1# mypy: allow-untyped-defs 2import math 3 4import torch 5from torch import inf 6from torch.distributions import constraints 7from torch.distributions.normal import Normal 8from torch.distributions.transformed_distribution import TransformedDistribution 9from torch.distributions.transforms import AbsTransform 10 11 12__all__ = ["HalfNormal"] 13 14 15class HalfNormal(TransformedDistribution): 16 r""" 17 Creates a half-normal distribution parameterized by `scale` where:: 18 19 X ~ Normal(0, scale) 20 Y = |X| ~ HalfNormal(scale) 21 22 Example:: 23 24 >>> # xdoctest: +IGNORE_WANT("non-deterministic") 25 >>> m = HalfNormal(torch.tensor([1.0])) 26 >>> m.sample() # half-normal distributed with scale=1 27 tensor([ 0.1046]) 28 29 Args: 30 scale (float or Tensor): scale of the full Normal distribution 31 """ 32 arg_constraints = {"scale": constraints.positive} 33 support = constraints.nonnegative 34 has_rsample = True 35 36 def __init__(self, scale, validate_args=None): 37 base_dist = Normal(0, scale, validate_args=False) 38 super().__init__(base_dist, AbsTransform(), validate_args=validate_args) 39 40 def expand(self, batch_shape, _instance=None): 41 new = self._get_checked_instance(HalfNormal, _instance) 42 return super().expand(batch_shape, _instance=new) 43 44 @property 45 def scale(self): 46 return self.base_dist.scale 47 48 @property 49 def mean(self): 50 return self.scale * math.sqrt(2 / math.pi) 51 52 @property 53 def mode(self): 54 return torch.zeros_like(self.scale) 55 56 @property 57 def variance(self): 58 return self.scale.pow(2) * (1 - 2 / math.pi) 59 60 def log_prob(self, value): 61 if self._validate_args: 62 self._validate_sample(value) 63 log_prob = self.base_dist.log_prob(value) + math.log(2) 64 log_prob = torch.where(value >= 0, log_prob, -inf) 65 return log_prob 66 67 def cdf(self, value): 68 if self._validate_args: 69 self._validate_sample(value) 70 return 2 * self.base_dist.cdf(value) - 1 71 72 def icdf(self, prob): 73 return self.base_dist.icdf((prob + 1) / 2) 74 75 def entropy(self): 76 return self.base_dist.entropy() - math.log(2) 77