1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "src/traced/probes/ftrace/cpu_reader.h"
18
19 #include <dirent.h>
20 #include <fcntl.h>
21
22 #include <algorithm>
23 #include <optional>
24 #include <utility>
25
26 #include "perfetto/base/logging.h"
27 #include "perfetto/ext/base/metatrace.h"
28 #include "perfetto/ext/base/utils.h"
29 #include "perfetto/ext/tracing/core/trace_writer.h"
30 #include "src/kallsyms/kernel_symbol_map.h"
31 #include "src/kallsyms/lazy_kernel_symbolizer.h"
32 #include "src/traced/probes/ftrace/ftrace_config_muxer.h"
33 #include "src/traced/probes/ftrace/ftrace_controller.h" // FtraceClockSnapshot
34 #include "src/traced/probes/ftrace/ftrace_data_source.h"
35 #include "src/traced/probes/ftrace/ftrace_print_filter.h"
36 #include "src/traced/probes/ftrace/proto_translation_table.h"
37
38 #include "protos/perfetto/trace/ftrace/ftrace_event.pbzero.h"
39 #include "protos/perfetto/trace/ftrace/ftrace_event_bundle.pbzero.h"
40 #include "protos/perfetto/trace/ftrace/ftrace_stats.pbzero.h" // FtraceParseStatus
41 #include "protos/perfetto/trace/ftrace/generic.pbzero.h"
42 #include "protos/perfetto/trace/interned_data/interned_data.pbzero.h"
43 #include "protos/perfetto/trace/profiling/profile_common.pbzero.h"
44 #include "protos/perfetto/trace/trace_packet.pbzero.h"
45
46 namespace perfetto {
47 namespace {
48
49 using FtraceParseStatus = protos::pbzero::FtraceParseStatus;
50 using protos::pbzero::KprobeEvent;
51
52 // If the compact_sched buffer accumulates more unique strings, the reader will
53 // flush it to reset the interning state (and make it cheap again).
54 // This is not an exact cap, since we check only at tracing page boundaries.
55 constexpr size_t kCompactSchedInternerThreshold = 64;
56
57 // For further documentation of these constants see the kernel source:
58 // linux/include/linux/ring_buffer.h
59 // Some of this is also available to userspace at runtime via:
60 // /sys/kernel/tracing/events/header_event
61 constexpr uint32_t kTypePadding = 29;
62 constexpr uint32_t kTypeTimeExtend = 30;
63 constexpr uint32_t kTypeTimeStamp = 31;
64
65 struct EventHeader {
66 // bottom 5 bits
67 uint32_t type_or_length : 5;
68 // top 27 bits
69 uint32_t time_delta : 27;
70 };
71
72 // Reads a string from `start` until the first '\0' byte or until fixed_len
73 // characters have been read. Appends it to `*out` as field `field_id`.
ReadIntoString(const uint8_t * start,size_t fixed_len,uint32_t field_id,protozero::Message * out)74 void ReadIntoString(const uint8_t* start,
75 size_t fixed_len,
76 uint32_t field_id,
77 protozero::Message* out) {
78 size_t len = strnlen(reinterpret_cast<const char*>(start), fixed_len);
79 out->AppendBytes(field_id, reinterpret_cast<const char*>(start), len);
80 }
81
ReadDataLoc(const uint8_t * start,const uint8_t * field_start,const uint8_t * end,const Field & field,protozero::Message * message)82 bool ReadDataLoc(const uint8_t* start,
83 const uint8_t* field_start,
84 const uint8_t* end,
85 const Field& field,
86 protozero::Message* message) {
87 PERFETTO_DCHECK(field.ftrace_size == 4);
88 // See kernel header include/trace/trace_events.h
89 uint32_t data = 0;
90 const uint8_t* ptr = field_start;
91 if (!CpuReader::ReadAndAdvance(&ptr, end, &data)) {
92 PERFETTO_DFATAL("couldn't read __data_loc value");
93 return false;
94 }
95
96 const uint16_t offset = data & 0xffff;
97 const uint16_t len = (data >> 16) & 0xffff;
98 const uint8_t* const string_start = start + offset;
99
100 if (PERFETTO_UNLIKELY(len == 0))
101 return true;
102 if (PERFETTO_UNLIKELY(string_start < start || string_start + len > end)) {
103 PERFETTO_DFATAL("__data_loc points at invalid location");
104 return false;
105 }
106 ReadIntoString(string_start, len, field.proto_field_id, message);
107 return true;
108 }
109
110 template <typename T>
ReadValue(const uint8_t * ptr)111 T ReadValue(const uint8_t* ptr) {
112 T t;
113 memcpy(&t, reinterpret_cast<const void*>(ptr), sizeof(T));
114 return t;
115 }
116
117 // Reads a signed ftrace value as an int64_t, sign extending if necessary.
ReadSignedFtraceValue(const uint8_t * ptr,FtraceFieldType ftrace_type)118 int64_t ReadSignedFtraceValue(const uint8_t* ptr, FtraceFieldType ftrace_type) {
119 if (ftrace_type == kFtraceInt32) {
120 int32_t value;
121 memcpy(&value, reinterpret_cast<const void*>(ptr), sizeof(value));
122 return int64_t(value);
123 }
124 if (ftrace_type == kFtraceInt64) {
125 int64_t value;
126 memcpy(&value, reinterpret_cast<const void*>(ptr), sizeof(value));
127 return value;
128 }
129 PERFETTO_FATAL("unexpected ftrace type");
130 }
131
SetBlocking(int fd,bool is_blocking)132 bool SetBlocking(int fd, bool is_blocking) {
133 int flags = fcntl(fd, F_GETFL, 0);
134 flags = (is_blocking) ? (flags & ~O_NONBLOCK) : (flags | O_NONBLOCK);
135 return fcntl(fd, F_SETFL, flags) == 0;
136 }
137
SetParseError(const std::set<FtraceDataSource * > & started_data_sources,size_t cpu,FtraceParseStatus status)138 void SetParseError(const std::set<FtraceDataSource*>& started_data_sources,
139 size_t cpu,
140 FtraceParseStatus status) {
141 PERFETTO_DPLOG("[cpu%zu]: unexpected ftrace read error: %s", cpu,
142 protos::pbzero::FtraceParseStatus_Name(status));
143 for (FtraceDataSource* data_source : started_data_sources) {
144 data_source->mutable_parse_errors()->insert(status);
145 }
146 }
147
WriteAndSetParseError(CpuReader::Bundler * bundler,base::FlatSet<FtraceParseStatus> * stat,uint64_t timestamp,FtraceParseStatus status)148 void WriteAndSetParseError(CpuReader::Bundler* bundler,
149 base::FlatSet<FtraceParseStatus>* stat,
150 uint64_t timestamp,
151 FtraceParseStatus status) {
152 PERFETTO_DLOG("Error parsing ftrace page: %s",
153 protos::pbzero::FtraceParseStatus_Name(status));
154 stat->insert(status);
155 auto* proto = bundler->GetOrCreateBundle()->add_error();
156 if (timestamp)
157 proto->set_timestamp(timestamp);
158 proto->set_status(status);
159 }
160
161 } // namespace
162
163 using protos::pbzero::GenericFtraceEvent;
164
CpuReader(size_t cpu,base::ScopedFile trace_fd,const ProtoTranslationTable * table,LazyKernelSymbolizer * symbolizer,protos::pbzero::FtraceClock ftrace_clock,const FtraceClockSnapshot * ftrace_clock_snapshot)165 CpuReader::CpuReader(size_t cpu,
166 base::ScopedFile trace_fd,
167 const ProtoTranslationTable* table,
168 LazyKernelSymbolizer* symbolizer,
169 protos::pbzero::FtraceClock ftrace_clock,
170 const FtraceClockSnapshot* ftrace_clock_snapshot)
171 : cpu_(cpu),
172 table_(table),
173 symbolizer_(symbolizer),
174 trace_fd_(std::move(trace_fd)),
175 ftrace_clock_(ftrace_clock),
176 ftrace_clock_snapshot_(ftrace_clock_snapshot) {
177 PERFETTO_CHECK(trace_fd_);
178 PERFETTO_CHECK(SetBlocking(*trace_fd_, false));
179 }
180
181 CpuReader::~CpuReader() = default;
182
ReadCycle(ParsingBuffers * parsing_bufs,size_t max_pages,const std::set<FtraceDataSource * > & started_data_sources)183 size_t CpuReader::ReadCycle(
184 ParsingBuffers* parsing_bufs,
185 size_t max_pages,
186 const std::set<FtraceDataSource*>& started_data_sources) {
187 PERFETTO_DCHECK(max_pages > 0 && parsing_bufs->ftrace_data_buf_pages() > 0);
188 metatrace::ScopedEvent evt(metatrace::TAG_FTRACE,
189 metatrace::FTRACE_CPU_READ_CYCLE);
190
191 // Work in batches to keep cache locality, and limit memory usage.
192 size_t total_pages_read = 0;
193 for (bool is_first_batch = true;; is_first_batch = false) {
194 size_t batch_pages = std::min(parsing_bufs->ftrace_data_buf_pages(),
195 max_pages - total_pages_read);
196 size_t pages_read = ReadAndProcessBatch(
197 parsing_bufs->ftrace_data_buf(), batch_pages, is_first_batch,
198 parsing_bufs->compact_sched_buf(), started_data_sources);
199
200 PERFETTO_DCHECK(pages_read <= batch_pages);
201 total_pages_read += pages_read;
202
203 // Check whether we've caught up to the writer, or possibly giving up on
204 // this attempt due to some error.
205 if (pages_read != batch_pages)
206 break;
207 // Check if we've hit the limit of work for this cycle.
208 if (total_pages_read >= max_pages)
209 break;
210 }
211 PERFETTO_METATRACE_COUNTER(TAG_FTRACE, FTRACE_PAGES_DRAINED,
212 total_pages_read);
213 return total_pages_read;
214 }
215
216 // metatrace note: mark the reading phase as FTRACE_CPU_READ_BATCH, but let the
217 // parsing time be implied (by the difference between the caller's span, and
218 // this reading span). Makes it easier to estimate the read/parse ratio when
219 // looking at the trace in the UI.
ReadAndProcessBatch(uint8_t * parsing_buf,size_t max_pages,bool first_batch_in_cycle,CompactSchedBuffer * compact_sched_buf,const std::set<FtraceDataSource * > & started_data_sources)220 size_t CpuReader::ReadAndProcessBatch(
221 uint8_t* parsing_buf,
222 size_t max_pages,
223 bool first_batch_in_cycle,
224 CompactSchedBuffer* compact_sched_buf,
225 const std::set<FtraceDataSource*>& started_data_sources) {
226 const uint32_t sys_page_size = base::GetSysPageSize();
227 size_t pages_read = 0;
228 {
229 metatrace::ScopedEvent evt(metatrace::TAG_FTRACE,
230 metatrace::FTRACE_CPU_READ_BATCH);
231 for (; pages_read < max_pages;) {
232 uint8_t* curr_page = parsing_buf + (pages_read * sys_page_size);
233 ssize_t res = PERFETTO_EINTR(read(*trace_fd_, curr_page, sys_page_size));
234 if (res < 0) {
235 // Expected errors:
236 // EAGAIN: no data (since we're in non-blocking mode).
237 // ENOMEM, EBUSY: temporary ftrace failures (they happen).
238 // ENODEV: the cpu is offline (b/145583318).
239 if (errno != EAGAIN && errno != ENOMEM && errno != EBUSY &&
240 errno != ENODEV) {
241 SetParseError(started_data_sources, cpu_,
242 FtraceParseStatus::FTRACE_STATUS_UNEXPECTED_READ_ERROR);
243 }
244 break; // stop reading regardless of errno
245 }
246
247 // As long as all of our reads are for a single page, the kernel should
248 // return exactly a well-formed raw ftrace page (if not in the steady
249 // state of reading out fully-written pages, the kernel will construct
250 // pages as necessary, copying over events and zero-filling at the end).
251 // A sub-page read() is therefore not expected in practice. Kernel source
252 // pointer: see usage of |info->read| within |tracing_buffers_read|.
253 if (res == 0) {
254 // Very rare, but possible. Stop for now, as this seems to occur when
255 // we've caught up to the writer.
256 PERFETTO_DLOG("[cpu%zu]: 0-sized read from ftrace pipe.", cpu_);
257 break;
258 }
259 if (res != static_cast<ssize_t>(sys_page_size)) {
260 SetParseError(started_data_sources, cpu_,
261 FtraceParseStatus::FTRACE_STATUS_PARTIAL_PAGE_READ);
262 break;
263 }
264
265 pages_read += 1;
266
267 // Heuristic for detecting whether we've caught up to the writer, based on
268 // how much data is in this tracing page. To figure out the amount of
269 // ftrace data, we need to parse the page header (since the read always
270 // returns a page, zero-filled at the end). If we read fewer bytes than
271 // the threshold, it means that we caught up with the write pointer and we
272 // started consuming ftrace events in real-time. This cannot be just 4096
273 // because it needs to account for fragmentation, i.e. for the fact that
274 // the last trace event didn't fit in the current page and hence the
275 // current page was terminated prematurely. This threshold is quite
276 // permissive since Android userspace tracing can log >500 byte strings
277 // via ftrace/print events.
278 // It's still possible for false positives if events can be bigger than
279 // half a page, but we don't have a robust way of checking buffer
280 // occupancy with nonblocking reads. This can be revisited once all
281 // kernels can be assumed to have bug-free poll() or reliable
282 // tracefs/per_cpu/cpuX/stats values.
283 static const size_t kPageFillThreshold = sys_page_size / 2;
284 const uint8_t* scratch_ptr = curr_page;
285 std::optional<PageHeader> hdr =
286 ParsePageHeader(&scratch_ptr, table_->page_header_size_len());
287 PERFETTO_DCHECK(hdr && hdr->size > 0 && hdr->size <= sys_page_size);
288 if (!hdr.has_value()) {
289 // The header error will be logged by ProcessPagesForDataSource.
290 break;
291 }
292 // Note that the first read after starting the read cycle being small is
293 // normal. It means that we're given the remainder of events from a
294 // page that we've partially consumed during the last read of the previous
295 // cycle (having caught up to the writer).
296 if (hdr->size < kPageFillThreshold &&
297 !(first_batch_in_cycle && pages_read == 1)) {
298 break;
299 }
300 }
301 } // end of metatrace::FTRACE_CPU_READ_BATCH
302
303 // Parse the pages and write to the trace for all relevant data sources.
304 if (pages_read == 0)
305 return pages_read;
306
307 for (FtraceDataSource* data_source : started_data_sources) {
308 ProcessPagesForDataSource(
309 data_source->trace_writer(), data_source->mutable_metadata(), cpu_,
310 data_source->parsing_config(), data_source->mutable_parse_errors(),
311 data_source->mutable_bundle_end_timestamp(cpu_), parsing_buf,
312 pages_read, compact_sched_buf, table_, symbolizer_,
313 ftrace_clock_snapshot_, ftrace_clock_);
314 }
315 return pages_read;
316 }
317
StartNewPacket(bool lost_events,uint64_t previous_bundle_end_timestamp)318 void CpuReader::Bundler::StartNewPacket(
319 bool lost_events,
320 uint64_t previous_bundle_end_timestamp) {
321 FinalizeAndRunSymbolizer();
322 packet_ = trace_writer_->NewTracePacket();
323 bundle_ = packet_->set_ftrace_events();
324
325 bundle_->set_cpu(static_cast<uint32_t>(cpu_));
326 if (lost_events) {
327 bundle_->set_lost_events(true);
328 }
329
330 // note: set-to-zero is valid and expected for the first bundle per cpu
331 // (outside of concurrent tracing), with the effective meaning of "all data is
332 // valid since the data source was started".
333 bundle_->set_previous_bundle_end_timestamp(previous_bundle_end_timestamp);
334
335 if (ftrace_clock_) {
336 bundle_->set_ftrace_clock(ftrace_clock_);
337 if (ftrace_clock_snapshot_ && ftrace_clock_snapshot_->ftrace_clock_ts) {
338 bundle_->set_ftrace_timestamp(ftrace_clock_snapshot_->ftrace_clock_ts);
339 bundle_->set_boot_timestamp(ftrace_clock_snapshot_->boot_clock_ts);
340 }
341 }
342 }
343
FinalizeAndRunSymbolizer()344 void CpuReader::Bundler::FinalizeAndRunSymbolizer() {
345 if (!packet_) {
346 return;
347 }
348
349 if (compact_sched_enabled_) {
350 compact_sched_buf_->WriteAndReset(bundle_);
351 }
352
353 bundle_->Finalize();
354 bundle_ = nullptr;
355 // Write the kernel symbol index (mangled address) -> name table.
356 // |metadata| is shared across all cpus, is distinct per |data_source| (i.e.
357 // tracing session) and is cleared after each FtraceController::ReadTick().
358 if (symbolizer_) {
359 // Symbol indexes are assigned mononically as |kernel_addrs.size()|,
360 // starting from index 1 (no symbol has index 0). Here we remember the
361 // size() (which is also == the highest value in |kernel_addrs|) at the
362 // beginning and only write newer indexes bigger than that.
363 uint32_t max_index_at_start = metadata_->last_kernel_addr_index_written;
364 PERFETTO_DCHECK(max_index_at_start <= metadata_->kernel_addrs.size());
365 protos::pbzero::InternedData* interned_data = nullptr;
366 auto* ksyms_map = symbolizer_->GetOrCreateKernelSymbolMap();
367 bool wrote_at_least_one_symbol = false;
368 for (const FtraceMetadata::KernelAddr& kaddr : metadata_->kernel_addrs) {
369 if (kaddr.index <= max_index_at_start)
370 continue;
371 std::string sym_name = ksyms_map->Lookup(kaddr.addr);
372 if (sym_name.empty()) {
373 // Lookup failed. This can genuinely happen in many occasions. E.g.,
374 // workqueue_execute_start has two pointers: one is a pointer to a
375 // function (which we expect to be symbolized), the other (|work|) is
376 // a pointer to a heap struct, which is unsymbolizable, even when
377 // using the textual ftrace endpoint.
378 continue;
379 }
380
381 if (!interned_data) {
382 // If this is the very first write, clear the start of the sequence
383 // so the trace processor knows that all previous indexes can be
384 // discarded and that the mapping is restarting.
385 // In most cases this occurs with cpu==0. But if cpu0 is idle, this
386 // will happen with the first CPU that has any ftrace data.
387 if (max_index_at_start == 0) {
388 packet_->set_sequence_flags(
389 protos::pbzero::TracePacket::SEQ_INCREMENTAL_STATE_CLEARED);
390 }
391 interned_data = packet_->set_interned_data();
392 }
393 auto* interned_sym = interned_data->add_kernel_symbols();
394 interned_sym->set_iid(kaddr.index);
395 interned_sym->set_str(sym_name);
396 wrote_at_least_one_symbol = true;
397 }
398
399 auto max_it_at_end = static_cast<uint32_t>(metadata_->kernel_addrs.size());
400
401 // Rationale for the if (wrote_at_least_one_symbol) check: in rare cases,
402 // all symbols seen in a ProcessPagesForDataSource() call can fail the
403 // ksyms_map->Lookup(). If that happens we don't want to bump the
404 // last_kernel_addr_index_written watermark, as that would cause the next
405 // call to NOT emit the SEQ_INCREMENTAL_STATE_CLEARED.
406 if (wrote_at_least_one_symbol) {
407 metadata_->last_kernel_addr_index_written = max_it_at_end;
408 }
409 }
410 packet_ = TraceWriter::TracePacketHandle(nullptr);
411 }
412
413 // Error handling: will attempt parsing all pages even if there are errors in
414 // parsing the binary layout of the data. The error will be recorded in the
415 // event bundle proto with a timestamp, letting the trace processor decide
416 // whether to discard or keep the post-error data. Previously, we crashed as
417 // soon as we encountered such an error.
418 // static
ProcessPagesForDataSource(TraceWriter * trace_writer,FtraceMetadata * metadata,size_t cpu,const FtraceDataSourceConfig * ds_config,base::FlatSet<protos::pbzero::FtraceParseStatus> * parse_errors,uint64_t * bundle_end_timestamp,const uint8_t * parsing_buf,const size_t pages_read,CompactSchedBuffer * compact_sched_buf,const ProtoTranslationTable * table,LazyKernelSymbolizer * symbolizer,const FtraceClockSnapshot * ftrace_clock_snapshot,protos::pbzero::FtraceClock ftrace_clock)419 bool CpuReader::ProcessPagesForDataSource(
420 TraceWriter* trace_writer,
421 FtraceMetadata* metadata,
422 size_t cpu,
423 const FtraceDataSourceConfig* ds_config,
424 base::FlatSet<protos::pbzero::FtraceParseStatus>* parse_errors,
425 uint64_t* bundle_end_timestamp,
426 const uint8_t* parsing_buf,
427 const size_t pages_read,
428 CompactSchedBuffer* compact_sched_buf,
429 const ProtoTranslationTable* table,
430 LazyKernelSymbolizer* symbolizer,
431 const FtraceClockSnapshot* ftrace_clock_snapshot,
432 protos::pbzero::FtraceClock ftrace_clock) {
433 const uint32_t sys_page_size = base::GetSysPageSize();
434 Bundler bundler(trace_writer, metadata,
435 ds_config->symbolize_ksyms ? symbolizer : nullptr, cpu,
436 ftrace_clock_snapshot, ftrace_clock, compact_sched_buf,
437 ds_config->compact_sched.enabled, *bundle_end_timestamp);
438
439 bool success = true;
440 size_t pages_parsed = 0;
441 bool compact_sched_enabled = ds_config->compact_sched.enabled;
442 for (; pages_parsed < pages_read; pages_parsed++) {
443 const uint8_t* curr_page = parsing_buf + (pages_parsed * sys_page_size);
444 const uint8_t* curr_page_end = curr_page + sys_page_size;
445 const uint8_t* parse_pos = curr_page;
446 std::optional<PageHeader> page_header =
447 ParsePageHeader(&parse_pos, table->page_header_size_len());
448
449 if (!page_header.has_value() || page_header->size == 0 ||
450 parse_pos >= curr_page_end ||
451 parse_pos + page_header->size > curr_page_end) {
452 WriteAndSetParseError(
453 &bundler, parse_errors,
454 page_header.has_value() ? page_header->timestamp : 0,
455 FtraceParseStatus::FTRACE_STATUS_ABI_INVALID_PAGE_HEADER);
456 success = false;
457 continue;
458 }
459
460 // Start a new bundle if either:
461 // * The page we're about to read indicates that there was a kernel ring
462 // buffer overrun since our last read from that per-cpu buffer. We have
463 // a single |lost_events| field per bundle, so start a new packet.
464 // * The compact_sched buffer is holding more unique interned strings than
465 // a threshold. We need to flush the compact buffer to make the
466 // interning lookups cheap again.
467 bool interner_past_threshold =
468 compact_sched_enabled &&
469 bundler.compact_sched_buf()->interner().interned_comms_size() >
470 kCompactSchedInternerThreshold;
471
472 if (page_header->lost_events || interner_past_threshold) {
473 // pass in an updated bundle_end_timestamp since we're starting a new
474 // bundle, which needs to reference the last timestamp from the prior one.
475 bundler.StartNewPacket(page_header->lost_events, *bundle_end_timestamp);
476 }
477
478 FtraceParseStatus status =
479 ParsePagePayload(parse_pos, &page_header.value(), table, ds_config,
480 &bundler, metadata, bundle_end_timestamp);
481
482 if (status != FtraceParseStatus::FTRACE_STATUS_OK) {
483 WriteAndSetParseError(&bundler, parse_errors, page_header->timestamp,
484 status);
485 success = false;
486 continue;
487 }
488 }
489 // bundler->FinalizeAndRunSymbolizer() will run as part of the destructor.
490 return success;
491 }
492
493 // A page header consists of:
494 // * timestamp: 8 bytes
495 // * commit: 8 bytes on 64 bit, 4 bytes on 32 bit kernels
496 //
497 // The kernel reports this at /sys/kernel/debug/tracing/events/header_page.
498 //
499 // |commit|'s bottom bits represent the length of the payload following this
500 // header. The top bits have been repurposed as a bitset of flags pertaining to
501 // data loss. We look only at the "there has been some data lost" flag
502 // (RB_MISSED_EVENTS), and ignore the relatively tricky "appended the precise
503 // lost events count past the end of the valid data, as there was room to do so"
504 // flag (RB_MISSED_STORED).
505 //
506 // static
ParsePageHeader(const uint8_t ** ptr,uint16_t page_header_size_len)507 std::optional<CpuReader::PageHeader> CpuReader::ParsePageHeader(
508 const uint8_t** ptr,
509 uint16_t page_header_size_len) {
510 // Mask for the data length portion of the |commit| field. Note that the
511 // kernel implementation never explicitly defines the boundary (beyond using
512 // bits 30 and 31 as flags), but 27 bits are mentioned as sufficient in the
513 // original commit message, and is the constant used by trace-cmd.
514 constexpr static uint64_t kDataSizeMask = (1ull << 27) - 1;
515 // If set, indicates that the relevant cpu has lost events since the last read
516 // (clearing the bit internally).
517 constexpr static uint64_t kMissedEventsFlag = (1ull << 31);
518
519 const uint8_t* end_of_page = *ptr + base::GetSysPageSize();
520 PageHeader page_header;
521 if (!CpuReader::ReadAndAdvance<uint64_t>(ptr, end_of_page,
522 &page_header.timestamp))
523 return std::nullopt;
524
525 uint32_t size_and_flags;
526
527 // On little endian, we can just read a uint32_t and reject the rest of the
528 // number later.
529 if (!CpuReader::ReadAndAdvance<uint32_t>(
530 ptr, end_of_page, base::AssumeLittleEndian(&size_and_flags)))
531 return std::nullopt;
532
533 page_header.size = size_and_flags & kDataSizeMask;
534 page_header.lost_events = bool(size_and_flags & kMissedEventsFlag);
535 PERFETTO_DCHECK(page_header.size <= base::GetSysPageSize());
536
537 // Reject rest of the number, if applicable. On 32-bit, size_bytes - 4 will
538 // evaluate to 0 and this will be a no-op. On 64-bit, this will advance by 4
539 // bytes.
540 PERFETTO_DCHECK(page_header_size_len >= 4);
541 *ptr += page_header_size_len - 4;
542
543 return std::make_optional(page_header);
544 }
545
546 // A raw ftrace buffer page consists of a header followed by a sequence of
547 // binary ftrace events. See |ParsePageHeader| for the format of the earlier.
548 //
549 // Error handling: if the binary data disagrees with our understanding of the
550 // ring buffer layout, returns an error and skips the rest of the page (but some
551 // events may have already been parsed and serialised).
552 //
553 // This method is deliberately static so it can be tested independently.
ParsePagePayload(const uint8_t * start_of_payload,const PageHeader * page_header,const ProtoTranslationTable * table,const FtraceDataSourceConfig * ds_config,Bundler * bundler,FtraceMetadata * metadata,uint64_t * bundle_end_timestamp)554 protos::pbzero::FtraceParseStatus CpuReader::ParsePagePayload(
555 const uint8_t* start_of_payload,
556 const PageHeader* page_header,
557 const ProtoTranslationTable* table,
558 const FtraceDataSourceConfig* ds_config,
559 Bundler* bundler,
560 FtraceMetadata* metadata,
561 uint64_t* bundle_end_timestamp) {
562 const uint8_t* ptr = start_of_payload;
563 const uint8_t* const end = ptr + page_header->size;
564
565 uint64_t timestamp = page_header->timestamp;
566 uint64_t last_written_event_ts = 0;
567
568 while (ptr < end) {
569 EventHeader event_header;
570 if (!ReadAndAdvance(&ptr, end, &event_header))
571 return FtraceParseStatus::FTRACE_STATUS_ABI_SHORT_EVENT_HEADER;
572
573 timestamp += event_header.time_delta;
574
575 switch (event_header.type_or_length) {
576 case kTypePadding: {
577 // Left over page padding or discarded event.
578 if (event_header.time_delta == 0) {
579 // Should never happen: null padding event with unspecified size.
580 // Only written beyond page_header->size.
581 return FtraceParseStatus::FTRACE_STATUS_ABI_NULL_PADDING;
582 }
583 uint32_t length = 0;
584 if (!ReadAndAdvance<uint32_t>(&ptr, end, &length))
585 return FtraceParseStatus::FTRACE_STATUS_ABI_SHORT_PADDING_LENGTH;
586 // Length includes itself (4 bytes).
587 if (length < 4)
588 return FtraceParseStatus::FTRACE_STATUS_ABI_INVALID_PADDING_LENGTH;
589 ptr += length - 4;
590 break;
591 }
592 case kTypeTimeExtend: {
593 // Extend the time delta.
594 uint32_t time_delta_ext = 0;
595 if (!ReadAndAdvance<uint32_t>(&ptr, end, &time_delta_ext))
596 return FtraceParseStatus::FTRACE_STATUS_ABI_SHORT_TIME_EXTEND;
597 timestamp += (static_cast<uint64_t>(time_delta_ext)) << 27;
598 break;
599 }
600 case kTypeTimeStamp: {
601 // Absolute timestamp. This was historically partially implemented, but
602 // not written. Kernels 4.17+ reimplemented this record, changing its
603 // size in the process. We assume the newer layout. Parsed the same as
604 // kTypeTimeExtend, except that the timestamp is interpreted as an
605 // absolute, instead of a delta on top of the previous state.
606 uint32_t time_delta_ext = 0;
607 if (!ReadAndAdvance<uint32_t>(&ptr, end, &time_delta_ext))
608 return FtraceParseStatus::FTRACE_STATUS_ABI_SHORT_TIME_STAMP;
609 timestamp = event_header.time_delta +
610 (static_cast<uint64_t>(time_delta_ext) << 27);
611 break;
612 }
613 // Data record:
614 default: {
615 // If type_or_length <=28, the record length is 4x that value.
616 // If type_or_length == 0, the length of the record is stored in the
617 // first uint32_t word of the payload.
618 uint32_t event_size = 0;
619 if (event_header.type_or_length == 0) {
620 if (!ReadAndAdvance<uint32_t>(&ptr, end, &event_size))
621 return FtraceParseStatus::FTRACE_STATUS_ABI_SHORT_DATA_LENGTH;
622 // Size includes itself (4 bytes). However we've seen rare
623 // contradictions on select Android 4.19+ kernels: the page header
624 // says there's still valid data, but the rest of the page is full of
625 // zeroes (which would not decode to a valid event). b/204564312.
626 if (event_size == 0)
627 return FtraceParseStatus::FTRACE_STATUS_ABI_ZERO_DATA_LENGTH;
628 else if (event_size < 4)
629 return FtraceParseStatus::FTRACE_STATUS_ABI_INVALID_DATA_LENGTH;
630 event_size -= 4;
631 } else {
632 event_size = 4 * event_header.type_or_length;
633 }
634 const uint8_t* start = ptr;
635 const uint8_t* next = ptr + event_size;
636
637 if (next > end)
638 return FtraceParseStatus::FTRACE_STATUS_ABI_END_OVERFLOW;
639
640 uint16_t ftrace_event_id = 0;
641 if (!ReadAndAdvance<uint16_t>(&ptr, end, &ftrace_event_id))
642 return FtraceParseStatus::FTRACE_STATUS_ABI_SHORT_EVENT_ID;
643
644 if (ds_config->event_filter.IsEventEnabled(ftrace_event_id)) {
645 // Special-cased handling of some scheduler events when compact format
646 // is enabled.
647 bool compact_sched_enabled = ds_config->compact_sched.enabled;
648 const CompactSchedSwitchFormat& sched_switch_format =
649 table->compact_sched_format().sched_switch;
650 const CompactSchedWakingFormat& sched_waking_format =
651 table->compact_sched_format().sched_waking;
652
653 // Special-cased filtering of ftrace/print events to retain only the
654 // matching events.
655 bool event_written = true;
656 bool ftrace_print_filter_enabled =
657 ds_config->print_filter.has_value();
658
659 if (compact_sched_enabled &&
660 ftrace_event_id == sched_switch_format.event_id) {
661 if (event_size < sched_switch_format.size)
662 return FtraceParseStatus::FTRACE_STATUS_SHORT_COMPACT_EVENT;
663
664 ParseSchedSwitchCompact(start, timestamp, &sched_switch_format,
665 bundler->compact_sched_buf(), metadata);
666 } else if (compact_sched_enabled &&
667 ftrace_event_id == sched_waking_format.event_id) {
668 if (event_size < sched_waking_format.size)
669 return FtraceParseStatus::FTRACE_STATUS_SHORT_COMPACT_EVENT;
670
671 ParseSchedWakingCompact(start, timestamp, &sched_waking_format,
672 bundler->compact_sched_buf(), metadata);
673 } else if (ftrace_print_filter_enabled &&
674 ftrace_event_id == ds_config->print_filter->event_id()) {
675 if (ds_config->print_filter->IsEventInteresting(start, next)) {
676 protos::pbzero::FtraceEvent* event =
677 bundler->GetOrCreateBundle()->add_event();
678 event->set_timestamp(timestamp);
679 if (!ParseEvent(ftrace_event_id, start, next, table, ds_config,
680 event, metadata)) {
681 return FtraceParseStatus::FTRACE_STATUS_INVALID_EVENT;
682 }
683 } else { // print event did NOT pass the filter
684 event_written = false;
685 }
686 } else {
687 // Common case: parse all other types of enabled events.
688 protos::pbzero::FtraceEvent* event =
689 bundler->GetOrCreateBundle()->add_event();
690 event->set_timestamp(timestamp);
691 if (!ParseEvent(ftrace_event_id, start, next, table, ds_config,
692 event, metadata)) {
693 return FtraceParseStatus::FTRACE_STATUS_INVALID_EVENT;
694 }
695 }
696 if (event_written) {
697 last_written_event_ts = timestamp;
698 }
699 } // IsEventEnabled(id)
700 ptr = next;
701 } // case (data_record)
702 } // switch (event_header.type_or_length)
703 } // while (ptr < end)
704
705 if (last_written_event_ts)
706 *bundle_end_timestamp = last_written_event_ts;
707 return FtraceParseStatus::FTRACE_STATUS_OK;
708 }
709
710 // |start| is the start of the current event.
711 // |end| is the end of the buffer.
ParseEvent(uint16_t ftrace_event_id,const uint8_t * start,const uint8_t * end,const ProtoTranslationTable * table,const FtraceDataSourceConfig * ds_config,protozero::Message * message,FtraceMetadata * metadata)712 bool CpuReader::ParseEvent(uint16_t ftrace_event_id,
713 const uint8_t* start,
714 const uint8_t* end,
715 const ProtoTranslationTable* table,
716 const FtraceDataSourceConfig* ds_config,
717 protozero::Message* message,
718 FtraceMetadata* metadata) {
719 PERFETTO_DCHECK(start < end);
720
721 // The event must be enabled and known to reach here.
722 const Event& info = *table->GetEventById(ftrace_event_id);
723
724 if (info.size > static_cast<size_t>(end - start)) {
725 PERFETTO_DLOG("Expected event length is beyond end of buffer.");
726 return false;
727 }
728
729 bool success = true;
730 const Field* common_pid_field = table->common_pid();
731 if (PERFETTO_LIKELY(common_pid_field))
732 success &=
733 ParseField(*common_pid_field, start, end, table, message, metadata);
734
735 protozero::Message* nested =
736 message->BeginNestedMessage<protozero::Message>(info.proto_field_id);
737
738 // Parse generic (not known at compile time) event.
739 if (PERFETTO_UNLIKELY(info.proto_field_id ==
740 protos::pbzero::FtraceEvent::kGenericFieldNumber)) {
741 nested->AppendString(GenericFtraceEvent::kEventNameFieldNumber, info.name);
742 for (const Field& field : info.fields) {
743 auto* generic_field = nested->BeginNestedMessage<protozero::Message>(
744 GenericFtraceEvent::kFieldFieldNumber);
745 generic_field->AppendString(GenericFtraceEvent::Field::kNameFieldNumber,
746 field.ftrace_name);
747 success &= ParseField(field, start, end, table, generic_field, metadata);
748 }
749 } else if (PERFETTO_UNLIKELY(
750 info.proto_field_id ==
751 protos::pbzero::FtraceEvent::kSysEnterFieldNumber)) {
752 success &= ParseSysEnter(info, start, end, nested, metadata);
753 } else if (PERFETTO_UNLIKELY(
754 info.proto_field_id ==
755 protos::pbzero::FtraceEvent::kSysExitFieldNumber)) {
756 success &= ParseSysExit(info, start, end, ds_config, nested, metadata);
757 } else if (PERFETTO_UNLIKELY(
758 info.proto_field_id ==
759 protos::pbzero::FtraceEvent::kKprobeEventFieldNumber)) {
760 KprobeEvent::KprobeType* elem = ds_config->kprobes.Find(ftrace_event_id);
761 nested->AppendString(KprobeEvent::kNameFieldNumber, info.name);
762 if (elem) {
763 nested->AppendVarInt(KprobeEvent::kTypeFieldNumber, *elem);
764 }
765 } else { // Parse all other events.
766 for (const Field& field : info.fields) {
767 success &= ParseField(field, start, end, table, nested, metadata);
768 }
769 }
770
771 if (PERFETTO_UNLIKELY(info.proto_field_id ==
772 protos::pbzero::FtraceEvent::kTaskRenameFieldNumber)) {
773 // For task renames, we want to store that the pid was renamed. We use the
774 // common pid to reduce code complexity as in all the cases we care about,
775 // the common pid is the same as the renamed pid (the pid inside the event).
776 PERFETTO_DCHECK(metadata->last_seen_common_pid);
777 metadata->AddRenamePid(metadata->last_seen_common_pid);
778 }
779
780 // This finalizes |nested| and |proto_field| automatically.
781 message->Finalize();
782 metadata->FinishEvent();
783 return success;
784 }
785
786 // Caller must guarantee that the field fits in the range,
787 // explicitly: start + field.ftrace_offset + field.ftrace_size <= end
788 // The only exception is fields with strategy = kCStringToString
789 // where the total size isn't known up front. In this case ParseField
790 // will check the string terminates in the bounds and won't read past |end|.
ParseField(const Field & field,const uint8_t * start,const uint8_t * end,const ProtoTranslationTable * table,protozero::Message * message,FtraceMetadata * metadata)791 bool CpuReader::ParseField(const Field& field,
792 const uint8_t* start,
793 const uint8_t* end,
794 const ProtoTranslationTable* table,
795 protozero::Message* message,
796 FtraceMetadata* metadata) {
797 PERFETTO_DCHECK(start + field.ftrace_offset + field.ftrace_size <= end);
798 const uint8_t* field_start = start + field.ftrace_offset;
799 uint32_t field_id = field.proto_field_id;
800
801 switch (field.strategy) {
802 case kUint8ToUint32:
803 case kUint8ToUint64:
804 ReadIntoVarInt<uint8_t>(field_start, field_id, message);
805 return true;
806 case kUint16ToUint32:
807 case kUint16ToUint64:
808 ReadIntoVarInt<uint16_t>(field_start, field_id, message);
809 return true;
810 case kUint32ToUint32:
811 case kUint32ToUint64:
812 ReadIntoVarInt<uint32_t>(field_start, field_id, message);
813 return true;
814 case kUint64ToUint64:
815 ReadIntoVarInt<uint64_t>(field_start, field_id, message);
816 return true;
817 case kInt8ToInt32:
818 case kInt8ToInt64:
819 ReadIntoVarInt<int8_t>(field_start, field_id, message);
820 return true;
821 case kInt16ToInt32:
822 case kInt16ToInt64:
823 ReadIntoVarInt<int16_t>(field_start, field_id, message);
824 return true;
825 case kInt32ToInt32:
826 case kInt32ToInt64:
827 ReadIntoVarInt<int32_t>(field_start, field_id, message);
828 return true;
829 case kInt64ToInt64:
830 ReadIntoVarInt<int64_t>(field_start, field_id, message);
831 return true;
832 case kFixedCStringToString:
833 // TODO(hjd): Kernel-dive to check this how size:0 char fields work.
834 ReadIntoString(field_start, field.ftrace_size, field_id, message);
835 return true;
836 case kCStringToString:
837 // TODO(hjd): Kernel-dive to check this how size:0 char fields work.
838 ReadIntoString(field_start, static_cast<size_t>(end - field_start),
839 field_id, message);
840 return true;
841 case kStringPtrToString: {
842 uint64_t n = 0;
843 // The ftrace field may be 8 or 4 bytes and we need to copy it into the
844 // bottom of n. In the unlikely case where the field is >8 bytes we
845 // should avoid making things worse by corrupting the stack but we
846 // don't need to handle it correctly.
847 size_t size = std::min<size_t>(field.ftrace_size, sizeof(n));
848 memcpy(base::AssumeLittleEndian(&n),
849 reinterpret_cast<const void*>(field_start), size);
850 // Look up the adddress in the printk format map and write it into the
851 // proto.
852 base::StringView name = table->LookupTraceString(n);
853 message->AppendBytes(field_id, name.begin(), name.size());
854 return true;
855 }
856 case kDataLocToString:
857 return ReadDataLoc(start, field_start, end, field, message);
858 case kBoolToUint32:
859 case kBoolToUint64:
860 ReadIntoVarInt<uint8_t>(field_start, field_id, message);
861 return true;
862 case kInode32ToUint64:
863 ReadInode<uint32_t>(field_start, field_id, message, metadata);
864 return true;
865 case kInode64ToUint64:
866 ReadInode<uint64_t>(field_start, field_id, message, metadata);
867 return true;
868 case kPid32ToInt32:
869 case kPid32ToInt64:
870 ReadPid(field_start, field_id, message, metadata);
871 return true;
872 case kCommonPid32ToInt32:
873 case kCommonPid32ToInt64:
874 ReadCommonPid(field_start, field_id, message, metadata);
875 return true;
876 case kDevId32ToUint64:
877 ReadDevId<uint32_t>(field_start, field_id, message, metadata);
878 return true;
879 case kDevId64ToUint64:
880 ReadDevId<uint64_t>(field_start, field_id, message, metadata);
881 return true;
882 case kFtraceSymAddr32ToUint64:
883 ReadSymbolAddr<uint32_t>(field_start, field_id, message, metadata);
884 return true;
885 case kFtraceSymAddr64ToUint64:
886 ReadSymbolAddr<uint64_t>(field_start, field_id, message, metadata);
887 return true;
888 case kInvalidTranslationStrategy:
889 break;
890 }
891 // Shouldn't reach this since we only attempt to parse fields that were
892 // validated by the proto translation table earlier.
893 return false;
894 }
895
ParseSysEnter(const Event & info,const uint8_t * start,const uint8_t * end,protozero::Message * message,FtraceMetadata *)896 bool CpuReader::ParseSysEnter(const Event& info,
897 const uint8_t* start,
898 const uint8_t* end,
899 protozero::Message* message,
900 FtraceMetadata* /* metadata */) {
901 if (info.fields.size() != 2) {
902 PERFETTO_DLOG("Unexpected number of fields for sys_enter");
903 return false;
904 }
905 const auto& id_field = info.fields[0];
906 const auto& args_field = info.fields[1];
907 if (start + id_field.ftrace_size + args_field.ftrace_size > end) {
908 return false;
909 }
910 // field:long id;
911 if (id_field.ftrace_type != kFtraceInt32 &&
912 id_field.ftrace_type != kFtraceInt64) {
913 return false;
914 }
915 const int64_t syscall_id = ReadSignedFtraceValue(
916 start + id_field.ftrace_offset, id_field.ftrace_type);
917 message->AppendVarInt(id_field.proto_field_id, syscall_id);
918 // field:unsigned long args[6];
919 // proto_translation_table will only allow exactly 6-element array, so we can
920 // make the same hard assumption here.
921 constexpr uint16_t arg_count = 6;
922 size_t element_size = 0;
923 if (args_field.ftrace_type == kFtraceUint32) {
924 element_size = 4u;
925 } else if (args_field.ftrace_type == kFtraceUint64) {
926 element_size = 8u;
927 } else {
928 return false;
929 }
930 for (uint16_t i = 0; i < arg_count; ++i) {
931 const uint8_t* element_ptr =
932 start + args_field.ftrace_offset + i * element_size;
933 uint64_t arg_value = 0;
934 if (element_size == 8) {
935 arg_value = ReadValue<uint64_t>(element_ptr);
936 } else {
937 arg_value = ReadValue<uint32_t>(element_ptr);
938 }
939 message->AppendVarInt(args_field.proto_field_id, arg_value);
940 }
941 return true;
942 }
943
ParseSysExit(const Event & info,const uint8_t * start,const uint8_t * end,const FtraceDataSourceConfig * ds_config,protozero::Message * message,FtraceMetadata * metadata)944 bool CpuReader::ParseSysExit(const Event& info,
945 const uint8_t* start,
946 const uint8_t* end,
947 const FtraceDataSourceConfig* ds_config,
948 protozero::Message* message,
949 FtraceMetadata* metadata) {
950 if (info.fields.size() != 2) {
951 PERFETTO_DLOG("Unexpected number of fields for sys_exit");
952 return false;
953 }
954 const auto& id_field = info.fields[0];
955 const auto& ret_field = info.fields[1];
956 if (start + id_field.ftrace_size + ret_field.ftrace_size > end) {
957 return false;
958 }
959 // field:long id;
960 if (id_field.ftrace_type != kFtraceInt32 &&
961 id_field.ftrace_type != kFtraceInt64) {
962 return false;
963 }
964 const int64_t syscall_id = ReadSignedFtraceValue(
965 start + id_field.ftrace_offset, id_field.ftrace_type);
966 message->AppendVarInt(id_field.proto_field_id, syscall_id);
967 // field:long ret;
968 if (ret_field.ftrace_type != kFtraceInt32 &&
969 ret_field.ftrace_type != kFtraceInt64) {
970 return false;
971 }
972 const int64_t syscall_ret = ReadSignedFtraceValue(
973 start + ret_field.ftrace_offset, ret_field.ftrace_type);
974 message->AppendVarInt(ret_field.proto_field_id, syscall_ret);
975 // for any syscalls which return a new filedescriptor
976 // we mark the fd as potential candidate for scraping
977 // if the call succeeded and is within fd bounds
978 if (ds_config->syscalls_returning_fd.count(syscall_id) && syscall_ret >= 0 &&
979 syscall_ret <= std::numeric_limits<int>::max()) {
980 const auto pid = metadata->last_seen_common_pid;
981 const auto syscall_ret_u = static_cast<uint64_t>(syscall_ret);
982 metadata->fds.insert(std::make_pair(pid, syscall_ret_u));
983 }
984 return true;
985 }
986
987 // Parse a sched_switch event according to pre-validated format, and buffer the
988 // individual fields in the current compact batch. See the code populating
989 // |CompactSchedSwitchFormat| for the assumptions made around the format, which
990 // this code is closely tied to.
991 // static
ParseSchedSwitchCompact(const uint8_t * start,uint64_t timestamp,const CompactSchedSwitchFormat * format,CompactSchedBuffer * compact_buf,FtraceMetadata * metadata)992 void CpuReader::ParseSchedSwitchCompact(const uint8_t* start,
993 uint64_t timestamp,
994 const CompactSchedSwitchFormat* format,
995 CompactSchedBuffer* compact_buf,
996 FtraceMetadata* metadata) {
997 compact_buf->sched_switch().AppendTimestamp(timestamp);
998
999 int32_t next_pid = ReadValue<int32_t>(start + format->next_pid_offset);
1000 compact_buf->sched_switch().next_pid().Append(next_pid);
1001 metadata->AddPid(next_pid);
1002
1003 int32_t next_prio = ReadValue<int32_t>(start + format->next_prio_offset);
1004 compact_buf->sched_switch().next_prio().Append(next_prio);
1005
1006 // Varint encoding of int32 and int64 is the same, so treat the value as
1007 // int64 after reading.
1008 int64_t prev_state = ReadSignedFtraceValue(start + format->prev_state_offset,
1009 format->prev_state_type);
1010 compact_buf->sched_switch().prev_state().Append(prev_state);
1011
1012 // next_comm
1013 const char* comm_ptr =
1014 reinterpret_cast<const char*>(start + format->next_comm_offset);
1015 size_t iid = compact_buf->interner().InternComm(comm_ptr);
1016 compact_buf->sched_switch().next_comm_index().Append(iid);
1017 }
1018
1019 // static
ParseSchedWakingCompact(const uint8_t * start,uint64_t timestamp,const CompactSchedWakingFormat * format,CompactSchedBuffer * compact_buf,FtraceMetadata * metadata)1020 void CpuReader::ParseSchedWakingCompact(const uint8_t* start,
1021 uint64_t timestamp,
1022 const CompactSchedWakingFormat* format,
1023 CompactSchedBuffer* compact_buf,
1024 FtraceMetadata* metadata) {
1025 compact_buf->sched_waking().AppendTimestamp(timestamp);
1026
1027 int32_t pid = ReadValue<int32_t>(start + format->pid_offset);
1028 compact_buf->sched_waking().pid().Append(pid);
1029 metadata->AddPid(pid);
1030
1031 int32_t target_cpu = ReadValue<int32_t>(start + format->target_cpu_offset);
1032 compact_buf->sched_waking().target_cpu().Append(target_cpu);
1033
1034 int32_t prio = ReadValue<int32_t>(start + format->prio_offset);
1035 compact_buf->sched_waking().prio().Append(prio);
1036
1037 // comm
1038 const char* comm_ptr =
1039 reinterpret_cast<const char*>(start + format->comm_offset);
1040 size_t iid = compact_buf->interner().InternComm(comm_ptr);
1041 compact_buf->sched_waking().comm_index().Append(iid);
1042
1043 uint32_t common_flags =
1044 ReadValue<uint8_t>(start + format->common_flags_offset);
1045 compact_buf->sched_waking().common_flags().Append(common_flags);
1046 }
1047
1048 } // namespace perfetto
1049