xref: /aosp_15_r20/art/runtime/thread.cc (revision 795d594fd825385562da6b089ea9b2033f3abf5a)
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread.h"
18 
19 #include <limits.h>  // for INT_MAX
20 #include <pthread.h>
21 #include <signal.h>
22 #include <stdlib.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <algorithm>
27 #include <atomic>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32 #include <optional>
33 #include <sstream>
34 
35 #include "android-base/file.h"
36 #include "android-base/stringprintf.h"
37 #include "android-base/strings.h"
38 
39 #include "unwindstack/AndroidUnwinder.h"
40 
41 #include "arch/context-inl.h"
42 #include "arch/context.h"
43 #include "art_field-inl.h"
44 #include "art_method-inl.h"
45 #include "base/atomic.h"
46 #include "base/bit_utils.h"
47 #include "base/casts.h"
48 #include "base/file_utils.h"
49 #include "base/memory_tool.h"
50 #include "base/mutex.h"
51 #include "base/stl_util.h"
52 #include "base/systrace.h"
53 #include "base/time_utils.h"
54 #include "base/timing_logger.h"
55 #include "base/to_str.h"
56 #include "base/utils.h"
57 #include "class_linker-inl.h"
58 #include "class_root-inl.h"
59 #include "com_android_art_flags.h"
60 #include "debugger.h"
61 #include "dex/descriptors_names.h"
62 #include "dex/dex_file-inl.h"
63 #include "dex/dex_file_annotations.h"
64 #include "dex/dex_file_types.h"
65 #include "entrypoints/entrypoint_utils.h"
66 #include "entrypoints/quick/quick_alloc_entrypoints.h"
67 #include "entrypoints/quick/runtime_entrypoints_list.h"
68 #include "gc/accounting/card_table-inl.h"
69 #include "gc/accounting/heap_bitmap-inl.h"
70 #include "gc/allocator/rosalloc.h"
71 #include "gc/heap.h"
72 #include "gc/space/space-inl.h"
73 #include "gc_root.h"
74 #include "handle_scope-inl.h"
75 #include "indirect_reference_table-inl.h"
76 #include "instrumentation.h"
77 #include "intern_table.h"
78 #include "interpreter/interpreter.h"
79 #include "interpreter/shadow_frame-inl.h"
80 #include "java_frame_root_info.h"
81 #include "jni/java_vm_ext.h"
82 #include "jni/jni_internal.h"
83 #include "mirror/class-alloc-inl.h"
84 #include "mirror/class_loader.h"
85 #include "mirror/object_array-alloc-inl.h"
86 #include "mirror/object_array-inl.h"
87 #include "mirror/stack_frame_info.h"
88 #include "mirror/stack_trace_element.h"
89 #include "monitor.h"
90 #include "monitor_objects_stack_visitor.h"
91 #include "native_stack_dump.h"
92 #include "nativehelper/scoped_local_ref.h"
93 #include "nativehelper/scoped_utf_chars.h"
94 #include "nterp_helpers.h"
95 #include "nth_caller_visitor.h"
96 #include "oat/oat_quick_method_header.h"
97 #include "oat/stack_map.h"
98 #include "obj_ptr-inl.h"
99 #include "object_lock.h"
100 #include "palette/palette.h"
101 #include "quick/quick_method_frame_info.h"
102 #include "quick_exception_handler.h"
103 #include "read_barrier-inl.h"
104 #include "reflection.h"
105 #include "reflective_handle_scope-inl.h"
106 #include "runtime-inl.h"
107 #include "runtime.h"
108 #include "runtime_callbacks.h"
109 #include "scoped_thread_state_change-inl.h"
110 #include "scoped_disable_public_sdk_checker.h"
111 #include "stack.h"
112 #include "thread-inl.h"
113 #include "thread_list.h"
114 #include "trace.h"
115 #include "trace_profile.h"
116 #include "verify_object.h"
117 #include "well_known_classes-inl.h"
118 
119 #ifdef ART_TARGET_ANDROID
120 #include <android/set_abort_message.h>
121 #endif
122 
123 #if ART_USE_FUTEXES
124 #include <linux/futex.h>
125 #include <sys/syscall.h>
126 #endif  // ART_USE_FUTEXES
127 
128 #pragma clang diagnostic push
129 #pragma clang diagnostic error "-Wconversion"
130 
131 extern "C" __attribute__((weak)) void* __hwasan_tag_pointer(const volatile void* p,
132                                                             unsigned char tag);
133 
134 namespace art_flags = com::android::art::flags;
135 
136 namespace art HIDDEN {
137 
138 using android::base::StringAppendV;
139 using android::base::StringPrintf;
140 
141 bool Thread::is_started_ = false;
142 pthread_key_t Thread::pthread_key_self_;
143 ConditionVariable* Thread::resume_cond_ = nullptr;
144 const size_t Thread::kStackOverflowImplicitCheckSize =
145     GetStackOverflowReservedBytes(kRuntimeQuickCodeISA);
146 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
147 Thread* Thread::jit_sensitive_thread_ = nullptr;
148 std::atomic<Mutex*> Thread::cp_placeholder_mutex_(nullptr);
149 #ifndef __BIONIC__
150 thread_local Thread* Thread::self_tls_ = nullptr;
151 #endif
152 
153 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
154 
155 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
156 
InitCardTable()157 void Thread::InitCardTable() {
158   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
159 }
160 
UnimplementedEntryPoint()161 static void UnimplementedEntryPoint() {
162   UNIMPLEMENTED(FATAL);
163 }
164 
165 void InitEntryPoints(JniEntryPoints* jpoints,
166                      QuickEntryPoints* qpoints,
167                      bool monitor_jni_entry_exit);
168 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
169 void UpdateLowOverheadTraceEntrypoints(QuickEntryPoints* qpoints, bool enable);
170 
UpdateTlsLowOverheadTraceEntrypoints(bool enable)171 void Thread::UpdateTlsLowOverheadTraceEntrypoints(bool enable) {
172   UpdateLowOverheadTraceEntrypoints(&tlsPtr_.quick_entrypoints, enable);
173 }
174 
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)175 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
176   CHECK(gUseReadBarrier);
177   tls32_.is_gc_marking = is_marking;
178   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking);
179 }
180 
InitTlsEntryPoints()181 void Thread::InitTlsEntryPoints() {
182   ScopedTrace trace("InitTlsEntryPoints");
183   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
184   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
185   uintptr_t* end = reinterpret_cast<uintptr_t*>(
186       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
187   for (uintptr_t* it = begin; it != end; ++it) {
188     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
189   }
190   bool monitor_jni_entry_exit = false;
191   PaletteShouldReportJniInvocations(&monitor_jni_entry_exit);
192   if (monitor_jni_entry_exit) {
193     AtomicSetFlag(ThreadFlag::kMonitorJniEntryExit);
194   }
195   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints, monitor_jni_entry_exit);
196 }
197 
ResetQuickAllocEntryPointsForThread()198 void Thread::ResetQuickAllocEntryPointsForThread() {
199   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
200 }
201 
202 class DeoptimizationContextRecord {
203  public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationMethodType method_type,DeoptimizationContextRecord * link)204   DeoptimizationContextRecord(const JValue& ret_val,
205                               bool is_reference,
206                               bool from_code,
207                               ObjPtr<mirror::Throwable> pending_exception,
208                               DeoptimizationMethodType method_type,
209                               DeoptimizationContextRecord* link)
210       : ret_val_(ret_val),
211         is_reference_(is_reference),
212         from_code_(from_code),
213         pending_exception_(pending_exception.Ptr()),
214         deopt_method_type_(method_type),
215         link_(link) {}
216 
GetReturnValue() const217   JValue GetReturnValue() const { return ret_val_; }
IsReference() const218   bool IsReference() const { return is_reference_; }
GetFromCode() const219   bool GetFromCode() const { return from_code_; }
GetPendingException() const220   ObjPtr<mirror::Throwable> GetPendingException() const REQUIRES_SHARED(Locks::mutator_lock_) {
221     return pending_exception_;
222   }
GetLink() const223   DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()224   mirror::Object** GetReturnValueAsGCRoot() {
225     DCHECK(is_reference_);
226     return ret_val_.GetGCRoot();
227   }
GetPendingExceptionAsGCRoot()228   mirror::Object** GetPendingExceptionAsGCRoot() {
229     return reinterpret_cast<mirror::Object**>(&pending_exception_);
230   }
GetDeoptimizationMethodType() const231   DeoptimizationMethodType GetDeoptimizationMethodType() const {
232     return deopt_method_type_;
233   }
234 
235  private:
236   // The value returned by the method at the top of the stack before deoptimization.
237   JValue ret_val_;
238 
239   // Indicates whether the returned value is a reference. If so, the GC will visit it.
240   const bool is_reference_;
241 
242   // Whether the context was created from an explicit deoptimization in the code.
243   const bool from_code_;
244 
245   // The exception that was pending before deoptimization (or null if there was no pending
246   // exception).
247   mirror::Throwable* pending_exception_;
248 
249   // Whether the context was created for an (idempotent) runtime method.
250   const DeoptimizationMethodType deopt_method_type_;
251 
252   // A link to the previous DeoptimizationContextRecord.
253   DeoptimizationContextRecord* const link_;
254 
255   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
256 };
257 
258 class StackedShadowFrameRecord {
259  public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)260   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
261                            StackedShadowFrameType type,
262                            StackedShadowFrameRecord* link)
263       : shadow_frame_(shadow_frame),
264         type_(type),
265         link_(link) {}
266 
GetShadowFrame() const267   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const268   StackedShadowFrameType GetType() const { return type_; }
GetLink() const269   StackedShadowFrameRecord* GetLink() const { return link_; }
270 
271  private:
272   ShadowFrame* const shadow_frame_;
273   const StackedShadowFrameType type_;
274   StackedShadowFrameRecord* const link_;
275 
276   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
277 };
278 
PushDeoptimizationContext(const JValue & return_value,bool is_reference,ObjPtr<mirror::Throwable> exception,bool from_code,DeoptimizationMethodType method_type)279 void Thread::PushDeoptimizationContext(const JValue& return_value,
280                                        bool is_reference,
281                                        ObjPtr<mirror::Throwable> exception,
282                                        bool from_code,
283                                        DeoptimizationMethodType method_type) {
284   DCHECK(exception != Thread::GetDeoptimizationException());
285   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
286       return_value,
287       is_reference,
288       from_code,
289       exception,
290       method_type,
291       tlsPtr_.deoptimization_context_stack);
292   tlsPtr_.deoptimization_context_stack = record;
293 }
294 
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code,DeoptimizationMethodType * method_type)295 void Thread::PopDeoptimizationContext(JValue* result,
296                                       ObjPtr<mirror::Throwable>* exception,
297                                       bool* from_code,
298                                       DeoptimizationMethodType* method_type) {
299   AssertHasDeoptimizationContext();
300   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
301   tlsPtr_.deoptimization_context_stack = record->GetLink();
302   result->SetJ(record->GetReturnValue().GetJ());
303   *exception = record->GetPendingException();
304   *from_code = record->GetFromCode();
305   *method_type = record->GetDeoptimizationMethodType();
306   delete record;
307 }
308 
AssertHasDeoptimizationContext()309 void Thread::AssertHasDeoptimizationContext() {
310   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
311       << "No deoptimization context for thread " << *this;
312 }
313 
314 enum {
315   kPermitAvailable = 0,  // Incrementing consumes the permit
316   kNoPermit = 1,  // Incrementing marks as waiter waiting
317   kNoPermitWaiterWaiting = 2
318 };
319 
Park(bool is_absolute,int64_t time)320 void Thread::Park(bool is_absolute, int64_t time) {
321   DCHECK(this == Thread::Current());
322 #if ART_USE_FUTEXES
323   // Consume the permit, or mark as waiting. This cannot cause park_state to go
324   // outside of its valid range (0, 1, 2), because in all cases where 2 is
325   // assigned it is set back to 1 before returning, and this method cannot run
326   // concurrently with itself since it operates on the current thread.
327   int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed);
328   if (old_state == kNoPermit) {
329     // no permit was available. block thread until later.
330     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time);
331     bool timed_out = false;
332     if (!is_absolute && time == 0) {
333       // Thread.getState() is documented to return waiting for untimed parks.
334       ScopedThreadSuspension sts(this, ThreadState::kWaiting);
335       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
336       int result = futex(tls32_.park_state_.Address(),
337                      FUTEX_WAIT_PRIVATE,
338                      /* sleep if val = */ kNoPermitWaiterWaiting,
339                      /* timeout */ nullptr,
340                      nullptr,
341                      0);
342       // This errno check must happen before the scope is closed, to ensure that
343       // no destructors (such as ScopedThreadSuspension) overwrite errno.
344       if (result == -1) {
345         switch (errno) {
346           case EAGAIN:
347             FALLTHROUGH_INTENDED;
348           case EINTR: break;  // park() is allowed to spuriously return
349           default: PLOG(FATAL) << "Failed to park";
350         }
351       }
352     } else if (time > 0) {
353       // Only actually suspend and futex_wait if we're going to wait for some
354       // positive amount of time - the kernel will reject negative times with
355       // EINVAL, and a zero time will just noop.
356 
357       // Thread.getState() is documented to return timed wait for timed parks.
358       ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting);
359       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
360       timespec timespec;
361       int result = 0;
362       if (is_absolute) {
363         // Time is millis when scheduled for an absolute time
364         timespec.tv_nsec = (time % 1000) * 1000000;
365         timespec.tv_sec = SaturatedTimeT(time / 1000);
366         // This odd looking pattern is recommended by futex documentation to
367         // wait until an absolute deadline, with otherwise identical behavior to
368         // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the
369         // correct time when the system clock changes.
370         result = futex(tls32_.park_state_.Address(),
371                        FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME,
372                        /* sleep if val = */ kNoPermitWaiterWaiting,
373                        &timespec,
374                        nullptr,
375                        static_cast<int>(FUTEX_BITSET_MATCH_ANY));
376       } else {
377         // Time is nanos when scheduled for a relative time
378         timespec.tv_sec = SaturatedTimeT(time / 1000000000);
379         timespec.tv_nsec = time % 1000000000;
380         result = futex(tls32_.park_state_.Address(),
381                        FUTEX_WAIT_PRIVATE,
382                        /* sleep if val = */ kNoPermitWaiterWaiting,
383                        &timespec,
384                        nullptr,
385                        0);
386       }
387       // This errno check must happen before the scope is closed, to ensure that
388       // no destructors (such as ScopedThreadSuspension) overwrite errno.
389       if (result == -1) {
390         switch (errno) {
391           case ETIMEDOUT:
392             timed_out = true;
393             FALLTHROUGH_INTENDED;
394           case EAGAIN:
395           case EINTR: break;  // park() is allowed to spuriously return
396           default: PLOG(FATAL) << "Failed to park";
397         }
398       }
399     }
400     // Mark as no longer waiting, and consume permit if there is one.
401     tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
402     // TODO: Call to signal jvmti here
403     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out);
404   } else {
405     // the fetch_add has consumed the permit. immediately return.
406     DCHECK_EQ(old_state, kPermitAvailable);
407   }
408 #else
409   #pragma clang diagnostic push
410   #pragma clang diagnostic warning "-W#warnings"
411   #warning "LockSupport.park/unpark implemented as noops without FUTEX support."
412   #pragma clang diagnostic pop
413   UNUSED(is_absolute, time);
414   UNIMPLEMENTED(WARNING);
415   sched_yield();
416 #endif
417 }
418 
Unpark()419 void Thread::Unpark() {
420 #if ART_USE_FUTEXES
421   // Set permit available; will be consumed either by fetch_add (when the thread
422   // tries to park) or store (when the parked thread is woken up)
423   if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed)
424       == kNoPermitWaiterWaiting) {
425     int result = futex(tls32_.park_state_.Address(),
426                        FUTEX_WAKE_PRIVATE,
427                        /* number of waiters = */ 1,
428                        nullptr,
429                        nullptr,
430                        0);
431     if (result == -1) {
432       PLOG(FATAL) << "Failed to unpark";
433     }
434   }
435 #else
436   UNIMPLEMENTED(WARNING);
437 #endif
438 }
439 
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)440 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
441   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
442       sf, type, tlsPtr_.stacked_shadow_frame_record);
443   tlsPtr_.stacked_shadow_frame_record = record;
444 }
445 
MaybePopDeoptimizedStackedShadowFrame()446 ShadowFrame* Thread::MaybePopDeoptimizedStackedShadowFrame() {
447   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
448   if (record == nullptr ||
449       record->GetType() != StackedShadowFrameType::kDeoptimizationShadowFrame) {
450     return nullptr;
451   }
452   return PopStackedShadowFrame();
453 }
454 
PopStackedShadowFrame()455 ShadowFrame* Thread::PopStackedShadowFrame() {
456   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
457   DCHECK_NE(record, nullptr);
458   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
459   ShadowFrame* shadow_frame = record->GetShadowFrame();
460   delete record;
461   return shadow_frame;
462 }
463 
464 class FrameIdToShadowFrame {
465  public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)466   static FrameIdToShadowFrame* Create(size_t frame_id,
467                                       ShadowFrame* shadow_frame,
468                                       FrameIdToShadowFrame* next,
469                                       size_t num_vregs) {
470     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
471     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
472     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
473   }
474 
Delete(FrameIdToShadowFrame * f)475   static void Delete(FrameIdToShadowFrame* f) {
476     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
477     delete[] memory;
478   }
479 
GetFrameId() const480   size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const481   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const482   FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)483   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()484   bool* GetUpdatedVRegFlags() {
485     return updated_vreg_flags_;
486   }
487 
488  private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)489   FrameIdToShadowFrame(size_t frame_id,
490                        ShadowFrame* shadow_frame,
491                        FrameIdToShadowFrame* next)
492       : frame_id_(frame_id),
493         shadow_frame_(shadow_frame),
494         next_(next) {}
495 
496   const size_t frame_id_;
497   ShadowFrame* const shadow_frame_;
498   FrameIdToShadowFrame* next_;
499   bool updated_vreg_flags_[0];
500 
501   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
502 };
503 
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)504 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
505                                                       size_t frame_id) {
506   FrameIdToShadowFrame* found = nullptr;
507   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
508     if (record->GetFrameId() == frame_id) {
509       if (kIsDebugBuild) {
510         // Check we have at most one record for this frame.
511         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
512         found = record;
513       } else {
514         return record;
515       }
516     }
517   }
518   return found;
519 }
520 
FindDebuggerShadowFrame(size_t frame_id)521 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
522   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
523       tlsPtr_.frame_id_to_shadow_frame, frame_id);
524   if (record != nullptr) {
525     return record->GetShadowFrame();
526   }
527   return nullptr;
528 }
529 
530 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)531 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
532   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
533       tlsPtr_.frame_id_to_shadow_frame, frame_id);
534   CHECK(record != nullptr);
535   return record->GetUpdatedVRegFlags();
536 }
537 
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)538 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
539                                                      uint32_t num_vregs,
540                                                      ArtMethod* method,
541                                                      uint32_t dex_pc) {
542   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
543   if (shadow_frame != nullptr) {
544     return shadow_frame;
545   }
546   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
547   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, method, dex_pc);
548   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
549                                                               shadow_frame,
550                                                               tlsPtr_.frame_id_to_shadow_frame,
551                                                               num_vregs);
552   for (uint32_t i = 0; i < num_vregs; i++) {
553     // Do this to clear all references for root visitors.
554     shadow_frame->SetVRegReference(i, nullptr);
555     // This flag will be changed to true if the debugger modifies the value.
556     record->GetUpdatedVRegFlags()[i] = false;
557   }
558   tlsPtr_.frame_id_to_shadow_frame = record;
559   return shadow_frame;
560 }
561 
GetCustomTLS(const char * key)562 TLSData* Thread::GetCustomTLS(const char* key) {
563   MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
564   auto it = custom_tls_.find(key);
565   return (it != custom_tls_.end()) ? it->second.get() : nullptr;
566 }
567 
SetCustomTLS(const char * key,TLSData * data)568 void Thread::SetCustomTLS(const char* key, TLSData* data) {
569   // We will swap the old data (which might be nullptr) with this and then delete it outside of the
570   // custom_tls_lock_.
571   std::unique_ptr<TLSData> old_data(data);
572   {
573     MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
574     custom_tls_.GetOrCreate(key, []() { return std::unique_ptr<TLSData>(); }).swap(old_data);
575   }
576 }
577 
RemoveDebuggerShadowFrameMapping(size_t frame_id)578 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
579   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
580   if (head->GetFrameId() == frame_id) {
581     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
582     FrameIdToShadowFrame::Delete(head);
583     return;
584   }
585   FrameIdToShadowFrame* prev = head;
586   for (FrameIdToShadowFrame* record = head->GetNext();
587        record != nullptr;
588        prev = record, record = record->GetNext()) {
589     if (record->GetFrameId() == frame_id) {
590       prev->SetNext(record->GetNext());
591       FrameIdToShadowFrame::Delete(record);
592       return;
593     }
594   }
595   LOG(FATAL) << "No shadow frame for frame " << frame_id;
596   UNREACHABLE();
597 }
598 
InitTid()599 void Thread::InitTid() {
600   tls32_.tid = ::art::GetTid();
601 }
602 
InitAfterFork()603 void Thread::InitAfterFork() {
604   // One thread (us) survived the fork, but we have a new tid so we need to
605   // update the value stashed in this Thread*.
606   InitTid();
607 }
608 
DeleteJPeer(JNIEnv * env)609 void Thread::DeleteJPeer(JNIEnv* env) {
610   // Make sure nothing can observe both opeer and jpeer set at the same time.
611   jobject old_jpeer = tlsPtr_.jpeer;
612   CHECK(old_jpeer != nullptr);
613   tlsPtr_.jpeer = nullptr;
614   env->DeleteGlobalRef(old_jpeer);
615 }
616 
CreateCallbackWithUffdGc(void * arg)617 void* Thread::CreateCallbackWithUffdGc(void* arg) {
618   return Thread::CreateCallback(arg);
619 }
620 
CreateCallback(void * arg)621 void* Thread::CreateCallback(void* arg) {
622   Thread* self = reinterpret_cast<Thread*>(arg);
623   Runtime* runtime = Runtime::Current();
624   if (runtime == nullptr) {
625     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
626     return nullptr;
627   }
628   {
629     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
630     //       after self->Init().
631     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
632     // Check that if we got here we cannot be shutting down (as shutdown should never have started
633     // while threads are being born).
634     CHECK(!runtime->IsShuttingDownLocked());
635     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
636     //       a mess in InitStack. We do not have a reasonable way to recover from that, so abort
637     //       the runtime in such a case. In case this ever changes, we need to make sure here to
638     //       delete the tmp_jni_env, as we own it at this point.
639     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
640     self->tlsPtr_.tmp_jni_env = nullptr;
641     Runtime::Current()->EndThreadBirth();
642   }
643   {
644     ScopedObjectAccess soa(self);
645     self->InitStringEntryPoints();
646 
647     // Copy peer into self, deleting global reference when done.
648     CHECK(self->tlsPtr_.jpeer != nullptr);
649     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
650     // Make sure nothing can observe both opeer and jpeer set at the same time.
651     self->DeleteJPeer(self->GetJniEnv());
652     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
653 
654     ArtField* priorityField = WellKnownClasses::java_lang_Thread_priority;
655     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
656 
657     runtime->GetRuntimeCallbacks()->ThreadStart(self);
658 
659     // Unpark ourselves if the java peer was unparked before it started (see
660     // b/28845097#comment49 for more information)
661 
662     ArtField* unparkedField = WellKnownClasses::java_lang_Thread_unparkedBeforeStart;
663     bool should_unpark = false;
664     {
665       // Hold the lock here, so that if another thread calls unpark before the thread starts
666       // we don't observe the unparkedBeforeStart field before the unparker writes to it,
667       // which could cause a lost unpark.
668       art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_);
669       should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE;
670     }
671     if (should_unpark) {
672       self->Unpark();
673     }
674     // Invoke the 'run' method of our java.lang.Thread.
675     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
676     WellKnownClasses::java_lang_Thread_run->InvokeVirtual<'V'>(self, receiver);
677   }
678   // Detach and delete self.
679   Runtime::Current()->GetThreadList()->Unregister(self, /* should_run_callbacks= */ true);
680 
681   return nullptr;
682 }
683 
FromManagedThread(Thread * self,ObjPtr<mirror::Object> thread_peer)684 Thread* Thread::FromManagedThread(Thread* self, ObjPtr<mirror::Object> thread_peer) {
685   ArtField* f = WellKnownClasses::java_lang_Thread_nativePeer;
686   Thread* result = reinterpret_cast64<Thread*>(f->GetLong(thread_peer));
687   // Check that if we have a result it is either suspended or we hold the thread_list_lock_
688   // to stop it from going away.
689   if (kIsDebugBuild) {
690     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
691     if (result != nullptr && !result->IsSuspended()) {
692       Locks::thread_list_lock_->AssertHeld(self);
693     }
694   }
695   return result;
696 }
697 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)698 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
699                                   jobject java_thread) {
700   return FromManagedThread(soa.Self(), soa.Decode<mirror::Object>(java_thread));
701 }
702 
FixStackSize(size_t stack_size)703 static size_t FixStackSize(size_t stack_size) {
704   // A stack size of zero means "use the default".
705   if (stack_size == 0) {
706     stack_size = Runtime::Current()->GetDefaultStackSize();
707   }
708 
709   // Dalvik used the bionic pthread default stack size for native threads,
710   // so include that here to support apps that expect large native stacks.
711   stack_size += 1 * MB;
712 
713   // Under sanitization, frames of the interpreter may become bigger, both for C code as
714   // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization
715   // of all core classes cannot be done in all test circumstances.
716   if (kMemoryToolIsAvailable) {
717     stack_size = std::max(2 * MB, stack_size);
718   }
719 
720   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
721   if (stack_size < PTHREAD_STACK_MIN) {
722     stack_size = PTHREAD_STACK_MIN;
723   }
724 
725   if (Runtime::Current()->GetImplicitStackOverflowChecks()) {
726     // If we are going to use implicit stack checks, allocate space for the protected
727     // region at the bottom of the stack.
728     stack_size += Thread::kStackOverflowImplicitCheckSize +
729         GetStackOverflowReservedBytes(kRuntimeQuickCodeISA);
730   } else {
731     // It's likely that callers are trying to ensure they have at least a certain amount of
732     // stack space, so we should add our reserved space on top of what they requested, rather
733     // than implicitly take it away from them.
734     stack_size += GetStackOverflowReservedBytes(kRuntimeQuickCodeISA);
735   }
736 
737   // Some systems require the stack size to be a multiple of the system page size, so round up.
738   stack_size = RoundUp(stack_size, gPageSize);
739 
740   return stack_size;
741 }
742 
743 template <>
FindStackTop()744 NO_INLINE uint8_t* Thread::FindStackTop<StackType::kHardware>() {
745   return reinterpret_cast<uint8_t*>(
746       AlignDown(__builtin_frame_address(0), gPageSize));
747 }
748 
749 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
750 // overflow is detected.  It is located right below the stack_begin_.
751 template <StackType stack_type>
752 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()753 void Thread::InstallImplicitProtection() {
754   uint8_t* pregion = GetStackBegin<stack_type>() - GetStackOverflowProtectedSize();
755   // Page containing current top of stack.
756   uint8_t* stack_top = FindStackTop<stack_type>();
757 
758   // Try to directly protect the stack.
759   VLOG(threads) << "installing stack protected region at " << std::hex <<
760         static_cast<void*>(pregion) << " to " <<
761         static_cast<void*>(pregion + GetStackOverflowProtectedSize() - 1);
762   if (ProtectStack<stack_type>(/* fatal_on_error= */ false)) {
763     // Tell the kernel that we won't be needing these pages any more.
764     // NB. madvise will probably write zeroes into the memory (on linux it does).
765     size_t unwanted_size =
766         reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - gPageSize;
767     madvise(pregion, unwanted_size, MADV_DONTNEED);
768     return;
769   }
770 
771   // There is a little complexity here that deserves a special mention.  On some
772   // architectures, the stack is created using a VM_GROWSDOWN flag
773   // to prevent memory being allocated when it's not needed.  This flag makes the
774   // kernel only allocate memory for the stack by growing down in memory.  Because we
775   // want to put an mprotected region far away from that at the stack top, we need
776   // to make sure the pages for the stack are mapped in before we call mprotect.
777   //
778   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
779   // with a non-mapped stack (usually only the main thread).
780   //
781   // We map in the stack by reading every page from the stack bottom (highest address)
782   // to the stack top. (We then madvise this away.) This must be done by reading from the
783   // current stack pointer downwards.
784   //
785   // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
786   // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
787   // thus have to move the stack pointer. We do this portably by using a recursive function with a
788   // large stack frame size.
789 
790   // (Defensively) first remove the protection on the protected region as we'll want to read
791   // and write it. Ignore errors.
792   UnprotectStack<stack_type>();
793 
794   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
795       static_cast<void*>(pregion);
796 
797   struct RecurseDownStack {
798     // This function has an intentionally large stack size.
799 #pragma GCC diagnostic push
800 #pragma GCC diagnostic ignored "-Wframe-larger-than="
801     NO_INLINE
802     __attribute__((no_sanitize("memtag"))) static void Touch(uintptr_t target) {
803       volatile size_t zero = 0;
804       // Use a large local volatile array to ensure a large frame size. Do not use anything close
805       // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
806       // there is no pragma support for this.
807       // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
808       constexpr size_t kAsanMultiplier =
809 #ifdef ADDRESS_SANITIZER
810           2u;
811 #else
812           1u;
813 #endif
814       // Keep space uninitialized as it can overflow the stack otherwise (should Clang actually
815       // auto-initialize this local variable).
816       volatile char space[gPageSize - (kAsanMultiplier * 256)] __attribute__((uninitialized));
817       [[maybe_unused]] char sink = space[zero];
818       // Remove tag from the pointer. Nop in non-hwasan builds.
819       uintptr_t addr = reinterpret_cast<uintptr_t>(
820           __hwasan_tag_pointer != nullptr ? __hwasan_tag_pointer(space, 0) : space);
821       if (addr >= target + gPageSize) {
822         Touch(target);
823       }
824       zero *= 2;  // Try to avoid tail recursion.
825     }
826 #pragma GCC diagnostic pop
827   };
828   RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
829 
830   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
831       static_cast<void*>(pregion) << " to " <<
832       static_cast<void*>(pregion + GetStackOverflowProtectedSize() - 1);
833 
834   // Protect the bottom of the stack to prevent read/write to it.
835   ProtectStack<stack_type>(/* fatal_on_error= */ true);
836 
837   // Tell the kernel that we won't be needing these pages any more.
838   // NB. madvise will probably write zeroes into the memory (on linux it does).
839   size_t unwanted_size =
840       reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - gPageSize;
841   madvise(pregion, unwanted_size, MADV_DONTNEED);
842 }
843 
844 template <bool kSupportTransaction>
SetNativePeer(ObjPtr<mirror::Object> java_peer,Thread * thread)845 static void SetNativePeer(ObjPtr<mirror::Object> java_peer, Thread* thread)
846     REQUIRES_SHARED(Locks::mutator_lock_) {
847   ArtField* field = WellKnownClasses::java_lang_Thread_nativePeer;
848   if (kSupportTransaction && Runtime::Current()->IsActiveTransaction()) {
849     field->SetLong</*kTransactionActive=*/ true>(java_peer, reinterpret_cast<jlong>(thread));
850   } else {
851     field->SetLong</*kTransactionActive=*/ false>(java_peer, reinterpret_cast<jlong>(thread));
852   }
853 }
854 
SetNativePeer(JNIEnv * env,jobject java_peer,Thread * thread)855 static void SetNativePeer(JNIEnv* env, jobject java_peer, Thread* thread) {
856   ScopedObjectAccess soa(env);
857   SetNativePeer</*kSupportTransaction=*/ false>(soa.Decode<mirror::Object>(java_peer), thread);
858 }
859 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)860 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
861   CHECK(java_peer != nullptr);
862   Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
863 
864   if (VLOG_IS_ON(threads)) {
865     ScopedObjectAccess soa(env);
866 
867     ArtField* f = WellKnownClasses::java_lang_Thread_name;
868     ObjPtr<mirror::String> java_name =
869         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
870     std::string thread_name;
871     if (java_name != nullptr) {
872       thread_name = java_name->ToModifiedUtf8();
873     } else {
874       thread_name = "(Unnamed)";
875     }
876 
877     VLOG(threads) << "Creating native thread for " << thread_name;
878     self->Dump(LOG_STREAM(INFO));
879   }
880 
881   Runtime* runtime = Runtime::Current();
882 
883   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
884   bool thread_start_during_shutdown = false;
885   {
886     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
887     if (runtime->IsShuttingDownLocked()) {
888       thread_start_during_shutdown = true;
889     } else {
890       runtime->StartThreadBirth();
891     }
892   }
893   if (thread_start_during_shutdown) {
894     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
895     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
896     return;
897   }
898 
899   Thread* child_thread = new Thread(is_daemon);
900   // Use global JNI ref to hold peer live while child thread starts.
901   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
902   stack_size = FixStackSize(stack_size);
903 
904   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
905   // to assign it.
906   SetNativePeer(env, java_peer, child_thread);
907 
908   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
909   // do not have a good way to report this on the child's side.
910   std::string error_msg;
911   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
912       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
913 
914   int pthread_create_result = 0;
915   if (child_jni_env_ext.get() != nullptr) {
916     pthread_t new_pthread;
917     pthread_attr_t attr;
918     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
919     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
920     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
921                        "PTHREAD_CREATE_DETACHED");
922     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
923     pthread_create_result = pthread_create(&new_pthread,
924                                            &attr,
925                                            gUseUserfaultfd ? Thread::CreateCallbackWithUffdGc
926                                                            : Thread::CreateCallback,
927                                            child_thread);
928     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
929 
930     if (pthread_create_result == 0) {
931       // pthread_create started the new thread. The child is now responsible for managing the
932       // JNIEnvExt we created.
933       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
934       //       between the threads.
935       child_jni_env_ext.release();  // NOLINT pthreads API.
936       return;
937     }
938   }
939 
940   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
941   {
942     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
943     runtime->EndThreadBirth();
944   }
945   // Manually delete the global reference since Thread::Init will not have been run. Make sure
946   // nothing can observe both opeer and jpeer set at the same time.
947   child_thread->DeleteJPeer(env);
948   delete child_thread;
949   child_thread = nullptr;
950   // TODO: remove from thread group?
951   SetNativePeer(env, java_peer, nullptr);
952   {
953     std::string msg(child_jni_env_ext.get() == nullptr ?
954         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
955         StringPrintf("pthread_create (%s stack) failed: %s",
956                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
957     ScopedObjectAccess soa(env);
958     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
959   }
960 }
961 
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)962 static void GetThreadStack(pthread_t thread,
963                            void** stack_base,
964                            size_t* stack_size,
965                            size_t* guard_size) {
966 #if defined(__APPLE__)
967   *stack_size = pthread_get_stacksize_np(thread);
968   void* stack_addr = pthread_get_stackaddr_np(thread);
969 
970   // Check whether stack_addr is the base or end of the stack.
971   // (On Mac OS 10.7, it's the end.)
972   int stack_variable;
973   if (stack_addr > &stack_variable) {
974     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
975   } else {
976     *stack_base = stack_addr;
977   }
978 
979   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
980   pthread_attr_t attributes;
981   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
982   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
983   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
984 #else
985   pthread_attr_t attributes;
986   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
987   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
988   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
989   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
990 
991 #if defined(__GLIBC__)
992   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
993   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
994   // will be broken because we'll die long before we get close to 2GB.
995   bool is_main_thread = (::art::GetTid() == static_cast<uint32_t>(getpid()));
996   if (is_main_thread) {
997     rlimit stack_limit;
998     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
999       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1000     }
1001     if (stack_limit.rlim_cur == RLIM_INFINITY) {
1002       size_t old_stack_size = *stack_size;
1003 
1004       // Use the kernel default limit as our size, and adjust the base to match.
1005       *stack_size = 8 * MB;
1006       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1007 
1008       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1009                     << " to " << PrettySize(*stack_size)
1010                     << " with base " << *stack_base;
1011     }
1012   }
1013 #endif
1014 
1015 #endif
1016 }
1017 
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)1018 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
1019   // This function does all the initialization that must be run by the native thread it applies to.
1020   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
1021   // we can handshake with the corresponding native thread when it's ready.) Check this native
1022   // thread hasn't been through here already...
1023   CHECK(Thread::Current() == nullptr);
1024 
1025   // Set pthread_self ahead of pthread_setspecific, that makes Thread::Current function, this
1026   // avoids pthread_self ever being invalid when discovered from Thread::Current().
1027   tlsPtr_.pthread_self = pthread_self();
1028   CHECK(is_started_);
1029 
1030   ScopedTrace trace("Thread::Init");
1031 
1032   SetUpAlternateSignalStack();
1033 
1034   void* read_stack_base = nullptr;
1035   size_t read_stack_size = 0;
1036   size_t read_guard_size = 0;
1037   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1038   if (!InitStack<kNativeStackType>(reinterpret_cast<uint8_t*>(read_stack_base),
1039                                    read_stack_size,
1040                                    read_guard_size)) {
1041     return false;
1042   }
1043   InitCpu();
1044   InitTlsEntryPoints();
1045   RemoveSuspendTrigger();
1046   InitCardTable();
1047   InitTid();
1048 
1049 #ifdef __BIONIC__
1050   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
1051 #else
1052   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
1053   Thread::self_tls_ = this;
1054 #endif
1055   DCHECK_EQ(Thread::Current(), this);
1056 
1057   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
1058 
1059   if (jni_env_ext != nullptr) {
1060     DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
1061     DCHECK_EQ(jni_env_ext->GetSelf(), this);
1062     tlsPtr_.jni_env = jni_env_ext;
1063   } else {
1064     std::string error_msg;
1065     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
1066     if (tlsPtr_.jni_env == nullptr) {
1067       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
1068       return false;
1069     }
1070   }
1071 
1072   ScopedTrace trace3("ThreadList::Register");
1073   thread_list->Register(this);
1074   if (art_flags::always_enable_profile_code()) {
1075     UpdateTlsLowOverheadTraceEntrypoints(!Trace::IsTracingEnabled());
1076   }
1077   return true;
1078 }
1079 
1080 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action,bool should_run_callbacks)1081 Thread* Thread::Attach(const char* thread_name,
1082                        bool as_daemon,
1083                        PeerAction peer_action,
1084                        bool should_run_callbacks) {
1085   Runtime* runtime = Runtime::Current();
1086   ScopedTrace trace("Thread::Attach");
1087   if (runtime == nullptr) {
1088     LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
1089         ((thread_name != nullptr) ? thread_name : "(Unnamed)");
1090     return nullptr;
1091   }
1092   Thread* self;
1093   {
1094     ScopedTrace trace2("Thread birth");
1095     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
1096     if (runtime->IsShuttingDownLocked()) {
1097       LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
1098           ((thread_name != nullptr) ? thread_name : "(Unnamed)");
1099       return nullptr;
1100     } else {
1101       Runtime::Current()->StartThreadBirth();
1102       self = new Thread(as_daemon);
1103       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
1104       Runtime::Current()->EndThreadBirth();
1105       if (!init_success) {
1106         delete self;
1107         return nullptr;
1108       }
1109     }
1110   }
1111 
1112   self->InitStringEntryPoints();
1113 
1114   CHECK_NE(self->GetState(), ThreadState::kRunnable);
1115   self->SetState(ThreadState::kNative);
1116 
1117   // Run the action that is acting on the peer.
1118   if (!peer_action(self)) {
1119     runtime->GetThreadList()->Unregister(self, should_run_callbacks);
1120     // Unregister deletes self, no need to do this here.
1121     return nullptr;
1122   }
1123 
1124   if (VLOG_IS_ON(threads)) {
1125     if (thread_name != nullptr) {
1126       VLOG(threads) << "Attaching thread " << thread_name;
1127     } else {
1128       VLOG(threads) << "Attaching unnamed thread.";
1129     }
1130     ScopedObjectAccess soa(self);
1131     self->Dump(LOG_STREAM(INFO));
1132   }
1133 
1134   TraceProfiler::AllocateBuffer(self);
1135   if (should_run_callbacks) {
1136     ScopedObjectAccess soa(self);
1137     runtime->GetRuntimeCallbacks()->ThreadStart(self);
1138   }
1139 
1140   return self;
1141 }
1142 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer,bool should_run_callbacks)1143 Thread* Thread::Attach(const char* thread_name,
1144                        bool as_daemon,
1145                        jobject thread_group,
1146                        bool create_peer,
1147                        bool should_run_callbacks) {
1148   auto create_peer_action = [&](Thread* self) {
1149     // If we're the main thread, ClassLinker won't be created until after we're attached,
1150     // so that thread needs a two-stage attach. Regular threads don't need this hack.
1151     // In the compiler, all threads need this hack, because no-one's going to be getting
1152     // a native peer!
1153     if (create_peer) {
1154       self->CreatePeer(thread_name, as_daemon, thread_group);
1155       if (self->IsExceptionPending()) {
1156         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
1157         // the failure but do not dump the exception details. If we fail to allocate the peer, we
1158         // usually also fail to allocate an exception object and throw a pre-allocated OOME without
1159         // any useful information. If we do manage to allocate the exception object, the memory
1160         // information in the message could have been collected too late and therefore misleading.
1161         {
1162           ScopedObjectAccess soa(self);
1163           LOG(ERROR) << "Exception creating thread peer: "
1164                      << ((thread_name != nullptr) ? thread_name : "<null>");
1165           self->ClearException();
1166         }
1167         return false;
1168       }
1169     } else {
1170       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
1171       if (thread_name != nullptr) {
1172         self->SetCachedThreadName(thread_name);
1173         ::art::SetThreadName(thread_name);
1174       } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
1175         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
1176       }
1177     }
1178     return true;
1179   };
1180   return Attach(thread_name, as_daemon, create_peer_action, should_run_callbacks);
1181 }
1182 
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)1183 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
1184   auto set_peer_action = [&](Thread* self) {
1185     // Install the given peer.
1186     DCHECK(self == Thread::Current());
1187     ScopedObjectAccess soa(self);
1188     ObjPtr<mirror::Object> peer = soa.Decode<mirror::Object>(thread_peer);
1189     self->tlsPtr_.opeer = peer.Ptr();
1190     SetNativePeer</*kSupportTransaction=*/ false>(peer, self);
1191     return true;
1192   };
1193   return Attach(thread_name, as_daemon, set_peer_action, /* should_run_callbacks= */ true);
1194 }
1195 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)1196 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
1197   Runtime* runtime = Runtime::Current();
1198   CHECK(runtime->IsStarted());
1199   Thread* self = this;
1200   DCHECK_EQ(self, Thread::Current());
1201 
1202   ScopedObjectAccess soa(self);
1203   StackHandleScope<4u> hs(self);
1204   DCHECK(WellKnownClasses::java_lang_ThreadGroup->IsInitialized());
1205   Handle<mirror::Object> thr_group = hs.NewHandle(soa.Decode<mirror::Object>(
1206       thread_group != nullptr ? thread_group : runtime->GetMainThreadGroup()));
1207   Handle<mirror::String> thread_name = hs.NewHandle(
1208       name != nullptr ? mirror::String::AllocFromModifiedUtf8(self, name) : nullptr);
1209   // Add missing null check in case of OOM b/18297817
1210   if (name != nullptr && UNLIKELY(thread_name == nullptr)) {
1211     CHECK(self->IsExceptionPending());
1212     return;
1213   }
1214   jint thread_priority = GetNativePriority();
1215 
1216   DCHECK(WellKnownClasses::java_lang_Thread->IsInitialized());
1217   Handle<mirror::Object> peer =
1218       hs.NewHandle(WellKnownClasses::java_lang_Thread->AllocObject(self));
1219   if (UNLIKELY(peer == nullptr)) {
1220     CHECK(IsExceptionPending());
1221     return;
1222   }
1223   tlsPtr_.opeer = peer.Get();
1224   WellKnownClasses::java_lang_Thread_init->InvokeInstance<'V', 'L', 'L', 'I', 'Z'>(
1225       self, peer.Get(), thr_group.Get(), thread_name.Get(), thread_priority, as_daemon);
1226   if (self->IsExceptionPending()) {
1227     return;
1228   }
1229 
1230   SetNativePeer</*kSupportTransaction=*/ false>(peer.Get(), self);
1231 
1232   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
1233   if (peer_thread_name == nullptr) {
1234     // The Thread constructor should have set the Thread.name to a
1235     // non-null value. However, because we can run without code
1236     // available (in the compiler, in tests), we manually assign the
1237     // fields the constructor should have set.
1238     if (runtime->IsActiveTransaction()) {
1239       InitPeer<true>(tlsPtr_.opeer,
1240                      as_daemon,
1241                      thr_group.Get(),
1242                      thread_name.Get(),
1243                      thread_priority);
1244     } else {
1245       InitPeer<false>(tlsPtr_.opeer,
1246                       as_daemon,
1247                       thr_group.Get(),
1248                       thread_name.Get(),
1249                       thread_priority);
1250     }
1251     peer_thread_name.Assign(GetThreadName());
1252   }
1253   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
1254   if (peer_thread_name != nullptr) {
1255     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
1256   }
1257 }
1258 
CreateCompileTimePeer(const char * name,bool as_daemon,jobject thread_group)1259 ObjPtr<mirror::Object> Thread::CreateCompileTimePeer(const char* name,
1260                                                      bool as_daemon,
1261                                                      jobject thread_group) {
1262   Runtime* runtime = Runtime::Current();
1263   CHECK(!runtime->IsStarted());
1264   Thread* self = this;
1265   DCHECK_EQ(self, Thread::Current());
1266 
1267   ScopedObjectAccessUnchecked soa(self);
1268   StackHandleScope<3u> hs(self);
1269   DCHECK(WellKnownClasses::java_lang_ThreadGroup->IsInitialized());
1270   Handle<mirror::Object> thr_group = hs.NewHandle(soa.Decode<mirror::Object>(
1271       thread_group != nullptr ? thread_group : runtime->GetMainThreadGroup()));
1272   Handle<mirror::String> thread_name = hs.NewHandle(
1273       name != nullptr ? mirror::String::AllocFromModifiedUtf8(self, name) : nullptr);
1274   // Add missing null check in case of OOM b/18297817
1275   if (name != nullptr && UNLIKELY(thread_name == nullptr)) {
1276     CHECK(self->IsExceptionPending());
1277     return nullptr;
1278   }
1279   jint thread_priority = kNormThreadPriority;  // Always normalize to NORM priority.
1280 
1281   DCHECK(WellKnownClasses::java_lang_Thread->IsInitialized());
1282   Handle<mirror::Object> peer = hs.NewHandle(
1283       WellKnownClasses::java_lang_Thread->AllocObject(self));
1284   if (peer == nullptr) {
1285     CHECK(Thread::Current()->IsExceptionPending());
1286     return nullptr;
1287   }
1288 
1289   // We cannot call Thread.init, as it will recursively ask for currentThread.
1290 
1291   // The Thread constructor should have set the Thread.name to a
1292   // non-null value. However, because we can run without code
1293   // available (in the compiler, in tests), we manually assign the
1294   // fields the constructor should have set.
1295   if (runtime->IsActiveTransaction()) {
1296     InitPeer<true>(peer.Get(),
1297                    as_daemon,
1298                    thr_group.Get(),
1299                    thread_name.Get(),
1300                    thread_priority);
1301   } else {
1302     InitPeer<false>(peer.Get(),
1303                     as_daemon,
1304                     thr_group.Get(),
1305                     thread_name.Get(),
1306                     thread_priority);
1307   }
1308 
1309   return peer.Get();
1310 }
1311 
1312 template<bool kTransactionActive>
InitPeer(ObjPtr<mirror::Object> peer,bool as_daemon,ObjPtr<mirror::Object> thread_group,ObjPtr<mirror::String> thread_name,jint thread_priority)1313 void Thread::InitPeer(ObjPtr<mirror::Object> peer,
1314                       bool as_daemon,
1315                       ObjPtr<mirror::Object> thread_group,
1316                       ObjPtr<mirror::String> thread_name,
1317                       jint thread_priority) {
1318   WellKnownClasses::java_lang_Thread_daemon->SetBoolean<kTransactionActive>(peer,
1319       static_cast<uint8_t>(as_daemon ? 1u : 0u));
1320   WellKnownClasses::java_lang_Thread_group->SetObject<kTransactionActive>(peer, thread_group);
1321   WellKnownClasses::java_lang_Thread_name->SetObject<kTransactionActive>(peer, thread_name);
1322   WellKnownClasses::java_lang_Thread_priority->SetInt<kTransactionActive>(peer, thread_priority);
1323 }
1324 
SetCachedThreadName(const char * name)1325 void Thread::SetCachedThreadName(const char* name) {
1326   DCHECK(name != kThreadNameDuringStartup);
1327   const char* old_name = tlsPtr_.name.exchange(name == nullptr ? nullptr : strdup(name));
1328   if (old_name != nullptr && old_name !=  kThreadNameDuringStartup) {
1329     // Deallocate it, carefully. Note that the load has to be ordered wrt the store of the xchg.
1330     for (uint32_t i = 0; UNLIKELY(tls32_.num_name_readers.load(std::memory_order_seq_cst) != 0);
1331          ++i) {
1332       static constexpr uint32_t kNumSpins = 1000;
1333       // Ugly, but keeps us from having to do anything on the reader side.
1334       if (i > kNumSpins) {
1335         usleep(500);
1336       }
1337     }
1338     // We saw the reader count drop to zero since we replaced the name; old one is now safe to
1339     // deallocate.
1340     free(const_cast<char *>(old_name));
1341   }
1342 }
1343 
SetThreadName(const char * name)1344 void Thread::SetThreadName(const char* name) {
1345   DCHECK(this == Thread::Current() || IsSuspended());  // O.w. `this` may disappear.
1346   SetCachedThreadName(name);
1347   if (!IsStillStarting() || this == Thread::Current()) {
1348     // The RI is documented to do this only in the this == self case, which would avoid the
1349     // IsStillStarting() issue below. We instead use a best effort approach.
1350     ::art::SetThreadName(tlsPtr_.pthread_self /* Not necessarily current thread! */, name);
1351   }  // O.w. this will normally be set when we finish starting. We can rarely fail to set the
1352      // pthread name. See TODO in IsStillStarting().
1353   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1354 }
1355 
1356 template <StackType stack_type>
InitStack(uint8_t * read_stack_base,size_t read_stack_size,size_t read_guard_size)1357 bool Thread::InitStack(uint8_t* read_stack_base, size_t read_stack_size, size_t read_guard_size) {
1358   ScopedTrace trace("InitStack");
1359 
1360   SetStackBegin<stack_type>(read_stack_base);
1361   SetStackSize<stack_type>(read_stack_size);
1362 
1363   // The minimum stack size we can cope with is the protected region size + stack overflow check
1364   // region size + some memory for normal stack usage.
1365   //
1366   // The protected region is located at the beginning (lowest address) of the stack region.
1367   // Therefore, it starts at a page-aligned address. Its size should be a multiple of page sizes.
1368   // Typically, it is one page in size, however this varies in some configurations.
1369   //
1370   // The overflow reserved bytes is size of the stack overflow check region, located right after
1371   // the protected region, so also starts at a page-aligned address. The size is discretionary.
1372   // Typically it is 8K, but this varies in some configurations.
1373   //
1374   // The rest of the stack memory is available for normal stack usage. It is located right after
1375   // the stack overflow check region, so its starting address isn't necessarily page-aligned. The
1376   // size of the region is discretionary, however should be chosen in a way that the overall stack
1377   // size is a multiple of page sizes. Historically, it is chosen to be at least 4 KB.
1378   //
1379   // On systems with 4K page size, typically the minimum stack size will be 4+8+4 = 16K.
1380   // The thread won't be able to do much with this stack: even the GC takes between 8K and 12K.
1381   DCHECK_ALIGNED_PARAM(static_cast<size_t>(GetStackOverflowProtectedSize()),
1382                        static_cast<int32_t>(gPageSize));
1383   size_t min_stack = GetStackOverflowProtectedSize() +
1384       RoundUp(GetStackOverflowReservedBytes(kRuntimeQuickCodeISA) + 4 * KB, gPageSize);
1385   if (read_stack_size <= min_stack) {
1386     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1387     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1388                                __LINE__,
1389                                ::android::base::ERROR,
1390                                "Attempt to attach a thread with a too-small stack");
1391     return false;
1392   }
1393 
1394   const char* stack_type_str = "";
1395   if constexpr (stack_type == kNativeStackType) {
1396     stack_type_str = "Native";
1397   } else if constexpr (stack_type == kQuickStackType) {
1398     stack_type_str = "Quick";
1399   }
1400 
1401   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1402   VLOG(threads) << StringPrintf("%s stack is at %p (%s with %s guard)",
1403                                 stack_type_str,
1404                                 read_stack_base,
1405                                 PrettySize(read_stack_size).c_str(),
1406                                 PrettySize(read_guard_size).c_str());
1407 
1408   // Set stack_end_ to the bottom of the stack saving space of stack overflows
1409 
1410   Runtime* runtime = Runtime::Current();
1411   bool implicit_stack_check =
1412       runtime->GetImplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1413 
1414   ResetDefaultStackEnd<stack_type>();
1415 
1416   // Install the protected region if we are doing implicit overflow checks.
1417   if (implicit_stack_check) {
1418     // The thread might have protected region at the bottom.  We need
1419     // to install our own region so we need to move the limits
1420     // of the stack to make room for it.
1421 
1422     SetStackBegin<stack_type>(
1423         GetStackBegin<stack_type>() + read_guard_size + GetStackOverflowProtectedSize());
1424     SetStackEnd<stack_type>(
1425         GetStackEnd<stack_type>() + read_guard_size + GetStackOverflowProtectedSize());
1426     SetStackSize<stack_type>(
1427         GetStackSize<stack_type>() - (read_guard_size + GetStackOverflowProtectedSize()));
1428 
1429     InstallImplicitProtection<stack_type>();
1430   }
1431 
1432   // Consistency check.
1433   CHECK_GT(FindStackTop<stack_type>(), reinterpret_cast<void*>(GetStackEnd<stack_type>()));
1434 
1435   return true;
1436 }
1437 
ShortDump(std::ostream & os) const1438 void Thread::ShortDump(std::ostream& os) const {
1439   os << "Thread[";
1440   if (GetThreadId() != 0) {
1441     // If we're in kStarting, we won't have a thin lock id or tid yet.
1442     os << GetThreadId()
1443        << ",tid=" << GetTid() << ',';
1444   }
1445   tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst);
1446   const char* name = tlsPtr_.name.load();
1447   os << GetState()
1448      << ",Thread*=" << this
1449      << ",peer=" << tlsPtr_.opeer
1450      << ",\"" << (name == nullptr ? "null" : name) << "\""
1451      << "]";
1452   tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */);
1453 }
1454 
Dump(std::ostream & os,bool dump_native_stack,bool force_dump_stack) const1455 Thread::DumpOrder Thread::Dump(std::ostream& os,
1456                                bool dump_native_stack,
1457                                bool force_dump_stack) const {
1458   DumpState(os);
1459   return DumpStack(os, dump_native_stack, force_dump_stack);
1460 }
1461 
Dump(std::ostream & os,unwindstack::AndroidLocalUnwinder & unwinder,bool dump_native_stack,bool force_dump_stack) const1462 Thread::DumpOrder Thread::Dump(std::ostream& os,
1463                                unwindstack::AndroidLocalUnwinder& unwinder,
1464                                bool dump_native_stack,
1465                                bool force_dump_stack) const {
1466   DumpState(os);
1467   return DumpStack(os, unwinder, dump_native_stack, force_dump_stack);
1468 }
1469 
GetThreadName() const1470 ObjPtr<mirror::String> Thread::GetThreadName() const {
1471   if (tlsPtr_.opeer == nullptr) {
1472     return nullptr;
1473   }
1474   ObjPtr<mirror::Object> name = WellKnownClasses::java_lang_Thread_name->GetObject(tlsPtr_.opeer);
1475   return name == nullptr ? nullptr : name->AsString();
1476 }
1477 
GetThreadName(std::string & name) const1478 void Thread::GetThreadName(std::string& name) const {
1479   tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst);
1480   // The store part of the increment has to be ordered with respect to the following load.
1481   const char* c_name = tlsPtr_.name.load(std::memory_order_seq_cst);
1482   name.assign(c_name == nullptr ? "<no name>" : c_name);
1483   tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */);
1484 }
1485 
GetCpuMicroTime() const1486 uint64_t Thread::GetCpuMicroTime() const {
1487 #if defined(__linux__)
1488   clockid_t cpu_clock_id;
1489   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1490   timespec now;
1491   clock_gettime(cpu_clock_id, &now);
1492   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) +
1493          static_cast<uint64_t>(now.tv_nsec) / UINT64_C(1000);
1494 #else  // __APPLE__
1495   UNIMPLEMENTED(WARNING);
1496   return -1;
1497 #endif
1498 }
1499 
1500 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1501 void Thread::UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1502   LOG(ERROR) << *thread << " suspend count already zero.";
1503   Locks::thread_suspend_count_lock_->Unlock(self);
1504   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1505     Locks::mutator_lock_->SharedTryLock(self);
1506     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1507       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1508     }
1509   }
1510   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1511     Locks::thread_list_lock_->TryLock(self);
1512     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1513       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1514     }
1515   }
1516   std::ostringstream ss;
1517   Runtime::Current()->GetThreadList()->Dump(ss);
1518   LOG(FATAL) << ss.str();
1519   UNREACHABLE();
1520 }
1521 
PassActiveSuspendBarriers()1522 bool Thread::PassActiveSuspendBarriers() {
1523   DCHECK_EQ(this, Thread::Current());
1524   DCHECK_NE(GetState(), ThreadState::kRunnable);
1525   // Grab the suspend_count lock and copy the current set of barriers. Then clear the list and the
1526   // flag. The IncrementSuspendCount function requires the lock so we prevent a race between setting
1527   // the kActiveSuspendBarrier flag and clearing it.
1528   // TODO: Consider doing this without the temporary vector. That code will be a bit
1529   // tricky, since the WrappedSuspend1Barrier may disappear once the barrier is decremented.
1530   std::vector<AtomicInteger*> pass_barriers{};
1531   {
1532     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1533     if (!ReadFlag(ThreadFlag::kActiveSuspendBarrier)) {
1534       // Quick exit test: The barriers have already been claimed - this is possible as there may
1535       // be a race to claim and it doesn't matter who wins.  All of the callers of this function
1536       // (except SuspendAllInternal) will first test the kActiveSuspendBarrier flag without the
1537       // lock. Here we double-check whether the barrier has been passed with the
1538       // suspend_count_lock_.
1539       return false;
1540     }
1541     if (tlsPtr_.active_suspendall_barrier != nullptr) {
1542       // We have at most one active active_suspendall_barrier. See thread.h comment.
1543       pass_barriers.push_back(tlsPtr_.active_suspendall_barrier);
1544       tlsPtr_.active_suspendall_barrier = nullptr;
1545     }
1546     for (WrappedSuspend1Barrier* w = tlsPtr_.active_suspend1_barriers; w != nullptr; w = w->next_) {
1547       CHECK_EQ(w->magic_, WrappedSuspend1Barrier::kMagic)
1548           << "first = " << tlsPtr_.active_suspend1_barriers << " current = " << w
1549           << " next = " << w->next_;
1550       pass_barriers.push_back(&(w->barrier_));
1551     }
1552     tlsPtr_.active_suspend1_barriers = nullptr;
1553     AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier);
1554     CHECK_GT(pass_barriers.size(), 0U);  // Since kActiveSuspendBarrier was set.
1555     // Decrement suspend barrier(s) while we still hold the lock, since SuspendThread may
1556     // remove and deallocate suspend barriers while holding suspend_count_lock_ .
1557     // There will typically only be a single barrier to pass here.
1558     for (AtomicInteger*& barrier : pass_barriers) {
1559       int32_t old_val = barrier->fetch_sub(1, std::memory_order_release);
1560       CHECK_GT(old_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << old_val;
1561       if (old_val != 1) {
1562         // We're done with it.
1563         barrier = nullptr;
1564       }
1565     }
1566   }
1567   // Finally do futex_wakes after releasing the lock.
1568   for (AtomicInteger* barrier : pass_barriers) {
1569 #if ART_USE_FUTEXES
1570     if (barrier != nullptr) {
1571       futex(barrier->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
1572     }
1573 #endif
1574   }
1575   return true;
1576 }
1577 
RunCheckpointFunction()1578 void Thread::RunCheckpointFunction() {
1579   DCHECK_EQ(Thread::Current(), this);
1580   CHECK(!GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags()));
1581   // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1582   // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1583   Closure* checkpoint;
1584   {
1585     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1586     checkpoint = tlsPtr_.checkpoint_function;
1587     if (!checkpoint_overflow_.empty()) {
1588       // Overflow list not empty, copy the first one out and continue.
1589       tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1590       checkpoint_overflow_.pop_front();
1591     } else {
1592       // No overflow checkpoints. Clear the kCheckpointRequest flag
1593       tlsPtr_.checkpoint_function = nullptr;
1594       AtomicClearFlag(ThreadFlag::kCheckpointRequest);
1595     }
1596   }
1597   // Outside the lock, run the checkpoint function.
1598   ScopedTrace trace("Run checkpoint function");
1599   CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1600   checkpoint->Run(this);
1601 }
1602 
RunEmptyCheckpoint()1603 void Thread::RunEmptyCheckpoint() {
1604   // Note: Empty checkpoint does not access the thread's stack,
1605   // so we do not need to check for the flip function.
1606   DCHECK_EQ(Thread::Current(), this);
1607   AtomicClearFlag(ThreadFlag::kEmptyCheckpointRequest);
1608   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1609 }
1610 
RequestCheckpoint(Closure * function)1611 bool Thread::RequestCheckpoint(Closure* function) {
1612   bool success;
1613   do {
1614     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
1615     if (old_state_and_flags.GetState() != ThreadState::kRunnable) {
1616       return false;  // Fail, thread is suspended and so can't run a checkpoint.
1617     }
1618     StateAndFlags new_state_and_flags = old_state_and_flags;
1619     new_state_and_flags.SetFlag(ThreadFlag::kCheckpointRequest);
1620     success = tls32_.state_and_flags.CompareAndSetWeakSequentiallyConsistent(
1621         old_state_and_flags.GetValue(), new_state_and_flags.GetValue());
1622   } while (!success);
1623   // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1624   if (tlsPtr_.checkpoint_function == nullptr) {
1625     tlsPtr_.checkpoint_function = function;
1626   } else {
1627     checkpoint_overflow_.push_back(function);
1628   }
1629   DCHECK(ReadFlag(ThreadFlag::kCheckpointRequest));
1630   TriggerSuspend();
1631   return true;
1632 }
1633 
RequestEmptyCheckpoint()1634 bool Thread::RequestEmptyCheckpoint() {
1635   StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
1636   if (old_state_and_flags.GetState() != ThreadState::kRunnable) {
1637     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1638     // heap access (eg. the read barrier).
1639     return false;
1640   }
1641 
1642   // We must be runnable to request a checkpoint.
1643   DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable);
1644   StateAndFlags new_state_and_flags = old_state_and_flags;
1645   new_state_and_flags.SetFlag(ThreadFlag::kEmptyCheckpointRequest);
1646   bool success = tls32_.state_and_flags.CompareAndSetStrongSequentiallyConsistent(
1647       old_state_and_flags.GetValue(), new_state_and_flags.GetValue());
1648   if (success) {
1649     TriggerSuspend();
1650   }
1651   return success;
1652 }
1653 
1654 class BarrierClosure : public Closure {
1655  public:
BarrierClosure(Closure * wrapped)1656   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1657 
Run(Thread * self)1658   void Run(Thread* self) override {
1659     wrapped_->Run(self);
1660     barrier_.Pass(self);
1661   }
1662 
Wait(Thread * self,ThreadState wait_state)1663   void Wait(Thread* self, ThreadState wait_state) {
1664     if (wait_state != ThreadState::kRunnable) {
1665       barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1666     } else {
1667       barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1668     }
1669   }
1670 
1671  private:
1672   Closure* wrapped_;
1673   Barrier barrier_;
1674 };
1675 
1676 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
RequestSynchronousCheckpoint(Closure * function,ThreadState wait_state)1677 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState wait_state) {
1678   Thread* self = Thread::Current();
1679   if (this == self) {
1680     Locks::thread_list_lock_->AssertExclusiveHeld(self);
1681     // Unlock the tll before running so that the state is the same regardless of thread.
1682     Locks::thread_list_lock_->ExclusiveUnlock(self);
1683     // Asked to run on this thread. Just run.
1684     function->Run(this);
1685     return true;
1686   }
1687 
1688   // The current thread is not this thread.
1689 
1690   VerifyState();
1691 
1692   Locks::thread_list_lock_->AssertExclusiveHeld(self);
1693   // If target "this" thread is runnable, try to schedule a checkpoint. Do some gymnastics to not
1694   // hold the suspend-count lock for too long.
1695   if (GetState() == ThreadState::kRunnable) {
1696     BarrierClosure barrier_closure(function);
1697     bool installed = false;
1698     {
1699       MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1700       installed = RequestCheckpoint(&barrier_closure);
1701     }
1702     if (installed) {
1703       // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1704       // reacquire it since we don't know if 'this' hasn't been deleted yet.
1705       Locks::thread_list_lock_->ExclusiveUnlock(self);
1706       ScopedThreadStateChange sts(self, wait_state);
1707       // Wait state can be kRunnable, in which case, for lock ordering purposes, it's as if we ran
1708       // the closure ourselves. This means that the target thread should not acquire a pre-mutator
1709       // lock without running the checkpoint, and the closure should not acquire a pre-mutator
1710       // lock or suspend.
1711       barrier_closure.Wait(self, wait_state);
1712       return true;
1713     }
1714     // No longer runnable. Fall-through.
1715   }
1716 
1717   // Target "this" thread was not runnable. Suspend it, hopefully redundantly,
1718   // but it might have become runnable in the meantime.
1719   // Although this is a thread suspension, the target thread only blocks while we run the
1720   // checkpoint, which is presumed to terminate quickly even if other threads are blocked.
1721   // Note: IncrementSuspendCount also expects the thread_list_lock to be held unless this == self.
1722   WrappedSuspend1Barrier wrapped_barrier{};
1723   {
1724     bool is_suspended = false;
1725 
1726     {
1727       MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1728       // If wait_state is kRunnable, function may not suspend. We thus never block because
1729       // we ourselves are being asked to suspend.
1730       if (UNLIKELY(wait_state != ThreadState::kRunnable && self->GetSuspendCount() != 0)) {
1731         // We are being asked to suspend while we are suspending another thread that may be
1732         // responsible for our suspension. This is likely to result in deadlock if we each
1733         // block on the suspension request. Instead we wait for the situation to change.
1734         ThreadExitFlag target_status;
1735         NotifyOnThreadExit(&target_status);
1736         for (int iter_count = 1; self->GetSuspendCount() != 0; ++iter_count) {
1737           Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
1738           Locks::thread_list_lock_->ExclusiveUnlock(self);
1739           {
1740             ScopedThreadStateChange sts(self, wait_state);
1741             usleep(ThreadList::kThreadSuspendSleepUs);
1742           }
1743           CHECK_LT(iter_count, ThreadList::kMaxSuspendRetries);
1744           Locks::thread_list_lock_->ExclusiveLock(self);
1745           if (target_status.HasExited()) {
1746             Locks::thread_list_lock_->ExclusiveUnlock(self);
1747             DCheckUnregisteredEverywhere(&target_status, &target_status);
1748             return false;
1749           }
1750           Locks::thread_suspend_count_lock_->ExclusiveLock(self);
1751         }
1752         UnregisterThreadExitFlag(&target_status);
1753       }
1754       IncrementSuspendCount(self, nullptr, &wrapped_barrier, SuspendReason::kInternal);
1755       VerifyState();
1756       DCHECK_GT(GetSuspendCount(), 0);
1757       if (wait_state != ThreadState::kRunnable) {
1758         DCHECK_EQ(self->GetSuspendCount(), 0);
1759       }
1760       // Since we've incremented the suspend count, "this" thread can no longer disappear.
1761       Locks::thread_list_lock_->ExclusiveUnlock(self);
1762       if (IsSuspended()) {
1763         // See the discussion in mutator_gc_coord.md and SuspendAllInternal for the race here.
1764         RemoveFirstSuspend1Barrier(&wrapped_barrier);
1765         if (!HasActiveSuspendBarrier()) {
1766           AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier);
1767         }
1768         is_suspended = true;
1769       }
1770     }
1771     if (!is_suspended) {
1772       // This waits while holding the mutator lock. Effectively `self` becomes
1773       // impossible to suspend until `this` responds to the suspend request.
1774       // Arguably that's not making anything qualitatively worse.
1775       bool success = !Runtime::Current()
1776                           ->GetThreadList()
1777                           ->WaitForSuspendBarrier(&wrapped_barrier.barrier_)
1778                           .has_value();
1779       CHECK(success);
1780     }
1781 
1782     // Ensure that the flip function for this thread, if pending, is finished *before*
1783     // the checkpoint function is run. Otherwise, we may end up with both `to' and 'from'
1784     // space references on the stack, confusing the GC's thread-flip logic. The caller is
1785     // runnable so can't have a pending flip function.
1786     DCHECK_EQ(self->GetState(), ThreadState::kRunnable);
1787     DCHECK(IsSuspended());
1788     DCHECK(!self->GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags()));
1789     EnsureFlipFunctionStarted(self, this);
1790     // Since we're runnable, and kPendingFlipFunction is set with all threads suspended, it
1791     // cannot be set again here. Thus kRunningFlipFunction is either already set after the
1792     // EnsureFlipFunctionStarted call, or will not be set before we call Run().
1793     if (ReadFlag(ThreadFlag::kRunningFlipFunction)) {
1794       WaitForFlipFunction(self);
1795     }
1796     function->Run(this);
1797   }
1798 
1799   {
1800     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1801     DCHECK_NE(GetState(), ThreadState::kRunnable);
1802     DCHECK_GT(GetSuspendCount(), 0);
1803     DecrementSuspendCount(self);
1804     if (kIsDebugBuild) {
1805       CheckBarrierInactive(&wrapped_barrier);
1806     }
1807     resume_cond_->Broadcast(self);
1808   }
1809 
1810   Locks::thread_list_lock_->AssertNotHeld(self);
1811   return true;
1812 }
1813 
SetFlipFunction(Closure * function)1814 void Thread::SetFlipFunction(Closure* function) {
1815   // This is called with all threads suspended, except for the calling thread.
1816   DCHECK(IsSuspended() || Thread::Current() == this);
1817   DCHECK(function != nullptr);
1818   DCHECK(GetFlipFunction() == nullptr);
1819   tlsPtr_.flip_function.store(function, std::memory_order_relaxed);
1820   DCHECK(!GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags()));
1821   AtomicSetFlag(ThreadFlag::kPendingFlipFunction, std::memory_order_release);
1822 }
1823 
EnsureFlipFunctionStarted(Thread * self,Thread * target,StateAndFlags old_state_and_flags,ThreadExitFlag * tef,bool * finished)1824 bool Thread::EnsureFlipFunctionStarted(Thread* self,
1825                                        Thread* target,
1826                                        StateAndFlags old_state_and_flags,
1827                                        ThreadExitFlag* tef,
1828                                        bool* finished) {
1829   //  Note: If tef is non-null, *target may have been destroyed. We have to be careful about
1830   //  accessing it. That is the reason this is static and not a member function.
1831   DCHECK(self == Current());
1832   bool check_exited = (tef != nullptr);
1833   // Check that the thread can't unexpectedly exit while we are running.
1834   DCHECK(self == target || check_exited || target->ReadFlag(ThreadFlag::kSuspendRequest) ||
1835          Locks::thread_list_lock_->IsExclusiveHeld(self))
1836       << *target;
1837   bool become_runnable;
1838   auto maybe_release = [=]() NO_THREAD_SAFETY_ANALYSIS /* conditionally unlocks */ {
1839     if (check_exited) {
1840       Locks::thread_list_lock_->Unlock(self);
1841     }
1842   };
1843   auto set_finished = [=](bool value) {
1844     if (finished != nullptr) {
1845       *finished = value;
1846     }
1847   };
1848 
1849   if (check_exited) {
1850     Locks::thread_list_lock_->Lock(self);
1851     if (tef->HasExited()) {
1852       Locks::thread_list_lock_->Unlock(self);
1853       set_finished(true);
1854       return false;
1855     }
1856   }
1857   target->VerifyState();
1858   if (old_state_and_flags.GetValue() == 0) {
1859     become_runnable = false;
1860     old_state_and_flags = target->GetStateAndFlags(std::memory_order_relaxed);
1861   } else {
1862     become_runnable = true;
1863     DCHECK(!check_exited);
1864     DCHECK(target == self);
1865     DCHECK(old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction));
1866     DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest));
1867   }
1868   while (true) {
1869     DCHECK(!check_exited || (Locks::thread_list_lock_->IsExclusiveHeld(self) && !tef->HasExited()));
1870     if (!old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)) {
1871       maybe_release();
1872       set_finished(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction));
1873       return false;
1874     }
1875     DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction));
1876     StateAndFlags new_state_and_flags =
1877         old_state_and_flags.WithFlag(ThreadFlag::kRunningFlipFunction)
1878                            .WithoutFlag(ThreadFlag::kPendingFlipFunction);
1879     if (become_runnable) {
1880       DCHECK_EQ(self, target);
1881       DCHECK_NE(self->GetState(), ThreadState::kRunnable);
1882       new_state_and_flags = new_state_and_flags.WithState(ThreadState::kRunnable);
1883     }
1884     if (target->tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(),
1885                                                                 new_state_and_flags.GetValue())) {
1886       if (become_runnable) {
1887         self->GetMutatorLock()->TransitionFromSuspendedToRunnable(self);
1888       }
1889       art::Locks::mutator_lock_->AssertSharedHeld(self);
1890       maybe_release();
1891       // Thread will not go away while kRunningFlipFunction is set.
1892       target->RunFlipFunction(self);
1893       // At this point, no flip function flags should be set. It's unsafe to DCHECK that, since
1894       // the thread may now have exited.
1895       set_finished(true);
1896       return become_runnable;
1897     }
1898     if (become_runnable) {
1899       DCHECK(!check_exited);  // We didn't acquire thread_list_lock_ .
1900       // Let caller retry.
1901       return false;
1902     }
1903     old_state_and_flags = target->GetStateAndFlags(std::memory_order_acquire);
1904   }
1905   // Unreachable.
1906 }
1907 
RunFlipFunction(Thread * self)1908 void Thread::RunFlipFunction(Thread* self) {
1909   // This function is called either by the thread running `ThreadList::FlipThreadRoots()` or when
1910   // a thread becomes runnable, after we've successfully set the kRunningFlipFunction ThreadFlag.
1911   DCHECK(ReadFlag(ThreadFlag::kRunningFlipFunction));
1912 
1913   Closure* flip_function = GetFlipFunction();
1914   tlsPtr_.flip_function.store(nullptr, std::memory_order_relaxed);
1915   DCHECK(flip_function != nullptr);
1916   VerifyState();
1917   flip_function->Run(this);
1918   DCHECK(!ReadFlag(ThreadFlag::kPendingFlipFunction));
1919   VerifyState();
1920   AtomicClearFlag(ThreadFlag::kRunningFlipFunction, std::memory_order_release);
1921   // From here on this thread may go away, and it is no longer safe to access.
1922 
1923   // Notify all threads that are waiting for completion.
1924   // TODO: Should we create a separate mutex and condition variable instead
1925   // of piggy-backing on the `thread_suspend_count_lock_` and `resume_cond_`?
1926   MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1927   resume_cond_->Broadcast(self);
1928 }
1929 
WaitForFlipFunction(Thread * self) const1930 void Thread::WaitForFlipFunction(Thread* self) const {
1931   // Another thread is running the flip function. Wait for it to complete.
1932   // Check the flag while holding the mutex so that we do not miss the broadcast.
1933   // Repeat the check after waiting to guard against spurious wakeups (and because
1934   // we share the `thread_suspend_count_lock_` and `resume_cond_` with other code).
1935   // Check that the thread can't unexpectedly exit while we are running.
1936   DCHECK(self == this || ReadFlag(ThreadFlag::kSuspendRequest) ||
1937          Locks::thread_list_lock_->IsExclusiveHeld(self));
1938   MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1939   while (true) {
1940     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_acquire);
1941     if (!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) {
1942       return;
1943     }
1944     // We sometimes hold mutator lock here. OK since the flip function must complete quickly.
1945     resume_cond_->WaitHoldingLocks(self);
1946   }
1947 }
1948 
WaitForFlipFunctionTestingExited(Thread * self,ThreadExitFlag * tef)1949 void Thread::WaitForFlipFunctionTestingExited(Thread* self, ThreadExitFlag* tef) {
1950   Locks::thread_list_lock_->Lock(self);
1951   if (tef->HasExited()) {
1952     Locks::thread_list_lock_->Unlock(self);
1953     return;
1954   }
1955   // We need to hold suspend_count_lock_ to avoid missed wakeups when the flip function finishes.
1956   // We need to hold thread_list_lock_ because the tef test result is only valid while we hold the
1957   // lock, and once kRunningFlipFunction is no longer set, "this" may be deallocated. Hence the
1958   // complicated locking dance.
1959   MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1960   while (true) {
1961     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_acquire);
1962     Locks::thread_list_lock_->Unlock(self);  // So we can wait or return.
1963     if (!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) {
1964       return;
1965     }
1966     resume_cond_->WaitHoldingLocks(self);
1967     Locks::thread_suspend_count_lock_->Unlock(self);  // To re-lock thread_list_lock.
1968     Locks::thread_list_lock_->Lock(self);
1969     Locks::thread_suspend_count_lock_->Lock(self);
1970     if (tef->HasExited()) {
1971       Locks::thread_list_lock_->Unlock(self);
1972       return;
1973     }
1974   }
1975 }
1976 
FullSuspendCheck(bool implicit)1977 void Thread::FullSuspendCheck(bool implicit) {
1978   ScopedTrace trace(__FUNCTION__);
1979   DCHECK(!ReadFlag(ThreadFlag::kSuspensionImmune));
1980   DCHECK(this == Thread::Current());
1981   VLOG(threads) << this << " self-suspending";
1982   // Make thread appear suspended to other threads, release mutator_lock_.
1983   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1984   ScopedThreadSuspension(this, ThreadState::kSuspended);  // NOLINT
1985   if (implicit) {
1986     // For implicit suspend check we want to `madvise()` away
1987     // the alternate signal stack to avoid wasting memory.
1988     MadviseAwayAlternateSignalStack();
1989   }
1990   VLOG(threads) << this << " self-reviving";
1991 }
1992 
GetSchedulerGroupName(pid_t tid)1993 static std::string GetSchedulerGroupName(pid_t tid) {
1994   // /proc/<pid>/cgroup looks like this:
1995   // 2:devices:/
1996   // 1:cpuacct,cpu:/
1997   // We want the third field from the line whose second field contains the "cpu" token.
1998   std::string cgroup_file;
1999   if (!android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid),
2000                                        &cgroup_file)) {
2001     return "";
2002   }
2003   std::vector<std::string> cgroup_lines;
2004   Split(cgroup_file, '\n', &cgroup_lines);
2005   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
2006     std::vector<std::string> cgroup_fields;
2007     Split(cgroup_lines[i], ':', &cgroup_fields);
2008     std::vector<std::string> cgroups;
2009     Split(cgroup_fields[1], ',', &cgroups);
2010     for (size_t j = 0; j < cgroups.size(); ++j) {
2011       if (cgroups[j] == "cpu") {
2012         return cgroup_fields[2].substr(1);  // Skip the leading slash.
2013       }
2014     }
2015   }
2016   return "";
2017 }
2018 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)2019 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
2020   std::string group_name;
2021   int priority;
2022   bool is_daemon = false;
2023   Thread* self = Thread::Current();
2024 
2025   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
2026   // cause ScopedObjectAccessUnchecked to deadlock.
2027   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
2028     ScopedObjectAccessUnchecked soa(self);
2029     priority = WellKnownClasses::java_lang_Thread_priority->GetInt(thread->tlsPtr_.opeer);
2030     is_daemon = WellKnownClasses::java_lang_Thread_daemon->GetBoolean(thread->tlsPtr_.opeer);
2031 
2032     ObjPtr<mirror::Object> thread_group =
2033         WellKnownClasses::java_lang_Thread_group->GetObject(thread->tlsPtr_.opeer);
2034 
2035     if (thread_group != nullptr) {
2036       ObjPtr<mirror::Object> group_name_object =
2037           WellKnownClasses::java_lang_ThreadGroup_name->GetObject(thread_group);
2038       group_name = (group_name_object != nullptr)
2039           ? group_name_object->AsString()->ToModifiedUtf8()
2040           : "<null>";
2041     }
2042   } else if (thread != nullptr) {
2043     priority = thread->GetNativePriority();
2044   } else {
2045     palette_status_t status = PaletteSchedGetPriority(tid, &priority);
2046     CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
2047   }
2048 
2049   std::string scheduler_group_name(GetSchedulerGroupName(tid));
2050   if (scheduler_group_name.empty()) {
2051     scheduler_group_name = "default";
2052   }
2053 
2054   if (thread != nullptr) {
2055     thread->tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst);
2056     os << '"' << thread->tlsPtr_.name.load() << '"';
2057     thread->tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */);
2058     if (is_daemon) {
2059       os << " daemon";
2060     }
2061     os << " prio=" << priority
2062        << " tid=" << thread->GetThreadId()
2063        << " " << thread->GetState();
2064     if (thread->IsStillStarting()) {
2065       os << " (still starting up)";
2066     }
2067     if (thread->tls32_.disable_thread_flip_count != 0) {
2068       os << " DisableFlipCount = " << thread->tls32_.disable_thread_flip_count;
2069     }
2070     os << "\n";
2071   } else {
2072     os << '"' << ::art::GetThreadName(tid) << '"'
2073        << " prio=" << priority
2074        << " (not attached)\n";
2075   }
2076 
2077   if (thread != nullptr) {
2078     auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) {
2079       StateAndFlags state_and_flags = thread->GetStateAndFlags(std::memory_order_relaxed);
2080       static_assert(
2081           static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u);
2082       state_and_flags.SetState(ThreadState::kRunnable);  // Clear state bits.
2083       os << "  | group=\"" << group_name << "\""
2084          << " sCount=" << thread->tls32_.suspend_count
2085          << " ucsCount=" << thread->tls32_.user_code_suspend_count
2086          << " flags=" << state_and_flags.GetValue()
2087          << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
2088          << " self=" << reinterpret_cast<const void*>(thread) << "\n";
2089     };
2090     if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) {
2091       Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self);  // For annotalysis.
2092       suspend_log_fn();
2093     } else {
2094       MutexLock mu(self, *Locks::thread_suspend_count_lock_);
2095       suspend_log_fn();
2096     }
2097   }
2098 
2099   os << "  | sysTid=" << tid
2100      << " nice=" << getpriority(PRIO_PROCESS, static_cast<id_t>(tid))
2101      << " cgrp=" << scheduler_group_name;
2102   if (thread != nullptr) {
2103     int policy;
2104     sched_param sp;
2105 #if !defined(__APPLE__)
2106     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
2107     policy = sched_getscheduler(tid);
2108     if (policy == -1) {
2109       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
2110     }
2111     int sched_getparam_result = sched_getparam(tid, &sp);
2112     if (sched_getparam_result == -1) {
2113       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
2114       sp.sched_priority = -1;
2115     }
2116 #else
2117     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
2118                        __FUNCTION__);
2119 #endif
2120     os << " sched=" << policy << "/" << sp.sched_priority
2121        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
2122   }
2123   os << "\n";
2124 
2125   // Grab the scheduler stats for this thread.
2126   std::string scheduler_stats;
2127   if (android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid),
2128                                       &scheduler_stats)
2129       && !scheduler_stats.empty()) {
2130     scheduler_stats = android::base::Trim(scheduler_stats);  // Lose the trailing '\n'.
2131   } else {
2132     scheduler_stats = "0 0 0";
2133   }
2134 
2135   char native_thread_state = '?';
2136   int utime = 0;
2137   int stime = 0;
2138   int task_cpu = 0;
2139   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
2140 
2141   os << "  | state=" << native_thread_state
2142      << " schedstat=( " << scheduler_stats << " )"
2143      << " utm=" << utime
2144      << " stm=" << stime
2145      << " core=" << task_cpu
2146      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
2147   if (thread != nullptr) {
2148     // TODO(Simulator): Also dump the simulated stack if one exists.
2149     os << "  | stack=" << reinterpret_cast<void*>(thread->GetStackBegin<kNativeStackType>())
2150         << "-" << reinterpret_cast<void*>(thread->GetStackEnd<kNativeStackType>())
2151         << " stackSize=" << PrettySize(thread->GetStackSize<kNativeStackType>()) << "\n";
2152     // Dump the held mutexes.
2153     os << "  | held mutexes=";
2154     for (size_t i = 0; i < kLockLevelCount; ++i) {
2155       if (i != kMonitorLock) {
2156         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
2157         if (mutex != nullptr) {
2158           os << " \"" << mutex->GetName() << "\"";
2159           if (mutex->IsReaderWriterMutex()) {
2160             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
2161             if (rw_mutex->GetExclusiveOwnerTid() == tid) {
2162               os << "(exclusive held)";
2163             } else {
2164               os << "(shared held)";
2165             }
2166           }
2167         }
2168       }
2169     }
2170     os << "\n";
2171   }
2172 }
2173 
DumpState(std::ostream & os) const2174 void Thread::DumpState(std::ostream& os) const {
2175   Thread::DumpState(os, this, GetTid());
2176 }
2177 
2178 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
StackDumpVisitorart::StackDumpVisitor2179   StackDumpVisitor(std::ostream& os_in,
2180                    Thread* thread_in,
2181                    Context* context,
2182                    bool can_allocate,
2183                    bool check_suspended = true,
2184                    bool dump_locks = true)
2185       REQUIRES_SHARED(Locks::mutator_lock_)
2186       : MonitorObjectsStackVisitor(thread_in,
2187                                    context,
2188                                    check_suspended,
2189                                    can_allocate && dump_locks),
2190         os(os_in),
2191         last_method(nullptr),
2192         last_line_number(0),
2193         repetition_count(0) {}
2194 
~StackDumpVisitorart::StackDumpVisitor2195   virtual ~StackDumpVisitor() {
2196     if (frame_count == 0) {
2197       os << "  (no managed stack frames)\n";
2198     }
2199   }
2200 
2201   static constexpr size_t kMaxRepetition = 3u;
2202 
StartMethodart::StackDumpVisitor2203   VisitMethodResult StartMethod(ArtMethod* m, [[maybe_unused]] size_t frame_nr) override
2204       REQUIRES_SHARED(Locks::mutator_lock_) {
2205     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
2206     ObjPtr<mirror::DexCache> dex_cache = m->GetDexCache();
2207     int line_number = -1;
2208     uint32_t dex_pc = GetDexPc(false);
2209     if (dex_cache != nullptr) {  // be tolerant of bad input
2210       const DexFile* dex_file = dex_cache->GetDexFile();
2211       line_number = annotations::GetLineNumFromPC(dex_file, m, dex_pc);
2212     }
2213     if (line_number == last_line_number && last_method == m) {
2214       ++repetition_count;
2215     } else {
2216       if (repetition_count >= kMaxRepetition) {
2217         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
2218       }
2219       repetition_count = 0;
2220       last_line_number = line_number;
2221       last_method = m;
2222     }
2223 
2224     if (repetition_count >= kMaxRepetition) {
2225       // Skip visiting=printing anything.
2226       return VisitMethodResult::kSkipMethod;
2227     }
2228 
2229     os << "  at " << m->PrettyMethod(false);
2230     if (m->IsNative()) {
2231       os << "(Native method)";
2232     } else {
2233       const char* source_file(m->GetDeclaringClassSourceFile());
2234       if (line_number == -1) {
2235         // If we failed to map to a line number, use
2236         // the dex pc as the line number and leave source file null
2237         source_file = nullptr;
2238         line_number = static_cast<int32_t>(dex_pc);
2239       }
2240       os << "(" << (source_file != nullptr ? source_file : "unavailable")
2241                        << ":" << line_number << ")";
2242     }
2243     os << "\n";
2244     // Go and visit locks.
2245     return VisitMethodResult::kContinueMethod;
2246   }
2247 
EndMethodart::StackDumpVisitor2248   VisitMethodResult EndMethod([[maybe_unused]] ArtMethod* m) override {
2249     return VisitMethodResult::kContinueMethod;
2250   }
2251 
VisitWaitingObjectart::StackDumpVisitor2252   void VisitWaitingObject(ObjPtr<mirror::Object> obj, [[maybe_unused]] ThreadState state) override
2253       REQUIRES_SHARED(Locks::mutator_lock_) {
2254     PrintObject(obj, "  - waiting on ", ThreadList::kInvalidThreadId);
2255   }
VisitSleepingObjectart::StackDumpVisitor2256   void VisitSleepingObject(ObjPtr<mirror::Object> obj)
2257       override
2258       REQUIRES_SHARED(Locks::mutator_lock_) {
2259     PrintObject(obj, "  - sleeping on ", ThreadList::kInvalidThreadId);
2260   }
VisitBlockedOnObjectart::StackDumpVisitor2261   void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
2262                             ThreadState state,
2263                             uint32_t owner_tid)
2264       override
2265       REQUIRES_SHARED(Locks::mutator_lock_) {
2266     const char* msg;
2267     switch (state) {
2268       case ThreadState::kBlocked:
2269         msg = "  - waiting to lock ";
2270         break;
2271 
2272       case ThreadState::kWaitingForLockInflation:
2273         msg = "  - waiting for lock inflation of ";
2274         break;
2275 
2276       default:
2277         LOG(FATAL) << "Unreachable";
2278         UNREACHABLE();
2279     }
2280     PrintObject(obj, msg, owner_tid);
2281     num_blocked++;
2282   }
VisitLockedObjectart::StackDumpVisitor2283   void VisitLockedObject(ObjPtr<mirror::Object> obj)
2284       override
2285       REQUIRES_SHARED(Locks::mutator_lock_) {
2286     PrintObject(obj, "  - locked ", ThreadList::kInvalidThreadId);
2287     num_locked++;
2288   }
2289 
PrintObjectart::StackDumpVisitor2290   void PrintObject(ObjPtr<mirror::Object> obj,
2291                    const char* msg,
2292                    uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
2293     if (obj == nullptr) {
2294       os << msg << "an unknown object";
2295     } else {
2296       const std::string pretty_type(obj->PrettyTypeOf());
2297       // It's often unsafe to allow lock inflation here. We may be the only runnable thread, or
2298       // this may be called from a checkpoint. We get the hashcode on a best effort basis.
2299       static constexpr int kNumRetries = 3;
2300       static constexpr int kSleepMicros = 10;
2301       int32_t hash_code;
2302       for (int i = 0;; ++i) {
2303         hash_code = obj->IdentityHashCodeNoInflation();
2304         if (hash_code != 0 || i == kNumRetries) {
2305           break;
2306         }
2307         usleep(kSleepMicros);
2308       }
2309       if (hash_code == 0) {
2310         os << msg
2311            << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
2312                            reinterpret_cast<intptr_t>(obj.Ptr()),
2313                            pretty_type.c_str());
2314       } else {
2315         // - waiting on <0x608c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
2316         os << msg << StringPrintf("<0x%08x> (a %s)", hash_code, pretty_type.c_str());
2317       }
2318     }
2319     if (owner_tid != ThreadList::kInvalidThreadId) {
2320       os << " held by thread " << owner_tid;
2321     }
2322     os << "\n";
2323   }
2324 
2325   std::ostream& os;
2326   ArtMethod* last_method;
2327   int last_line_number;
2328   size_t repetition_count;
2329   size_t num_blocked = 0;
2330   size_t num_locked = 0;
2331 };
2332 
ShouldShowNativeStack(const Thread * thread)2333 static bool ShouldShowNativeStack(const Thread* thread)
2334     REQUIRES_SHARED(Locks::mutator_lock_) {
2335   ThreadState state = thread->GetState();
2336 
2337   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
2338   if (state > ThreadState::kWaiting && state < ThreadState::kStarting) {
2339     return true;
2340   }
2341 
2342   // In an Object.wait variant or Thread.sleep? That's not interesting.
2343   if (state == ThreadState::kTimedWaiting ||
2344       state == ThreadState::kSleeping ||
2345       state == ThreadState::kWaiting) {
2346     return false;
2347   }
2348 
2349   // Threads with no managed stack frames should be shown.
2350   if (!thread->HasManagedStack()) {
2351     return true;
2352   }
2353 
2354   // In some other native method? That's interesting.
2355   // We don't just check kNative because native methods will be in state kSuspended if they're
2356   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
2357   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
2358   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
2359   return current_method != nullptr && current_method->IsNative();
2360 }
2361 
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const2362 Thread::DumpOrder Thread::DumpJavaStack(std::ostream& os,
2363                                         bool check_suspended,
2364                                         bool dump_locks) const {
2365   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
2366   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
2367   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
2368   // thread.
2369   ScopedExceptionStorage ses(Thread::Current());
2370 
2371   std::unique_ptr<Context> context(Context::Create());
2372   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
2373                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
2374   dumper.WalkStack();
2375   if (IsJitSensitiveThread()) {
2376     return DumpOrder::kMain;
2377   } else if (dumper.num_blocked > 0) {
2378     return DumpOrder::kBlocked;
2379   } else if (dumper.num_locked > 0) {
2380     return DumpOrder::kLocked;
2381   } else {
2382     return DumpOrder::kDefault;
2383   }
2384 }
2385 
DumpStack(std::ostream & os,bool dump_native_stack,bool force_dump_stack) const2386 Thread::DumpOrder Thread::DumpStack(std::ostream& os,
2387                                     bool dump_native_stack,
2388                                     bool force_dump_stack) const {
2389   unwindstack::AndroidLocalUnwinder unwinder;
2390   return DumpStack(os, unwinder, dump_native_stack, force_dump_stack);
2391 }
2392 
DumpStack(std::ostream & os,unwindstack::AndroidLocalUnwinder & unwinder,bool dump_native_stack,bool force_dump_stack) const2393 Thread::DumpOrder Thread::DumpStack(std::ostream& os,
2394                                     unwindstack::AndroidLocalUnwinder& unwinder,
2395                                     bool dump_native_stack,
2396                                     bool force_dump_stack) const {
2397   // TODO: we call this code when dying but may not have suspended the thread ourself. The
2398   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
2399   //       the race with the thread_suspend_count_lock_).
2400   bool dump_for_abort = (gAborting > 0);
2401   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
2402   if (!kIsDebugBuild) {
2403     // We always want to dump the stack for an abort, however, there is no point dumping another
2404     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
2405     safe_to_dump = (safe_to_dump || dump_for_abort);
2406   }
2407   DumpOrder dump_order = DumpOrder::kDefault;
2408   if (safe_to_dump || force_dump_stack) {
2409     uint64_t nanotime = NanoTime();
2410     // If we're currently in native code, dump that stack before dumping the managed stack.
2411     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
2412       ArtMethod* method =
2413           GetCurrentMethod(nullptr,
2414                            /*check_suspended=*/ !force_dump_stack,
2415                            /*abort_on_error=*/ !(dump_for_abort || force_dump_stack));
2416       DumpNativeStack(os, unwinder, GetTid(), "  native: ", method);
2417     }
2418     dump_order = DumpJavaStack(os,
2419                                /*check_suspended=*/ !force_dump_stack,
2420                                /*dump_locks=*/ !force_dump_stack);
2421     Runtime* runtime = Runtime::Current();
2422     std::optional<uint64_t> start = runtime != nullptr ? runtime->SiqQuitNanoTime() : std::nullopt;
2423     if (start.has_value()) {
2424       os << "DumpLatencyMs: " << static_cast<float>(nanotime - start.value()) / 1000000.0 << "\n";
2425     }
2426   } else {
2427     os << "Not able to dump stack of thread that isn't suspended";
2428   }
2429   return dump_order;
2430 }
2431 
ThreadExitCallback(void * arg)2432 void Thread::ThreadExitCallback(void* arg) {
2433   Thread* self = reinterpret_cast<Thread*>(arg);
2434   if (self->tls32_.thread_exit_check_count == 0) {
2435     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2436         "going to use a pthread_key_create destructor?): " << *self;
2437     CHECK(is_started_);
2438 #ifdef __BIONIC__
2439     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2440 #else
2441     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2442     Thread::self_tls_ = self;
2443 #endif
2444     self->tls32_.thread_exit_check_count = 1;
2445   } else {
2446     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2447   }
2448 }
2449 
Startup()2450 void Thread::Startup() {
2451   CHECK(!is_started_);
2452   is_started_ = true;
2453   {
2454     // MutexLock to keep annotalysis happy.
2455     //
2456     // Note we use null for the thread because Thread::Current can
2457     // return garbage since (is_started_ == true) and
2458     // Thread::pthread_key_self_ is not yet initialized.
2459     // This was seen on glibc.
2460     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2461     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2462                                          *Locks::thread_suspend_count_lock_);
2463   }
2464 
2465   // Allocate a TLS slot.
2466   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2467                      "self key");
2468 
2469   // Double-check the TLS slot allocation.
2470   if (pthread_getspecific(pthread_key_self_) != nullptr) {
2471     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2472   }
2473 #ifndef __BIONIC__
2474   CHECK(Thread::self_tls_ == nullptr);
2475 #endif
2476 }
2477 
FinishStartup()2478 void Thread::FinishStartup() {
2479   Runtime* runtime = Runtime::Current();
2480   CHECK(runtime->IsStarted());
2481 
2482   // Finish attaching the main thread.
2483   ScopedObjectAccess soa(Thread::Current());
2484   soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2485   soa.Self()->AssertNoPendingException();
2486 
2487   runtime->RunRootClinits(soa.Self());
2488 
2489   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2490   // threads, this is done in Thread.start() on the Java side.
2491   soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2492   soa.Self()->AssertNoPendingException();
2493 }
2494 
Shutdown()2495 void Thread::Shutdown() {
2496   CHECK(is_started_);
2497   is_started_ = false;
2498   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2499   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2500   if (resume_cond_ != nullptr) {
2501     delete resume_cond_;
2502     resume_cond_ = nullptr;
2503   }
2504 }
2505 
NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable & soa,jobject thread_group)2506 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2507   ObjPtr<mirror::Object> thread_object = soa.Self()->GetPeer();
2508   ObjPtr<mirror::Object> thread_group_object = soa.Decode<mirror::Object>(thread_group);
2509   if (thread_group == nullptr || kIsDebugBuild) {
2510     // There is always a group set. Retrieve it.
2511     thread_group_object = WellKnownClasses::java_lang_Thread_group->GetObject(thread_object);
2512     if (kIsDebugBuild && thread_group != nullptr) {
2513       CHECK(thread_group_object == soa.Decode<mirror::Object>(thread_group));
2514     }
2515   }
2516   WellKnownClasses::java_lang_ThreadGroup_add->InvokeVirtual<'V', 'L'>(
2517       soa.Self(), thread_group_object, thread_object);
2518 }
2519 
SignalExitFlags()2520 void Thread::SignalExitFlags() {
2521   ThreadExitFlag* next;
2522   for (ThreadExitFlag* tef = tlsPtr_.thread_exit_flags; tef != nullptr; tef = next) {
2523     DCHECK(!tef->exited_);
2524     tef->exited_ = true;
2525     next = tef->next_;
2526     if (kIsDebugBuild) {
2527       ThreadExitFlag* const garbage_tef = reinterpret_cast<ThreadExitFlag*>(1);
2528       // Link fields should no longer be used.
2529       tef->prev_ = tef->next_ = garbage_tef;
2530     }
2531   }
2532   tlsPtr_.thread_exit_flags = nullptr;  // Now unused.
2533 }
2534 
Thread(bool daemon)2535 Thread::Thread(bool daemon)
2536     : tls32_(daemon),
2537       wait_monitor_(nullptr),
2538       is_runtime_thread_(false) {
2539   wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock);
2540   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2541   tlsPtr_.mutator_lock = Locks::mutator_lock_;
2542   DCHECK(tlsPtr_.mutator_lock != nullptr);
2543   tlsPtr_.name.store(kThreadNameDuringStartup, std::memory_order_relaxed);
2544   CHECK_NE(GetStackOverflowProtectedSize(), 0u);
2545 
2546   static_assert((sizeof(Thread) % 4) == 0U,
2547                 "art::Thread has a size which is not a multiple of 4.");
2548   DCHECK_EQ(GetStateAndFlags(std::memory_order_relaxed).GetValue(), 0u);
2549   StateAndFlags state_and_flags = StateAndFlags(0u).WithState(ThreadState::kNative);
2550   tls32_.state_and_flags.store(state_and_flags.GetValue(), std::memory_order_relaxed);
2551   tls32_.interrupted.store(false, std::memory_order_relaxed);
2552   // Initialize with no permit; if the java Thread was unparked before being
2553   // started, it will unpark itself before calling into java code.
2554   tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
2555   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2556   std::fill(tlsPtr_.rosalloc_runs,
2557             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2558             gc::allocator::RosAlloc::GetDedicatedFullRun());
2559   tlsPtr_.checkpoint_function = nullptr;
2560   tlsPtr_.active_suspendall_barrier = nullptr;
2561   tlsPtr_.active_suspend1_barriers = nullptr;
2562   tlsPtr_.flip_function.store(nullptr, std::memory_order_relaxed);
2563   tlsPtr_.thread_local_mark_stack = nullptr;
2564   ResetTlab();
2565 }
2566 
CanLoadClasses() const2567 bool Thread::CanLoadClasses() const {
2568   return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable();
2569 }
2570 
IsStillStarting() const2571 bool Thread::IsStillStarting() const {
2572   // You might think you can check whether the state is kStarting, but for much of thread startup,
2573   // the thread is in kNative; it might also be in kVmWait.
2574   // You might think you can check whether the peer is null, but the peer is actually created and
2575   // assigned fairly early on, and needs to be.
2576   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2577   // this thread _ever_ entered kRunnable".
2578   // TODO: I believe that SetThreadName(), ThreadGroup::GetThreads() and many jvmti functions can
2579   // call this while the thread is in the process of starting. Thus we appear to have data races
2580   // here on opeer and jpeer, and our result may be obsolete by the time we return. Aside from the
2581   // data races, it is not immediately clear whether clients are robust against this behavior.  It
2582   // may make sense to acquire a per-thread lock during the transition, and have this function
2583   // REQUIRE that. `runtime_shutdown_lock_` might almost work, but is global and currently not
2584   // held long enough.
2585   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2586       (tlsPtr_.name.load() == kThreadNameDuringStartup);
2587 }
2588 
AssertPendingException() const2589 void Thread::AssertPendingException() const {
2590   CHECK(IsExceptionPending()) << "Pending exception expected.";
2591 }
2592 
AssertPendingOOMException() const2593 void Thread::AssertPendingOOMException() const {
2594   AssertPendingException();
2595   auto* e = GetException();
2596   CHECK_EQ(e->GetClass(), WellKnownClasses::java_lang_OutOfMemoryError.Get()) << e->Dump();
2597 }
2598 
AssertNoPendingException() const2599 void Thread::AssertNoPendingException() const {
2600   if (UNLIKELY(IsExceptionPending())) {
2601     ScopedObjectAccess soa(Thread::Current());
2602     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2603   }
2604 }
2605 
AssertNoPendingExceptionForNewException(const char * msg) const2606 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2607   if (UNLIKELY(IsExceptionPending())) {
2608     ScopedObjectAccess soa(Thread::Current());
2609     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2610         << GetException()->Dump();
2611   }
2612 }
2613 
2614 class MonitorExitVisitor : public SingleRootVisitor {
2615  public:
MonitorExitVisitor(Thread * self)2616   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2617 
2618   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info)2619   void VisitRoot(mirror::Object* entered_monitor,
2620                  [[maybe_unused]] const RootInfo& info) override NO_THREAD_SAFETY_ANALYSIS {
2621     if (self_->HoldsLock(entered_monitor)) {
2622       LOG(WARNING) << "Calling MonitorExit on object "
2623                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2624                    << " left locked by native thread "
2625                    << *Thread::Current() << " which is detaching";
2626       entered_monitor->MonitorExit(self_);
2627     }
2628   }
2629 
2630  private:
2631   Thread* const self_;
2632 };
2633 
Destroy(bool should_run_callbacks)2634 void Thread::Destroy(bool should_run_callbacks) {
2635   Thread* self = this;
2636   DCHECK_EQ(self, Thread::Current());
2637 
2638   if (tlsPtr_.jni_env != nullptr) {
2639     {
2640       ScopedObjectAccess soa(self);
2641       MonitorExitVisitor visitor(self);
2642       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2643       tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2644     }
2645     // Release locally held global references which releasing may require the mutator lock.
2646     if (tlsPtr_.jpeer != nullptr) {
2647       // If pthread_create fails we don't have a jni env here.
2648       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2649       tlsPtr_.jpeer = nullptr;
2650     }
2651     if (tlsPtr_.class_loader_override != nullptr) {
2652       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2653       tlsPtr_.class_loader_override = nullptr;
2654     }
2655   }
2656 
2657   if (tlsPtr_.opeer != nullptr) {
2658     ScopedObjectAccess soa(self);
2659     // We may need to call user-supplied managed code, do this before final clean-up.
2660     HandleUncaughtExceptions();
2661     RemoveFromThreadGroup();
2662     Runtime* runtime = Runtime::Current();
2663     if (runtime != nullptr && should_run_callbacks) {
2664       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2665     }
2666 
2667     // this.nativePeer = 0;
2668     SetNativePeer</*kSupportTransaction=*/ true>(tlsPtr_.opeer, nullptr);
2669 
2670     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2671     // who is waiting.
2672     ObjPtr<mirror::Object> lock =
2673         WellKnownClasses::java_lang_Thread_lock->GetObject(tlsPtr_.opeer);
2674     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2675     if (lock != nullptr) {
2676       StackHandleScope<1> hs(self);
2677       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2678       ObjectLock<mirror::Object> locker(self, h_obj);
2679       locker.NotifyAll();
2680     }
2681 
2682     tlsPtr_.opeer = nullptr;
2683   }
2684 
2685   {
2686     ScopedObjectAccess soa(self);
2687     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2688 
2689     if (UNLIKELY(self->GetMethodTraceBuffer() != nullptr)) {
2690       Trace::FlushThreadBuffer(self);
2691     }
2692   }
2693   // Mark-stack revocation must be performed at the very end. No
2694   // checkpoint/flip-function or read-barrier should be called after this.
2695   if (gUseReadBarrier) {
2696     Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2697   }
2698 }
2699 
~Thread()2700 Thread::~Thread() {
2701   CHECK(tlsPtr_.class_loader_override == nullptr);
2702   CHECK(tlsPtr_.jpeer == nullptr);
2703   CHECK(tlsPtr_.opeer == nullptr);
2704   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
2705   if (initialized) {
2706     delete tlsPtr_.jni_env;
2707     tlsPtr_.jni_env = nullptr;
2708   }
2709   CHECK_NE(GetState(), ThreadState::kRunnable);
2710   CHECK(!ReadFlag(ThreadFlag::kCheckpointRequest));
2711   CHECK(!ReadFlag(ThreadFlag::kEmptyCheckpointRequest));
2712   CHECK(!ReadFlag(ThreadFlag::kSuspensionImmune));
2713   CHECK(tlsPtr_.checkpoint_function == nullptr);
2714   CHECK_EQ(checkpoint_overflow_.size(), 0u);
2715   // A pending flip function request is OK. FlipThreadRoots will have been notified that we
2716   // exited, and nobody will attempt to process the request.
2717 
2718   // Make sure we processed all deoptimization requests.
2719   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2720   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2721       "Not all deoptimized frames have been consumed by the debugger.";
2722 
2723   // We may be deleting a still born thread.
2724   SetStateUnsafe(ThreadState::kTerminated);
2725 
2726   delete wait_cond_;
2727   delete wait_mutex_;
2728 
2729   if (initialized) {
2730     CleanupCpu();
2731   }
2732 
2733   SetCachedThreadName(nullptr);  // Deallocate name.
2734   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2735 
2736   CHECK_EQ(tlsPtr_.method_trace_buffer, nullptr);
2737 
2738   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2739 
2740   TearDownAlternateSignalStack();
2741 }
2742 
HandleUncaughtExceptions()2743 void Thread::HandleUncaughtExceptions() {
2744   Thread* self = this;
2745   DCHECK_EQ(self, Thread::Current());
2746   if (!self->IsExceptionPending()) {
2747     return;
2748   }
2749 
2750   // Get and clear the exception.
2751   ObjPtr<mirror::Object> exception = self->GetException();
2752   self->ClearException();
2753 
2754   // Call the Thread instance's dispatchUncaughtException(Throwable)
2755   WellKnownClasses::java_lang_Thread_dispatchUncaughtException->InvokeFinal<'V', 'L'>(
2756       self, tlsPtr_.opeer, exception);
2757 
2758   // If the dispatchUncaughtException threw, clear that exception too.
2759   self->ClearException();
2760 }
2761 
RemoveFromThreadGroup()2762 void Thread::RemoveFromThreadGroup() {
2763   Thread* self = this;
2764   DCHECK_EQ(self, Thread::Current());
2765   // this.group.threadTerminated(this);
2766   // group can be null if we're in the compiler or a test.
2767   ObjPtr<mirror::Object> group =
2768       WellKnownClasses::java_lang_Thread_group->GetObject(tlsPtr_.opeer);
2769   if (group != nullptr) {
2770     WellKnownClasses::java_lang_ThreadGroup_threadTerminated->InvokeVirtual<'V', 'L'>(
2771         self, group, tlsPtr_.opeer);
2772   }
2773 }
2774 
2775 template <bool kPointsToStack>
2776 class JniTransitionReferenceVisitor : public StackVisitor {
2777  public:
JniTransitionReferenceVisitor(Thread * thread,void * obj)2778   JniTransitionReferenceVisitor(Thread* thread, void* obj) REQUIRES_SHARED(Locks::mutator_lock_)
2779       : StackVisitor(thread, /*context=*/ nullptr, StackVisitor::StackWalkKind::kSkipInlinedFrames),
2780         obj_(obj),
2781         found_(false) {}
2782 
VisitFrame()2783   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2784     ArtMethod* m = GetMethod();
2785     if (!m->IsNative() || m->IsCriticalNative()) {
2786       return true;
2787     }
2788     if (kPointsToStack) {
2789       uint8_t* sp = reinterpret_cast<uint8_t*>(GetCurrentQuickFrame());
2790       size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes();
2791       uint32_t* current_vreg = reinterpret_cast<uint32_t*>(sp + frame_size + sizeof(ArtMethod*));
2792       if (!m->IsStatic()) {
2793         if (current_vreg == obj_) {
2794           found_ = true;
2795           return false;
2796         }
2797         current_vreg += 1u;
2798       }
2799       uint32_t shorty_length;
2800       const char* shorty = m->GetShorty(&shorty_length);
2801       for (size_t i = 1; i != shorty_length; ++i) {
2802         switch (shorty[i]) {
2803           case 'D':
2804           case 'J':
2805             current_vreg += 2u;
2806             break;
2807           case 'L':
2808             if (current_vreg == obj_) {
2809               found_ = true;
2810               return false;
2811             }
2812             FALLTHROUGH_INTENDED;
2813           default:
2814             current_vreg += 1u;
2815             break;
2816         }
2817       }
2818       // Continue only if the object is somewhere higher on the stack.
2819       return obj_ >= current_vreg;
2820     } else {  // if (kPointsToStack)
2821       if (m->IsStatic() && obj_ == m->GetDeclaringClassAddressWithoutBarrier()) {
2822         found_ = true;
2823         return false;
2824       }
2825       return true;
2826     }
2827   }
2828 
Found() const2829   bool Found() const {
2830     return found_;
2831   }
2832 
2833  private:
2834   void* obj_;
2835   bool found_;
2836 };
2837 
IsRawObjOnQuickStack(uint8_t * raw_obj) const2838 bool Thread::IsRawObjOnQuickStack(uint8_t* raw_obj) const {
2839   return (static_cast<size_t>(raw_obj - GetStackBegin<kQuickStackType>()) <
2840           GetStackSize<kQuickStackType>());
2841 }
2842 
IsJniTransitionReference(jobject obj) const2843 bool Thread::IsJniTransitionReference(jobject obj) const {
2844   DCHECK(obj != nullptr);
2845   // We need a non-const pointer for stack walk even if we're not modifying the thread state.
2846   Thread* thread = const_cast<Thread*>(this);
2847   uint8_t* raw_obj = reinterpret_cast<uint8_t*>(obj);
2848   if (IsRawObjOnQuickStack(raw_obj)) {
2849     JniTransitionReferenceVisitor</*kPointsToStack=*/ true> visitor(thread, raw_obj);
2850     visitor.WalkStack();
2851     return visitor.Found();
2852   } else {
2853     JniTransitionReferenceVisitor</*kPointsToStack=*/ false> visitor(thread, raw_obj);
2854     visitor.WalkStack();
2855     return visitor.Found();
2856   }
2857 }
2858 
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)2859 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
2860   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2861       visitor, RootInfo(kRootNativeStack, thread_id));
2862   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2863     cur->VisitRoots(buffered_visitor);
2864   }
2865 }
2866 
DecodeGlobalJObject(jobject obj) const2867 ObjPtr<mirror::Object> Thread::DecodeGlobalJObject(jobject obj) const {
2868   DCHECK(obj != nullptr);
2869   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2870   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2871   DCHECK_NE(kind, kJniTransition);
2872   DCHECK_NE(kind, kLocal);
2873   ObjPtr<mirror::Object> result;
2874   bool expect_null = false;
2875   if (kind == kGlobal) {
2876     result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2877   } else {
2878     DCHECK_EQ(kind, kWeakGlobal);
2879     result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2880     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2881       // This is a special case where it's okay to return null.
2882       expect_null = true;
2883       result = nullptr;
2884     }
2885   }
2886 
2887   DCHECK(expect_null || result != nullptr)
2888       << "use of deleted " << ToStr<IndirectRefKind>(kind).c_str()
2889       << " " << static_cast<const void*>(obj);
2890   return result;
2891 }
2892 
IsJWeakCleared(jweak obj) const2893 bool Thread::IsJWeakCleared(jweak obj) const {
2894   CHECK(obj != nullptr);
2895   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2896   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2897   CHECK_EQ(kind, kWeakGlobal);
2898   return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2899 }
2900 
2901 // Implements java.lang.Thread.interrupted.
Interrupted()2902 bool Thread::Interrupted() {
2903   DCHECK_EQ(Thread::Current(), this);
2904   // No other thread can concurrently reset the interrupted flag.
2905   bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst);
2906   if (interrupted) {
2907     tls32_.interrupted.store(false, std::memory_order_seq_cst);
2908   }
2909   return interrupted;
2910 }
2911 
2912 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2913 bool Thread::IsInterrupted() {
2914   return tls32_.interrupted.load(std::memory_order_seq_cst);
2915 }
2916 
Interrupt(Thread * self)2917 void Thread::Interrupt(Thread* self) {
2918   {
2919     MutexLock mu(self, *wait_mutex_);
2920     if (tls32_.interrupted.load(std::memory_order_seq_cst)) {
2921       return;
2922     }
2923     tls32_.interrupted.store(true, std::memory_order_seq_cst);
2924     NotifyLocked(self);
2925   }
2926   Unpark();
2927 }
2928 
Notify()2929 void Thread::Notify() {
2930   Thread* self = Thread::Current();
2931   MutexLock mu(self, *wait_mutex_);
2932   NotifyLocked(self);
2933 }
2934 
NotifyLocked(Thread * self)2935 void Thread::NotifyLocked(Thread* self) {
2936   if (wait_monitor_ != nullptr) {
2937     wait_cond_->Signal(self);
2938   }
2939 }
2940 
SetClassLoaderOverride(jobject class_loader_override)2941 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2942   if (tlsPtr_.class_loader_override != nullptr) {
2943     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2944   }
2945   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2946 }
2947 
2948 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2949 
2950 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2951 class FetchStackTraceVisitor : public StackVisitor {
2952  public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2953   explicit FetchStackTraceVisitor(Thread* thread,
2954                                   ArtMethodDexPcPair* saved_frames = nullptr,
2955                                   size_t max_saved_frames = 0)
2956       REQUIRES_SHARED(Locks::mutator_lock_)
2957       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2958         saved_frames_(saved_frames),
2959         max_saved_frames_(max_saved_frames) {}
2960 
VisitFrame()2961   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2962     // We want to skip frames up to and including the exception's constructor.
2963     // Note we also skip the frame if it doesn't have a method (namely the callee
2964     // save frame)
2965     ArtMethod* m = GetMethod();
2966     if (skipping_ && !m->IsRuntimeMethod() &&
2967         !GetClassRoot<mirror::Throwable>()->IsAssignableFrom(m->GetDeclaringClass())) {
2968       skipping_ = false;
2969     }
2970     if (!skipping_) {
2971       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
2972         if (depth_ < max_saved_frames_) {
2973           saved_frames_[depth_].first = m;
2974           saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2975         }
2976         ++depth_;
2977       }
2978     } else {
2979       ++skip_depth_;
2980     }
2981     return true;
2982   }
2983 
GetDepth() const2984   uint32_t GetDepth() const {
2985     return depth_;
2986   }
2987 
GetSkipDepth() const2988   uint32_t GetSkipDepth() const {
2989     return skip_depth_;
2990   }
2991 
2992  private:
2993   uint32_t depth_ = 0;
2994   uint32_t skip_depth_ = 0;
2995   bool skipping_ = true;
2996   ArtMethodDexPcPair* saved_frames_;
2997   const size_t max_saved_frames_;
2998 
2999   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
3000 };
3001 
3002 class BuildInternalStackTraceVisitor : public StackVisitor {
3003  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,uint32_t skip_depth)3004   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, uint32_t skip_depth)
3005       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
3006         self_(self),
3007         skip_depth_(skip_depth),
3008         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
3009 
Init(uint32_t depth)3010   bool Init(uint32_t depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
3011     // Allocate method trace as an object array where the first element is a pointer array that
3012     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
3013     // class of the ArtMethod pointers.
3014     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3015     StackHandleScope<1> hs(self_);
3016     ObjPtr<mirror::Class> array_class =
3017         GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker);
3018     // The first element is the methods and dex pc array, the other elements are declaring classes
3019     // for the methods to ensure classes in the stack trace don't get unloaded.
3020     Handle<mirror::ObjectArray<mirror::Object>> trace(
3021         hs.NewHandle(mirror::ObjectArray<mirror::Object>::Alloc(
3022             hs.Self(), array_class, static_cast<int32_t>(depth) + 1)));
3023     if (trace == nullptr) {
3024       // Acquire uninterruptible_ in all paths.
3025       self_->StartAssertNoThreadSuspension("Building internal stack trace");
3026       self_->AssertPendingOOMException();
3027       return false;
3028     }
3029     ObjPtr<mirror::PointerArray> methods_and_pcs =
3030         class_linker->AllocPointerArray(self_, depth * 2);
3031     const char* last_no_suspend_cause =
3032         self_->StartAssertNoThreadSuspension("Building internal stack trace");
3033     if (methods_and_pcs == nullptr) {
3034       self_->AssertPendingOOMException();
3035       return false;
3036     }
3037     trace->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(0, methods_and_pcs);
3038     trace_ = trace.Get();
3039     // If We are called from native, use non-transactional mode.
3040     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
3041     return true;
3042   }
3043 
RELEASE(Roles::uninterruptible_)3044   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
3045     self_->EndAssertNoThreadSuspension(nullptr);
3046   }
3047 
VisitFrame()3048   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
3049     if (trace_ == nullptr) {
3050       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
3051     }
3052     if (skip_depth_ > 0) {
3053       skip_depth_--;
3054       return true;
3055     }
3056     ArtMethod* m = GetMethod();
3057     if (m->IsRuntimeMethod()) {
3058       return true;  // Ignore runtime frames (in particular callee save).
3059     }
3060     AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
3061     return true;
3062   }
3063 
AddFrame(ArtMethod * method,uint32_t dex_pc)3064   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
3065     ObjPtr<mirror::PointerArray> methods_and_pcs = GetTraceMethodsAndPCs();
3066     methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
3067         count_, method, pointer_size_);
3068     methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
3069         static_cast<uint32_t>(methods_and_pcs->GetLength()) / 2 + count_, dex_pc, pointer_size_);
3070     // Save the declaring class of the method to ensure that the declaring classes of the methods
3071     // do not get unloaded while the stack trace is live. However, this does not work for copied
3072     // methods because the declaring class of a copied method points to an interface class which
3073     // may be in a different class loader. Instead, retrieve the class loader associated with the
3074     // allocator that holds the copied method. This is much cheaper than finding the actual class.
3075     ObjPtr<mirror::Object> keep_alive;
3076     if (UNLIKELY(method->IsCopied())) {
3077       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3078       keep_alive = class_linker->GetHoldingClassLoaderOfCopiedMethod(self_, method);
3079     } else {
3080       keep_alive = method->GetDeclaringClass();
3081     }
3082     trace_->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
3083         static_cast<int32_t>(count_) + 1, keep_alive);
3084     ++count_;
3085   }
3086 
GetTraceMethodsAndPCs() const3087   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
3088     return ObjPtr<mirror::PointerArray>::DownCast(trace_->Get(0));
3089   }
3090 
GetInternalStackTrace() const3091   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
3092     return trace_;
3093   }
3094 
3095  private:
3096   Thread* const self_;
3097   // How many more frames to skip.
3098   uint32_t skip_depth_;
3099   // Current position down stack trace.
3100   uint32_t count_ = 0;
3101   // An object array where the first element is a pointer array that contains the `ArtMethod`
3102   // pointers on the stack and dex PCs. The rest of the elements are referencing objects
3103   // that shall keep the methods alive, namely the declaring class of the `ArtMethod` for
3104   // declared methods and the class loader for copied methods (because it's faster to find
3105   // the class loader than the actual class that holds the copied method). The `trace_[i+1]`
3106   // contains the declaring class or class loader of the `ArtMethod` of the i'th frame.
3107   // We're initializing a newly allocated trace, so we do not need to record that under
3108   // a transaction. If the transaction is aborted, the whole trace shall be unreachable.
3109   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
3110   // For cross compilation.
3111   const PointerSize pointer_size_;
3112 
3113   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
3114 };
3115 
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const3116 ObjPtr<mirror::ObjectArray<mirror::Object>> Thread::CreateInternalStackTrace(
3117     const ScopedObjectAccessAlreadyRunnable& soa) const {
3118   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
3119   constexpr size_t kMaxSavedFrames = 256;
3120   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
3121   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
3122                                        &saved_frames[0],
3123                                        kMaxSavedFrames);
3124   count_visitor.WalkStack();
3125   const uint32_t depth = count_visitor.GetDepth();
3126   const uint32_t skip_depth = count_visitor.GetSkipDepth();
3127 
3128   // Build internal stack trace.
3129   BuildInternalStackTraceVisitor build_trace_visitor(
3130       soa.Self(), const_cast<Thread*>(this), skip_depth);
3131   if (!build_trace_visitor.Init(depth)) {
3132     return nullptr;  // Allocation failed.
3133   }
3134   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
3135   // than doing the stack walk twice.
3136   if (depth < kMaxSavedFrames) {
3137     for (size_t i = 0; i < depth; ++i) {
3138       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
3139     }
3140   } else {
3141     build_trace_visitor.WalkStack();
3142   }
3143 
3144   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
3145   if (kIsDebugBuild) {
3146     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
3147     // Second half of trace_methods is dex PCs.
3148     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
3149       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
3150           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
3151       CHECK(method != nullptr);
3152     }
3153   }
3154   return trace;
3155 }
3156 
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const3157 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
3158   // Only count the depth since we do not pass a stack frame array as an argument.
3159   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
3160   count_visitor.WalkStack();
3161   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
3162 }
3163 
CreateStackTraceElement(const ScopedObjectAccessAlreadyRunnable & soa,ArtMethod * method,uint32_t dex_pc)3164 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
3165     const ScopedObjectAccessAlreadyRunnable& soa,
3166     ArtMethod* method,
3167     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
3168   int32_t line_number;
3169   StackHandleScope<3> hs(soa.Self());
3170   auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
3171   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
3172   if (method->IsProxyMethod()) {
3173     line_number = -1;
3174     class_name_object.Assign(method->GetDeclaringClass()->GetName());
3175     // source_name_object intentionally left null for proxy methods
3176   } else {
3177     line_number = method->GetLineNumFromDexPC(dex_pc);
3178     // Allocate element, potentially triggering GC
3179     // TODO: reuse class_name_object via Class::name_?
3180     const char* descriptor = method->GetDeclaringClassDescriptor();
3181     CHECK(descriptor != nullptr);
3182     std::string class_name(PrettyDescriptor(descriptor));
3183     class_name_object.Assign(
3184         mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
3185     if (class_name_object == nullptr) {
3186       soa.Self()->AssertPendingOOMException();
3187       return nullptr;
3188     }
3189     const char* source_file = method->GetDeclaringClassSourceFile();
3190     if (line_number == -1) {
3191       // Make the line_number field of StackTraceElement hold the dex pc.
3192       // source_name_object is intentionally left null if we failed to map the dex pc to
3193       // a line number (most probably because there is no debug info). See b/30183883.
3194       line_number = static_cast<int32_t>(dex_pc);
3195     } else {
3196       if (source_file != nullptr) {
3197         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
3198         if (source_name_object == nullptr) {
3199           soa.Self()->AssertPendingOOMException();
3200           return nullptr;
3201         }
3202       }
3203     }
3204   }
3205   const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
3206   CHECK(method_name != nullptr);
3207   Handle<mirror::String> method_name_object(
3208       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
3209   if (method_name_object == nullptr) {
3210     return nullptr;
3211   }
3212   return mirror::StackTraceElement::Alloc(soa.Self(),
3213                                           class_name_object,
3214                                           method_name_object,
3215                                           source_name_object,
3216                                           line_number);
3217 }
3218 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)3219 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
3220     const ScopedObjectAccessAlreadyRunnable& soa,
3221     jobject internal,
3222     jobjectArray output_array,
3223     int* stack_depth) {
3224   // Decode the internal stack trace into the depth, method trace and PC trace.
3225   // Subtract one for the methods and PC trace.
3226   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
3227   DCHECK_GE(depth, 0);
3228 
3229   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
3230 
3231   jobjectArray result;
3232 
3233   if (output_array != nullptr) {
3234     // Reuse the array we were given.
3235     result = output_array;
3236     // ...adjusting the number of frames we'll write to not exceed the array length.
3237     const int32_t traces_length =
3238         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
3239     depth = std::min(depth, traces_length);
3240   } else {
3241     // Create java_trace array and place in local reference table
3242     ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> java_traces =
3243         class_linker->AllocStackTraceElementArray(soa.Self(), static_cast<size_t>(depth));
3244     if (java_traces == nullptr) {
3245       return nullptr;
3246     }
3247     result = soa.AddLocalReference<jobjectArray>(java_traces);
3248   }
3249 
3250   if (stack_depth != nullptr) {
3251     *stack_depth = depth;
3252   }
3253 
3254   for (uint32_t i = 0; i < static_cast<uint32_t>(depth); ++i) {
3255     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
3256         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
3257     // Methods and dex PC trace is element 0.
3258     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
3259     const ObjPtr<mirror::PointerArray> method_trace =
3260         ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0));
3261     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
3262     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
3263     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
3264         i + static_cast<uint32_t>(method_trace->GetLength()) / 2, kRuntimePointerSize);
3265     const ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
3266     if (obj == nullptr) {
3267       return nullptr;
3268     }
3269     // We are called from native: use non-transactional mode.
3270     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(
3271         static_cast<int32_t>(i), obj);
3272   }
3273   return result;
3274 }
3275 
InitStackFrameInfo(const ScopedObjectAccessAlreadyRunnable & soa,ClassLinker * class_linker,Handle<mirror::StackFrameInfo> stackFrameInfo,ArtMethod * method,uint32_t dex_pc)3276 [[nodiscard]] static ObjPtr<mirror::StackFrameInfo> InitStackFrameInfo(
3277     const ScopedObjectAccessAlreadyRunnable& soa,
3278     ClassLinker* class_linker,
3279     Handle<mirror::StackFrameInfo> stackFrameInfo,
3280     ArtMethod* method,
3281     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
3282   StackHandleScope<4> hs(soa.Self());
3283   int32_t line_number;
3284   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
3285   if (method->IsProxyMethod()) {
3286     line_number = -1;
3287     // source_name_object intentionally left null for proxy methods
3288   } else {
3289     line_number = method->GetLineNumFromDexPC(dex_pc);
3290     if (line_number == -1) {
3291       // Make the line_number field of StackFrameInfo hold the dex pc.
3292       // source_name_object is intentionally left null if we failed to map the dex pc to
3293       // a line number (most probably because there is no debug info). See b/30183883.
3294       line_number = static_cast<int32_t>(dex_pc);
3295     } else {
3296       const char* source_file = method->GetDeclaringClassSourceFile();
3297       if (source_file != nullptr) {
3298         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
3299         if (source_name_object == nullptr) {
3300           soa.Self()->AssertPendingOOMException();
3301           return nullptr;
3302         }
3303       }
3304     }
3305   }
3306 
3307   Handle<mirror::Class> declaring_class_object(
3308       hs.NewHandle<mirror::Class>(method->GetDeclaringClass()));
3309 
3310   ArtMethod* interface_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
3311   const char* method_name = interface_method->GetName();
3312   CHECK(method_name != nullptr);
3313   Handle<mirror::String> method_name_object(
3314       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
3315   if (method_name_object == nullptr) {
3316     soa.Self()->AssertPendingOOMException();
3317     return nullptr;
3318   }
3319 
3320   dex::ProtoIndex proto_idx =
3321       method->GetDexFile()->GetIndexForProtoId(interface_method->GetPrototype());
3322   Handle<mirror::MethodType> method_type_object(hs.NewHandle<mirror::MethodType>(
3323       class_linker->ResolveMethodType(soa.Self(), proto_idx, interface_method)));
3324   if (method_type_object == nullptr) {
3325     soa.Self()->AssertPendingOOMException();
3326     return nullptr;
3327   }
3328 
3329   stackFrameInfo->AssignFields(declaring_class_object,
3330                                method_type_object,
3331                                method_name_object,
3332                                source_name_object,
3333                                line_number,
3334                                static_cast<int32_t>(dex_pc));
3335   return stackFrameInfo.Get();
3336 }
3337 
3338 constexpr jlong FILL_CLASS_REFS_ONLY = 0x2;  // StackStreamFactory.FILL_CLASS_REFS_ONLY
3339 
InternalStackTraceToStackFrameInfoArray(const ScopedObjectAccessAlreadyRunnable & soa,jlong mode,jobject internal,jint startLevel,jint batchSize,jint startBufferIndex,jobjectArray output_array)3340 jint Thread::InternalStackTraceToStackFrameInfoArray(
3341     const ScopedObjectAccessAlreadyRunnable& soa,
3342     jlong mode,  // See java.lang.StackStreamFactory for the mode flags
3343     jobject internal,
3344     jint startLevel,
3345     jint batchSize,
3346     jint startBufferIndex,
3347     jobjectArray output_array) {
3348   // Decode the internal stack trace into the depth, method trace and PC trace.
3349   // Subtract one for the methods and PC trace.
3350   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
3351   DCHECK_GE(depth, 0);
3352 
3353   StackHandleScope<6> hs(soa.Self());
3354   Handle<mirror::ObjectArray<mirror::Object>> framesOrClasses =
3355       hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Object>>(output_array));
3356 
3357   jint endBufferIndex = startBufferIndex;
3358 
3359   if (startLevel < 0 || startLevel >= depth) {
3360     return endBufferIndex;
3361   }
3362 
3363   int32_t bufferSize = framesOrClasses->GetLength();
3364   if (startBufferIndex < 0 || startBufferIndex >= bufferSize) {
3365     return endBufferIndex;
3366   }
3367 
3368   // The FILL_CLASS_REFS_ONLY flag is defined in AbstractStackWalker.fetchStackFrames() javadoc.
3369   bool isClassArray = (mode & FILL_CLASS_REFS_ONLY) != 0;
3370 
3371   Handle<mirror::ObjectArray<mirror::Object>> decoded_traces =
3372       hs.NewHandle(soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>());
3373   // Methods and dex PC trace is element 0.
3374   DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
3375   Handle<mirror::PointerArray> method_trace =
3376       hs.NewHandle(ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0)));
3377 
3378   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
3379   Handle<mirror::Class> sfi_class =
3380       hs.NewHandle(class_linker->FindSystemClass(soa.Self(), "Ljava/lang/StackFrameInfo;"));
3381   DCHECK(sfi_class != nullptr);
3382 
3383   MutableHandle<mirror::StackFrameInfo> frame = hs.NewHandle<mirror::StackFrameInfo>(nullptr);
3384   MutableHandle<mirror::Class> clazz = hs.NewHandle<mirror::Class>(nullptr);
3385   for (uint32_t i = static_cast<uint32_t>(startLevel); i < static_cast<uint32_t>(depth); ++i) {
3386     if (endBufferIndex >= startBufferIndex + batchSize || endBufferIndex >= bufferSize) {
3387       break;
3388     }
3389 
3390     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
3391     if (isClassArray) {
3392       clazz.Assign(method->GetDeclaringClass());
3393       framesOrClasses->Set(endBufferIndex, clazz.Get());
3394     } else {
3395       // Prepare parameters for fields in StackFrameInfo
3396       uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
3397           i + static_cast<uint32_t>(method_trace->GetLength()) / 2, kRuntimePointerSize);
3398 
3399       ObjPtr<mirror::Object> frameObject = framesOrClasses->Get(endBufferIndex);
3400       // If libcore didn't allocate the object, we just stop here, but it's unlikely.
3401       if (frameObject == nullptr || !frameObject->InstanceOf(sfi_class.Get())) {
3402         break;
3403       }
3404       frame.Assign(ObjPtr<mirror::StackFrameInfo>::DownCast(frameObject));
3405       frame.Assign(InitStackFrameInfo(soa, class_linker, frame, method, dex_pc));
3406       // Break if InitStackFrameInfo fails to allocate objects or assign the fields.
3407       if (frame == nullptr) {
3408         break;
3409       }
3410     }
3411 
3412     ++endBufferIndex;
3413   }
3414 
3415   return endBufferIndex;
3416 }
3417 
CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const3418 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
3419   // This code allocates. Do not allow it to operate with a pending exception.
3420   if (IsExceptionPending()) {
3421     return nullptr;
3422   }
3423 
3424   class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
3425    public:
3426     CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
3427                                       Thread* self,
3428                                       Context* context)
3429         : MonitorObjectsStackVisitor(self, context),
3430           wait_jobject_(soaa_in.Env(), nullptr),
3431           block_jobject_(soaa_in.Env(), nullptr),
3432           soaa_(soaa_in) {}
3433 
3434    protected:
3435     VisitMethodResult StartMethod(ArtMethod* m, [[maybe_unused]] size_t frame_nr) override
3436         REQUIRES_SHARED(Locks::mutator_lock_) {
3437       ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
3438           soaa_, m, GetDexPc(/* abort on error */ false));
3439       if (obj == nullptr) {
3440         return VisitMethodResult::kEndStackWalk;
3441       }
3442       stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
3443       return VisitMethodResult::kContinueMethod;
3444     }
3445 
3446     VisitMethodResult EndMethod([[maybe_unused]] ArtMethod* m) override {
3447       lock_objects_.push_back({});
3448       lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
3449 
3450       DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
3451 
3452       return VisitMethodResult::kContinueMethod;
3453     }
3454 
3455     void VisitWaitingObject(ObjPtr<mirror::Object> obj, [[maybe_unused]] ThreadState state) override
3456         REQUIRES_SHARED(Locks::mutator_lock_) {
3457       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3458     }
3459     void VisitSleepingObject(ObjPtr<mirror::Object> obj)
3460         override
3461         REQUIRES_SHARED(Locks::mutator_lock_) {
3462       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3463     }
3464     void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
3465                               [[maybe_unused]] ThreadState state,
3466                               [[maybe_unused]] uint32_t owner_tid) override
3467         REQUIRES_SHARED(Locks::mutator_lock_) {
3468       block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3469     }
3470     void VisitLockedObject(ObjPtr<mirror::Object> obj)
3471         override
3472         REQUIRES_SHARED(Locks::mutator_lock_) {
3473       frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
3474     }
3475 
3476    public:
3477     std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
3478     ScopedLocalRef<jobject> wait_jobject_;
3479     ScopedLocalRef<jobject> block_jobject_;
3480     std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
3481 
3482    private:
3483     const ScopedObjectAccessAlreadyRunnable& soaa_;
3484 
3485     std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
3486   };
3487 
3488   std::unique_ptr<Context> context(Context::Create());
3489   CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
3490   dumper.WalkStack();
3491 
3492   // There should not be a pending exception. Otherwise, return with it pending.
3493   if (IsExceptionPending()) {
3494     return nullptr;
3495   }
3496 
3497   // Now go and create Java arrays.
3498 
3499   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3500 
3501   StackHandleScope<6> hs(soa.Self());
3502   Handle<mirror::Class> h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass(
3503       soa.Self(),
3504       "[Ldalvik/system/AnnotatedStackTraceElement;"));
3505   if (h_aste_array_class == nullptr) {
3506     return nullptr;
3507   }
3508   Handle<mirror::Class> h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType());
3509 
3510   Handle<mirror::Class> h_o_array_class =
3511       hs.NewHandle(GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
3512   DCHECK(h_o_array_class != nullptr);  // Class roots must be already initialized.
3513 
3514 
3515   // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
3516   class_linker->EnsureInitialized(soa.Self(),
3517                                   h_aste_class,
3518                                   /* can_init_fields= */ true,
3519                                   /* can_init_parents= */ true);
3520   if (soa.Self()->IsExceptionPending()) {
3521     // This should not fail in a healthy runtime.
3522     return nullptr;
3523   }
3524 
3525   ArtField* stack_trace_element_field =
3526       h_aste_class->FindDeclaredInstanceField("stackTraceElement", "Ljava/lang/StackTraceElement;");
3527   DCHECK(stack_trace_element_field != nullptr);
3528   ArtField* held_locks_field =
3529       h_aste_class->FindDeclaredInstanceField("heldLocks", "[Ljava/lang/Object;");
3530   DCHECK(held_locks_field != nullptr);
3531   ArtField* blocked_on_field =
3532       h_aste_class->FindDeclaredInstanceField("blockedOn", "Ljava/lang/Object;");
3533   DCHECK(blocked_on_field != nullptr);
3534 
3535   int32_t length = static_cast<int32_t>(dumper.stack_trace_elements_.size());
3536   ObjPtr<mirror::ObjectArray<mirror::Object>> array =
3537       mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), h_aste_array_class.Get(), length);
3538   if (array == nullptr) {
3539     soa.Self()->AssertPendingOOMException();
3540     return nullptr;
3541   }
3542 
3543   ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
3544 
3545   MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
3546   MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
3547       hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
3548   for (size_t i = 0; i != static_cast<size_t>(length); ++i) {
3549     handle.Assign(h_aste_class->AllocObject(soa.Self()));
3550     if (handle == nullptr) {
3551       soa.Self()->AssertPendingOOMException();
3552       return nullptr;
3553     }
3554 
3555     // Set stack trace element.
3556     stack_trace_element_field->SetObject<false>(
3557         handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
3558 
3559     // Create locked-on array.
3560     if (!dumper.lock_objects_[i].empty()) {
3561       handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(
3562           soa.Self(), h_o_array_class.Get(), static_cast<int32_t>(dumper.lock_objects_[i].size())));
3563       if (handle2 == nullptr) {
3564         soa.Self()->AssertPendingOOMException();
3565         return nullptr;
3566       }
3567       int32_t j = 0;
3568       for (auto& scoped_local : dumper.lock_objects_[i]) {
3569         if (scoped_local == nullptr) {
3570           continue;
3571         }
3572         handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
3573         DCHECK(!soa.Self()->IsExceptionPending());
3574         j++;
3575       }
3576       held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
3577     }
3578 
3579     // Set blocked-on object.
3580     if (i == 0) {
3581       if (dumper.block_jobject_ != nullptr) {
3582         blocked_on_field->SetObject<false>(
3583             handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
3584       }
3585     }
3586 
3587     ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
3588     soa.Env()->SetObjectArrayElement(result.get(), static_cast<jsize>(i), elem.get());
3589     DCHECK(!soa.Self()->IsExceptionPending());
3590   }
3591 
3592   return result.release();
3593 }
3594 
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)3595 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
3596   va_list args;
3597   va_start(args, fmt);
3598   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
3599   va_end(args);
3600 }
3601 
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)3602 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
3603                                 const char* fmt, va_list ap) {
3604   std::string msg;
3605   StringAppendV(&msg, fmt, ap);
3606   ThrowNewException(exception_class_descriptor, msg.c_str());
3607 }
3608 
ThrowNewException(const char * exception_class_descriptor,const char * msg)3609 void Thread::ThrowNewException(const char* exception_class_descriptor,
3610                                const char* msg) {
3611   // Callers should either clear or call ThrowNewWrappedException.
3612   AssertNoPendingExceptionForNewException(msg);
3613   ThrowNewWrappedException(exception_class_descriptor, msg);
3614 }
3615 
GetCurrentClassLoader(Thread * self)3616 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
3617     REQUIRES_SHARED(Locks::mutator_lock_) {
3618   ArtMethod* method = self->GetCurrentMethod(nullptr);
3619   return method != nullptr
3620       ? method->GetDeclaringClass()->GetClassLoader()
3621       : nullptr;
3622 }
3623 
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)3624 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
3625                                       const char* msg) {
3626   DCHECK_EQ(this, Thread::Current());
3627   ScopedObjectAccessUnchecked soa(this);
3628   StackHandleScope<3> hs(soa.Self());
3629 
3630   // Disable public sdk checks if we need to throw exceptions.
3631   // The checks are only used in AOT compilation and may block (exception) class
3632   // initialization if it needs access to private fields (e.g. serialVersionUID).
3633   //
3634   // Since throwing an exception will EnsureInitialization and the public sdk may
3635   // block that, disable the checks. It's ok to do so, because the thrown exceptions
3636   // are not part of the application code that needs to verified.
3637   ScopedDisablePublicSdkChecker sdpsc;
3638 
3639   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3640   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3641   ClearException();
3642   Runtime* runtime = Runtime::Current();
3643   auto* cl = runtime->GetClassLinker();
3644   Handle<mirror::Class> exception_class(
3645       hs.NewHandle(cl->FindClass(
3646           this, exception_class_descriptor, strlen(exception_class_descriptor), class_loader)));
3647   if (UNLIKELY(exception_class == nullptr)) {
3648     CHECK(IsExceptionPending());
3649     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3650     return;
3651   }
3652 
3653   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3654                                                              true))) {
3655     DCHECK(IsExceptionPending());
3656     return;
3657   }
3658   DCHECK_IMPLIES(runtime->IsStarted(), exception_class->IsThrowableClass());
3659   Handle<mirror::Throwable> exception(
3660       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3661 
3662   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3663   if (exception == nullptr) {
3664     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3665     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
3666     return;
3667   }
3668 
3669   // Choose an appropriate constructor and set up the arguments.
3670   const char* signature;
3671   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3672   if (msg != nullptr) {
3673     // Ensure we remember this and the method over the String allocation.
3674     msg_string.reset(
3675         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3676     if (UNLIKELY(msg_string.get() == nullptr)) {
3677       CHECK(IsExceptionPending());  // OOME.
3678       return;
3679     }
3680     if (cause.get() == nullptr) {
3681       signature = "(Ljava/lang/String;)V";
3682     } else {
3683       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3684     }
3685   } else {
3686     if (cause.get() == nullptr) {
3687       signature = "()V";
3688     } else {
3689       signature = "(Ljava/lang/Throwable;)V";
3690     }
3691   }
3692   ArtMethod* exception_init_method =
3693       exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3694 
3695   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3696       << PrettyDescriptor(exception_class_descriptor);
3697 
3698   if (UNLIKELY(!runtime->IsStarted())) {
3699     // Something is trying to throw an exception without a started runtime, which is the common
3700     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3701     // the exception fields directly.
3702     if (msg != nullptr) {
3703       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3704     }
3705     if (cause.get() != nullptr) {
3706       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3707     }
3708     ObjPtr<mirror::ObjectArray<mirror::Object>> trace = CreateInternalStackTrace(soa);
3709     if (trace != nullptr) {
3710       exception->SetStackState(trace.Ptr());
3711     }
3712     SetException(exception.Get());
3713   } else {
3714     jvalue jv_args[2];
3715     size_t i = 0;
3716 
3717     if (msg != nullptr) {
3718       jv_args[i].l = msg_string.get();
3719       ++i;
3720     }
3721     if (cause.get() != nullptr) {
3722       jv_args[i].l = cause.get();
3723       ++i;
3724     }
3725     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3726     InvokeWithJValues(soa, ref.get(), exception_init_method, jv_args);
3727     if (LIKELY(!IsExceptionPending())) {
3728       SetException(exception.Get());
3729     }
3730   }
3731 }
3732 
ThrowOutOfMemoryError(const char * msg)3733 void Thread::ThrowOutOfMemoryError(const char* msg) {
3734   LOG(WARNING) << "Throwing OutOfMemoryError "
3735                << '"' << msg << '"'
3736                << " (VmSize " << GetProcessStatus("VmSize")
3737                << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")");
3738   ScopedTrace trace("OutOfMemoryError");
3739   if (!tls32_.throwing_OutOfMemoryError) {
3740     tls32_.throwing_OutOfMemoryError = true;
3741     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3742     tls32_.throwing_OutOfMemoryError = false;
3743   } else {
3744     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3745     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
3746   }
3747 }
3748 
CurrentFromGdb()3749 Thread* Thread::CurrentFromGdb() {
3750   return Thread::Current();
3751 }
3752 
DumpFromGdb() const3753 void Thread::DumpFromGdb() const {
3754   std::ostringstream ss;
3755   Dump(ss);
3756   std::string str(ss.str());
3757   // log to stderr for debugging command line processes
3758   std::cerr << str;
3759 #ifdef ART_TARGET_ANDROID
3760   // log to logcat for debugging frameworks processes
3761   LOG(INFO) << str;
3762 #endif
3763 }
3764 
3765 // Explicitly instantiate 32 and 64bit thread offset dumping support.
3766 template
3767 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3768 template
3769 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3770 
3771 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)3772 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3773 #define DO_THREAD_OFFSET(x, y) \
3774     if (offset == (x).Uint32Value()) { \
3775       os << (y); \
3776       return; \
3777     }
3778   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3779   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3780   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3781   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3782   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3783   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3784   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3785   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3786   DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3787   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3788   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3789   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3790   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3791 #undef DO_THREAD_OFFSET
3792 
3793 #define JNI_ENTRY_POINT_INFO(x) \
3794     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3795       os << #x; \
3796       return; \
3797     }
3798   JNI_ENTRY_POINT_INFO(pDlsymLookup)
3799   JNI_ENTRY_POINT_INFO(pDlsymLookupCritical)
3800 #undef JNI_ENTRY_POINT_INFO
3801 
3802 #define QUICK_ENTRY_POINT_INFO(x) \
3803     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3804       os << #x; \
3805       return; \
3806     }
3807   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3808   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3809   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3810   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3811   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3812   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3813   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3814   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3815   QUICK_ENTRY_POINT_INFO(pAllocStringObject)
3816   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3817   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3818   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3819   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3820   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3821   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3822   QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess)
3823   QUICK_ENTRY_POINT_INFO(pResolveType)
3824   QUICK_ENTRY_POINT_INFO(pResolveString)
3825   QUICK_ENTRY_POINT_INFO(pSet8Instance)
3826   QUICK_ENTRY_POINT_INFO(pSet8Static)
3827   QUICK_ENTRY_POINT_INFO(pSet16Instance)
3828   QUICK_ENTRY_POINT_INFO(pSet16Static)
3829   QUICK_ENTRY_POINT_INFO(pSet32Instance)
3830   QUICK_ENTRY_POINT_INFO(pSet32Static)
3831   QUICK_ENTRY_POINT_INFO(pSet64Instance)
3832   QUICK_ENTRY_POINT_INFO(pSet64Static)
3833   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3834   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3835   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3836   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3837   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3838   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3839   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3840   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3841   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3842   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3843   QUICK_ENTRY_POINT_INFO(pGet32Instance)
3844   QUICK_ENTRY_POINT_INFO(pGet32Static)
3845   QUICK_ENTRY_POINT_INFO(pGet64Instance)
3846   QUICK_ENTRY_POINT_INFO(pGet64Static)
3847   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3848   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3849   QUICK_ENTRY_POINT_INFO(pAputObject)
3850   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3851   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3852   QUICK_ENTRY_POINT_INFO(pJniMethodEntryHook)
3853   QUICK_ENTRY_POINT_INFO(pJniDecodeReferenceResult)
3854   QUICK_ENTRY_POINT_INFO(pJniLockObject)
3855   QUICK_ENTRY_POINT_INFO(pJniUnlockObject)
3856   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3857   QUICK_ENTRY_POINT_INFO(pLockObject)
3858   QUICK_ENTRY_POINT_INFO(pUnlockObject)
3859   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3860   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3861   QUICK_ENTRY_POINT_INFO(pCmplDouble)
3862   QUICK_ENTRY_POINT_INFO(pCmplFloat)
3863   QUICK_ENTRY_POINT_INFO(pCos)
3864   QUICK_ENTRY_POINT_INFO(pSin)
3865   QUICK_ENTRY_POINT_INFO(pAcos)
3866   QUICK_ENTRY_POINT_INFO(pAsin)
3867   QUICK_ENTRY_POINT_INFO(pAtan)
3868   QUICK_ENTRY_POINT_INFO(pAtan2)
3869   QUICK_ENTRY_POINT_INFO(pCbrt)
3870   QUICK_ENTRY_POINT_INFO(pCosh)
3871   QUICK_ENTRY_POINT_INFO(pExp)
3872   QUICK_ENTRY_POINT_INFO(pExpm1)
3873   QUICK_ENTRY_POINT_INFO(pHypot)
3874   QUICK_ENTRY_POINT_INFO(pLog)
3875   QUICK_ENTRY_POINT_INFO(pLog10)
3876   QUICK_ENTRY_POINT_INFO(pNextAfter)
3877   QUICK_ENTRY_POINT_INFO(pSinh)
3878   QUICK_ENTRY_POINT_INFO(pTan)
3879   QUICK_ENTRY_POINT_INFO(pTanh)
3880   QUICK_ENTRY_POINT_INFO(pFmod)
3881   QUICK_ENTRY_POINT_INFO(pL2d)
3882   QUICK_ENTRY_POINT_INFO(pFmodf)
3883   QUICK_ENTRY_POINT_INFO(pL2f)
3884   QUICK_ENTRY_POINT_INFO(pD2iz)
3885   QUICK_ENTRY_POINT_INFO(pF2iz)
3886   QUICK_ENTRY_POINT_INFO(pIdivmod)
3887   QUICK_ENTRY_POINT_INFO(pD2l)
3888   QUICK_ENTRY_POINT_INFO(pF2l)
3889   QUICK_ENTRY_POINT_INFO(pLdiv)
3890   QUICK_ENTRY_POINT_INFO(pLmod)
3891   QUICK_ENTRY_POINT_INFO(pLmul)
3892   QUICK_ENTRY_POINT_INFO(pShlLong)
3893   QUICK_ENTRY_POINT_INFO(pShrLong)
3894   QUICK_ENTRY_POINT_INFO(pUshrLong)
3895   QUICK_ENTRY_POINT_INFO(pIndexOf)
3896   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3897   QUICK_ENTRY_POINT_INFO(pMemcpy)
3898   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3899   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3900   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3901   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3902   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3903   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3904   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3905   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3906   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3907   QUICK_ENTRY_POINT_INFO(pInvokePolymorphicWithHiddenReceiver)
3908   QUICK_ENTRY_POINT_INFO(pTestSuspend)
3909   QUICK_ENTRY_POINT_INFO(pDeliverException)
3910   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3911   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3912   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3913   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3914   QUICK_ENTRY_POINT_INFO(pDeoptimize)
3915   QUICK_ENTRY_POINT_INFO(pA64Load)
3916   QUICK_ENTRY_POINT_INFO(pA64Store)
3917   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3918   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3919   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BB)
3920   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3921   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3922   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3923   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3924   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3925   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3926   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3927   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3928   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3929   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3930   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3931   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3932   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3933   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3934   QUICK_ENTRY_POINT_INFO(pNewStringFromUtf16Bytes_BII)
3935   QUICK_ENTRY_POINT_INFO(pJniReadBarrier)
3936   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3937   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3938   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3939   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3940   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3941   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3942   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3943   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3944   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3945   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3946   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3947   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3948   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3949   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3950   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3951   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3952   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3953   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3954   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3955   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3956   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3957   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3958   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3959   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3960   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3961   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3962   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3963   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3964   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3965   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3966   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3967   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3968 #undef QUICK_ENTRY_POINT_INFO
3969 
3970   os << offset;
3971 }
3972 
QuickDeliverException(bool skip_method_exit_callbacks)3973 std::unique_ptr<Context> Thread::QuickDeliverException(bool skip_method_exit_callbacks) {
3974   // Get exception from thread.
3975   ObjPtr<mirror::Throwable> exception = GetException();
3976   CHECK(exception != nullptr);
3977   if (exception == GetDeoptimizationException()) {
3978     // This wasn't a real exception, so just clear it here. If there was an actual exception it
3979     // will be recorded in the DeoptimizationContext and it will be restored later.
3980     ClearException();
3981     return Deoptimize(DeoptimizationKind::kFullFrame,
3982                       /*single_frame=*/ false,
3983                       skip_method_exit_callbacks);
3984   }
3985 
3986   ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3987 
3988   // This is a real exception: let the instrumentation know about it. Exception throw listener
3989   // could set a breakpoint or install listeners that might require a deoptimization. Hence the
3990   // deoptimization check needs to happen after calling the listener.
3991   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3992   if (instrumentation->HasExceptionThrownListeners() &&
3993       IsExceptionThrownByCurrentMethod(exception)) {
3994     // Instrumentation may cause GC so keep the exception object safe.
3995     StackHandleScope<1> hs(this);
3996     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3997     instrumentation->ExceptionThrownEvent(this, exception);
3998   }
3999   // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something?
4000   // Note: we do this *after* reporting the exception to instrumentation in case it now requires
4001   // deoptimization. It may happen if a debugger is attached and requests new events (single-step,
4002   // breakpoint, ...) when the exception is reported.
4003   // Frame pop can be requested on a method unwind callback which requires a deopt. We could
4004   // potentially check after each unwind callback to see if a frame pop was requested and deopt if
4005   // needed. Since this is a debug only feature and this path is only taken when an exception is
4006   // thrown, it is not performance critical and we keep it simple by just deopting if method exit
4007   // listeners are installed and frame pop feature is supported.
4008   bool needs_deopt =
4009       instrumentation->HasMethodExitListeners() && Runtime::Current()->AreNonStandardExitsEnabled();
4010   if (Dbg::IsForcedInterpreterNeededForException(this) || IsForceInterpreter() || needs_deopt) {
4011     NthCallerVisitor visitor(this, 0, false);
4012     visitor.WalkStack();
4013     if (visitor.GetCurrentQuickFrame() != nullptr) {
4014       if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.GetOuterMethod(), visitor.caller_pc)) {
4015         // method_type shouldn't matter due to exception handling.
4016         const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
4017         // Save the exception into the deoptimization context so it can be restored
4018         // before entering the interpreter.
4019         PushDeoptimizationContext(
4020             JValue(),
4021             /* is_reference= */ false,
4022             exception,
4023             /* from_code= */ false,
4024             method_type);
4025         return Deoptimize(DeoptimizationKind::kFullFrame,
4026                           /*single_frame=*/ false,
4027                           skip_method_exit_callbacks);
4028       } else {
4029         LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
4030                      << visitor.caller->PrettyMethod();
4031       }
4032     } else {
4033       // This is either top of call stack, or shadow frame.
4034       DCHECK(visitor.caller == nullptr || visitor.IsShadowFrame());
4035     }
4036   }
4037 
4038   // Don't leave exception visible while we try to find the handler, which may cause class
4039   // resolution.
4040   ClearException();
4041   QuickExceptionHandler exception_handler(this, false);
4042   exception_handler.FindCatch(exception, skip_method_exit_callbacks);
4043   if (exception_handler.GetClearException()) {
4044     // Exception was cleared as part of delivery.
4045     DCHECK(!IsExceptionPending());
4046   } else {
4047     // Exception was put back with a throw location.
4048     DCHECK(IsExceptionPending());
4049     // Check the to-space invariant on the re-installed exception (if applicable).
4050     ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
4051   }
4052   return exception_handler.PrepareLongJump();
4053 }
4054 
Deoptimize(DeoptimizationKind kind,bool single_frame,bool skip_method_exit_callbacks)4055 std::unique_ptr<Context> Thread::Deoptimize(DeoptimizationKind kind,
4056                                             bool single_frame,
4057                                             bool skip_method_exit_callbacks) {
4058   Runtime::Current()->IncrementDeoptimizationCount(kind);
4059   if (VLOG_IS_ON(deopt)) {
4060     if (single_frame) {
4061       // Deopt logging will be in DeoptimizeSingleFrame. It is there to take advantage of the
4062       // specialized visitor that will show whether a method is Quick or Shadow.
4063     } else {
4064       LOG(INFO) << "Deopting:";
4065       Dump(LOG_STREAM(INFO));
4066     }
4067   }
4068 
4069   AssertHasDeoptimizationContext();
4070   QuickExceptionHandler exception_handler(this, true);
4071   if (single_frame) {
4072     exception_handler.DeoptimizeSingleFrame(kind);
4073   } else {
4074     exception_handler.DeoptimizeStack(skip_method_exit_callbacks);
4075   }
4076   if (exception_handler.IsFullFragmentDone()) {
4077     return exception_handler.PrepareLongJump(/*smash_caller_saves=*/ true);
4078   } else {
4079     exception_handler.DeoptimizePartialFragmentFixup();
4080     // We cannot smash the caller-saves, as we need the ArtMethod in a parameter register that would
4081     // be caller-saved. This has the downside that we cannot track incorrect register usage down the
4082     // line.
4083     return exception_handler.PrepareLongJump(/*smash_caller_saves=*/ false);
4084   }
4085 }
4086 
GetCurrentMethod(uint32_t * dex_pc_out,bool check_suspended,bool abort_on_error) const4087 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out,
4088                                     bool check_suspended,
4089                                     bool abort_on_error) const {
4090   // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
4091   //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java
4092   //       stack.
4093   ArtMethod* method = nullptr;
4094   uint32_t dex_pc = dex::kDexNoIndex;
4095   StackVisitor::WalkStack(
4096       [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
4097         ArtMethod* m = visitor->GetMethod();
4098         if (m->IsRuntimeMethod()) {
4099           // Continue if this is a runtime method.
4100           return true;
4101         }
4102         method = m;
4103         dex_pc = visitor->GetDexPc(abort_on_error);
4104         return false;
4105       },
4106       const_cast<Thread*>(this),
4107       /* context= */ nullptr,
4108       StackVisitor::StackWalkKind::kIncludeInlinedFrames,
4109       check_suspended);
4110 
4111   if (dex_pc_out != nullptr) {
4112     *dex_pc_out = dex_pc;
4113   }
4114   return method;
4115 }
4116 
HoldsLock(ObjPtr<mirror::Object> object) const4117 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
4118   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
4119 }
4120 
4121 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
4122     REQUIRES_SHARED(Locks::mutator_lock_);
4123 
4124 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
4125 template <typename RootVisitor, bool kPrecise = false>
4126 class ReferenceMapVisitor : public StackVisitor {
4127  public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)4128   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
4129       REQUIRES_SHARED(Locks::mutator_lock_)
4130       // We are visiting the references in compiled frames, so we do not need
4131       // to know the inlined frames.
4132       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
4133         visitor_(visitor),
4134         visit_declaring_class_(!Runtime::Current()->GetHeap()->IsPerformingUffdCompaction()) {}
4135 
VisitFrame()4136   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
4137     if (false) {
4138       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
4139                 << StringPrintf("@ PC:%04x", GetDexPc());
4140     }
4141     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
4142     if (shadow_frame != nullptr) {
4143       VisitShadowFrame(shadow_frame);
4144     } else if (GetCurrentOatQuickMethodHeader()->IsNterpMethodHeader()) {
4145       VisitNterpFrame();
4146     } else {
4147       VisitQuickFrame();
4148     }
4149     return true;
4150   }
4151 
VisitShadowFrame(ShadowFrame * shadow_frame)4152   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
4153     ArtMethod* m = shadow_frame->GetMethod();
4154     VisitDeclaringClass(m);
4155     DCHECK(m != nullptr);
4156     size_t num_regs = shadow_frame->NumberOfVRegs();
4157     // handle scope for JNI or References for interpreter.
4158     for (size_t reg = 0; reg < num_regs; ++reg) {
4159       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
4160       if (ref != nullptr) {
4161         mirror::Object* new_ref = ref;
4162         visitor_(&new_ref, reg, this);
4163         if (new_ref != ref) {
4164           shadow_frame->SetVRegReference(reg, new_ref);
4165         }
4166       }
4167     }
4168     // Mark lock count map required for structured locking checks.
4169     shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this);
4170   }
4171 
4172  private:
4173   // Visiting the declaring class is necessary so that we don't unload the class of a method that
4174   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
4175   // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)4176   void VisitDeclaringClass(ArtMethod* method)
4177       REQUIRES_SHARED(Locks::mutator_lock_)
4178       NO_THREAD_SAFETY_ANALYSIS {
4179     if (!visit_declaring_class_) {
4180       return;
4181     }
4182     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
4183     // klass can be null for runtime methods.
4184     if (klass != nullptr) {
4185       if (kVerifyImageObjectsMarked) {
4186         gc::Heap* const heap = Runtime::Current()->GetHeap();
4187         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
4188                                                                                 /*fail_ok=*/true);
4189         if (space != nullptr && space->IsImageSpace()) {
4190           bool failed = false;
4191           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
4192             failed = true;
4193             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
4194           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
4195             failed = true;
4196             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
4197           }
4198           if (failed) {
4199             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
4200             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
4201             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
4202                                      << " klass@" << klass.Ptr();
4203             // Pretty info last in case it crashes.
4204             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
4205                        << klass->PrettyClass();
4206           }
4207         }
4208       }
4209       mirror::Object* new_ref = klass.Ptr();
4210       visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kMethodDeclaringClass, this);
4211       if (new_ref != klass) {
4212         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
4213       }
4214     }
4215   }
4216 
VisitNterpFrame()4217   void VisitNterpFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
4218     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
4219     StackReference<mirror::Object>* vreg_ref_base =
4220         reinterpret_cast<StackReference<mirror::Object>*>(NterpGetReferenceArray(cur_quick_frame));
4221     StackReference<mirror::Object>* vreg_int_base =
4222         reinterpret_cast<StackReference<mirror::Object>*>(NterpGetRegistersArray(cur_quick_frame));
4223     CodeItemDataAccessor accessor((*cur_quick_frame)->DexInstructionData());
4224     const uint16_t num_regs = accessor.RegistersSize();
4225     // An nterp frame has two arrays: a dex register array and a reference array
4226     // that shadows the dex register array but only containing references
4227     // (non-reference dex registers have nulls). See nterp_helpers.cc.
4228     for (size_t reg = 0; reg < num_regs; ++reg) {
4229       StackReference<mirror::Object>* ref_addr = vreg_ref_base + reg;
4230       mirror::Object* ref = ref_addr->AsMirrorPtr();
4231       if (ref != nullptr) {
4232         mirror::Object* new_ref = ref;
4233         visitor_(&new_ref, reg, this);
4234         if (new_ref != ref) {
4235           ref_addr->Assign(new_ref);
4236           StackReference<mirror::Object>* int_addr = vreg_int_base + reg;
4237           int_addr->Assign(new_ref);
4238         }
4239       }
4240     }
4241   }
4242 
4243   template <typename T>
4244   ALWAYS_INLINE
VisitQuickFrameWithVregCallback()4245   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
4246     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
4247     DCHECK(cur_quick_frame != nullptr);
4248     ArtMethod* m = *cur_quick_frame;
4249     VisitDeclaringClass(m);
4250 
4251     if (m->IsNative()) {
4252       // TODO: Spill the `this` reference in the AOT-compiled String.charAt()
4253       // slow-path for throwing SIOOBE, so that we can remove this carve-out.
4254       if (UNLIKELY(m->IsIntrinsic()) && m->GetIntrinsic() == Intrinsics::kStringCharAt) {
4255         // The String.charAt() method is AOT-compiled with an intrinsic implementation
4256         // instead of a JNI stub. It has a slow path that constructs a runtime frame
4257         // for throwing SIOOBE and in that path we do not get the `this` pointer
4258         // spilled on the stack, so there is nothing to visit. We can distinguish
4259         // this from the GenericJni path by checking that the PC is in the boot image
4260         // (PC shall be known thanks to the runtime frame for throwing SIOOBE).
4261         // Note that JIT does not emit that intrinic implementation.
4262         const void* pc = reinterpret_cast<const void*>(GetCurrentQuickFramePc());
4263         if (pc != nullptr && Runtime::Current()->GetHeap()->IsInBootImageOatFile(pc)) {
4264           return;
4265         }
4266       }
4267       // Native methods spill their arguments to the reserved vregs in the caller's frame
4268       // and use pointers to these stack references as jobject, jclass, jarray, etc.
4269       // Note: We can come here for a @CriticalNative method when it needs to resolve the
4270       // target native function but there would be no references to visit below.
4271       const size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes();
4272       const size_t method_pointer_size = static_cast<size_t>(kRuntimePointerSize);
4273       uint32_t* current_vreg = reinterpret_cast<uint32_t*>(
4274           reinterpret_cast<uint8_t*>(cur_quick_frame) + frame_size + method_pointer_size);
4275       auto visit = [&]() REQUIRES_SHARED(Locks::mutator_lock_) {
4276         auto* ref_addr = reinterpret_cast<StackReference<mirror::Object>*>(current_vreg);
4277         mirror::Object* ref = ref_addr->AsMirrorPtr();
4278         if (ref != nullptr) {
4279           mirror::Object* new_ref = ref;
4280           visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kNativeReferenceArgument, this);
4281           if (ref != new_ref) {
4282             ref_addr->Assign(new_ref);
4283           }
4284         }
4285       };
4286       const char* shorty = m->GetShorty();
4287       if (!m->IsStatic()) {
4288         visit();
4289         current_vreg += 1u;
4290       }
4291       for (shorty += 1u; *shorty != 0; ++shorty) {
4292         switch (*shorty) {
4293           case 'D':
4294           case 'J':
4295             current_vreg += 2u;
4296             break;
4297           case 'L':
4298             visit();
4299             FALLTHROUGH_INTENDED;
4300           default:
4301             current_vreg += 1u;
4302             break;
4303         }
4304       }
4305     } else if (!m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
4306       // Process register map (which native, runtime and proxy methods don't have)
4307       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
4308       DCHECK(method_header->IsOptimized());
4309       StackReference<mirror::Object>* vreg_base =
4310           reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame);
4311       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
4312       CodeInfo code_info = kPrecise
4313           ? CodeInfo(method_header)  // We will need dex register maps.
4314           : CodeInfo::DecodeGcMasksOnly(method_header);
4315       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
4316       DCHECK(map.IsValid());
4317 
4318       T vreg_info(m, code_info, map, visitor_);
4319 
4320       // Visit stack entries that hold pointers.
4321       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map);
4322       for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) {
4323         if (stack_mask.LoadBit(i)) {
4324           StackReference<mirror::Object>* ref_addr = vreg_base + i;
4325           mirror::Object* ref = ref_addr->AsMirrorPtr();
4326           if (ref != nullptr) {
4327             mirror::Object* new_ref = ref;
4328             vreg_info.VisitStack(&new_ref, i, this);
4329             if (ref != new_ref) {
4330               ref_addr->Assign(new_ref);
4331             }
4332           }
4333         }
4334       }
4335       // Visit callee-save registers that hold pointers.
4336       uint32_t register_mask = code_info.GetRegisterMaskOf(map);
4337       for (uint32_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
4338         if (register_mask & (1 << i)) {
4339           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
4340           if (kIsDebugBuild && ref_addr == nullptr) {
4341             std::string thread_name;
4342             GetThread()->GetThreadName(thread_name);
4343             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
4344             DescribeStack(GetThread());
4345             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
4346                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
4347           }
4348           if (*ref_addr != nullptr) {
4349             vreg_info.VisitRegister(ref_addr, i, this);
4350           }
4351         }
4352       }
4353     } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
4354       // If this is a proxy method, visit its reference arguments.
4355       DCHECK(!m->IsStatic());
4356       DCHECK(!m->IsNative());
4357       std::vector<StackReference<mirror::Object>*> ref_addrs =
4358           GetProxyReferenceArguments(cur_quick_frame);
4359       for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
4360         mirror::Object* ref = ref_addr->AsMirrorPtr();
4361         if (ref != nullptr) {
4362           mirror::Object* new_ref = ref;
4363           visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kProxyReferenceArgument, this);
4364           if (ref != new_ref) {
4365             ref_addr->Assign(new_ref);
4366           }
4367         }
4368       }
4369     }
4370   }
4371 
VisitQuickFrame()4372   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
4373     if (kPrecise) {
4374       VisitQuickFramePrecise();
4375     } else {
4376       VisitQuickFrameNonPrecise();
4377     }
4378   }
4379 
VisitQuickFrameNonPrecise()4380   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
4381     struct UndefinedVRegInfo {
4382       UndefinedVRegInfo([[maybe_unused]] ArtMethod* method,
4383                         [[maybe_unused]] const CodeInfo& code_info,
4384                         [[maybe_unused]] const StackMap& map,
4385                         RootVisitor& _visitor)
4386           : visitor(_visitor) {}
4387 
4388       ALWAYS_INLINE
4389       void VisitStack(mirror::Object** ref,
4390                       [[maybe_unused]] size_t stack_index,
4391                       const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
4392         visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
4393       }
4394 
4395       ALWAYS_INLINE
4396       void VisitRegister(mirror::Object** ref,
4397                          [[maybe_unused]] size_t register_index,
4398                          const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
4399         visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
4400       }
4401 
4402       RootVisitor& visitor;
4403     };
4404     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
4405   }
4406 
VisitQuickFramePrecise()4407   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
4408     struct StackMapVRegInfo {
4409       StackMapVRegInfo(ArtMethod* method,
4410                        const CodeInfo& _code_info,
4411                        const StackMap& map,
4412                        RootVisitor& _visitor)
4413           : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
4414             code_info(_code_info),
4415             dex_register_map(code_info.GetDexRegisterMapOf(map)),
4416             visitor(_visitor) {
4417         DCHECK_EQ(dex_register_map.size(), number_of_dex_registers);
4418       }
4419 
4420       // TODO: If necessary, we should consider caching a reverse map instead of the linear
4421       //       lookups for each location.
4422       void FindWithType(const size_t index,
4423                         const DexRegisterLocation::Kind kind,
4424                         mirror::Object** ref,
4425                         const StackVisitor* stack_visitor)
4426           REQUIRES_SHARED(Locks::mutator_lock_) {
4427         bool found = false;
4428         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
4429           DexRegisterLocation location = dex_register_map[dex_reg];
4430           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
4431             visitor(ref, dex_reg, stack_visitor);
4432             found = true;
4433           }
4434         }
4435 
4436         if (!found) {
4437           // If nothing found, report with unknown.
4438           visitor(ref, JavaFrameRootInfo::kUnknownVreg, stack_visitor);
4439         }
4440       }
4441 
4442       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
4443           REQUIRES_SHARED(Locks::mutator_lock_) {
4444         const size_t stack_offset = stack_index * kFrameSlotSize;
4445         FindWithType(stack_offset,
4446                      DexRegisterLocation::Kind::kInStack,
4447                      ref,
4448                      stack_visitor);
4449       }
4450 
4451       void VisitRegister(mirror::Object** ref,
4452                          size_t register_index,
4453                          const StackVisitor* stack_visitor)
4454           REQUIRES_SHARED(Locks::mutator_lock_) {
4455         FindWithType(register_index,
4456                      DexRegisterLocation::Kind::kInRegister,
4457                      ref,
4458                      stack_visitor);
4459       }
4460 
4461       size_t number_of_dex_registers;
4462       const CodeInfo& code_info;
4463       DexRegisterMap dex_register_map;
4464       RootVisitor& visitor;
4465     };
4466     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
4467   }
4468 
4469   // Visitor for when we visit a root.
4470   RootVisitor& visitor_;
4471   bool visit_declaring_class_;
4472 };
4473 
4474 class RootCallbackVisitor {
4475  public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)4476   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
4477 
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const4478   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
4479       REQUIRES_SHARED(Locks::mutator_lock_) {
4480     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
4481   }
4482 
4483  private:
4484   RootVisitor* const visitor_;
4485   const uint32_t tid_;
4486 };
4487 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)4488 void Thread::VisitReflectiveTargets(ReflectiveValueVisitor* visitor) {
4489   for (BaseReflectiveHandleScope* brhs = GetTopReflectiveHandleScope();
4490        brhs != nullptr;
4491        brhs = brhs->GetLink()) {
4492     brhs->VisitTargets(visitor);
4493   }
4494 }
4495 
4496 // FIXME: clang-r433403 reports the below function exceeds frame size limit.
4497 // http://b/197647048
4498 #pragma GCC diagnostic push
4499 #pragma GCC diagnostic ignored "-Wframe-larger-than="
4500 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)4501 void Thread::VisitRoots(RootVisitor* visitor) {
4502   const uint32_t thread_id = GetThreadId();
4503   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
4504   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
4505     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
4506                        RootInfo(kRootNativeStack, thread_id));
4507   }
4508   if (tlsPtr_.async_exception != nullptr) {
4509     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
4510                        RootInfo(kRootNativeStack, thread_id));
4511   }
4512   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
4513   tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
4514   tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
4515   HandleScopeVisitRoots(visitor, thread_id);
4516   // Visit roots for deoptimization.
4517   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
4518     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4519     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4520     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
4521          record != nullptr;
4522          record = record->GetLink()) {
4523       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
4524            shadow_frame != nullptr;
4525            shadow_frame = shadow_frame->GetLink()) {
4526         mapper.VisitShadowFrame(shadow_frame);
4527       }
4528     }
4529   }
4530   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
4531        record != nullptr;
4532        record = record->GetLink()) {
4533     if (record->IsReference()) {
4534       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
4535                                   RootInfo(kRootThreadObject, thread_id));
4536     }
4537     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
4538                                 RootInfo(kRootThreadObject, thread_id));
4539   }
4540   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
4541     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4542     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4543     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
4544          record != nullptr;
4545          record = record->GetNext()) {
4546       mapper.VisitShadowFrame(record->GetShadowFrame());
4547     }
4548   }
4549   // Visit roots on this thread's stack
4550   RuntimeContextType context;
4551   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4552   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
4553   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
4554 }
4555 #pragma GCC diagnostic pop
4556 
SweepCacheEntry(IsMarkedVisitor * visitor,const Instruction * inst,size_t * value)4557 static void SweepCacheEntry(IsMarkedVisitor* visitor, const Instruction* inst, size_t* value)
4558     REQUIRES_SHARED(Locks::mutator_lock_) {
4559   if (inst == nullptr) {
4560     return;
4561   }
4562   using Opcode = Instruction::Code;
4563   Opcode opcode = inst->Opcode();
4564   switch (opcode) {
4565     case Opcode::NEW_INSTANCE:
4566     case Opcode::CHECK_CAST:
4567     case Opcode::INSTANCE_OF:
4568     case Opcode::NEW_ARRAY:
4569     case Opcode::CONST_CLASS: {
4570       mirror::Class* klass = reinterpret_cast<mirror::Class*>(*value);
4571       if (klass == nullptr || klass == Runtime::GetWeakClassSentinel()) {
4572         return;
4573       }
4574       mirror::Class* new_klass = down_cast<mirror::Class*>(visitor->IsMarked(klass));
4575       if (new_klass == nullptr) {
4576         *value = reinterpret_cast<size_t>(Runtime::GetWeakClassSentinel());
4577       } else if (new_klass != klass) {
4578         *value = reinterpret_cast<size_t>(new_klass);
4579       }
4580       return;
4581     }
4582     case Opcode::CONST_STRING:
4583     case Opcode::CONST_STRING_JUMBO: {
4584       mirror::Object* object = reinterpret_cast<mirror::Object*>(*value);
4585       if (object == nullptr) {
4586         return;
4587       }
4588       mirror::Object* new_object = visitor->IsMarked(object);
4589       // We know the string is marked because it's a strongly-interned string that
4590       // is always alive (see b/117621117 for trying to make those strings weak).
4591       if (kIsDebugBuild && new_object == nullptr) {
4592         // (b/275005060) Currently the problem is reported only on CC GC.
4593         // Therefore we log it with more information. But since the failure rate
4594         // is quite high, sampling it.
4595         if (gUseReadBarrier) {
4596           Runtime* runtime = Runtime::Current();
4597           gc::collector::ConcurrentCopying* cc = runtime->GetHeap()->ConcurrentCopyingCollector();
4598           CHECK_NE(cc, nullptr);
4599           LOG(FATAL) << cc->DumpReferenceInfo(object, "string")
4600                      << " string interned: " << std::boolalpha
4601                      << runtime->GetInternTable()->LookupStrong(Thread::Current(),
4602                                                                 down_cast<mirror::String*>(object))
4603                      << std::noboolalpha;
4604         } else {
4605           // Other GCs
4606           LOG(FATAL) << __FUNCTION__
4607                      << ": IsMarked returned null for a strongly interned string: " << object;
4608         }
4609       } else if (new_object != object) {
4610         *value = reinterpret_cast<size_t>(new_object);
4611       }
4612       return;
4613     }
4614     default:
4615       // The following opcode ranges store non-reference values.
4616       if ((Opcode::IGET <= opcode && opcode <= Opcode::SPUT_SHORT) ||
4617           (Opcode::INVOKE_VIRTUAL <= opcode && opcode <= Opcode::INVOKE_INTERFACE_RANGE)) {
4618         return;  // Nothing to do for the GC.
4619       }
4620       // New opcode is using the cache. We need to explicitly handle it in this method.
4621       DCHECK(false) << "Unhandled opcode " << inst->Opcode();
4622   }
4623 }
4624 
SweepInterpreterCache(IsMarkedVisitor * visitor)4625 void Thread::SweepInterpreterCache(IsMarkedVisitor* visitor) {
4626   for (InterpreterCache::Entry& entry : GetInterpreterCache()->GetArray()) {
4627     SweepCacheEntry(visitor, reinterpret_cast<const Instruction*>(entry.first), &entry.second);
4628   }
4629 }
4630 
4631 // FIXME: clang-r433403 reports the below function exceeds frame size limit.
4632 // http://b/197647048
4633 #pragma GCC diagnostic push
4634 #pragma GCC diagnostic ignored "-Wframe-larger-than="
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)4635 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
4636   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
4637     VisitRoots</* kPrecise= */ true>(visitor);
4638   } else {
4639     VisitRoots</* kPrecise= */ false>(visitor);
4640   }
4641 }
4642 #pragma GCC diagnostic pop
4643 
4644 class VerifyRootVisitor : public SingleRootVisitor {
4645  public:
VisitRoot(mirror::Object * root,const RootInfo & info)4646   void VisitRoot(mirror::Object* root, [[maybe_unused]] const RootInfo& info) override
4647       REQUIRES_SHARED(Locks::mutator_lock_) {
4648     VerifyObject(root);
4649   }
4650 };
4651 
VerifyStackImpl()4652 void Thread::VerifyStackImpl() {
4653   if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
4654     VerifyRootVisitor visitor;
4655     std::unique_ptr<Context> context(Context::Create());
4656     RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
4657     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
4658     mapper.WalkStack();
4659   }
4660 }
4661 
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)4662 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
4663   DCHECK_LE(start, end);
4664   DCHECK_LE(end, limit);
4665   tlsPtr_.thread_local_start = start;
4666   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
4667   tlsPtr_.thread_local_end = end;
4668   tlsPtr_.thread_local_limit = limit;
4669   tlsPtr_.thread_local_objects = 0;
4670 }
4671 
ResetTlab()4672 void Thread::ResetTlab() {
4673   gc::Heap* const heap = Runtime::Current()->GetHeap();
4674   if (heap->GetHeapSampler().IsEnabled()) {
4675     // Note: We always ResetTlab before SetTlab, therefore we can do the sample
4676     // offset adjustment here.
4677     heap->AdjustSampleOffset(GetTlabPosOffset());
4678     VLOG(heap) << "JHP: ResetTlab, Tid: " << GetTid()
4679                << " adjustment = "
4680                << (tlsPtr_.thread_local_pos - tlsPtr_.thread_local_start);
4681   }
4682   SetTlab(nullptr, nullptr, nullptr);
4683 }
4684 
HasTlab() const4685 bool Thread::HasTlab() const {
4686   const bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
4687   if (has_tlab) {
4688     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
4689   } else {
4690     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
4691   }
4692   return has_tlab;
4693 }
4694 
AdjustTlab(size_t slide_bytes)4695 void Thread::AdjustTlab(size_t slide_bytes) {
4696   if (HasTlab()) {
4697     tlsPtr_.thread_local_start -= slide_bytes;
4698     tlsPtr_.thread_local_pos -= slide_bytes;
4699     tlsPtr_.thread_local_end -= slide_bytes;
4700     tlsPtr_.thread_local_limit -= slide_bytes;
4701   }
4702 }
4703 
operator <<(std::ostream & os,const Thread & thread)4704 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
4705   thread.ShortDump(os);
4706   return os;
4707 }
4708 
4709 template <StackType stack_type>
ProtectStack(bool fatal_on_error)4710 bool Thread::ProtectStack(bool fatal_on_error) {
4711   void* pregion = GetStackBegin<stack_type>() - GetStackOverflowProtectedSize();
4712   VLOG(threads) << "Protecting stack at " << pregion;
4713   if (mprotect(pregion, GetStackOverflowProtectedSize(), PROT_NONE) == -1) {
4714     if (fatal_on_error) {
4715       // b/249586057, LOG(FATAL) times out
4716       LOG(ERROR) << "Unable to create protected region in stack for implicit overflow check. "
4717           "Reason: "
4718           << strerror(errno) << " size:  " << GetStackOverflowProtectedSize();
4719       exit(1);
4720     }
4721     return false;
4722   }
4723   return true;
4724 }
4725 
4726 template <StackType stack_type>
UnprotectStack()4727 bool Thread::UnprotectStack() {
4728   void* pregion = GetStackBegin<stack_type>() - GetStackOverflowProtectedSize();
4729   VLOG(threads) << "Unprotecting stack at " << pregion;
4730   return mprotect(pregion, GetStackOverflowProtectedSize(), PROT_READ|PROT_WRITE) == 0;
4731 }
4732 
NumberOfHeldMutexes() const4733 size_t Thread::NumberOfHeldMutexes() const {
4734   size_t count = 0;
4735   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
4736     count += mu != nullptr ? 1 : 0;
4737   }
4738   return count;
4739 }
4740 
DeoptimizeWithDeoptimizationException(JValue * result)4741 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
4742   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
4743   ClearException();
4744   ObjPtr<mirror::Throwable> pending_exception;
4745   bool from_code = false;
4746   DeoptimizationMethodType method_type;
4747   PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
4748   SetTopOfStack(nullptr);
4749 
4750   // Restore the exception that was pending before deoptimization then interpret the
4751   // deoptimized frames.
4752   if (pending_exception != nullptr) {
4753     SetException(pending_exception);
4754   }
4755 
4756   ShadowFrame* shadow_frame = MaybePopDeoptimizedStackedShadowFrame();
4757   // We may not have a shadow frame if we deoptimized at the return of the
4758   // quick_to_interpreter_bridge which got directly called by art_quick_invoke_stub.
4759   if (shadow_frame != nullptr) {
4760     SetTopOfShadowStack(shadow_frame);
4761     interpreter::EnterInterpreterFromDeoptimize(this,
4762                                                 shadow_frame,
4763                                                 result,
4764                                                 from_code,
4765                                                 method_type);
4766   }
4767 }
4768 
SetAsyncException(ObjPtr<mirror::Throwable> new_exception)4769 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
4770   CHECK(new_exception != nullptr);
4771   Runtime::Current()->SetAsyncExceptionsThrown();
4772   if (kIsDebugBuild) {
4773     // Make sure we are in a checkpoint.
4774     MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
4775     CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
4776         << "It doesn't look like this was called in a checkpoint! this: "
4777         << this << " count: " << GetSuspendCount();
4778   }
4779   tlsPtr_.async_exception = new_exception.Ptr();
4780 }
4781 
ObserveAsyncException()4782 bool Thread::ObserveAsyncException() {
4783   DCHECK(this == Thread::Current());
4784   if (tlsPtr_.async_exception != nullptr) {
4785     if (tlsPtr_.exception != nullptr) {
4786       LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
4787                    << tlsPtr_.exception->Dump();
4788       LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
4789     }
4790     tlsPtr_.exception = tlsPtr_.async_exception;
4791     tlsPtr_.async_exception = nullptr;
4792     return true;
4793   } else {
4794     return IsExceptionPending();
4795   }
4796 }
4797 
SetException(ObjPtr<mirror::Throwable> new_exception)4798 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4799   CHECK(new_exception != nullptr);
4800   // TODO: DCHECK(!IsExceptionPending());
4801   tlsPtr_.exception = new_exception.Ptr();
4802 }
4803 
IsAotCompiler()4804 bool Thread::IsAotCompiler() {
4805   return Runtime::Current()->IsAotCompiler();
4806 }
4807 
GetPeerFromOtherThread()4808 mirror::Object* Thread::GetPeerFromOtherThread() {
4809   Thread* self = Thread::Current();
4810   if (this == self) {
4811     // We often call this on every thread, including ourselves.
4812     return GetPeer();
4813   }
4814   // If "this" thread is not suspended, it could disappear.
4815   DCHECK(IsSuspended()) << *this;
4816   DCHECK(tlsPtr_.jpeer == nullptr);
4817   // Some JVMTI code may unfortunately hold thread_list_lock_, but if it does, it should hold the
4818   // mutator lock in exclusive mode, and we should not have a pending flip function.
4819   if (kIsDebugBuild && Locks::thread_list_lock_->IsExclusiveHeld(self)) {
4820     Locks::mutator_lock_->AssertExclusiveHeld(self);
4821     CHECK(!ReadFlag(ThreadFlag::kPendingFlipFunction));
4822   }
4823   // Ensure that opeer is not obsolete.
4824   EnsureFlipFunctionStarted(self, this);
4825   if (ReadFlag(ThreadFlag::kRunningFlipFunction)) {
4826     // Does not release mutator lock. Hence no new flip requests can be issued.
4827     WaitForFlipFunction(self);
4828   }
4829   return tlsPtr_.opeer;
4830 }
4831 
LockedGetPeerFromOtherThread(ThreadExitFlag * tef)4832 mirror::Object* Thread::LockedGetPeerFromOtherThread(ThreadExitFlag* tef) {
4833   DCHECK(tlsPtr_.jpeer == nullptr);
4834   Thread* self = Thread::Current();
4835   Locks::thread_list_lock_->AssertHeld(self);
4836   if (ReadFlag(ThreadFlag::kPendingFlipFunction)) {
4837     // It is unsafe to call EnsureFlipFunctionStarted with thread_list_lock_. Thus we temporarily
4838     // release it, taking care to handle the case in which "this" thread disapppears while we no
4839     // longer hold it.
4840     Locks::thread_list_lock_->Unlock(self);
4841     EnsureFlipFunctionStarted(self, this, StateAndFlags(0), tef);
4842     Locks::thread_list_lock_->Lock(self);
4843     if (tef->HasExited()) {
4844       return nullptr;
4845     }
4846   }
4847   if (ReadFlag(ThreadFlag::kRunningFlipFunction)) {
4848     // Does not release mutator lock. Hence no new flip requests can be issued.
4849     WaitForFlipFunction(self);
4850   }
4851   return tlsPtr_.opeer;
4852 }
4853 
SetReadBarrierEntrypoints()4854 void Thread::SetReadBarrierEntrypoints() {
4855   // Make sure entrypoints aren't null.
4856   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true);
4857 }
4858 
ClearAllInterpreterCaches()4859 void Thread::ClearAllInterpreterCaches() {
4860   static struct ClearInterpreterCacheClosure : Closure {
4861     void Run(Thread* thread) override {
4862       thread->GetInterpreterCache()->Clear(thread);
4863     }
4864   } closure;
4865   Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
4866 }
4867 
SetNativePriority(int new_priority)4868 void Thread::SetNativePriority(int new_priority) {
4869   palette_status_t status = PaletteSchedSetPriority(GetTid(), new_priority);
4870   CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
4871 }
4872 
GetNativePriority() const4873 int Thread::GetNativePriority() const {
4874   int priority = 0;
4875   palette_status_t status = PaletteSchedGetPriority(GetTid(), &priority);
4876   CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
4877   return priority;
4878 }
4879 
AbortInThis(const std::string & message)4880 void Thread::AbortInThis(const std::string& message) {
4881   std::string thread_name;
4882   Thread::Current()->GetThreadName(thread_name);
4883   LOG(ERROR) << message;
4884   LOG(ERROR) << "Aborting culprit thread";
4885   Runtime::Current()->SetAbortMessage(("Caused " + thread_name + " failure : " + message).c_str());
4886   // Unlike Runtime::Abort() we do not fflush(nullptr), since we want to send the signal with as
4887   // little delay as possible.
4888   int res = pthread_kill(tlsPtr_.pthread_self, SIGABRT);
4889   if (res != 0) {
4890     LOG(ERROR) << "pthread_kill failed with " << res << " " << strerror(res) << " target was "
4891                << tls32_.tid;
4892   } else {
4893     // Wait for our process to be aborted.
4894     sleep(10 /* seconds */);
4895   }
4896   // The process should have died long before we got here. Never return.
4897   LOG(FATAL) << "Failed to abort in culprit thread: " << message;
4898   UNREACHABLE();
4899 }
4900 
IsSystemDaemon() const4901 bool Thread::IsSystemDaemon() const {
4902   if (GetPeer() == nullptr) {
4903     return false;
4904   }
4905   return WellKnownClasses::java_lang_Thread_systemDaemon->GetBoolean(GetPeer());
4906 }
4907 
StateAndFlagsAsHexString() const4908 std::string Thread::StateAndFlagsAsHexString() const {
4909   std::stringstream result_stream;
4910   result_stream << std::hex << GetStateAndFlags(std::memory_order_relaxed).GetValue();
4911   return result_stream.str();
4912 }
4913 
ScopedExceptionStorage(art::Thread * self)4914 ScopedExceptionStorage::ScopedExceptionStorage(art::Thread* self)
4915     : self_(self), hs_(self_), excp_(hs_.NewHandle<art::mirror::Throwable>(self_->GetException())) {
4916   self_->ClearException();
4917 }
4918 
SuppressOldException(const char * message)4919 void ScopedExceptionStorage::SuppressOldException(const char* message) {
4920   CHECK(self_->IsExceptionPending()) << *self_;
4921   ObjPtr<mirror::Throwable> old_suppressed(excp_.Get());
4922   excp_.Assign(self_->GetException());
4923   if (old_suppressed != nullptr) {
4924     LOG(WARNING) << message << "Suppressing old exception: " << old_suppressed->Dump();
4925   }
4926   self_->ClearException();
4927 }
4928 
~ScopedExceptionStorage()4929 ScopedExceptionStorage::~ScopedExceptionStorage() {
4930   CHECK(!self_->IsExceptionPending()) << *self_;
4931   if (!excp_.IsNull()) {
4932     self_->SetException(excp_.Get());
4933   }
4934 }
4935 
4936 }  // namespace art
4937 
4938 #pragma clang diagnostic pop  // -Wconversion
4939