAllowedMask.Contains(block.size)) {
1115 return;
1116 }
1117 // kSizeGroup[block.size] is guaranteed to be non-zero because of the block
1118 // size constraint enforced in the above condition.
1119 assert(kSizeGroup[block.size] - 1 >= 0);
1120 if (!reader_.ReadSymbol(
1121 symbol_decoder_context_
1122 .is_inter_intra_cdf[kSizeGroup[block.size] - 1])) {
1123 prediction_parameters.inter_intra_mode = kNumInterIntraModes;
1124 return;
1125 }
1126 prediction_parameters.inter_intra_mode =
1127 static_cast<InterIntraMode>(reader_.ReadSymbol<kNumInterIntraModes>(
1128 symbol_decoder_context_
1129 .inter_intra_mode_cdf[kSizeGroup[block.size] - 1]));
1130 bp.reference_frame[1] = kReferenceFrameIntra;
1131 prediction_parameters.angle_delta[kPlaneTypeY] = 0;
1132 prediction_parameters.angle_delta[kPlaneTypeUV] = 0;
1133 prediction_parameters.use_filter_intra = false;
1134 prediction_parameters.is_wedge_inter_intra = reader_.ReadSymbol(
1135 symbol_decoder_context_.is_wedge_inter_intra_cdf[block.size]);
1136 if (!prediction_parameters.is_wedge_inter_intra) return;
1137 prediction_parameters.wedge_index =
1138 reader_.ReadSymbol<kWedgeIndexSymbolCount>(
1139 symbol_decoder_context_.wedge_index_cdf[block.size]);
1140 prediction_parameters.wedge_sign = 0;
1141 }
1142
ReadMotionMode(const Block & block,bool is_compound,bool skip_mode)1143 void Tile::ReadMotionMode(const Block& block, bool is_compound,
1144 bool skip_mode) {
1145 BlockParameters& bp = *block.bp;
1146 PredictionParameters& prediction_parameters =
1147 *block.bp->prediction_parameters;
1148 const auto global_motion_type =
1149 frame_header_.global_motion[bp.reference_frame[0]].type;
1150 if (skip_mode || !frame_header_.is_motion_mode_switchable ||
1151 IsBlockDimension4(block.size) ||
1152 (frame_header_.force_integer_mv == 0 &&
1153 (bp.y_mode == kPredictionModeGlobalMv ||
1154 bp.y_mode == kPredictionModeGlobalGlobalMv) &&
1155 global_motion_type > kGlobalMotionTransformationTypeTranslation) ||
1156 is_compound || bp.reference_frame[1] == kReferenceFrameIntra ||
1157 !block.HasOverlappableCandidates()) {
1158 prediction_parameters.motion_mode = kMotionModeSimple;
1159 return;
1160 }
1161 prediction_parameters.num_warp_samples = 0;
1162 int num_samples_scanned = 0;
1163 memset(prediction_parameters.warp_estimate_candidates, 0,
1164 sizeof(prediction_parameters.warp_estimate_candidates));
1165 FindWarpSamples(block, &prediction_parameters.num_warp_samples,
1166 &num_samples_scanned,
1167 prediction_parameters.warp_estimate_candidates);
1168 if (frame_header_.force_integer_mv != 0 ||
1169 prediction_parameters.num_warp_samples == 0 ||
1170 !frame_header_.allow_warped_motion || IsScaled(bp.reference_frame[0])) {
1171 prediction_parameters.motion_mode =
1172 reader_.ReadSymbol(symbol_decoder_context_.use_obmc_cdf[block.size])
1173 ? kMotionModeObmc
1174 : kMotionModeSimple;
1175 return;
1176 }
1177 prediction_parameters.motion_mode =
1178 static_cast<MotionMode>(reader_.ReadSymbol<kNumMotionModes>(
1179 symbol_decoder_context_.motion_mode_cdf[block.size]));
1180 }
1181
GetIsExplicitCompoundTypeCdf(const Block & block)1182 uint16_t* Tile::GetIsExplicitCompoundTypeCdf(const Block& block) {
1183 int context = 0;
1184 if (block.top_available[kPlaneY]) {
1185 if (!block.IsTopSingle()) {
1186 context += static_cast<int>(
1187 block.top_context
1188 ->is_explicit_compound_type[block.top_context_index]);
1189 } else if (block.TopReference(0) == kReferenceFrameAlternate) {
1190 context += 3;
1191 }
1192 }
1193 if (block.left_available[kPlaneY]) {
1194 if (!block.IsLeftSingle()) {
1195 context += static_cast<int>(
1196 left_context_.is_explicit_compound_type[block.left_context_index]);
1197 } else if (block.LeftReference(0) == kReferenceFrameAlternate) {
1198 context += 3;
1199 }
1200 }
1201 return symbol_decoder_context_.is_explicit_compound_type_cdf[std::min(
1202 context, kIsExplicitCompoundTypeContexts - 1)];
1203 }
1204
GetIsCompoundTypeAverageCdf(const Block & block)1205 uint16_t* Tile::GetIsCompoundTypeAverageCdf(const Block& block) {
1206 const BlockParameters& bp = *block.bp;
1207 const ReferenceInfo& reference_info = *current_frame_.reference_info();
1208 const int forward =
1209 std::abs(reference_info.relative_distance_from[bp.reference_frame[0]]);
1210 const int backward =
1211 std::abs(reference_info.relative_distance_from[bp.reference_frame[1]]);
1212 int context = (forward == backward) ? 3 : 0;
1213 if (block.top_available[kPlaneY]) {
1214 if (!block.IsTopSingle()) {
1215 context += static_cast<int>(
1216 block.top_context->is_compound_type_average[block.top_context_index]);
1217 } else if (block.TopReference(0) == kReferenceFrameAlternate) {
1218 ++context;
1219 }
1220 }
1221 if (block.left_available[kPlaneY]) {
1222 if (!block.IsLeftSingle()) {
1223 context += static_cast<int>(
1224 left_context_.is_compound_type_average[block.left_context_index]);
1225 } else if (block.LeftReference(0) == kReferenceFrameAlternate) {
1226 ++context;
1227 }
1228 }
1229 return symbol_decoder_context_.is_compound_type_average_cdf[context];
1230 }
1231
ReadCompoundType(const Block & block,bool is_compound,bool skip_mode,bool * const is_explicit_compound_type,bool * const is_compound_type_average)1232 void Tile::ReadCompoundType(const Block& block, bool is_compound,
1233 bool skip_mode,
1234 bool* const is_explicit_compound_type,
1235 bool* const is_compound_type_average) {
1236 *is_explicit_compound_type = false;
1237 *is_compound_type_average = true;
1238 PredictionParameters& prediction_parameters =
1239 *block.bp->prediction_parameters;
1240 if (skip_mode) {
1241 prediction_parameters.compound_prediction_type =
1242 kCompoundPredictionTypeAverage;
1243 return;
1244 }
1245 if (is_compound) {
1246 if (sequence_header_.enable_masked_compound) {
1247 *is_explicit_compound_type =
1248 reader_.ReadSymbol(GetIsExplicitCompoundTypeCdf(block));
1249 }
1250 if (*is_explicit_compound_type) {
1251 if (kIsWedgeCompoundModeAllowed.Contains(block.size)) {
1252 // Only kCompoundPredictionTypeWedge and
1253 // kCompoundPredictionTypeDiffWeighted are signaled explicitly.
1254 prediction_parameters.compound_prediction_type =
1255 static_cast<CompoundPredictionType>(reader_.ReadSymbol(
1256 symbol_decoder_context_.compound_type_cdf[block.size]));
1257 } else {
1258 prediction_parameters.compound_prediction_type =
1259 kCompoundPredictionTypeDiffWeighted;
1260 }
1261 } else {
1262 if (sequence_header_.enable_jnt_comp) {
1263 *is_compound_type_average =
1264 reader_.ReadSymbol(GetIsCompoundTypeAverageCdf(block));
1265 prediction_parameters.compound_prediction_type =
1266 *is_compound_type_average ? kCompoundPredictionTypeAverage
1267 : kCompoundPredictionTypeDistance;
1268 } else {
1269 prediction_parameters.compound_prediction_type =
1270 kCompoundPredictionTypeAverage;
1271 return;
1272 }
1273 }
1274 if (prediction_parameters.compound_prediction_type ==
1275 kCompoundPredictionTypeWedge) {
1276 prediction_parameters.wedge_index =
1277 reader_.ReadSymbol<kWedgeIndexSymbolCount>(
1278 symbol_decoder_context_.wedge_index_cdf[block.size]);
1279 prediction_parameters.wedge_sign = static_cast<int>(reader_.ReadBit());
1280 } else if (prediction_parameters.compound_prediction_type ==
1281 kCompoundPredictionTypeDiffWeighted) {
1282 prediction_parameters.mask_is_inverse = reader_.ReadBit() != 0;
1283 }
1284 return;
1285 }
1286 if (prediction_parameters.inter_intra_mode != kNumInterIntraModes) {
1287 prediction_parameters.compound_prediction_type =
1288 prediction_parameters.is_wedge_inter_intra
1289 ? kCompoundPredictionTypeWedge
1290 : kCompoundPredictionTypeIntra;
1291 return;
1292 }
1293 prediction_parameters.compound_prediction_type =
1294 kCompoundPredictionTypeAverage;
1295 }
1296
GetInterpolationFilterCdf(const Block & block,int direction)1297 uint16_t* Tile::GetInterpolationFilterCdf(const Block& block, int direction) {
1298 const BlockParameters& bp = *block.bp;
1299 int context = MultiplyBy8(direction) +
1300 MultiplyBy4(static_cast<int>(bp.reference_frame[1] >
1301 kReferenceFrameIntra));
1302 int top_type = kNumExplicitInterpolationFilters;
1303 if (block.top_available[kPlaneY]) {
1304 if (block.bp_top->reference_frame[0] == bp.reference_frame[0] ||
1305 block.bp_top->reference_frame[1] == bp.reference_frame[0]) {
1306 top_type = block.bp_top->interpolation_filter[direction];
1307 }
1308 }
1309 int left_type = kNumExplicitInterpolationFilters;
1310 if (block.left_available[kPlaneY]) {
1311 if (block.bp_left->reference_frame[0] == bp.reference_frame[0] ||
1312 block.bp_left->reference_frame[1] == bp.reference_frame[0]) {
1313 left_type = block.bp_left->interpolation_filter[direction];
1314 }
1315 }
1316 if (left_type == top_type) {
1317 context += left_type;
1318 } else if (left_type == kNumExplicitInterpolationFilters) {
1319 context += top_type;
1320 } else if (top_type == kNumExplicitInterpolationFilters) {
1321 context += left_type;
1322 } else {
1323 context += kNumExplicitInterpolationFilters;
1324 }
1325 return symbol_decoder_context_.interpolation_filter_cdf[context];
1326 }
1327
ReadInterpolationFilter(const Block & block,bool skip_mode)1328 void Tile::ReadInterpolationFilter(const Block& block, bool skip_mode) {
1329 BlockParameters& bp = *block.bp;
1330 if (frame_header_.interpolation_filter != kInterpolationFilterSwitchable) {
1331 static_assert(
1332 sizeof(bp.interpolation_filter) / sizeof(bp.interpolation_filter[0]) ==
1333 2,
1334 "Interpolation filter array size is not 2");
1335 for (auto& interpolation_filter : bp.interpolation_filter) {
1336 interpolation_filter = frame_header_.interpolation_filter;
1337 }
1338 return;
1339 }
1340 bool interpolation_filter_present = true;
1341 if (skip_mode ||
1342 block.bp->prediction_parameters->motion_mode == kMotionModeLocalWarp) {
1343 interpolation_filter_present = false;
1344 } else if (!IsBlockDimension4(block.size) &&
1345 bp.y_mode == kPredictionModeGlobalMv) {
1346 interpolation_filter_present =
1347 frame_header_.global_motion[bp.reference_frame[0]].type ==
1348 kGlobalMotionTransformationTypeTranslation;
1349 } else if (!IsBlockDimension4(block.size) &&
1350 bp.y_mode == kPredictionModeGlobalGlobalMv) {
1351 interpolation_filter_present =
1352 frame_header_.global_motion[bp.reference_frame[0]].type ==
1353 kGlobalMotionTransformationTypeTranslation ||
1354 frame_header_.global_motion[bp.reference_frame[1]].type ==
1355 kGlobalMotionTransformationTypeTranslation;
1356 }
1357 for (int i = 0; i < (sequence_header_.enable_dual_filter ? 2 : 1); ++i) {
1358 bp.interpolation_filter[i] =
1359 interpolation_filter_present
1360 ? static_cast<InterpolationFilter>(
1361 reader_.ReadSymbol<kNumExplicitInterpolationFilters>(
1362 GetInterpolationFilterCdf(block, i)))
1363 : kInterpolationFilterEightTap;
1364 }
1365 if (!sequence_header_.enable_dual_filter) {
1366 bp.interpolation_filter[1] = bp.interpolation_filter[0];
1367 }
1368 }
1369
SetCdfContextCompoundType(const Block & block,bool is_explicit_compound_type,bool is_compound_type_average)1370 void Tile::SetCdfContextCompoundType(const Block& block,
1371 bool is_explicit_compound_type,
1372 bool is_compound_type_average) {
1373 memset(left_context_.is_explicit_compound_type + block.left_context_index,
1374 static_cast<int>(is_explicit_compound_type), block.height4x4);
1375 memset(left_context_.is_compound_type_average + block.left_context_index,
1376 static_cast<int>(is_compound_type_average), block.height4x4);
1377 memset(block.top_context->is_explicit_compound_type + block.top_context_index,
1378 static_cast<int>(is_explicit_compound_type), block.width4x4);
1379 memset(block.top_context->is_compound_type_average + block.top_context_index,
1380 static_cast<int>(is_compound_type_average), block.width4x4);
1381 }
1382
ReadInterBlockModeInfo(const Block & block,bool skip_mode)1383 bool Tile::ReadInterBlockModeInfo(const Block& block, bool skip_mode) {
1384 BlockParameters& bp = *block.bp;
1385 bp.prediction_parameters->palette_mode_info.size[kPlaneTypeY] = 0;
1386 bp.prediction_parameters->palette_mode_info.size[kPlaneTypeUV] = 0;
1387 SetCdfContextPaletteSize(block);
1388 ReadReferenceFrames(block, skip_mode);
1389 const bool is_compound = bp.reference_frame[1] > kReferenceFrameIntra;
1390 MvContexts mode_contexts;
1391 FindMvStack(block, is_compound, &mode_contexts);
1392 ReadInterPredictionModeY(block, mode_contexts, skip_mode);
1393 ReadRefMvIndex(block);
1394 if (!AssignInterMv(block, is_compound)) return false;
1395 ReadInterIntraMode(block, is_compound, skip_mode);
1396 ReadMotionMode(block, is_compound, skip_mode);
1397 bool is_explicit_compound_type;
1398 bool is_compound_type_average;
1399 ReadCompoundType(block, is_compound, skip_mode, &is_explicit_compound_type,
1400 &is_compound_type_average);
1401 SetCdfContextCompoundType(block, is_explicit_compound_type,
1402 is_compound_type_average);
1403 ReadInterpolationFilter(block, skip_mode);
1404 return true;
1405 }
1406
SetCdfContextSkipMode(const Block & block,bool skip_mode)1407 void Tile::SetCdfContextSkipMode(const Block& block, bool skip_mode) {
1408 memset(left_context_.skip_mode + block.left_context_index,
1409 static_cast<int>(skip_mode), block.height4x4);
1410 memset(block.top_context->skip_mode + block.top_context_index,
1411 static_cast<int>(skip_mode), block.width4x4);
1412 }
1413
DecodeInterModeInfo(const Block & block)1414 bool Tile::DecodeInterModeInfo(const Block& block) {
1415 BlockParameters& bp = *block.bp;
1416 block.bp->prediction_parameters->use_intra_block_copy = false;
1417 bp.skip = false;
1418 if (!ReadInterSegmentId(block, /*pre_skip=*/true)) return false;
1419 bool skip_mode = ReadSkipMode(block);
1420 SetCdfContextSkipMode(block, skip_mode);
1421 if (skip_mode) {
1422 bp.skip = true;
1423 } else {
1424 ReadSkip(block);
1425 }
1426 if (!frame_header_.segmentation.segment_id_pre_skip &&
1427 !ReadInterSegmentId(block, /*pre_skip=*/false)) {
1428 return false;
1429 }
1430 ReadCdef(block);
1431 if (read_deltas_) {
1432 ReadQuantizerIndexDelta(block);
1433 ReadLoopFilterDelta(block);
1434 read_deltas_ = false;
1435 }
1436 ReadIsInter(block, skip_mode);
1437 return bp.is_inter ? ReadInterBlockModeInfo(block, skip_mode)
1438 : ReadIntraBlockModeInfo(block, /*intra_y_mode=*/false);
1439 }
1440
DecodeModeInfo(const Block & block)1441 bool Tile::DecodeModeInfo(const Block& block) {
1442 return IsIntraFrame(frame_header_.frame_type) ? DecodeIntraModeInfo(block)
1443 : DecodeInterModeInfo(block);
1444 }
1445
1446 } // namespace libgav1
1447