1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package term
6
7import (
8	"bytes"
9	"io"
10	"runtime"
11	"strconv"
12	"sync"
13	"unicode/utf8"
14)
15
16// EscapeCodes contains escape sequences that can be written to the terminal in
17// order to achieve different styles of text.
18type EscapeCodes struct {
19	// Foreground colors
20	Black, Red, Green, Yellow, Blue, Magenta, Cyan, White []byte
21
22	// Reset all attributes
23	Reset []byte
24}
25
26var vt100EscapeCodes = EscapeCodes{
27	Black:   []byte{keyEscape, '[', '3', '0', 'm'},
28	Red:     []byte{keyEscape, '[', '3', '1', 'm'},
29	Green:   []byte{keyEscape, '[', '3', '2', 'm'},
30	Yellow:  []byte{keyEscape, '[', '3', '3', 'm'},
31	Blue:    []byte{keyEscape, '[', '3', '4', 'm'},
32	Magenta: []byte{keyEscape, '[', '3', '5', 'm'},
33	Cyan:    []byte{keyEscape, '[', '3', '6', 'm'},
34	White:   []byte{keyEscape, '[', '3', '7', 'm'},
35
36	Reset: []byte{keyEscape, '[', '0', 'm'},
37}
38
39// Terminal contains the state for running a VT100 terminal that is capable of
40// reading lines of input.
41type Terminal struct {
42	// AutoCompleteCallback, if non-null, is called for each keypress with
43	// the full input line and the current position of the cursor (in
44	// bytes, as an index into |line|). If it returns ok=false, the key
45	// press is processed normally. Otherwise it returns a replacement line
46	// and the new cursor position.
47	AutoCompleteCallback func(line string, pos int, key rune) (newLine string, newPos int, ok bool)
48
49	// Escape contains a pointer to the escape codes for this terminal.
50	// It's always a valid pointer, although the escape codes themselves
51	// may be empty if the terminal doesn't support them.
52	Escape *EscapeCodes
53
54	// lock protects the terminal and the state in this object from
55	// concurrent processing of a key press and a Write() call.
56	lock sync.Mutex
57
58	c      io.ReadWriter
59	prompt []rune
60
61	// line is the current line being entered.
62	line []rune
63	// pos is the logical position of the cursor in line
64	pos int
65	// echo is true if local echo is enabled
66	echo bool
67	// pasteActive is true iff there is a bracketed paste operation in
68	// progress.
69	pasteActive bool
70
71	// cursorX contains the current X value of the cursor where the left
72	// edge is 0. cursorY contains the row number where the first row of
73	// the current line is 0.
74	cursorX, cursorY int
75	// maxLine is the greatest value of cursorY so far.
76	maxLine int
77
78	termWidth, termHeight int
79
80	// outBuf contains the terminal data to be sent.
81	outBuf []byte
82	// remainder contains the remainder of any partial key sequences after
83	// a read. It aliases into inBuf.
84	remainder []byte
85	inBuf     [256]byte
86
87	// history contains previously entered commands so that they can be
88	// accessed with the up and down keys.
89	history stRingBuffer
90	// historyIndex stores the currently accessed history entry, where zero
91	// means the immediately previous entry.
92	historyIndex int
93	// When navigating up and down the history it's possible to return to
94	// the incomplete, initial line. That value is stored in
95	// historyPending.
96	historyPending string
97}
98
99// NewTerminal runs a VT100 terminal on the given ReadWriter. If the ReadWriter is
100// a local terminal, that terminal must first have been put into raw mode.
101// prompt is a string that is written at the start of each input line (i.e.
102// "> ").
103func NewTerminal(c io.ReadWriter, prompt string) *Terminal {
104	return &Terminal{
105		Escape:       &vt100EscapeCodes,
106		c:            c,
107		prompt:       []rune(prompt),
108		termWidth:    80,
109		termHeight:   24,
110		echo:         true,
111		historyIndex: -1,
112	}
113}
114
115const (
116	keyCtrlC     = 3
117	keyCtrlD     = 4
118	keyCtrlU     = 21
119	keyEnter     = '\r'
120	keyEscape    = 27
121	keyBackspace = 127
122	keyUnknown   = 0xd800 /* UTF-16 surrogate area */ + iota
123	keyUp
124	keyDown
125	keyLeft
126	keyRight
127	keyAltLeft
128	keyAltRight
129	keyHome
130	keyEnd
131	keyDeleteWord
132	keyDeleteLine
133	keyClearScreen
134	keyPasteStart
135	keyPasteEnd
136)
137
138var (
139	crlf       = []byte{'\r', '\n'}
140	pasteStart = []byte{keyEscape, '[', '2', '0', '0', '~'}
141	pasteEnd   = []byte{keyEscape, '[', '2', '0', '1', '~'}
142)
143
144// bytesToKey tries to parse a key sequence from b. If successful, it returns
145// the key and the remainder of the input. Otherwise it returns utf8.RuneError.
146func bytesToKey(b []byte, pasteActive bool) (rune, []byte) {
147	if len(b) == 0 {
148		return utf8.RuneError, nil
149	}
150
151	if !pasteActive {
152		switch b[0] {
153		case 1: // ^A
154			return keyHome, b[1:]
155		case 2: // ^B
156			return keyLeft, b[1:]
157		case 5: // ^E
158			return keyEnd, b[1:]
159		case 6: // ^F
160			return keyRight, b[1:]
161		case 8: // ^H
162			return keyBackspace, b[1:]
163		case 11: // ^K
164			return keyDeleteLine, b[1:]
165		case 12: // ^L
166			return keyClearScreen, b[1:]
167		case 23: // ^W
168			return keyDeleteWord, b[1:]
169		case 14: // ^N
170			return keyDown, b[1:]
171		case 16: // ^P
172			return keyUp, b[1:]
173		}
174	}
175
176	if b[0] != keyEscape {
177		if !utf8.FullRune(b) {
178			return utf8.RuneError, b
179		}
180		r, l := utf8.DecodeRune(b)
181		return r, b[l:]
182	}
183
184	if !pasteActive && len(b) >= 3 && b[0] == keyEscape && b[1] == '[' {
185		switch b[2] {
186		case 'A':
187			return keyUp, b[3:]
188		case 'B':
189			return keyDown, b[3:]
190		case 'C':
191			return keyRight, b[3:]
192		case 'D':
193			return keyLeft, b[3:]
194		case 'H':
195			return keyHome, b[3:]
196		case 'F':
197			return keyEnd, b[3:]
198		}
199	}
200
201	if !pasteActive && len(b) >= 6 && b[0] == keyEscape && b[1] == '[' && b[2] == '1' && b[3] == ';' && b[4] == '3' {
202		switch b[5] {
203		case 'C':
204			return keyAltRight, b[6:]
205		case 'D':
206			return keyAltLeft, b[6:]
207		}
208	}
209
210	if !pasteActive && len(b) >= 6 && bytes.Equal(b[:6], pasteStart) {
211		return keyPasteStart, b[6:]
212	}
213
214	if pasteActive && len(b) >= 6 && bytes.Equal(b[:6], pasteEnd) {
215		return keyPasteEnd, b[6:]
216	}
217
218	// If we get here then we have a key that we don't recognise, or a
219	// partial sequence. It's not clear how one should find the end of a
220	// sequence without knowing them all, but it seems that [a-zA-Z~] only
221	// appears at the end of a sequence.
222	for i, c := range b[0:] {
223		if c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z' || c == '~' {
224			return keyUnknown, b[i+1:]
225		}
226	}
227
228	return utf8.RuneError, b
229}
230
231// queue appends data to the end of t.outBuf
232func (t *Terminal) queue(data []rune) {
233	t.outBuf = append(t.outBuf, []byte(string(data))...)
234}
235
236var space = []rune{' '}
237
238func isPrintable(key rune) bool {
239	isInSurrogateArea := key >= 0xd800 && key <= 0xdbff
240	return key >= 32 && !isInSurrogateArea
241}
242
243// moveCursorToPos appends data to t.outBuf which will move the cursor to the
244// given, logical position in the text.
245func (t *Terminal) moveCursorToPos(pos int) {
246	if !t.echo {
247		return
248	}
249
250	x := visualLength(t.prompt) + pos
251	y := x / t.termWidth
252	x = x % t.termWidth
253
254	up := 0
255	if y < t.cursorY {
256		up = t.cursorY - y
257	}
258
259	down := 0
260	if y > t.cursorY {
261		down = y - t.cursorY
262	}
263
264	left := 0
265	if x < t.cursorX {
266		left = t.cursorX - x
267	}
268
269	right := 0
270	if x > t.cursorX {
271		right = x - t.cursorX
272	}
273
274	t.cursorX = x
275	t.cursorY = y
276	t.move(up, down, left, right)
277}
278
279func (t *Terminal) move(up, down, left, right int) {
280	m := []rune{}
281
282	// 1 unit up can be expressed as ^[[A or ^[A
283	// 5 units up can be expressed as ^[[5A
284
285	if up == 1 {
286		m = append(m, keyEscape, '[', 'A')
287	} else if up > 1 {
288		m = append(m, keyEscape, '[')
289		m = append(m, []rune(strconv.Itoa(up))...)
290		m = append(m, 'A')
291	}
292
293	if down == 1 {
294		m = append(m, keyEscape, '[', 'B')
295	} else if down > 1 {
296		m = append(m, keyEscape, '[')
297		m = append(m, []rune(strconv.Itoa(down))...)
298		m = append(m, 'B')
299	}
300
301	if right == 1 {
302		m = append(m, keyEscape, '[', 'C')
303	} else if right > 1 {
304		m = append(m, keyEscape, '[')
305		m = append(m, []rune(strconv.Itoa(right))...)
306		m = append(m, 'C')
307	}
308
309	if left == 1 {
310		m = append(m, keyEscape, '[', 'D')
311	} else if left > 1 {
312		m = append(m, keyEscape, '[')
313		m = append(m, []rune(strconv.Itoa(left))...)
314		m = append(m, 'D')
315	}
316
317	t.queue(m)
318}
319
320func (t *Terminal) clearLineToRight() {
321	op := []rune{keyEscape, '[', 'K'}
322	t.queue(op)
323}
324
325const maxLineLength = 4096
326
327func (t *Terminal) setLine(newLine []rune, newPos int) {
328	if t.echo {
329		t.moveCursorToPos(0)
330		t.writeLine(newLine)
331		for i := len(newLine); i < len(t.line); i++ {
332			t.writeLine(space)
333		}
334		t.moveCursorToPos(newPos)
335	}
336	t.line = newLine
337	t.pos = newPos
338}
339
340func (t *Terminal) advanceCursor(places int) {
341	t.cursorX += places
342	t.cursorY += t.cursorX / t.termWidth
343	if t.cursorY > t.maxLine {
344		t.maxLine = t.cursorY
345	}
346	t.cursorX = t.cursorX % t.termWidth
347
348	if places > 0 && t.cursorX == 0 {
349		// Normally terminals will advance the current position
350		// when writing a character. But that doesn't happen
351		// for the last character in a line. However, when
352		// writing a character (except a new line) that causes
353		// a line wrap, the position will be advanced two
354		// places.
355		//
356		// So, if we are stopping at the end of a line, we
357		// need to write a newline so that our cursor can be
358		// advanced to the next line.
359		t.outBuf = append(t.outBuf, '\r', '\n')
360	}
361}
362
363func (t *Terminal) eraseNPreviousChars(n int) {
364	if n == 0 {
365		return
366	}
367
368	if t.pos < n {
369		n = t.pos
370	}
371	t.pos -= n
372	t.moveCursorToPos(t.pos)
373
374	copy(t.line[t.pos:], t.line[n+t.pos:])
375	t.line = t.line[:len(t.line)-n]
376	if t.echo {
377		t.writeLine(t.line[t.pos:])
378		for i := 0; i < n; i++ {
379			t.queue(space)
380		}
381		t.advanceCursor(n)
382		t.moveCursorToPos(t.pos)
383	}
384}
385
386// countToLeftWord returns then number of characters from the cursor to the
387// start of the previous word.
388func (t *Terminal) countToLeftWord() int {
389	if t.pos == 0 {
390		return 0
391	}
392
393	pos := t.pos - 1
394	for pos > 0 {
395		if t.line[pos] != ' ' {
396			break
397		}
398		pos--
399	}
400	for pos > 0 {
401		if t.line[pos] == ' ' {
402			pos++
403			break
404		}
405		pos--
406	}
407
408	return t.pos - pos
409}
410
411// countToRightWord returns then number of characters from the cursor to the
412// start of the next word.
413func (t *Terminal) countToRightWord() int {
414	pos := t.pos
415	for pos < len(t.line) {
416		if t.line[pos] == ' ' {
417			break
418		}
419		pos++
420	}
421	for pos < len(t.line) {
422		if t.line[pos] != ' ' {
423			break
424		}
425		pos++
426	}
427	return pos - t.pos
428}
429
430// visualLength returns the number of visible glyphs in s.
431func visualLength(runes []rune) int {
432	inEscapeSeq := false
433	length := 0
434
435	for _, r := range runes {
436		switch {
437		case inEscapeSeq:
438			if (r >= 'a' && r <= 'z') || (r >= 'A' && r <= 'Z') {
439				inEscapeSeq = false
440			}
441		case r == '\x1b':
442			inEscapeSeq = true
443		default:
444			length++
445		}
446	}
447
448	return length
449}
450
451// handleKey processes the given key and, optionally, returns a line of text
452// that the user has entered.
453func (t *Terminal) handleKey(key rune) (line string, ok bool) {
454	if t.pasteActive && key != keyEnter {
455		t.addKeyToLine(key)
456		return
457	}
458
459	switch key {
460	case keyBackspace:
461		if t.pos == 0 {
462			return
463		}
464		t.eraseNPreviousChars(1)
465	case keyAltLeft:
466		// move left by a word.
467		t.pos -= t.countToLeftWord()
468		t.moveCursorToPos(t.pos)
469	case keyAltRight:
470		// move right by a word.
471		t.pos += t.countToRightWord()
472		t.moveCursorToPos(t.pos)
473	case keyLeft:
474		if t.pos == 0 {
475			return
476		}
477		t.pos--
478		t.moveCursorToPos(t.pos)
479	case keyRight:
480		if t.pos == len(t.line) {
481			return
482		}
483		t.pos++
484		t.moveCursorToPos(t.pos)
485	case keyHome:
486		if t.pos == 0 {
487			return
488		}
489		t.pos = 0
490		t.moveCursorToPos(t.pos)
491	case keyEnd:
492		if t.pos == len(t.line) {
493			return
494		}
495		t.pos = len(t.line)
496		t.moveCursorToPos(t.pos)
497	case keyUp:
498		entry, ok := t.history.NthPreviousEntry(t.historyIndex + 1)
499		if !ok {
500			return "", false
501		}
502		if t.historyIndex == -1 {
503			t.historyPending = string(t.line)
504		}
505		t.historyIndex++
506		runes := []rune(entry)
507		t.setLine(runes, len(runes))
508	case keyDown:
509		switch t.historyIndex {
510		case -1:
511			return
512		case 0:
513			runes := []rune(t.historyPending)
514			t.setLine(runes, len(runes))
515			t.historyIndex--
516		default:
517			entry, ok := t.history.NthPreviousEntry(t.historyIndex - 1)
518			if ok {
519				t.historyIndex--
520				runes := []rune(entry)
521				t.setLine(runes, len(runes))
522			}
523		}
524	case keyEnter:
525		t.moveCursorToPos(len(t.line))
526		t.queue([]rune("\r\n"))
527		line = string(t.line)
528		ok = true
529		t.line = t.line[:0]
530		t.pos = 0
531		t.cursorX = 0
532		t.cursorY = 0
533		t.maxLine = 0
534	case keyDeleteWord:
535		// Delete zero or more spaces and then one or more characters.
536		t.eraseNPreviousChars(t.countToLeftWord())
537	case keyDeleteLine:
538		// Delete everything from the current cursor position to the
539		// end of line.
540		for i := t.pos; i < len(t.line); i++ {
541			t.queue(space)
542			t.advanceCursor(1)
543		}
544		t.line = t.line[:t.pos]
545		t.moveCursorToPos(t.pos)
546	case keyCtrlD:
547		// Erase the character under the current position.
548		// The EOF case when the line is empty is handled in
549		// readLine().
550		if t.pos < len(t.line) {
551			t.pos++
552			t.eraseNPreviousChars(1)
553		}
554	case keyCtrlU:
555		t.eraseNPreviousChars(t.pos)
556	case keyClearScreen:
557		// Erases the screen and moves the cursor to the home position.
558		t.queue([]rune("\x1b[2J\x1b[H"))
559		t.queue(t.prompt)
560		t.cursorX, t.cursorY = 0, 0
561		t.advanceCursor(visualLength(t.prompt))
562		t.setLine(t.line, t.pos)
563	default:
564		if t.AutoCompleteCallback != nil {
565			prefix := string(t.line[:t.pos])
566			suffix := string(t.line[t.pos:])
567
568			t.lock.Unlock()
569			newLine, newPos, completeOk := t.AutoCompleteCallback(prefix+suffix, len(prefix), key)
570			t.lock.Lock()
571
572			if completeOk {
573				t.setLine([]rune(newLine), utf8.RuneCount([]byte(newLine)[:newPos]))
574				return
575			}
576		}
577		if !isPrintable(key) {
578			return
579		}
580		if len(t.line) == maxLineLength {
581			return
582		}
583		t.addKeyToLine(key)
584	}
585	return
586}
587
588// addKeyToLine inserts the given key at the current position in the current
589// line.
590func (t *Terminal) addKeyToLine(key rune) {
591	if len(t.line) == cap(t.line) {
592		newLine := make([]rune, len(t.line), 2*(1+len(t.line)))
593		copy(newLine, t.line)
594		t.line = newLine
595	}
596	t.line = t.line[:len(t.line)+1]
597	copy(t.line[t.pos+1:], t.line[t.pos:])
598	t.line[t.pos] = key
599	if t.echo {
600		t.writeLine(t.line[t.pos:])
601	}
602	t.pos++
603	t.moveCursorToPos(t.pos)
604}
605
606func (t *Terminal) writeLine(line []rune) {
607	for len(line) != 0 {
608		remainingOnLine := t.termWidth - t.cursorX
609		todo := len(line)
610		if todo > remainingOnLine {
611			todo = remainingOnLine
612		}
613		t.queue(line[:todo])
614		t.advanceCursor(visualLength(line[:todo]))
615		line = line[todo:]
616	}
617}
618
619// writeWithCRLF writes buf to w but replaces all occurrences of \n with \r\n.
620func writeWithCRLF(w io.Writer, buf []byte) (n int, err error) {
621	for len(buf) > 0 {
622		i := bytes.IndexByte(buf, '\n')
623		todo := len(buf)
624		if i >= 0 {
625			todo = i
626		}
627
628		var nn int
629		nn, err = w.Write(buf[:todo])
630		n += nn
631		if err != nil {
632			return n, err
633		}
634		buf = buf[todo:]
635
636		if i >= 0 {
637			if _, err = w.Write(crlf); err != nil {
638				return n, err
639			}
640			n++
641			buf = buf[1:]
642		}
643	}
644
645	return n, nil
646}
647
648func (t *Terminal) Write(buf []byte) (n int, err error) {
649	t.lock.Lock()
650	defer t.lock.Unlock()
651
652	if t.cursorX == 0 && t.cursorY == 0 {
653		// This is the easy case: there's nothing on the screen that we
654		// have to move out of the way.
655		return writeWithCRLF(t.c, buf)
656	}
657
658	// We have a prompt and possibly user input on the screen. We
659	// have to clear it first.
660	t.move(0 /* up */, 0 /* down */, t.cursorX /* left */, 0 /* right */)
661	t.cursorX = 0
662	t.clearLineToRight()
663
664	for t.cursorY > 0 {
665		t.move(1 /* up */, 0, 0, 0)
666		t.cursorY--
667		t.clearLineToRight()
668	}
669
670	if _, err = t.c.Write(t.outBuf); err != nil {
671		return
672	}
673	t.outBuf = t.outBuf[:0]
674
675	if n, err = writeWithCRLF(t.c, buf); err != nil {
676		return
677	}
678
679	t.writeLine(t.prompt)
680	if t.echo {
681		t.writeLine(t.line)
682	}
683
684	t.moveCursorToPos(t.pos)
685
686	if _, err = t.c.Write(t.outBuf); err != nil {
687		return
688	}
689	t.outBuf = t.outBuf[:0]
690	return
691}
692
693// ReadPassword temporarily changes the prompt and reads a password, without
694// echo, from the terminal.
695func (t *Terminal) ReadPassword(prompt string) (line string, err error) {
696	t.lock.Lock()
697	defer t.lock.Unlock()
698
699	oldPrompt := t.prompt
700	t.prompt = []rune(prompt)
701	t.echo = false
702
703	line, err = t.readLine()
704
705	t.prompt = oldPrompt
706	t.echo = true
707
708	return
709}
710
711// ReadLine returns a line of input from the terminal.
712func (t *Terminal) ReadLine() (line string, err error) {
713	t.lock.Lock()
714	defer t.lock.Unlock()
715
716	return t.readLine()
717}
718
719func (t *Terminal) readLine() (line string, err error) {
720	// t.lock must be held at this point
721
722	if t.cursorX == 0 && t.cursorY == 0 {
723		t.writeLine(t.prompt)
724		t.c.Write(t.outBuf)
725		t.outBuf = t.outBuf[:0]
726	}
727
728	lineIsPasted := t.pasteActive
729
730	for {
731		rest := t.remainder
732		lineOk := false
733		for !lineOk {
734			var key rune
735			key, rest = bytesToKey(rest, t.pasteActive)
736			if key == utf8.RuneError {
737				break
738			}
739			if !t.pasteActive {
740				if key == keyCtrlD {
741					if len(t.line) == 0 {
742						return "", io.EOF
743					}
744				}
745				if key == keyCtrlC {
746					return "", io.EOF
747				}
748				if key == keyPasteStart {
749					t.pasteActive = true
750					if len(t.line) == 0 {
751						lineIsPasted = true
752					}
753					continue
754				}
755			} else if key == keyPasteEnd {
756				t.pasteActive = false
757				continue
758			}
759			if !t.pasteActive {
760				lineIsPasted = false
761			}
762			line, lineOk = t.handleKey(key)
763		}
764		if len(rest) > 0 {
765			n := copy(t.inBuf[:], rest)
766			t.remainder = t.inBuf[:n]
767		} else {
768			t.remainder = nil
769		}
770		t.c.Write(t.outBuf)
771		t.outBuf = t.outBuf[:0]
772		if lineOk {
773			if t.echo {
774				t.historyIndex = -1
775				t.history.Add(line)
776			}
777			if lineIsPasted {
778				err = ErrPasteIndicator
779			}
780			return
781		}
782
783		// t.remainder is a slice at the beginning of t.inBuf
784		// containing a partial key sequence
785		readBuf := t.inBuf[len(t.remainder):]
786		var n int
787
788		t.lock.Unlock()
789		n, err = t.c.Read(readBuf)
790		t.lock.Lock()
791
792		if err != nil {
793			return
794		}
795
796		t.remainder = t.inBuf[:n+len(t.remainder)]
797	}
798}
799
800// SetPrompt sets the prompt to be used when reading subsequent lines.
801func (t *Terminal) SetPrompt(prompt string) {
802	t.lock.Lock()
803	defer t.lock.Unlock()
804
805	t.prompt = []rune(prompt)
806}
807
808func (t *Terminal) clearAndRepaintLinePlusNPrevious(numPrevLines int) {
809	// Move cursor to column zero at the start of the line.
810	t.move(t.cursorY, 0, t.cursorX, 0)
811	t.cursorX, t.cursorY = 0, 0
812	t.clearLineToRight()
813	for t.cursorY < numPrevLines {
814		// Move down a line
815		t.move(0, 1, 0, 0)
816		t.cursorY++
817		t.clearLineToRight()
818	}
819	// Move back to beginning.
820	t.move(t.cursorY, 0, 0, 0)
821	t.cursorX, t.cursorY = 0, 0
822
823	t.queue(t.prompt)
824	t.advanceCursor(visualLength(t.prompt))
825	t.writeLine(t.line)
826	t.moveCursorToPos(t.pos)
827}
828
829func (t *Terminal) SetSize(width, height int) error {
830	t.lock.Lock()
831	defer t.lock.Unlock()
832
833	if width == 0 {
834		width = 1
835	}
836
837	oldWidth := t.termWidth
838	t.termWidth, t.termHeight = width, height
839
840	switch {
841	case width == oldWidth:
842		// If the width didn't change then nothing else needs to be
843		// done.
844		return nil
845	case len(t.line) == 0 && t.cursorX == 0 && t.cursorY == 0:
846		// If there is nothing on current line and no prompt printed,
847		// just do nothing
848		return nil
849	case width < oldWidth:
850		// Some terminals (e.g. xterm) will truncate lines that were
851		// too long when shinking. Others, (e.g. gnome-terminal) will
852		// attempt to wrap them. For the former, repainting t.maxLine
853		// works great, but that behaviour goes badly wrong in the case
854		// of the latter because they have doubled every full line.
855
856		// We assume that we are working on a terminal that wraps lines
857		// and adjust the cursor position based on every previous line
858		// wrapping and turning into two. This causes the prompt on
859		// xterms to move upwards, which isn't great, but it avoids a
860		// huge mess with gnome-terminal.
861		if t.cursorX >= t.termWidth {
862			t.cursorX = t.termWidth - 1
863		}
864		t.cursorY *= 2
865		t.clearAndRepaintLinePlusNPrevious(t.maxLine * 2)
866	case width > oldWidth:
867		// If the terminal expands then our position calculations will
868		// be wrong in the future because we think the cursor is
869		// |t.pos| chars into the string, but there will be a gap at
870		// the end of any wrapped line.
871		//
872		// But the position will actually be correct until we move, so
873		// we can move back to the beginning and repaint everything.
874		t.clearAndRepaintLinePlusNPrevious(t.maxLine)
875	}
876
877	_, err := t.c.Write(t.outBuf)
878	t.outBuf = t.outBuf[:0]
879	return err
880}
881
882type pasteIndicatorError struct{}
883
884func (pasteIndicatorError) Error() string {
885	return "terminal: ErrPasteIndicator not correctly handled"
886}
887
888// ErrPasteIndicator may be returned from ReadLine as the error, in addition
889// to valid line data. It indicates that bracketed paste mode is enabled and
890// that the returned line consists only of pasted data. Programs may wish to
891// interpret pasted data more literally than typed data.
892var ErrPasteIndicator = pasteIndicatorError{}
893
894// SetBracketedPasteMode requests that the terminal bracket paste operations
895// with markers. Not all terminals support this but, if it is supported, then
896// enabling this mode will stop any autocomplete callback from running due to
897// pastes. Additionally, any lines that are completely pasted will be returned
898// from ReadLine with the error set to ErrPasteIndicator.
899func (t *Terminal) SetBracketedPasteMode(on bool) {
900	if on {
901		io.WriteString(t.c, "\x1b[?2004h")
902	} else {
903		io.WriteString(t.c, "\x1b[?2004l")
904	}
905}
906
907// stRingBuffer is a ring buffer of strings.
908type stRingBuffer struct {
909	// entries contains max elements.
910	entries []string
911	max     int
912	// head contains the index of the element most recently added to the ring.
913	head int
914	// size contains the number of elements in the ring.
915	size int
916}
917
918func (s *stRingBuffer) Add(a string) {
919	if s.entries == nil {
920		const defaultNumEntries = 100
921		s.entries = make([]string, defaultNumEntries)
922		s.max = defaultNumEntries
923	}
924
925	s.head = (s.head + 1) % s.max
926	s.entries[s.head] = a
927	if s.size < s.max {
928		s.size++
929	}
930}
931
932// NthPreviousEntry returns the value passed to the nth previous call to Add.
933// If n is zero then the immediately prior value is returned, if one, then the
934// next most recent, and so on. If such an element doesn't exist then ok is
935// false.
936func (s *stRingBuffer) NthPreviousEntry(n int) (value string, ok bool) {
937	if n < 0 || n >= s.size {
938		return "", false
939	}
940	index := s.head - n
941	if index < 0 {
942		index += s.max
943	}
944	return s.entries[index], true
945}
946
947// readPasswordLine reads from reader until it finds \n or io.EOF.
948// The slice returned does not include the \n.
949// readPasswordLine also ignores any \r it finds.
950// Windows uses \r as end of line. So, on Windows, readPasswordLine
951// reads until it finds \r and ignores any \n it finds during processing.
952func readPasswordLine(reader io.Reader) ([]byte, error) {
953	var buf [1]byte
954	var ret []byte
955
956	for {
957		n, err := reader.Read(buf[:])
958		if n > 0 {
959			switch buf[0] {
960			case '\b':
961				if len(ret) > 0 {
962					ret = ret[:len(ret)-1]
963				}
964			case '\n':
965				if runtime.GOOS != "windows" {
966					return ret, nil
967				}
968				// otherwise ignore \n
969			case '\r':
970				if runtime.GOOS == "windows" {
971					return ret, nil
972				}
973				// otherwise ignore \r
974			default:
975				ret = append(ret, buf[0])
976			}
977			continue
978		}
979		if err != nil {
980			if err == io.EOF && len(ret) > 0 {
981				return ret, nil
982			}
983			return ret, err
984		}
985	}
986}
987