1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15	"encoding/binary"
16	"strconv"
17	"syscall"
18	"time"
19	"unsafe"
20)
21
22/*
23 * Wrapped
24 */
25
26func Access(path string, mode uint32) (err error) {
27	return Faccessat(AT_FDCWD, path, mode, 0)
28}
29
30func Chmod(path string, mode uint32) (err error) {
31	return Fchmodat(AT_FDCWD, path, mode, 0)
32}
33
34func Chown(path string, uid int, gid int) (err error) {
35	return Fchownat(AT_FDCWD, path, uid, gid, 0)
36}
37
38func Creat(path string, mode uint32) (fd int, err error) {
39	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
40}
41
42func EpollCreate(size int) (fd int, err error) {
43	if size <= 0 {
44		return -1, EINVAL
45	}
46	return EpollCreate1(0)
47}
48
49//sys	FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
50//sys	fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
51
52func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
53	if pathname == "" {
54		return fanotifyMark(fd, flags, mask, dirFd, nil)
55	}
56	p, err := BytePtrFromString(pathname)
57	if err != nil {
58		return err
59	}
60	return fanotifyMark(fd, flags, mask, dirFd, p)
61}
62
63//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
64//sys	fchmodat2(dirfd int, path string, mode uint32, flags int) (err error)
65
66func Fchmodat(dirfd int, path string, mode uint32, flags int) error {
67	// Linux fchmodat doesn't support the flags parameter, but fchmodat2 does.
68	// Try fchmodat2 if flags are specified.
69	if flags != 0 {
70		err := fchmodat2(dirfd, path, mode, flags)
71		if err == ENOSYS {
72			// fchmodat2 isn't available. If the flags are known to be valid,
73			// return EOPNOTSUPP to indicate that fchmodat doesn't support them.
74			if flags&^(AT_SYMLINK_NOFOLLOW|AT_EMPTY_PATH) != 0 {
75				return EINVAL
76			} else if flags&(AT_SYMLINK_NOFOLLOW|AT_EMPTY_PATH) != 0 {
77				return EOPNOTSUPP
78			}
79		}
80		return err
81	}
82	return fchmodat(dirfd, path, mode)
83}
84
85func InotifyInit() (fd int, err error) {
86	return InotifyInit1(0)
87}
88
89//sys	ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL
90//sys	ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL
91
92// ioctl itself should not be exposed directly, but additional get/set functions
93// for specific types are permissible. These are defined in ioctl.go and
94// ioctl_linux.go.
95//
96// The third argument to ioctl is often a pointer but sometimes an integer.
97// Callers should use ioctlPtr when the third argument is a pointer and ioctl
98// when the third argument is an integer.
99//
100// TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr.
101
102//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
103
104func Link(oldpath string, newpath string) (err error) {
105	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
106}
107
108func Mkdir(path string, mode uint32) (err error) {
109	return Mkdirat(AT_FDCWD, path, mode)
110}
111
112func Mknod(path string, mode uint32, dev int) (err error) {
113	return Mknodat(AT_FDCWD, path, mode, dev)
114}
115
116func Open(path string, mode int, perm uint32) (fd int, err error) {
117	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
118}
119
120//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
121
122func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
123	return openat(dirfd, path, flags|O_LARGEFILE, mode)
124}
125
126//sys	openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
127
128func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
129	return openat2(dirfd, path, how, SizeofOpenHow)
130}
131
132func Pipe(p []int) error {
133	return Pipe2(p, 0)
134}
135
136//sysnb	pipe2(p *[2]_C_int, flags int) (err error)
137
138func Pipe2(p []int, flags int) error {
139	if len(p) != 2 {
140		return EINVAL
141	}
142	var pp [2]_C_int
143	err := pipe2(&pp, flags)
144	if err == nil {
145		p[0] = int(pp[0])
146		p[1] = int(pp[1])
147	}
148	return err
149}
150
151//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
152
153func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
154	if len(fds) == 0 {
155		return ppoll(nil, 0, timeout, sigmask)
156	}
157	return ppoll(&fds[0], len(fds), timeout, sigmask)
158}
159
160func Poll(fds []PollFd, timeout int) (n int, err error) {
161	var ts *Timespec
162	if timeout >= 0 {
163		ts = new(Timespec)
164		*ts = NsecToTimespec(int64(timeout) * 1e6)
165	}
166	return Ppoll(fds, ts, nil)
167}
168
169//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
170
171func Readlink(path string, buf []byte) (n int, err error) {
172	return Readlinkat(AT_FDCWD, path, buf)
173}
174
175func Rename(oldpath string, newpath string) (err error) {
176	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
177}
178
179func Rmdir(path string) error {
180	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
181}
182
183//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
184
185func Symlink(oldpath string, newpath string) (err error) {
186	return Symlinkat(oldpath, AT_FDCWD, newpath)
187}
188
189func Unlink(path string) error {
190	return Unlinkat(AT_FDCWD, path, 0)
191}
192
193//sys	Unlinkat(dirfd int, path string, flags int) (err error)
194
195func Utimes(path string, tv []Timeval) error {
196	if tv == nil {
197		err := utimensat(AT_FDCWD, path, nil, 0)
198		if err != ENOSYS {
199			return err
200		}
201		return utimes(path, nil)
202	}
203	if len(tv) != 2 {
204		return EINVAL
205	}
206	var ts [2]Timespec
207	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
208	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
209	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
210	if err != ENOSYS {
211		return err
212	}
213	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
214}
215
216//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
217
218func UtimesNano(path string, ts []Timespec) error {
219	return UtimesNanoAt(AT_FDCWD, path, ts, 0)
220}
221
222func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
223	if ts == nil {
224		return utimensat(dirfd, path, nil, flags)
225	}
226	if len(ts) != 2 {
227		return EINVAL
228	}
229	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
230}
231
232func Futimesat(dirfd int, path string, tv []Timeval) error {
233	if tv == nil {
234		return futimesat(dirfd, path, nil)
235	}
236	if len(tv) != 2 {
237		return EINVAL
238	}
239	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
240}
241
242func Futimes(fd int, tv []Timeval) (err error) {
243	// Believe it or not, this is the best we can do on Linux
244	// (and is what glibc does).
245	return Utimes("/proc/self/fd/"+strconv.Itoa(fd), tv)
246}
247
248const ImplementsGetwd = true
249
250//sys	Getcwd(buf []byte) (n int, err error)
251
252func Getwd() (wd string, err error) {
253	var buf [PathMax]byte
254	n, err := Getcwd(buf[0:])
255	if err != nil {
256		return "", err
257	}
258	// Getcwd returns the number of bytes written to buf, including the NUL.
259	if n < 1 || n > len(buf) || buf[n-1] != 0 {
260		return "", EINVAL
261	}
262	// In some cases, Linux can return a path that starts with the
263	// "(unreachable)" prefix, which can potentially be a valid relative
264	// path. To work around that, return ENOENT if path is not absolute.
265	if buf[0] != '/' {
266		return "", ENOENT
267	}
268
269	return string(buf[0 : n-1]), nil
270}
271
272func Getgroups() (gids []int, err error) {
273	n, err := getgroups(0, nil)
274	if err != nil {
275		return nil, err
276	}
277	if n == 0 {
278		return nil, nil
279	}
280
281	// Sanity check group count. Max is 1<<16 on Linux.
282	if n < 0 || n > 1<<20 {
283		return nil, EINVAL
284	}
285
286	a := make([]_Gid_t, n)
287	n, err = getgroups(n, &a[0])
288	if err != nil {
289		return nil, err
290	}
291	gids = make([]int, n)
292	for i, v := range a[0:n] {
293		gids[i] = int(v)
294	}
295	return
296}
297
298func Setgroups(gids []int) (err error) {
299	if len(gids) == 0 {
300		return setgroups(0, nil)
301	}
302
303	a := make([]_Gid_t, len(gids))
304	for i, v := range gids {
305		a[i] = _Gid_t(v)
306	}
307	return setgroups(len(a), &a[0])
308}
309
310type WaitStatus uint32
311
312// Wait status is 7 bits at bottom, either 0 (exited),
313// 0x7F (stopped), or a signal number that caused an exit.
314// The 0x80 bit is whether there was a core dump.
315// An extra number (exit code, signal causing a stop)
316// is in the high bits. At least that's the idea.
317// There are various irregularities. For example, the
318// "continued" status is 0xFFFF, distinguishing itself
319// from stopped via the core dump bit.
320
321const (
322	mask    = 0x7F
323	core    = 0x80
324	exited  = 0x00
325	stopped = 0x7F
326	shift   = 8
327)
328
329func (w WaitStatus) Exited() bool { return w&mask == exited }
330
331func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
332
333func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
334
335func (w WaitStatus) Continued() bool { return w == 0xFFFF }
336
337func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
338
339func (w WaitStatus) ExitStatus() int {
340	if !w.Exited() {
341		return -1
342	}
343	return int(w>>shift) & 0xFF
344}
345
346func (w WaitStatus) Signal() syscall.Signal {
347	if !w.Signaled() {
348		return -1
349	}
350	return syscall.Signal(w & mask)
351}
352
353func (w WaitStatus) StopSignal() syscall.Signal {
354	if !w.Stopped() {
355		return -1
356	}
357	return syscall.Signal(w>>shift) & 0xFF
358}
359
360func (w WaitStatus) TrapCause() int {
361	if w.StopSignal() != SIGTRAP {
362		return -1
363	}
364	return int(w>>shift) >> 8
365}
366
367//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
368
369func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
370	var status _C_int
371	wpid, err = wait4(pid, &status, options, rusage)
372	if wstatus != nil {
373		*wstatus = WaitStatus(status)
374	}
375	return
376}
377
378//sys	Waitid(idType int, id int, info *Siginfo, options int, rusage *Rusage) (err error)
379
380func Mkfifo(path string, mode uint32) error {
381	return Mknod(path, mode|S_IFIFO, 0)
382}
383
384func Mkfifoat(dirfd int, path string, mode uint32) error {
385	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
386}
387
388func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
389	if sa.Port < 0 || sa.Port > 0xFFFF {
390		return nil, 0, EINVAL
391	}
392	sa.raw.Family = AF_INET
393	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
394	p[0] = byte(sa.Port >> 8)
395	p[1] = byte(sa.Port)
396	sa.raw.Addr = sa.Addr
397	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
398}
399
400func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
401	if sa.Port < 0 || sa.Port > 0xFFFF {
402		return nil, 0, EINVAL
403	}
404	sa.raw.Family = AF_INET6
405	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
406	p[0] = byte(sa.Port >> 8)
407	p[1] = byte(sa.Port)
408	sa.raw.Scope_id = sa.ZoneId
409	sa.raw.Addr = sa.Addr
410	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
411}
412
413func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
414	name := sa.Name
415	n := len(name)
416	if n >= len(sa.raw.Path) {
417		return nil, 0, EINVAL
418	}
419	sa.raw.Family = AF_UNIX
420	for i := 0; i < n; i++ {
421		sa.raw.Path[i] = int8(name[i])
422	}
423	// length is family (uint16), name, NUL.
424	sl := _Socklen(2)
425	if n > 0 {
426		sl += _Socklen(n) + 1
427	}
428	if sa.raw.Path[0] == '@' || (sa.raw.Path[0] == 0 && sl > 3) {
429		// Check sl > 3 so we don't change unnamed socket behavior.
430		sa.raw.Path[0] = 0
431		// Don't count trailing NUL for abstract address.
432		sl--
433	}
434
435	return unsafe.Pointer(&sa.raw), sl, nil
436}
437
438// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
439type SockaddrLinklayer struct {
440	Protocol uint16
441	Ifindex  int
442	Hatype   uint16
443	Pkttype  uint8
444	Halen    uint8
445	Addr     [8]byte
446	raw      RawSockaddrLinklayer
447}
448
449func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
450	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
451		return nil, 0, EINVAL
452	}
453	sa.raw.Family = AF_PACKET
454	sa.raw.Protocol = sa.Protocol
455	sa.raw.Ifindex = int32(sa.Ifindex)
456	sa.raw.Hatype = sa.Hatype
457	sa.raw.Pkttype = sa.Pkttype
458	sa.raw.Halen = sa.Halen
459	sa.raw.Addr = sa.Addr
460	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
461}
462
463// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
464type SockaddrNetlink struct {
465	Family uint16
466	Pad    uint16
467	Pid    uint32
468	Groups uint32
469	raw    RawSockaddrNetlink
470}
471
472func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
473	sa.raw.Family = AF_NETLINK
474	sa.raw.Pad = sa.Pad
475	sa.raw.Pid = sa.Pid
476	sa.raw.Groups = sa.Groups
477	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
478}
479
480// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
481// using the HCI protocol.
482type SockaddrHCI struct {
483	Dev     uint16
484	Channel uint16
485	raw     RawSockaddrHCI
486}
487
488func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
489	sa.raw.Family = AF_BLUETOOTH
490	sa.raw.Dev = sa.Dev
491	sa.raw.Channel = sa.Channel
492	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
493}
494
495// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
496// using the L2CAP protocol.
497type SockaddrL2 struct {
498	PSM      uint16
499	CID      uint16
500	Addr     [6]uint8
501	AddrType uint8
502	raw      RawSockaddrL2
503}
504
505func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
506	sa.raw.Family = AF_BLUETOOTH
507	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
508	psm[0] = byte(sa.PSM)
509	psm[1] = byte(sa.PSM >> 8)
510	for i := 0; i < len(sa.Addr); i++ {
511		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
512	}
513	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
514	cid[0] = byte(sa.CID)
515	cid[1] = byte(sa.CID >> 8)
516	sa.raw.Bdaddr_type = sa.AddrType
517	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
518}
519
520// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
521// using the RFCOMM protocol.
522//
523// Server example:
524//
525//	fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
526//	_ = unix.Bind(fd, &unix.SockaddrRFCOMM{
527//		Channel: 1,
528//		Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
529//	})
530//	_ = Listen(fd, 1)
531//	nfd, sa, _ := Accept(fd)
532//	fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
533//	Read(nfd, buf)
534//
535// Client example:
536//
537//	fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
538//	_ = Connect(fd, &SockaddrRFCOMM{
539//		Channel: 1,
540//		Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
541//	})
542//	Write(fd, []byte(`hello`))
543type SockaddrRFCOMM struct {
544	// Addr represents a bluetooth address, byte ordering is little-endian.
545	Addr [6]uint8
546
547	// Channel is a designated bluetooth channel, only 1-30 are available for use.
548	// Since Linux 2.6.7 and further zero value is the first available channel.
549	Channel uint8
550
551	raw RawSockaddrRFCOMM
552}
553
554func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
555	sa.raw.Family = AF_BLUETOOTH
556	sa.raw.Channel = sa.Channel
557	sa.raw.Bdaddr = sa.Addr
558	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
559}
560
561// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
562// The RxID and TxID fields are used for transport protocol addressing in
563// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
564// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
565//
566// The SockaddrCAN struct must be bound to the socket file descriptor
567// using Bind before the CAN socket can be used.
568//
569//	// Read one raw CAN frame
570//	fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
571//	addr := &SockaddrCAN{Ifindex: index}
572//	Bind(fd, addr)
573//	frame := make([]byte, 16)
574//	Read(fd, frame)
575//
576// The full SocketCAN documentation can be found in the linux kernel
577// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
578type SockaddrCAN struct {
579	Ifindex int
580	RxID    uint32
581	TxID    uint32
582	raw     RawSockaddrCAN
583}
584
585func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
586	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
587		return nil, 0, EINVAL
588	}
589	sa.raw.Family = AF_CAN
590	sa.raw.Ifindex = int32(sa.Ifindex)
591	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
592	for i := 0; i < 4; i++ {
593		sa.raw.Addr[i] = rx[i]
594	}
595	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
596	for i := 0; i < 4; i++ {
597		sa.raw.Addr[i+4] = tx[i]
598	}
599	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
600}
601
602// SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
603// protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
604// on the purposes of the fields, check the official linux kernel documentation
605// available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
606type SockaddrCANJ1939 struct {
607	Ifindex int
608	Name    uint64
609	PGN     uint32
610	Addr    uint8
611	raw     RawSockaddrCAN
612}
613
614func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
615	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
616		return nil, 0, EINVAL
617	}
618	sa.raw.Family = AF_CAN
619	sa.raw.Ifindex = int32(sa.Ifindex)
620	n := (*[8]byte)(unsafe.Pointer(&sa.Name))
621	for i := 0; i < 8; i++ {
622		sa.raw.Addr[i] = n[i]
623	}
624	p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
625	for i := 0; i < 4; i++ {
626		sa.raw.Addr[i+8] = p[i]
627	}
628	sa.raw.Addr[12] = sa.Addr
629	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
630}
631
632// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
633// SockaddrALG enables userspace access to the Linux kernel's cryptography
634// subsystem. The Type and Name fields specify which type of hash or cipher
635// should be used with a given socket.
636//
637// To create a file descriptor that provides access to a hash or cipher, both
638// Bind and Accept must be used. Once the setup process is complete, input
639// data can be written to the socket, processed by the kernel, and then read
640// back as hash output or ciphertext.
641//
642// Here is an example of using an AF_ALG socket with SHA1 hashing.
643// The initial socket setup process is as follows:
644//
645//	// Open a socket to perform SHA1 hashing.
646//	fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
647//	addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
648//	unix.Bind(fd, addr)
649//	// Note: unix.Accept does not work at this time; must invoke accept()
650//	// manually using unix.Syscall.
651//	hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
652//
653// Once a file descriptor has been returned from Accept, it may be used to
654// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
655// may be re-used repeatedly with subsequent Write and Read operations.
656//
657// When hashing a small byte slice or string, a single Write and Read may
658// be used:
659//
660//	// Assume hashfd is already configured using the setup process.
661//	hash := os.NewFile(hashfd, "sha1")
662//	// Hash an input string and read the results. Each Write discards
663//	// previous hash state. Read always reads the current state.
664//	b := make([]byte, 20)
665//	for i := 0; i < 2; i++ {
666//	    io.WriteString(hash, "Hello, world.")
667//	    hash.Read(b)
668//	    fmt.Println(hex.EncodeToString(b))
669//	}
670//	// Output:
671//	// 2ae01472317d1935a84797ec1983ae243fc6aa28
672//	// 2ae01472317d1935a84797ec1983ae243fc6aa28
673//
674// For hashing larger byte slices, or byte streams such as those read from
675// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
676// the hash digest instead of creating a new one for a given chunk and finalizing it.
677//
678//	// Assume hashfd and addr are already configured using the setup process.
679//	hash := os.NewFile(hashfd, "sha1")
680//	// Hash the contents of a file.
681//	f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
682//	b := make([]byte, 4096)
683//	for {
684//	    n, err := f.Read(b)
685//	    if err == io.EOF {
686//	        break
687//	    }
688//	    unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
689//	}
690//	hash.Read(b)
691//	fmt.Println(hex.EncodeToString(b))
692//	// Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
693//
694// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
695type SockaddrALG struct {
696	Type    string
697	Name    string
698	Feature uint32
699	Mask    uint32
700	raw     RawSockaddrALG
701}
702
703func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
704	// Leave room for NUL byte terminator.
705	if len(sa.Type) > len(sa.raw.Type)-1 {
706		return nil, 0, EINVAL
707	}
708	if len(sa.Name) > len(sa.raw.Name)-1 {
709		return nil, 0, EINVAL
710	}
711
712	sa.raw.Family = AF_ALG
713	sa.raw.Feat = sa.Feature
714	sa.raw.Mask = sa.Mask
715
716	copy(sa.raw.Type[:], sa.Type)
717	copy(sa.raw.Name[:], sa.Name)
718
719	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
720}
721
722// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
723// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
724// bidirectional communication between a hypervisor and its guest virtual
725// machines.
726type SockaddrVM struct {
727	// CID and Port specify a context ID and port address for a VM socket.
728	// Guests have a unique CID, and hosts may have a well-known CID of:
729	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
730	//  - VMADDR_CID_LOCAL: refers to local communication (loopback).
731	//  - VMADDR_CID_HOST: refers to other processes on the host.
732	CID   uint32
733	Port  uint32
734	Flags uint8
735	raw   RawSockaddrVM
736}
737
738func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
739	sa.raw.Family = AF_VSOCK
740	sa.raw.Port = sa.Port
741	sa.raw.Cid = sa.CID
742	sa.raw.Flags = sa.Flags
743
744	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
745}
746
747type SockaddrXDP struct {
748	Flags        uint16
749	Ifindex      uint32
750	QueueID      uint32
751	SharedUmemFD uint32
752	raw          RawSockaddrXDP
753}
754
755func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
756	sa.raw.Family = AF_XDP
757	sa.raw.Flags = sa.Flags
758	sa.raw.Ifindex = sa.Ifindex
759	sa.raw.Queue_id = sa.QueueID
760	sa.raw.Shared_umem_fd = sa.SharedUmemFD
761
762	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
763}
764
765// This constant mirrors the #define of PX_PROTO_OE in
766// linux/if_pppox.h. We're defining this by hand here instead of
767// autogenerating through mkerrors.sh because including
768// linux/if_pppox.h causes some declaration conflicts with other
769// includes (linux/if_pppox.h includes linux/in.h, which conflicts
770// with netinet/in.h). Given that we only need a single zero constant
771// out of that file, it's cleaner to just define it by hand here.
772const px_proto_oe = 0
773
774type SockaddrPPPoE struct {
775	SID    uint16
776	Remote []byte
777	Dev    string
778	raw    RawSockaddrPPPoX
779}
780
781func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
782	if len(sa.Remote) != 6 {
783		return nil, 0, EINVAL
784	}
785	if len(sa.Dev) > IFNAMSIZ-1 {
786		return nil, 0, EINVAL
787	}
788
789	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
790	// This next field is in host-endian byte order. We can't use the
791	// same unsafe pointer cast as above, because this value is not
792	// 32-bit aligned and some architectures don't allow unaligned
793	// access.
794	//
795	// However, the value of px_proto_oe is 0, so we can use
796	// encoding/binary helpers to write the bytes without worrying
797	// about the ordering.
798	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
799	// This field is deliberately big-endian, unlike the previous
800	// one. The kernel expects SID to be in network byte order.
801	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
802	copy(sa.raw[8:14], sa.Remote)
803	for i := 14; i < 14+IFNAMSIZ; i++ {
804		sa.raw[i] = 0
805	}
806	copy(sa.raw[14:], sa.Dev)
807	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
808}
809
810// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
811// For more information on TIPC, see: http://tipc.sourceforge.net/.
812type SockaddrTIPC struct {
813	// Scope is the publication scopes when binding service/service range.
814	// Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
815	Scope int
816
817	// Addr is the type of address used to manipulate a socket. Addr must be
818	// one of:
819	//  - *TIPCSocketAddr: "id" variant in the C addr union
820	//  - *TIPCServiceRange: "nameseq" variant in the C addr union
821	//  - *TIPCServiceName: "name" variant in the C addr union
822	//
823	// If nil, EINVAL will be returned when the structure is used.
824	Addr TIPCAddr
825
826	raw RawSockaddrTIPC
827}
828
829// TIPCAddr is implemented by types that can be used as an address for
830// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
831// and *TIPCServiceName.
832type TIPCAddr interface {
833	tipcAddrtype() uint8
834	tipcAddr() [12]byte
835}
836
837func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
838	var out [12]byte
839	copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
840	return out
841}
842
843func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
844
845func (sa *TIPCServiceRange) tipcAddr() [12]byte {
846	var out [12]byte
847	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
848	return out
849}
850
851func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
852
853func (sa *TIPCServiceName) tipcAddr() [12]byte {
854	var out [12]byte
855	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
856	return out
857}
858
859func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
860
861func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
862	if sa.Addr == nil {
863		return nil, 0, EINVAL
864	}
865	sa.raw.Family = AF_TIPC
866	sa.raw.Scope = int8(sa.Scope)
867	sa.raw.Addrtype = sa.Addr.tipcAddrtype()
868	sa.raw.Addr = sa.Addr.tipcAddr()
869	return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
870}
871
872// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
873type SockaddrL2TPIP struct {
874	Addr   [4]byte
875	ConnId uint32
876	raw    RawSockaddrL2TPIP
877}
878
879func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
880	sa.raw.Family = AF_INET
881	sa.raw.Conn_id = sa.ConnId
882	sa.raw.Addr = sa.Addr
883	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
884}
885
886// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
887type SockaddrL2TPIP6 struct {
888	Addr   [16]byte
889	ZoneId uint32
890	ConnId uint32
891	raw    RawSockaddrL2TPIP6
892}
893
894func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
895	sa.raw.Family = AF_INET6
896	sa.raw.Conn_id = sa.ConnId
897	sa.raw.Scope_id = sa.ZoneId
898	sa.raw.Addr = sa.Addr
899	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
900}
901
902// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
903type SockaddrIUCV struct {
904	UserID string
905	Name   string
906	raw    RawSockaddrIUCV
907}
908
909func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
910	sa.raw.Family = AF_IUCV
911	// These are EBCDIC encoded by the kernel, but we still need to pad them
912	// with blanks. Initializing with blanks allows the caller to feed in either
913	// a padded or an unpadded string.
914	for i := 0; i < 8; i++ {
915		sa.raw.Nodeid[i] = ' '
916		sa.raw.User_id[i] = ' '
917		sa.raw.Name[i] = ' '
918	}
919	if len(sa.UserID) > 8 || len(sa.Name) > 8 {
920		return nil, 0, EINVAL
921	}
922	for i, b := range []byte(sa.UserID[:]) {
923		sa.raw.User_id[i] = int8(b)
924	}
925	for i, b := range []byte(sa.Name[:]) {
926		sa.raw.Name[i] = int8(b)
927	}
928	return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
929}
930
931type SockaddrNFC struct {
932	DeviceIdx   uint32
933	TargetIdx   uint32
934	NFCProtocol uint32
935	raw         RawSockaddrNFC
936}
937
938func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
939	sa.raw.Sa_family = AF_NFC
940	sa.raw.Dev_idx = sa.DeviceIdx
941	sa.raw.Target_idx = sa.TargetIdx
942	sa.raw.Nfc_protocol = sa.NFCProtocol
943	return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
944}
945
946type SockaddrNFCLLCP struct {
947	DeviceIdx      uint32
948	TargetIdx      uint32
949	NFCProtocol    uint32
950	DestinationSAP uint8
951	SourceSAP      uint8
952	ServiceName    string
953	raw            RawSockaddrNFCLLCP
954}
955
956func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
957	sa.raw.Sa_family = AF_NFC
958	sa.raw.Dev_idx = sa.DeviceIdx
959	sa.raw.Target_idx = sa.TargetIdx
960	sa.raw.Nfc_protocol = sa.NFCProtocol
961	sa.raw.Dsap = sa.DestinationSAP
962	sa.raw.Ssap = sa.SourceSAP
963	if len(sa.ServiceName) > len(sa.raw.Service_name) {
964		return nil, 0, EINVAL
965	}
966	copy(sa.raw.Service_name[:], sa.ServiceName)
967	sa.raw.SetServiceNameLen(len(sa.ServiceName))
968	return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
969}
970
971var socketProtocol = func(fd int) (int, error) {
972	return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
973}
974
975func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
976	switch rsa.Addr.Family {
977	case AF_NETLINK:
978		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
979		sa := new(SockaddrNetlink)
980		sa.Family = pp.Family
981		sa.Pad = pp.Pad
982		sa.Pid = pp.Pid
983		sa.Groups = pp.Groups
984		return sa, nil
985
986	case AF_PACKET:
987		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
988		sa := new(SockaddrLinklayer)
989		sa.Protocol = pp.Protocol
990		sa.Ifindex = int(pp.Ifindex)
991		sa.Hatype = pp.Hatype
992		sa.Pkttype = pp.Pkttype
993		sa.Halen = pp.Halen
994		sa.Addr = pp.Addr
995		return sa, nil
996
997	case AF_UNIX:
998		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
999		sa := new(SockaddrUnix)
1000		if pp.Path[0] == 0 {
1001			// "Abstract" Unix domain socket.
1002			// Rewrite leading NUL as @ for textual display.
1003			// (This is the standard convention.)
1004			// Not friendly to overwrite in place,
1005			// but the callers below don't care.
1006			pp.Path[0] = '@'
1007		}
1008
1009		// Assume path ends at NUL.
1010		// This is not technically the Linux semantics for
1011		// abstract Unix domain sockets--they are supposed
1012		// to be uninterpreted fixed-size binary blobs--but
1013		// everyone uses this convention.
1014		n := 0
1015		for n < len(pp.Path) && pp.Path[n] != 0 {
1016			n++
1017		}
1018		sa.Name = string(unsafe.Slice((*byte)(unsafe.Pointer(&pp.Path[0])), n))
1019		return sa, nil
1020
1021	case AF_INET:
1022		proto, err := socketProtocol(fd)
1023		if err != nil {
1024			return nil, err
1025		}
1026
1027		switch proto {
1028		case IPPROTO_L2TP:
1029			pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
1030			sa := new(SockaddrL2TPIP)
1031			sa.ConnId = pp.Conn_id
1032			sa.Addr = pp.Addr
1033			return sa, nil
1034		default:
1035			pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
1036			sa := new(SockaddrInet4)
1037			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1038			sa.Port = int(p[0])<<8 + int(p[1])
1039			sa.Addr = pp.Addr
1040			return sa, nil
1041		}
1042
1043	case AF_INET6:
1044		proto, err := socketProtocol(fd)
1045		if err != nil {
1046			return nil, err
1047		}
1048
1049		switch proto {
1050		case IPPROTO_L2TP:
1051			pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
1052			sa := new(SockaddrL2TPIP6)
1053			sa.ConnId = pp.Conn_id
1054			sa.ZoneId = pp.Scope_id
1055			sa.Addr = pp.Addr
1056			return sa, nil
1057		default:
1058			pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1059			sa := new(SockaddrInet6)
1060			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1061			sa.Port = int(p[0])<<8 + int(p[1])
1062			sa.ZoneId = pp.Scope_id
1063			sa.Addr = pp.Addr
1064			return sa, nil
1065		}
1066
1067	case AF_VSOCK:
1068		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1069		sa := &SockaddrVM{
1070			CID:   pp.Cid,
1071			Port:  pp.Port,
1072			Flags: pp.Flags,
1073		}
1074		return sa, nil
1075	case AF_BLUETOOTH:
1076		proto, err := socketProtocol(fd)
1077		if err != nil {
1078			return nil, err
1079		}
1080		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1081		switch proto {
1082		case BTPROTO_L2CAP:
1083			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1084			sa := &SockaddrL2{
1085				PSM:      pp.Psm,
1086				CID:      pp.Cid,
1087				Addr:     pp.Bdaddr,
1088				AddrType: pp.Bdaddr_type,
1089			}
1090			return sa, nil
1091		case BTPROTO_RFCOMM:
1092			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1093			sa := &SockaddrRFCOMM{
1094				Channel: pp.Channel,
1095				Addr:    pp.Bdaddr,
1096			}
1097			return sa, nil
1098		}
1099	case AF_XDP:
1100		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1101		sa := &SockaddrXDP{
1102			Flags:        pp.Flags,
1103			Ifindex:      pp.Ifindex,
1104			QueueID:      pp.Queue_id,
1105			SharedUmemFD: pp.Shared_umem_fd,
1106		}
1107		return sa, nil
1108	case AF_PPPOX:
1109		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1110		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1111			return nil, EINVAL
1112		}
1113		sa := &SockaddrPPPoE{
1114			SID:    binary.BigEndian.Uint16(pp[6:8]),
1115			Remote: pp[8:14],
1116		}
1117		for i := 14; i < 14+IFNAMSIZ; i++ {
1118			if pp[i] == 0 {
1119				sa.Dev = string(pp[14:i])
1120				break
1121			}
1122		}
1123		return sa, nil
1124	case AF_TIPC:
1125		pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1126
1127		sa := &SockaddrTIPC{
1128			Scope: int(pp.Scope),
1129		}
1130
1131		// Determine which union variant is present in pp.Addr by checking
1132		// pp.Addrtype.
1133		switch pp.Addrtype {
1134		case TIPC_SERVICE_RANGE:
1135			sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1136		case TIPC_SERVICE_ADDR:
1137			sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1138		case TIPC_SOCKET_ADDR:
1139			sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1140		default:
1141			return nil, EINVAL
1142		}
1143
1144		return sa, nil
1145	case AF_IUCV:
1146		pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1147
1148		var user [8]byte
1149		var name [8]byte
1150
1151		for i := 0; i < 8; i++ {
1152			user[i] = byte(pp.User_id[i])
1153			name[i] = byte(pp.Name[i])
1154		}
1155
1156		sa := &SockaddrIUCV{
1157			UserID: string(user[:]),
1158			Name:   string(name[:]),
1159		}
1160		return sa, nil
1161
1162	case AF_CAN:
1163		proto, err := socketProtocol(fd)
1164		if err != nil {
1165			return nil, err
1166		}
1167
1168		pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1169
1170		switch proto {
1171		case CAN_J1939:
1172			sa := &SockaddrCANJ1939{
1173				Ifindex: int(pp.Ifindex),
1174			}
1175			name := (*[8]byte)(unsafe.Pointer(&sa.Name))
1176			for i := 0; i < 8; i++ {
1177				name[i] = pp.Addr[i]
1178			}
1179			pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
1180			for i := 0; i < 4; i++ {
1181				pgn[i] = pp.Addr[i+8]
1182			}
1183			addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
1184			addr[0] = pp.Addr[12]
1185			return sa, nil
1186		default:
1187			sa := &SockaddrCAN{
1188				Ifindex: int(pp.Ifindex),
1189			}
1190			rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1191			for i := 0; i < 4; i++ {
1192				rx[i] = pp.Addr[i]
1193			}
1194			tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1195			for i := 0; i < 4; i++ {
1196				tx[i] = pp.Addr[i+4]
1197			}
1198			return sa, nil
1199		}
1200	case AF_NFC:
1201		proto, err := socketProtocol(fd)
1202		if err != nil {
1203			return nil, err
1204		}
1205		switch proto {
1206		case NFC_SOCKPROTO_RAW:
1207			pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
1208			sa := &SockaddrNFC{
1209				DeviceIdx:   pp.Dev_idx,
1210				TargetIdx:   pp.Target_idx,
1211				NFCProtocol: pp.Nfc_protocol,
1212			}
1213			return sa, nil
1214		case NFC_SOCKPROTO_LLCP:
1215			pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
1216			if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
1217				return nil, EINVAL
1218			}
1219			sa := &SockaddrNFCLLCP{
1220				DeviceIdx:      pp.Dev_idx,
1221				TargetIdx:      pp.Target_idx,
1222				NFCProtocol:    pp.Nfc_protocol,
1223				DestinationSAP: pp.Dsap,
1224				SourceSAP:      pp.Ssap,
1225				ServiceName:    string(pp.Service_name[:pp.Service_name_len]),
1226			}
1227			return sa, nil
1228		default:
1229			return nil, EINVAL
1230		}
1231	}
1232	return nil, EAFNOSUPPORT
1233}
1234
1235func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1236	var rsa RawSockaddrAny
1237	var len _Socklen = SizeofSockaddrAny
1238	nfd, err = accept4(fd, &rsa, &len, 0)
1239	if err != nil {
1240		return
1241	}
1242	sa, err = anyToSockaddr(fd, &rsa)
1243	if err != nil {
1244		Close(nfd)
1245		nfd = 0
1246	}
1247	return
1248}
1249
1250func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1251	var rsa RawSockaddrAny
1252	var len _Socklen = SizeofSockaddrAny
1253	nfd, err = accept4(fd, &rsa, &len, flags)
1254	if err != nil {
1255		return
1256	}
1257	if len > SizeofSockaddrAny {
1258		panic("RawSockaddrAny too small")
1259	}
1260	sa, err = anyToSockaddr(fd, &rsa)
1261	if err != nil {
1262		Close(nfd)
1263		nfd = 0
1264	}
1265	return
1266}
1267
1268func Getsockname(fd int) (sa Sockaddr, err error) {
1269	var rsa RawSockaddrAny
1270	var len _Socklen = SizeofSockaddrAny
1271	if err = getsockname(fd, &rsa, &len); err != nil {
1272		return
1273	}
1274	return anyToSockaddr(fd, &rsa)
1275}
1276
1277func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1278	var value IPMreqn
1279	vallen := _Socklen(SizeofIPMreqn)
1280	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1281	return &value, err
1282}
1283
1284func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1285	var value Ucred
1286	vallen := _Socklen(SizeofUcred)
1287	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1288	return &value, err
1289}
1290
1291func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1292	var value TCPInfo
1293	vallen := _Socklen(SizeofTCPInfo)
1294	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1295	return &value, err
1296}
1297
1298// GetsockoptString returns the string value of the socket option opt for the
1299// socket associated with fd at the given socket level.
1300func GetsockoptString(fd, level, opt int) (string, error) {
1301	buf := make([]byte, 256)
1302	vallen := _Socklen(len(buf))
1303	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1304	if err != nil {
1305		if err == ERANGE {
1306			buf = make([]byte, vallen)
1307			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1308		}
1309		if err != nil {
1310			return "", err
1311		}
1312	}
1313	return ByteSliceToString(buf[:vallen]), nil
1314}
1315
1316func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1317	var value TpacketStats
1318	vallen := _Socklen(SizeofTpacketStats)
1319	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1320	return &value, err
1321}
1322
1323func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1324	var value TpacketStatsV3
1325	vallen := _Socklen(SizeofTpacketStatsV3)
1326	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1327	return &value, err
1328}
1329
1330func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1331	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1332}
1333
1334func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1335	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1336}
1337
1338// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1339// socket to filter incoming packets.  See 'man 7 socket' for usage information.
1340func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1341	return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1342}
1343
1344func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1345	var p unsafe.Pointer
1346	if len(filter) > 0 {
1347		p = unsafe.Pointer(&filter[0])
1348	}
1349	return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1350}
1351
1352func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1353	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1354}
1355
1356func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1357	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1358}
1359
1360func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) {
1361	if len(o) == 0 {
1362		return EINVAL
1363	}
1364	return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o)))
1365}
1366
1367func SetsockoptTCPMD5Sig(fd, level, opt int, s *TCPMD5Sig) error {
1368	return setsockopt(fd, level, opt, unsafe.Pointer(s), unsafe.Sizeof(*s))
1369}
1370
1371// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1372
1373// KeyctlInt calls keyctl commands in which each argument is an int.
1374// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1375// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1376// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1377// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1378//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1379
1380// KeyctlBuffer calls keyctl commands in which the third and fourth
1381// arguments are a buffer and its length, respectively.
1382// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1383//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1384
1385// KeyctlString calls keyctl commands which return a string.
1386// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1387func KeyctlString(cmd int, id int) (string, error) {
1388	// We must loop as the string data may change in between the syscalls.
1389	// We could allocate a large buffer here to reduce the chance that the
1390	// syscall needs to be called twice; however, this is unnecessary as
1391	// the performance loss is negligible.
1392	var buffer []byte
1393	for {
1394		// Try to fill the buffer with data
1395		length, err := KeyctlBuffer(cmd, id, buffer, 0)
1396		if err != nil {
1397			return "", err
1398		}
1399
1400		// Check if the data was written
1401		if length <= len(buffer) {
1402			// Exclude the null terminator
1403			return string(buffer[:length-1]), nil
1404		}
1405
1406		// Make a bigger buffer if needed
1407		buffer = make([]byte, length)
1408	}
1409}
1410
1411// Keyctl commands with special signatures.
1412
1413// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1414// See the full documentation at:
1415// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1416func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1417	createInt := 0
1418	if create {
1419		createInt = 1
1420	}
1421	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1422}
1423
1424// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1425// key handle permission mask as described in the "keyctl setperm" section of
1426// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1427// See the full documentation at:
1428// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1429func KeyctlSetperm(id int, perm uint32) error {
1430	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1431	return err
1432}
1433
1434//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1435
1436// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1437// See the full documentation at:
1438// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1439func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1440	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1441}
1442
1443//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1444
1445// KeyctlSearch implements the KEYCTL_SEARCH command.
1446// See the full documentation at:
1447// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1448func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1449	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1450}
1451
1452//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1453
1454// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1455// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1456// of Iovec (each of which represents a buffer) instead of a single buffer.
1457// See the full documentation at:
1458// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1459func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1460	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1461}
1462
1463//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1464
1465// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1466// computes a Diffie-Hellman shared secret based on the provide params. The
1467// secret is written to the provided buffer and the returned size is the number
1468// of bytes written (returning an error if there is insufficient space in the
1469// buffer). If a nil buffer is passed in, this function returns the minimum
1470// buffer length needed to store the appropriate data. Note that this differs
1471// from KEYCTL_READ's behavior which always returns the requested payload size.
1472// See the full documentation at:
1473// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1474func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1475	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1476}
1477
1478// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1479// command limits the set of keys that can be linked to the keyring, regardless
1480// of keyring permissions. The command requires the "setattr" permission.
1481//
1482// When called with an empty keyType the command locks the keyring, preventing
1483// any further keys from being linked to the keyring.
1484//
1485// The "asymmetric" keyType defines restrictions requiring key payloads to be
1486// DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1487// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1488// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1489//
1490// As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1491// restrictions.
1492//
1493// See the full documentation at:
1494// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1495// http://man7.org/linux/man-pages/man2/keyctl.2.html
1496func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1497	if keyType == "" {
1498		return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1499	}
1500	return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1501}
1502
1503//sys	keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1504//sys	keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
1505
1506func recvmsgRaw(fd int, iov []Iovec, oob []byte, flags int, rsa *RawSockaddrAny) (n, oobn int, recvflags int, err error) {
1507	var msg Msghdr
1508	msg.Name = (*byte)(unsafe.Pointer(rsa))
1509	msg.Namelen = uint32(SizeofSockaddrAny)
1510	var dummy byte
1511	if len(oob) > 0 {
1512		if emptyIovecs(iov) {
1513			var sockType int
1514			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1515			if err != nil {
1516				return
1517			}
1518			// receive at least one normal byte
1519			if sockType != SOCK_DGRAM {
1520				var iova [1]Iovec
1521				iova[0].Base = &dummy
1522				iova[0].SetLen(1)
1523				iov = iova[:]
1524			}
1525		}
1526		msg.Control = &oob[0]
1527		msg.SetControllen(len(oob))
1528	}
1529	if len(iov) > 0 {
1530		msg.Iov = &iov[0]
1531		msg.SetIovlen(len(iov))
1532	}
1533	if n, err = recvmsg(fd, &msg, flags); err != nil {
1534		return
1535	}
1536	oobn = int(msg.Controllen)
1537	recvflags = int(msg.Flags)
1538	return
1539}
1540
1541func sendmsgN(fd int, iov []Iovec, oob []byte, ptr unsafe.Pointer, salen _Socklen, flags int) (n int, err error) {
1542	var msg Msghdr
1543	msg.Name = (*byte)(ptr)
1544	msg.Namelen = uint32(salen)
1545	var dummy byte
1546	var empty bool
1547	if len(oob) > 0 {
1548		empty = emptyIovecs(iov)
1549		if empty {
1550			var sockType int
1551			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1552			if err != nil {
1553				return 0, err
1554			}
1555			// send at least one normal byte
1556			if sockType != SOCK_DGRAM {
1557				var iova [1]Iovec
1558				iova[0].Base = &dummy
1559				iova[0].SetLen(1)
1560				iov = iova[:]
1561			}
1562		}
1563		msg.Control = &oob[0]
1564		msg.SetControllen(len(oob))
1565	}
1566	if len(iov) > 0 {
1567		msg.Iov = &iov[0]
1568		msg.SetIovlen(len(iov))
1569	}
1570	if n, err = sendmsg(fd, &msg, flags); err != nil {
1571		return 0, err
1572	}
1573	if len(oob) > 0 && empty {
1574		n = 0
1575	}
1576	return n, nil
1577}
1578
1579// BindToDevice binds the socket associated with fd to device.
1580func BindToDevice(fd int, device string) (err error) {
1581	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1582}
1583
1584//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1585//sys	ptracePtr(request int, pid int, addr uintptr, data unsafe.Pointer) (err error) = SYS_PTRACE
1586
1587func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1588	// The peek requests are machine-size oriented, so we wrap it
1589	// to retrieve arbitrary-length data.
1590
1591	// The ptrace syscall differs from glibc's ptrace.
1592	// Peeks returns the word in *data, not as the return value.
1593
1594	var buf [SizeofPtr]byte
1595
1596	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1597	// access (PEEKUSER warns that it might), but if we don't
1598	// align our reads, we might straddle an unmapped page
1599	// boundary and not get the bytes leading up to the page
1600	// boundary.
1601	n := 0
1602	if addr%SizeofPtr != 0 {
1603		err = ptracePtr(req, pid, addr-addr%SizeofPtr, unsafe.Pointer(&buf[0]))
1604		if err != nil {
1605			return 0, err
1606		}
1607		n += copy(out, buf[addr%SizeofPtr:])
1608		out = out[n:]
1609	}
1610
1611	// Remainder.
1612	for len(out) > 0 {
1613		// We use an internal buffer to guarantee alignment.
1614		// It's not documented if this is necessary, but we're paranoid.
1615		err = ptracePtr(req, pid, addr+uintptr(n), unsafe.Pointer(&buf[0]))
1616		if err != nil {
1617			return n, err
1618		}
1619		copied := copy(out, buf[0:])
1620		n += copied
1621		out = out[copied:]
1622	}
1623
1624	return n, nil
1625}
1626
1627func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1628	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1629}
1630
1631func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1632	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1633}
1634
1635func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1636	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1637}
1638
1639func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1640	// As for ptracePeek, we need to align our accesses to deal
1641	// with the possibility of straddling an invalid page.
1642
1643	// Leading edge.
1644	n := 0
1645	if addr%SizeofPtr != 0 {
1646		var buf [SizeofPtr]byte
1647		err = ptracePtr(peekReq, pid, addr-addr%SizeofPtr, unsafe.Pointer(&buf[0]))
1648		if err != nil {
1649			return 0, err
1650		}
1651		n += copy(buf[addr%SizeofPtr:], data)
1652		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1653		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1654		if err != nil {
1655			return 0, err
1656		}
1657		data = data[n:]
1658	}
1659
1660	// Interior.
1661	for len(data) > SizeofPtr {
1662		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1663		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1664		if err != nil {
1665			return n, err
1666		}
1667		n += SizeofPtr
1668		data = data[SizeofPtr:]
1669	}
1670
1671	// Trailing edge.
1672	if len(data) > 0 {
1673		var buf [SizeofPtr]byte
1674		err = ptracePtr(peekReq, pid, addr+uintptr(n), unsafe.Pointer(&buf[0]))
1675		if err != nil {
1676			return n, err
1677		}
1678		copy(buf[0:], data)
1679		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1680		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1681		if err != nil {
1682			return n, err
1683		}
1684		n += len(data)
1685	}
1686
1687	return n, nil
1688}
1689
1690func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1691	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1692}
1693
1694func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1695	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1696}
1697
1698func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1699	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1700}
1701
1702// elfNT_PRSTATUS is a copy of the debug/elf.NT_PRSTATUS constant so
1703// x/sys/unix doesn't need to depend on debug/elf and thus
1704// compress/zlib, debug/dwarf, and other packages.
1705const elfNT_PRSTATUS = 1
1706
1707func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1708	var iov Iovec
1709	iov.Base = (*byte)(unsafe.Pointer(regsout))
1710	iov.SetLen(int(unsafe.Sizeof(*regsout)))
1711	return ptracePtr(PTRACE_GETREGSET, pid, uintptr(elfNT_PRSTATUS), unsafe.Pointer(&iov))
1712}
1713
1714func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1715	var iov Iovec
1716	iov.Base = (*byte)(unsafe.Pointer(regs))
1717	iov.SetLen(int(unsafe.Sizeof(*regs)))
1718	return ptracePtr(PTRACE_SETREGSET, pid, uintptr(elfNT_PRSTATUS), unsafe.Pointer(&iov))
1719}
1720
1721func PtraceSetOptions(pid int, options int) (err error) {
1722	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1723}
1724
1725func PtraceGetEventMsg(pid int) (msg uint, err error) {
1726	var data _C_long
1727	err = ptracePtr(PTRACE_GETEVENTMSG, pid, 0, unsafe.Pointer(&data))
1728	msg = uint(data)
1729	return
1730}
1731
1732func PtraceCont(pid int, signal int) (err error) {
1733	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1734}
1735
1736func PtraceSyscall(pid int, signal int) (err error) {
1737	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1738}
1739
1740func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1741
1742func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1743
1744func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1745
1746func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1747
1748func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1749
1750//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1751
1752func Reboot(cmd int) (err error) {
1753	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1754}
1755
1756func direntIno(buf []byte) (uint64, bool) {
1757	return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1758}
1759
1760func direntReclen(buf []byte) (uint64, bool) {
1761	return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1762}
1763
1764func direntNamlen(buf []byte) (uint64, bool) {
1765	reclen, ok := direntReclen(buf)
1766	if !ok {
1767		return 0, false
1768	}
1769	return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
1770}
1771
1772//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1773
1774func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1775	// Certain file systems get rather angry and EINVAL if you give
1776	// them an empty string of data, rather than NULL.
1777	if data == "" {
1778		return mount(source, target, fstype, flags, nil)
1779	}
1780	datap, err := BytePtrFromString(data)
1781	if err != nil {
1782		return err
1783	}
1784	return mount(source, target, fstype, flags, datap)
1785}
1786
1787//sys	mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR
1788
1789// MountSetattr is a wrapper for mount_setattr(2).
1790// https://man7.org/linux/man-pages/man2/mount_setattr.2.html
1791//
1792// Requires kernel >= 5.12.
1793func MountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr) error {
1794	return mountSetattr(dirfd, pathname, flags, attr, unsafe.Sizeof(*attr))
1795}
1796
1797func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1798	if raceenabled {
1799		raceReleaseMerge(unsafe.Pointer(&ioSync))
1800	}
1801	return sendfile(outfd, infd, offset, count)
1802}
1803
1804// Sendto
1805// Recvfrom
1806// Socketpair
1807
1808/*
1809 * Direct access
1810 */
1811//sys	Acct(path string) (err error)
1812//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1813//sys	Adjtimex(buf *Timex) (state int, err error)
1814//sysnb	Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1815//sysnb	Capset(hdr *CapUserHeader, data *CapUserData) (err error)
1816//sys	Chdir(path string) (err error)
1817//sys	Chroot(path string) (err error)
1818//sys	ClockAdjtime(clockid int32, buf *Timex) (state int, err error)
1819//sys	ClockGetres(clockid int32, res *Timespec) (err error)
1820//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1821//sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1822//sys	Close(fd int) (err error)
1823//sys	CloseRange(first uint, last uint, flags uint) (err error)
1824//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1825//sys	DeleteModule(name string, flags int) (err error)
1826//sys	Dup(oldfd int) (fd int, err error)
1827
1828func Dup2(oldfd, newfd int) error {
1829	return Dup3(oldfd, newfd, 0)
1830}
1831
1832//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1833//sysnb	EpollCreate1(flag int) (fd int, err error)
1834//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1835//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1836//sys	Exit(code int) = SYS_EXIT_GROUP
1837//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1838//sys	Fchdir(fd int) (err error)
1839//sys	Fchmod(fd int, mode uint32) (err error)
1840//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1841//sys	Fdatasync(fd int) (err error)
1842//sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1843//sys	FinitModule(fd int, params string, flags int) (err error)
1844//sys	Flistxattr(fd int, dest []byte) (sz int, err error)
1845//sys	Flock(fd int, how int) (err error)
1846//sys	Fremovexattr(fd int, attr string) (err error)
1847//sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1848//sys	Fsync(fd int) (err error)
1849//sys	Fsmount(fd int, flags int, mountAttrs int) (fsfd int, err error)
1850//sys	Fsopen(fsName string, flags int) (fd int, err error)
1851//sys	Fspick(dirfd int, pathName string, flags int) (fd int, err error)
1852
1853//sys	fsconfig(fd int, cmd uint, key *byte, value *byte, aux int) (err error)
1854
1855func fsconfigCommon(fd int, cmd uint, key string, value *byte, aux int) (err error) {
1856	var keyp *byte
1857	if keyp, err = BytePtrFromString(key); err != nil {
1858		return
1859	}
1860	return fsconfig(fd, cmd, keyp, value, aux)
1861}
1862
1863// FsconfigSetFlag is equivalent to fsconfig(2) called
1864// with cmd == FSCONFIG_SET_FLAG.
1865//
1866// fd is the filesystem context to act upon.
1867// key the parameter key to set.
1868func FsconfigSetFlag(fd int, key string) (err error) {
1869	return fsconfigCommon(fd, FSCONFIG_SET_FLAG, key, nil, 0)
1870}
1871
1872// FsconfigSetString is equivalent to fsconfig(2) called
1873// with cmd == FSCONFIG_SET_STRING.
1874//
1875// fd is the filesystem context to act upon.
1876// key the parameter key to set.
1877// value is the parameter value to set.
1878func FsconfigSetString(fd int, key string, value string) (err error) {
1879	var valuep *byte
1880	if valuep, err = BytePtrFromString(value); err != nil {
1881		return
1882	}
1883	return fsconfigCommon(fd, FSCONFIG_SET_STRING, key, valuep, 0)
1884}
1885
1886// FsconfigSetBinary is equivalent to fsconfig(2) called
1887// with cmd == FSCONFIG_SET_BINARY.
1888//
1889// fd is the filesystem context to act upon.
1890// key the parameter key to set.
1891// value is the parameter value to set.
1892func FsconfigSetBinary(fd int, key string, value []byte) (err error) {
1893	if len(value) == 0 {
1894		return EINVAL
1895	}
1896	return fsconfigCommon(fd, FSCONFIG_SET_BINARY, key, &value[0], len(value))
1897}
1898
1899// FsconfigSetPath is equivalent to fsconfig(2) called
1900// with cmd == FSCONFIG_SET_PATH.
1901//
1902// fd is the filesystem context to act upon.
1903// key the parameter key to set.
1904// path is a non-empty path for specified key.
1905// atfd is a file descriptor at which to start lookup from or AT_FDCWD.
1906func FsconfigSetPath(fd int, key string, path string, atfd int) (err error) {
1907	var valuep *byte
1908	if valuep, err = BytePtrFromString(path); err != nil {
1909		return
1910	}
1911	return fsconfigCommon(fd, FSCONFIG_SET_PATH, key, valuep, atfd)
1912}
1913
1914// FsconfigSetPathEmpty is equivalent to fsconfig(2) called
1915// with cmd == FSCONFIG_SET_PATH_EMPTY. The same as
1916// FconfigSetPath but with AT_PATH_EMPTY implied.
1917func FsconfigSetPathEmpty(fd int, key string, path string, atfd int) (err error) {
1918	var valuep *byte
1919	if valuep, err = BytePtrFromString(path); err != nil {
1920		return
1921	}
1922	return fsconfigCommon(fd, FSCONFIG_SET_PATH_EMPTY, key, valuep, atfd)
1923}
1924
1925// FsconfigSetFd is equivalent to fsconfig(2) called
1926// with cmd == FSCONFIG_SET_FD.
1927//
1928// fd is the filesystem context to act upon.
1929// key the parameter key to set.
1930// value is a file descriptor to be assigned to specified key.
1931func FsconfigSetFd(fd int, key string, value int) (err error) {
1932	return fsconfigCommon(fd, FSCONFIG_SET_FD, key, nil, value)
1933}
1934
1935// FsconfigCreate is equivalent to fsconfig(2) called
1936// with cmd == FSCONFIG_CMD_CREATE.
1937//
1938// fd is the filesystem context to act upon.
1939func FsconfigCreate(fd int) (err error) {
1940	return fsconfig(fd, FSCONFIG_CMD_CREATE, nil, nil, 0)
1941}
1942
1943// FsconfigReconfigure is equivalent to fsconfig(2) called
1944// with cmd == FSCONFIG_CMD_RECONFIGURE.
1945//
1946// fd is the filesystem context to act upon.
1947func FsconfigReconfigure(fd int) (err error) {
1948	return fsconfig(fd, FSCONFIG_CMD_RECONFIGURE, nil, nil, 0)
1949}
1950
1951//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1952//sysnb	Getpgid(pid int) (pgid int, err error)
1953
1954func Getpgrp() (pid int) {
1955	pid, _ = Getpgid(0)
1956	return
1957}
1958
1959//sysnb	Getpid() (pid int)
1960//sysnb	Getppid() (ppid int)
1961//sys	Getpriority(which int, who int) (prio int, err error)
1962//sys	Getrandom(buf []byte, flags int) (n int, err error)
1963//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1964//sysnb	Getsid(pid int) (sid int, err error)
1965//sysnb	Gettid() (tid int)
1966//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1967//sys	InitModule(moduleImage []byte, params string) (err error)
1968//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1969//sysnb	InotifyInit1(flags int) (fd int, err error)
1970//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1971//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1972//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1973//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1974//sys	Listxattr(path string, dest []byte) (sz int, err error)
1975//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1976//sys	Lremovexattr(path string, attr string) (err error)
1977//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1978//sys	MemfdCreate(name string, flags int) (fd int, err error)
1979//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1980//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1981//sys	MoveMount(fromDirfd int, fromPathName string, toDirfd int, toPathName string, flags int) (err error)
1982//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1983//sys	OpenTree(dfd int, fileName string, flags uint) (r int, err error)
1984//sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1985//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1986//sys	Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1987//sys	pselect6(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *sigset_argpack) (n int, err error)
1988//sys	read(fd int, p []byte) (n int, err error)
1989//sys	Removexattr(path string, attr string) (err error)
1990//sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1991//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1992//sys	Setdomainname(p []byte) (err error)
1993//sys	Sethostname(p []byte) (err error)
1994//sysnb	Setpgid(pid int, pgid int) (err error)
1995//sysnb	Setsid() (pid int, err error)
1996//sysnb	Settimeofday(tv *Timeval) (err error)
1997//sys	Setns(fd int, nstype int) (err error)
1998
1999//go:linkname syscall_prlimit syscall.prlimit
2000func syscall_prlimit(pid, resource int, newlimit, old *syscall.Rlimit) error
2001
2002func Prlimit(pid, resource int, newlimit, old *Rlimit) error {
2003	// Just call the syscall version, because as of Go 1.21
2004	// it will affect starting a new process.
2005	return syscall_prlimit(pid, resource, (*syscall.Rlimit)(newlimit), (*syscall.Rlimit)(old))
2006}
2007
2008// PrctlRetInt performs a prctl operation specified by option and further
2009// optional arguments arg2 through arg5 depending on option. It returns a
2010// non-negative integer that is returned by the prctl syscall.
2011func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
2012	ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
2013	if err != 0 {
2014		return 0, err
2015	}
2016	return int(ret), nil
2017}
2018
2019func Setuid(uid int) (err error) {
2020	return syscall.Setuid(uid)
2021}
2022
2023func Setgid(gid int) (err error) {
2024	return syscall.Setgid(gid)
2025}
2026
2027func Setreuid(ruid, euid int) (err error) {
2028	return syscall.Setreuid(ruid, euid)
2029}
2030
2031func Setregid(rgid, egid int) (err error) {
2032	return syscall.Setregid(rgid, egid)
2033}
2034
2035func Setresuid(ruid, euid, suid int) (err error) {
2036	return syscall.Setresuid(ruid, euid, suid)
2037}
2038
2039func Setresgid(rgid, egid, sgid int) (err error) {
2040	return syscall.Setresgid(rgid, egid, sgid)
2041}
2042
2043// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
2044// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
2045// If the call fails due to other reasons, current fsgid will be returned.
2046func SetfsgidRetGid(gid int) (int, error) {
2047	return setfsgid(gid)
2048}
2049
2050// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
2051// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
2052// If the call fails due to other reasons, current fsuid will be returned.
2053func SetfsuidRetUid(uid int) (int, error) {
2054	return setfsuid(uid)
2055}
2056
2057func Setfsgid(gid int) error {
2058	_, err := setfsgid(gid)
2059	return err
2060}
2061
2062func Setfsuid(uid int) error {
2063	_, err := setfsuid(uid)
2064	return err
2065}
2066
2067func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
2068	return signalfd(fd, sigmask, _C__NSIG/8, flags)
2069}
2070
2071//sys	Setpriority(which int, who int, prio int) (err error)
2072//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
2073//sys	signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
2074//sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
2075//sys	Sync()
2076//sys	Syncfs(fd int) (err error)
2077//sysnb	Sysinfo(info *Sysinfo_t) (err error)
2078//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
2079//sysnb	TimerfdCreate(clockid int, flags int) (fd int, err error)
2080//sysnb	TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
2081//sysnb	TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
2082//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
2083//sysnb	Times(tms *Tms) (ticks uintptr, err error)
2084//sysnb	Umask(mask int) (oldmask int)
2085//sysnb	Uname(buf *Utsname) (err error)
2086//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
2087//sys	Unshare(flags int) (err error)
2088//sys	write(fd int, p []byte) (n int, err error)
2089//sys	exitThread(code int) (err error) = SYS_EXIT
2090//sys	readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
2091//sys	writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
2092//sys	preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
2093//sys	pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
2094//sys	preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
2095//sys	pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
2096
2097// minIovec is the size of the small initial allocation used by
2098// Readv, Writev, etc.
2099//
2100// This small allocation gets stack allocated, which lets the
2101// common use case of len(iovs) <= minIovs avoid more expensive
2102// heap allocations.
2103const minIovec = 8
2104
2105// appendBytes converts bs to Iovecs and appends them to vecs.
2106func appendBytes(vecs []Iovec, bs [][]byte) []Iovec {
2107	for _, b := range bs {
2108		var v Iovec
2109		v.SetLen(len(b))
2110		if len(b) > 0 {
2111			v.Base = &b[0]
2112		} else {
2113			v.Base = (*byte)(unsafe.Pointer(&_zero))
2114		}
2115		vecs = append(vecs, v)
2116	}
2117	return vecs
2118}
2119
2120// offs2lohi splits offs into its low and high order bits.
2121func offs2lohi(offs int64) (lo, hi uintptr) {
2122	const longBits = SizeofLong * 8
2123	return uintptr(offs), uintptr(uint64(offs) >> (longBits - 1) >> 1) // two shifts to avoid false positive in vet
2124}
2125
2126func Readv(fd int, iovs [][]byte) (n int, err error) {
2127	iovecs := make([]Iovec, 0, minIovec)
2128	iovecs = appendBytes(iovecs, iovs)
2129	n, err = readv(fd, iovecs)
2130	readvRacedetect(iovecs, n, err)
2131	return n, err
2132}
2133
2134func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
2135	iovecs := make([]Iovec, 0, minIovec)
2136	iovecs = appendBytes(iovecs, iovs)
2137	lo, hi := offs2lohi(offset)
2138	n, err = preadv(fd, iovecs, lo, hi)
2139	readvRacedetect(iovecs, n, err)
2140	return n, err
2141}
2142
2143func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2144	iovecs := make([]Iovec, 0, minIovec)
2145	iovecs = appendBytes(iovecs, iovs)
2146	lo, hi := offs2lohi(offset)
2147	n, err = preadv2(fd, iovecs, lo, hi, flags)
2148	readvRacedetect(iovecs, n, err)
2149	return n, err
2150}
2151
2152func readvRacedetect(iovecs []Iovec, n int, err error) {
2153	if !raceenabled {
2154		return
2155	}
2156	for i := 0; n > 0 && i < len(iovecs); i++ {
2157		m := int(iovecs[i].Len)
2158		if m > n {
2159			m = n
2160		}
2161		n -= m
2162		if m > 0 {
2163			raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
2164		}
2165	}
2166	if err == nil {
2167		raceAcquire(unsafe.Pointer(&ioSync))
2168	}
2169}
2170
2171func Writev(fd int, iovs [][]byte) (n int, err error) {
2172	iovecs := make([]Iovec, 0, minIovec)
2173	iovecs = appendBytes(iovecs, iovs)
2174	if raceenabled {
2175		raceReleaseMerge(unsafe.Pointer(&ioSync))
2176	}
2177	n, err = writev(fd, iovecs)
2178	writevRacedetect(iovecs, n)
2179	return n, err
2180}
2181
2182func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
2183	iovecs := make([]Iovec, 0, minIovec)
2184	iovecs = appendBytes(iovecs, iovs)
2185	if raceenabled {
2186		raceReleaseMerge(unsafe.Pointer(&ioSync))
2187	}
2188	lo, hi := offs2lohi(offset)
2189	n, err = pwritev(fd, iovecs, lo, hi)
2190	writevRacedetect(iovecs, n)
2191	return n, err
2192}
2193
2194func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2195	iovecs := make([]Iovec, 0, minIovec)
2196	iovecs = appendBytes(iovecs, iovs)
2197	if raceenabled {
2198		raceReleaseMerge(unsafe.Pointer(&ioSync))
2199	}
2200	lo, hi := offs2lohi(offset)
2201	n, err = pwritev2(fd, iovecs, lo, hi, flags)
2202	writevRacedetect(iovecs, n)
2203	return n, err
2204}
2205
2206func writevRacedetect(iovecs []Iovec, n int) {
2207	if !raceenabled {
2208		return
2209	}
2210	for i := 0; n > 0 && i < len(iovecs); i++ {
2211		m := int(iovecs[i].Len)
2212		if m > n {
2213			m = n
2214		}
2215		n -= m
2216		if m > 0 {
2217			raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
2218		}
2219	}
2220}
2221
2222// mmap varies by architecture; see syscall_linux_*.go.
2223//sys	munmap(addr uintptr, length uintptr) (err error)
2224//sys	mremap(oldaddr uintptr, oldlength uintptr, newlength uintptr, flags int, newaddr uintptr) (xaddr uintptr, err error)
2225//sys	Madvise(b []byte, advice int) (err error)
2226//sys	Mprotect(b []byte, prot int) (err error)
2227//sys	Mlock(b []byte) (err error)
2228//sys	Mlockall(flags int) (err error)
2229//sys	Msync(b []byte, flags int) (err error)
2230//sys	Munlock(b []byte) (err error)
2231//sys	Munlockall() (err error)
2232
2233const (
2234	mremapFixed     = MREMAP_FIXED
2235	mremapDontunmap = MREMAP_DONTUNMAP
2236	mremapMaymove   = MREMAP_MAYMOVE
2237)
2238
2239// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2240// using the specified flags.
2241func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2242	var p unsafe.Pointer
2243	if len(iovs) > 0 {
2244		p = unsafe.Pointer(&iovs[0])
2245	}
2246
2247	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2248	if errno != 0 {
2249		return 0, syscall.Errno(errno)
2250	}
2251
2252	return int(n), nil
2253}
2254
2255func isGroupMember(gid int) bool {
2256	groups, err := Getgroups()
2257	if err != nil {
2258		return false
2259	}
2260
2261	for _, g := range groups {
2262		if g == gid {
2263			return true
2264		}
2265	}
2266	return false
2267}
2268
2269func isCapDacOverrideSet() bool {
2270	hdr := CapUserHeader{Version: LINUX_CAPABILITY_VERSION_3}
2271	data := [2]CapUserData{}
2272	err := Capget(&hdr, &data[0])
2273
2274	return err == nil && data[0].Effective&(1<<CAP_DAC_OVERRIDE) != 0
2275}
2276
2277//sys	faccessat(dirfd int, path string, mode uint32) (err error)
2278//sys	Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
2279
2280func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
2281	if flags == 0 {
2282		return faccessat(dirfd, path, mode)
2283	}
2284
2285	if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2286		return err
2287	}
2288
2289	// The Linux kernel faccessat system call does not take any flags.
2290	// The glibc faccessat implements the flags itself; see
2291	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2292	// Because people naturally expect syscall.Faccessat to act
2293	// like C faccessat, we do the same.
2294
2295	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2296		return EINVAL
2297	}
2298
2299	var st Stat_t
2300	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2301		return err
2302	}
2303
2304	mode &= 7
2305	if mode == 0 {
2306		return nil
2307	}
2308
2309	var uid int
2310	if flags&AT_EACCESS != 0 {
2311		uid = Geteuid()
2312		if uid != 0 && isCapDacOverrideSet() {
2313			// If CAP_DAC_OVERRIDE is set, file access check is
2314			// done by the kernel in the same way as for root
2315			// (see generic_permission() in the Linux sources).
2316			uid = 0
2317		}
2318	} else {
2319		uid = Getuid()
2320	}
2321
2322	if uid == 0 {
2323		if mode&1 == 0 {
2324			// Root can read and write any file.
2325			return nil
2326		}
2327		if st.Mode&0111 != 0 {
2328			// Root can execute any file that anybody can execute.
2329			return nil
2330		}
2331		return EACCES
2332	}
2333
2334	var fmode uint32
2335	if uint32(uid) == st.Uid {
2336		fmode = (st.Mode >> 6) & 7
2337	} else {
2338		var gid int
2339		if flags&AT_EACCESS != 0 {
2340			gid = Getegid()
2341		} else {
2342			gid = Getgid()
2343		}
2344
2345		if uint32(gid) == st.Gid || isGroupMember(int(st.Gid)) {
2346			fmode = (st.Mode >> 3) & 7
2347		} else {
2348			fmode = st.Mode & 7
2349		}
2350	}
2351
2352	if fmode&mode == mode {
2353		return nil
2354	}
2355
2356	return EACCES
2357}
2358
2359//sys	nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2360//sys	openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
2361
2362// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2363// originally tried to generate it via unix/linux/types.go with "type
2364// fileHandle C.struct_file_handle" but that generated empty structs
2365// for mips64 and mips64le. Instead, hard code it for now (it's the
2366// same everywhere else) until the mips64 generator issue is fixed.
2367type fileHandle struct {
2368	Bytes uint32
2369	Type  int32
2370}
2371
2372// FileHandle represents the C struct file_handle used by
2373// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2374// OpenByHandleAt).
2375type FileHandle struct {
2376	*fileHandle
2377}
2378
2379// NewFileHandle constructs a FileHandle.
2380func NewFileHandle(handleType int32, handle []byte) FileHandle {
2381	const hdrSize = unsafe.Sizeof(fileHandle{})
2382	buf := make([]byte, hdrSize+uintptr(len(handle)))
2383	copy(buf[hdrSize:], handle)
2384	fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2385	fh.Type = handleType
2386	fh.Bytes = uint32(len(handle))
2387	return FileHandle{fh}
2388}
2389
2390func (fh *FileHandle) Size() int   { return int(fh.fileHandle.Bytes) }
2391func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2392func (fh *FileHandle) Bytes() []byte {
2393	n := fh.Size()
2394	if n == 0 {
2395		return nil
2396	}
2397	return unsafe.Slice((*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type))+4)), n)
2398}
2399
2400// NameToHandleAt wraps the name_to_handle_at system call; it obtains
2401// a handle for a path name.
2402func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2403	var mid _C_int
2404	// Try first with a small buffer, assuming the handle will
2405	// only be 32 bytes.
2406	size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2407	didResize := false
2408	for {
2409		buf := make([]byte, size)
2410		fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2411		fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2412		err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2413		if err == EOVERFLOW {
2414			if didResize {
2415				// We shouldn't need to resize more than once
2416				return
2417			}
2418			didResize = true
2419			size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2420			continue
2421		}
2422		if err != nil {
2423			return
2424		}
2425		return FileHandle{fh}, int(mid), nil
2426	}
2427}
2428
2429// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2430// file via a handle as previously returned by NameToHandleAt.
2431func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2432	return openByHandleAt(mountFD, handle.fileHandle, flags)
2433}
2434
2435// Klogset wraps the sys_syslog system call; it sets console_loglevel to
2436// the value specified by arg and passes a dummy pointer to bufp.
2437func Klogset(typ int, arg int) (err error) {
2438	var p unsafe.Pointer
2439	_, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2440	if errno != 0 {
2441		return errnoErr(errno)
2442	}
2443	return nil
2444}
2445
2446// RemoteIovec is Iovec with the pointer replaced with an integer.
2447// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2448// refers to a location in a different process' address space, which
2449// would confuse the Go garbage collector.
2450type RemoteIovec struct {
2451	Base uintptr
2452	Len  int
2453}
2454
2455//sys	ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2456//sys	ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2457
2458//sys	PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN
2459//sys	PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD
2460//sys	PidfdSendSignal(pidfd int, sig Signal, info *Siginfo, flags int) (err error) = SYS_PIDFD_SEND_SIGNAL
2461
2462//sys	shmat(id int, addr uintptr, flag int) (ret uintptr, err error)
2463//sys	shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error)
2464//sys	shmdt(addr uintptr) (err error)
2465//sys	shmget(key int, size int, flag int) (id int, err error)
2466
2467//sys	getitimer(which int, currValue *Itimerval) (err error)
2468//sys	setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error)
2469
2470// MakeItimerval creates an Itimerval from interval and value durations.
2471func MakeItimerval(interval, value time.Duration) Itimerval {
2472	return Itimerval{
2473		Interval: NsecToTimeval(interval.Nanoseconds()),
2474		Value:    NsecToTimeval(value.Nanoseconds()),
2475	}
2476}
2477
2478// A value which may be passed to the which parameter for Getitimer and
2479// Setitimer.
2480type ItimerWhich int
2481
2482// Possible which values for Getitimer and Setitimer.
2483const (
2484	ItimerReal    ItimerWhich = ITIMER_REAL
2485	ItimerVirtual ItimerWhich = ITIMER_VIRTUAL
2486	ItimerProf    ItimerWhich = ITIMER_PROF
2487)
2488
2489// Getitimer wraps getitimer(2) to return the current value of the timer
2490// specified by which.
2491func Getitimer(which ItimerWhich) (Itimerval, error) {
2492	var it Itimerval
2493	if err := getitimer(int(which), &it); err != nil {
2494		return Itimerval{}, err
2495	}
2496
2497	return it, nil
2498}
2499
2500// Setitimer wraps setitimer(2) to arm or disarm the timer specified by which.
2501// It returns the previous value of the timer.
2502//
2503// If the Itimerval argument is the zero value, the timer will be disarmed.
2504func Setitimer(which ItimerWhich, it Itimerval) (Itimerval, error) {
2505	var prev Itimerval
2506	if err := setitimer(int(which), &it, &prev); err != nil {
2507		return Itimerval{}, err
2508	}
2509
2510	return prev, nil
2511}
2512
2513//sysnb	rtSigprocmask(how int, set *Sigset_t, oldset *Sigset_t, sigsetsize uintptr) (err error) = SYS_RT_SIGPROCMASK
2514
2515func PthreadSigmask(how int, set, oldset *Sigset_t) error {
2516	if oldset != nil {
2517		// Explicitly clear in case Sigset_t is larger than _C__NSIG.
2518		*oldset = Sigset_t{}
2519	}
2520	return rtSigprocmask(how, set, oldset, _C__NSIG/8)
2521}
2522
2523//sysnb	getresuid(ruid *_C_int, euid *_C_int, suid *_C_int)
2524//sysnb	getresgid(rgid *_C_int, egid *_C_int, sgid *_C_int)
2525
2526func Getresuid() (ruid, euid, suid int) {
2527	var r, e, s _C_int
2528	getresuid(&r, &e, &s)
2529	return int(r), int(e), int(s)
2530}
2531
2532func Getresgid() (rgid, egid, sgid int) {
2533	var r, e, s _C_int
2534	getresgid(&r, &e, &s)
2535	return int(r), int(e), int(s)
2536}
2537
2538// Pselect is a wrapper around the Linux pselect6 system call.
2539// This version does not modify the timeout argument.
2540func Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
2541	// Per https://man7.org/linux/man-pages/man2/select.2.html#NOTES,
2542	// The Linux pselect6() system call modifies its timeout argument.
2543	// [Not modifying the argument] is the behavior required by POSIX.1-2001.
2544	var mutableTimeout *Timespec
2545	if timeout != nil {
2546		mutableTimeout = new(Timespec)
2547		*mutableTimeout = *timeout
2548	}
2549
2550	// The final argument of the pselect6() system call is not a
2551	// sigset_t * pointer, but is instead a structure
2552	var kernelMask *sigset_argpack
2553	if sigmask != nil {
2554		wordBits := 32 << (^uintptr(0) >> 63) // see math.intSize
2555
2556		// A sigset stores one bit per signal,
2557		// offset by 1 (because signal 0 does not exist).
2558		// So the number of words needed is ⌈__C_NSIG - 1 / wordBits⌉.
2559		sigsetWords := (_C__NSIG - 1 + wordBits - 1) / (wordBits)
2560
2561		sigsetBytes := uintptr(sigsetWords * (wordBits / 8))
2562		kernelMask = &sigset_argpack{
2563			ss:    sigmask,
2564			ssLen: sigsetBytes,
2565		}
2566	}
2567
2568	return pselect6(nfd, r, w, e, mutableTimeout, kernelMask)
2569}
2570
2571//sys	schedSetattr(pid int, attr *SchedAttr, flags uint) (err error)
2572//sys	schedGetattr(pid int, attr *SchedAttr, size uint, flags uint) (err error)
2573
2574// SchedSetAttr is a wrapper for sched_setattr(2) syscall.
2575// https://man7.org/linux/man-pages/man2/sched_setattr.2.html
2576func SchedSetAttr(pid int, attr *SchedAttr, flags uint) error {
2577	if attr == nil {
2578		return EINVAL
2579	}
2580	attr.Size = SizeofSchedAttr
2581	return schedSetattr(pid, attr, flags)
2582}
2583
2584// SchedGetAttr is a wrapper for sched_getattr(2) syscall.
2585// https://man7.org/linux/man-pages/man2/sched_getattr.2.html
2586func SchedGetAttr(pid int, flags uint) (*SchedAttr, error) {
2587	attr := &SchedAttr{}
2588	if err := schedGetattr(pid, attr, SizeofSchedAttr, flags); err != nil {
2589		return nil, err
2590	}
2591	return attr, nil
2592}
2593
2594//sys	Cachestat(fd uint, crange *CachestatRange, cstat *Cachestat_t, flags uint) (err error)
2595