1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <inttypes.h>
18 #include <string.h>
19 
20 #include <functional>
21 #include <iomanip>
22 #include <mutex>
23 #include <sstream>
24 #include <string>
25 #include <unordered_map>
26 
27 #include <android-base/macros.h>
28 #include <android-base/strings.h>
29 #include <backtrace.h>
30 
31 #include "Allocator.h"
32 #include "AtomicState.h"
33 #include "Binder.h"
34 #include "HeapWalker.h"
35 #include "Leak.h"
36 #include "LeakFolding.h"
37 #include "LeakPipe.h"
38 #include "ProcessMappings.h"
39 #include "PtracerThread.h"
40 #include "ScopedDisableMalloc.h"
41 #include "ThreadCapture.h"
42 
43 #include "bionic.h"
44 #include "log.h"
45 #include "memunreachable/memunreachable.h"
46 
47 using namespace std::chrono_literals;
48 
49 namespace android {
50 
51 const size_t Leak::contents_length;
52 
53 class MemUnreachable {
54  public:
MemUnreachable(pid_t pid,Allocator<void> allocator)55   MemUnreachable(pid_t pid, Allocator<void> allocator)
56       : pid_(pid), allocator_(allocator), heap_walker_(allocator_) {}
57   bool CollectAllocations(const allocator::vector<ThreadInfo>& threads,
58                           const allocator::vector<Mapping>& mappings,
59                           const allocator::vector<uintptr_t>& refs);
60   bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, size_t* num_leaks,
61                             size_t* leak_bytes);
Allocations()62   size_t Allocations() { return heap_walker_.Allocations(); }
AllocationBytes()63   size_t AllocationBytes() { return heap_walker_.AllocationBytes(); }
64 
65  private:
66   bool ClassifyMappings(const allocator::vector<Mapping>& mappings,
67                         allocator::vector<Mapping>& heap_mappings,
68                         allocator::vector<Mapping>& anon_mappings,
69                         allocator::vector<Mapping>& globals_mappings,
70                         allocator::vector<Mapping>& stack_mappings);
71   DISALLOW_COPY_AND_ASSIGN(MemUnreachable);
72   pid_t pid_;
73   Allocator<void> allocator_;
74   HeapWalker heap_walker_;
75 };
76 
HeapIterate(const Mapping & heap_mapping,const std::function<void (uintptr_t,size_t)> & func)77 static void HeapIterate(const Mapping& heap_mapping,
78                         const std::function<void(uintptr_t, size_t)>& func) {
79   malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin,
80                  [](uintptr_t base, size_t size, void* arg) {
81                    auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg);
82                    (*f)(base, size);
83                  },
84                  const_cast<void*>(reinterpret_cast<const void*>(&func)));
85 }
86 
CollectAllocations(const allocator::vector<ThreadInfo> & threads,const allocator::vector<Mapping> & mappings,const allocator::vector<uintptr_t> & refs)87 bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads,
88                                         const allocator::vector<Mapping>& mappings,
89                                         const allocator::vector<uintptr_t>& refs) {
90   MEM_ALOGI("searching process %d for allocations", pid_);
91 
92   for (auto it = mappings.begin(); it != mappings.end(); it++) {
93     heap_walker_.Mapping(it->begin, it->end);
94   }
95 
96   allocator::vector<Mapping> heap_mappings{mappings};
97   allocator::vector<Mapping> anon_mappings{mappings};
98   allocator::vector<Mapping> globals_mappings{mappings};
99   allocator::vector<Mapping> stack_mappings{mappings};
100   if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, globals_mappings, stack_mappings)) {
101     return false;
102   }
103 
104   for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) {
105     MEM_ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
106     HeapIterate(*it,
107                 [&](uintptr_t base, size_t size) { heap_walker_.Allocation(base, base + size); });
108   }
109 
110   for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) {
111     MEM_ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
112     heap_walker_.Allocation(it->begin, it->end);
113   }
114 
115   for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) {
116     MEM_ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
117     heap_walker_.Root(it->begin, it->end);
118   }
119 
120   for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) {
121     for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) {
122       if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) {
123         MEM_ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name);
124         heap_walker_.Root(thread_it->stack.first, it->end);
125       }
126     }
127     heap_walker_.Root(thread_it->regs);
128   }
129 
130   heap_walker_.Root(refs);
131 
132   MEM_ALOGI("searching done");
133 
134   return true;
135 }
136 
GetUnreachableMemory(allocator::vector<Leak> & leaks,size_t limit,size_t * num_leaks,size_t * leak_bytes)137 bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit,
138                                           size_t* num_leaks, size_t* leak_bytes) {
139   MEM_ALOGI("sweeping process %d for unreachable memory", pid_);
140   leaks.clear();
141 
142   if (!heap_walker_.DetectLeaks()) {
143     return false;
144   }
145 
146   allocator::vector<Range> leaked1{allocator_};
147   heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes);
148 
149   MEM_ALOGI("sweeping done");
150 
151   MEM_ALOGI("folding related leaks");
152 
153   LeakFolding folding(allocator_, heap_walker_);
154   if (!folding.FoldLeaks()) {
155     return false;
156   }
157 
158   allocator::vector<LeakFolding::Leak> leaked{allocator_};
159 
160   if (!folding.Leaked(leaked, num_leaks, leak_bytes)) {
161     return false;
162   }
163 
164   allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_};
165 
166   // Prevent reallocations of backing memory so we can store pointers into it
167   // in backtrace_map.
168   leaks.reserve(leaked.size());
169 
170   for (auto& it : leaked) {
171     leaks.emplace_back();
172     Leak* leak = &leaks.back();
173 
174     ssize_t num_backtrace_frames = malloc_backtrace(
175         reinterpret_cast<void*>(it.range.begin), leak->backtrace.frames, leak->backtrace.max_frames);
176     if (num_backtrace_frames > 0) {
177       leak->backtrace.num_frames = num_backtrace_frames;
178 
179       auto inserted = backtrace_map.emplace(leak->backtrace, leak);
180       if (!inserted.second) {
181         // Leak with same backtrace already exists, drop this one and
182         // increment similar counts on the existing one.
183         leaks.pop_back();
184         Leak* similar_leak = inserted.first->second;
185         similar_leak->similar_count++;
186         similar_leak->similar_size += it.range.size();
187         similar_leak->similar_referenced_count += it.referenced_count;
188         similar_leak->similar_referenced_size += it.referenced_size;
189         similar_leak->total_size += it.range.size();
190         similar_leak->total_size += it.referenced_size;
191         continue;
192       }
193     }
194 
195     leak->begin = it.range.begin;
196     leak->size = it.range.size();
197     leak->referenced_count = it.referenced_count;
198     leak->referenced_size = it.referenced_size;
199     leak->total_size = leak->size + leak->referenced_size;
200     memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin),
201            std::min(leak->size, Leak::contents_length));
202   }
203 
204   MEM_ALOGI("folding done");
205 
206   std::sort(leaks.begin(), leaks.end(),
207             [](const Leak& a, const Leak& b) { return a.total_size > b.total_size; });
208 
209   if (leaks.size() > limit) {
210     leaks.resize(limit);
211   }
212 
213   return true;
214 }
215 
has_prefix(const allocator::string & s,const char * prefix)216 static bool has_prefix(const allocator::string& s, const char* prefix) {
217   int ret = s.compare(0, strlen(prefix), prefix);
218   return ret == 0;
219 }
220 
is_sanitizer_mapping(const allocator::string & s)221 static bool is_sanitizer_mapping(const allocator::string& s) {
222   return s == "[anon:low shadow]" || s == "[anon:high shadow]" || has_prefix(s, "[anon:hwasan");
223 }
224 
ClassifyMappings(const allocator::vector<Mapping> & mappings,allocator::vector<Mapping> & heap_mappings,allocator::vector<Mapping> & anon_mappings,allocator::vector<Mapping> & globals_mappings,allocator::vector<Mapping> & stack_mappings)225 bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings,
226                                       allocator::vector<Mapping>& heap_mappings,
227                                       allocator::vector<Mapping>& anon_mappings,
228                                       allocator::vector<Mapping>& globals_mappings,
229                                       allocator::vector<Mapping>& stack_mappings) {
230   heap_mappings.clear();
231   anon_mappings.clear();
232   globals_mappings.clear();
233   stack_mappings.clear();
234 
235   allocator::string current_lib{allocator_};
236 
237   for (auto it = mappings.begin(); it != mappings.end(); it++) {
238     if (it->execute) {
239       current_lib = it->name;
240       continue;
241     }
242 
243     if (!it->read) {
244       continue;
245     }
246 
247     const allocator::string mapping_name{it->name, allocator_};
248     if (mapping_name == "[anon:libmemunreachable stack]") {
249       // the ptracer thread's stack, ignore it.
250     } else if (mapping_name == "[anon:.bss]") {
251       // named .bss section
252       globals_mappings.emplace_back(*it);
253     } else if (mapping_name == current_lib) {
254       // .rodata or .data section
255       globals_mappings.emplace_back(*it);
256     } else if (mapping_name == "[anon:libc_malloc]" ||
257                android::base::StartsWith(mapping_name, "[anon:scudo:") ||
258                android::base::StartsWith(mapping_name, "[anon:GWP-ASan")) {
259       // named malloc mapping
260       heap_mappings.emplace_back(*it);
261     } else if (has_prefix(mapping_name, "[anon:dalvik-")) {
262       // named dalvik heap mapping
263       globals_mappings.emplace_back(*it);
264     } else if (has_prefix(mapping_name, "[stack")) {
265       // named stack mapping
266       stack_mappings.emplace_back(*it);
267     } else if (mapping_name.size() == 0) {
268       globals_mappings.emplace_back(*it);
269     } else if (has_prefix(mapping_name, "[anon:") &&
270                mapping_name != "[anon:leak_detector_malloc]" &&
271                !is_sanitizer_mapping(mapping_name)) {
272       // TODO(ccross): it would be nice to treat named anonymous mappings as
273       // possible leaks, but naming something in a .bss or .data section makes
274       // it impossible to distinguish them from mmaped and then named mappings.
275       globals_mappings.emplace_back(*it);
276     }
277   }
278 
279   return true;
280 }
281 
282 template <typename T>
plural(T val)283 static inline const char* plural(T val) {
284   return (val == 1) ? "" : "s";
285 }
286 
287 enum State {
288   STARTING = 0,
289   PAUSING,
290   COLLECTING,
291   ABORT,
292 };
293 
GetUnreachableMemory(UnreachableMemoryInfo & info,size_t limit)294 bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) {
295   if (info.version > 0) {
296     MEM_ALOGE("unsupported UnreachableMemoryInfo.version %zu in GetUnreachableMemory",
297               info.version);
298     return false;
299   }
300 
301   int parent_pid = getpid();
302   int parent_tid = gettid();
303 
304   Heap heap;
305 
306   AtomicState<State> state(STARTING);
307   LeakPipe pipe;
308 
309   PtracerThread thread{[&]() -> int {
310     /////////////////////////////////////////////
311     // Collection thread
312     /////////////////////////////////////////////
313     MEM_ALOGI("collecting thread info for process %d...", parent_pid);
314 
315     if (!state.transition_or(STARTING, PAUSING, [&] {
316           MEM_ALOGI("collecting thread expected state STARTING, aborting");
317           return ABORT;
318         })) {
319       return 1;
320     }
321 
322     ThreadCapture thread_capture(parent_pid, heap);
323     allocator::vector<ThreadInfo> thread_info(heap);
324     allocator::vector<Mapping> mappings(heap);
325     allocator::vector<uintptr_t> refs(heap);
326 
327     // ptrace all the threads
328     if (!thread_capture.CaptureThreads()) {
329       state.set(ABORT);
330       return 1;
331     }
332 
333     // collect register contents and stacks
334     if (!thread_capture.CapturedThreadInfo(thread_info)) {
335       state.set(ABORT);
336       return 1;
337     }
338 
339     // snapshot /proc/pid/maps
340     if (!ProcessMappings(parent_pid, mappings)) {
341       state.set(ABORT);
342       return 1;
343     }
344 
345     if (!BinderReferences(refs)) {
346       state.set(ABORT);
347       return 1;
348     }
349 
350     // Atomically update the state from PAUSING to COLLECTING.
351     // The main thread may have given up waiting for this thread to finish
352     // pausing, in which case it will have changed the state to ABORT.
353     if (!state.transition_or(PAUSING, COLLECTING, [&] {
354           MEM_ALOGI("collecting thread aborting");
355           return ABORT;
356         })) {
357       return 1;
358     }
359 
360     // malloc must be enabled to call fork, at_fork handlers take the same
361     // locks as ScopedDisableMalloc.  All threads are paused in ptrace, so
362     // memory state is still consistent.  Unfreeze the original thread so it
363     // can drop the malloc locks, it will block until the collection thread
364     // exits.
365     thread_capture.ReleaseThread(parent_tid);
366 
367     // fork a process to do the heap walking
368     int ret = fork();
369     if (ret < 0) {
370       return 1;
371     } else if (ret == 0) {
372       /////////////////////////////////////////////
373       // Heap walker process
374       /////////////////////////////////////////////
375       // Examine memory state in the child using the data collected above and
376       // the CoW snapshot of the process memory contents.
377 
378       if (!pipe.OpenSender()) {
379         _exit(1);
380       }
381 
382       MemUnreachable unreachable{parent_pid, heap};
383 
384       if (!unreachable.CollectAllocations(thread_info, mappings, refs)) {
385         _exit(2);
386       }
387       size_t num_allocations = unreachable.Allocations();
388       size_t allocation_bytes = unreachable.AllocationBytes();
389 
390       allocator::vector<Leak> leaks{heap};
391 
392       size_t num_leaks = 0;
393       size_t leak_bytes = 0;
394       bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes);
395 
396       ok = ok && pipe.Sender().Send(num_allocations);
397       ok = ok && pipe.Sender().Send(allocation_bytes);
398       ok = ok && pipe.Sender().Send(num_leaks);
399       ok = ok && pipe.Sender().Send(leak_bytes);
400       ok = ok && pipe.Sender().SendVector(leaks);
401 
402       if (!ok) {
403         _exit(3);
404       }
405 
406       _exit(0);
407     } else {
408       // Nothing left to do in the collection thread, return immediately,
409       // releasing all the captured threads.
410       MEM_ALOGI("collection thread done");
411       return 0;
412     }
413   }};
414 
415   /////////////////////////////////////////////
416   // Original thread
417   /////////////////////////////////////////////
418 
419   {
420     // Disable malloc to get a consistent view of memory
421     ScopedDisableMalloc disable_malloc;
422 
423     // Start the collection thread
424     thread.Start();
425 
426     // Wait for the collection thread to signal that it is ready to fork the
427     // heap walker process.
428     if (!state.wait_for_either_of(COLLECTING, ABORT, 30s)) {
429       // The pausing didn't finish within 30 seconds, attempt to atomically
430       // update the state from PAUSING to ABORT.  The collecting thread
431       // may have raced with the timeout and already updated the state to
432       // COLLECTING, in which case aborting is not necessary.
433       if (state.transition(PAUSING, ABORT)) {
434         MEM_ALOGI("main thread timed out waiting for collecting thread");
435       }
436     }
437 
438     // Re-enable malloc so the collection thread can fork.
439   }
440 
441   // Wait for the collection thread to exit
442   int ret = thread.Join();
443   if (ret != 0) {
444     return false;
445   }
446 
447   // Get a pipe from the heap walker process.  Transferring a new pipe fd
448   // ensures no other forked processes can have it open, so when the heap
449   // walker process dies the remote side of the pipe will close.
450   if (!pipe.OpenReceiver()) {
451     return false;
452   }
453 
454   bool ok = true;
455   ok = ok && pipe.Receiver().Receive(&info.num_allocations);
456   ok = ok && pipe.Receiver().Receive(&info.allocation_bytes);
457   ok = ok && pipe.Receiver().Receive(&info.num_leaks);
458   ok = ok && pipe.Receiver().Receive(&info.leak_bytes);
459   ok = ok && pipe.Receiver().ReceiveVector(info.leaks);
460   if (!ok) {
461     return false;
462   }
463 
464   MEM_ALOGI("unreachable memory detection done");
465   MEM_ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s",
466             info.leak_bytes, info.num_leaks, plural(info.num_leaks), info.allocation_bytes,
467             info.num_allocations, plural(info.num_allocations));
468   return true;
469 }
470 
ToString(bool log_contents) const471 std::string Leak::ToString(bool log_contents) const {
472   std::ostringstream oss;
473 
474   oss << "  " << std::dec << size;
475   oss << " bytes unreachable at ";
476   oss << std::hex << begin;
477   oss << std::endl;
478   if (referenced_count > 0) {
479     oss << std::dec;
480     oss << "   referencing " << referenced_size << " unreachable bytes";
481     oss << " in " << referenced_count << " allocation" << plural(referenced_count);
482     oss << std::endl;
483   }
484   if (similar_count > 0) {
485     oss << std::dec;
486     oss << "   and " << similar_size << " similar unreachable bytes";
487     oss << " in " << similar_count << " allocation" << plural(similar_count);
488     oss << std::endl;
489     if (similar_referenced_count > 0) {
490       oss << "   referencing " << similar_referenced_size << " unreachable bytes";
491       oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count);
492       oss << std::endl;
493     }
494   }
495 
496   if (log_contents) {
497     const int bytes_per_line = 16;
498     const size_t bytes = std::min(size, contents_length);
499 
500     if (bytes == size) {
501       oss << "   contents:" << std::endl;
502     } else {
503       oss << "   first " << bytes << " bytes of contents:" << std::endl;
504     }
505 
506     for (size_t i = 0; i < bytes; i += bytes_per_line) {
507       oss << "   " << std::hex << begin + i << ": ";
508       size_t j;
509       oss << std::setfill('0');
510       for (j = i; j < bytes && j < i + bytes_per_line; j++) {
511         oss << std::setw(2) << static_cast<int>(contents[j]) << " ";
512       }
513       oss << std::setfill(' ');
514       for (; j < i + bytes_per_line; j++) {
515         oss << "   ";
516       }
517       for (j = i; j < bytes && j < i + bytes_per_line; j++) {
518         char c = contents[j];
519         if (c < ' ' || c >= 0x7f) {
520           c = '.';
521         }
522         oss << c;
523       }
524       oss << std::endl;
525     }
526   }
527   if (backtrace.num_frames > 0) {
528     oss << backtrace_string(backtrace.frames, backtrace.num_frames);
529   }
530 
531   return oss.str();
532 }
533 
ToString(bool log_contents) const534 std::string UnreachableMemoryInfo::ToString(bool log_contents) const {
535   std::ostringstream oss;
536   oss << "  " << leak_bytes << " bytes in ";
537   oss << num_leaks << " unreachable allocation" << plural(num_leaks);
538   oss << std::endl;
539   oss << "  ABI: '" ABI_STRING "'" << std::endl;
540   oss << std::endl;
541 
542   for (auto it = leaks.begin(); it != leaks.end(); it++) {
543     oss << it->ToString(log_contents);
544     oss << std::endl;
545   }
546 
547   return oss.str();
548 }
549 
~UnreachableMemoryInfo()550 UnreachableMemoryInfo::~UnreachableMemoryInfo() {
551   // Clear the memory that holds the leaks, otherwise the next attempt to
552   // detect leaks may find the old data (for example in the jemalloc tcache)
553   // and consider all the leaks to be referenced.
554   memset(leaks.data(), 0, leaks.capacity() * sizeof(Leak));
555 
556   std::vector<Leak> tmp;
557   leaks.swap(tmp);
558 
559   // Disable and re-enable malloc to flush the jemalloc tcache to make sure
560   // there are no copies of the leaked pointer addresses there.
561   malloc_disable();
562   malloc_enable();
563 }
564 
GetUnreachableMemoryString(bool log_contents,size_t limit)565 std::string GetUnreachableMemoryString(bool log_contents, size_t limit) {
566   UnreachableMemoryInfo info;
567   if (!GetUnreachableMemory(info, limit)) {
568     return "Failed to get unreachable memory\n"
569            "If you are trying to get unreachable memory from a system app\n"
570            "(like com.android.systemui), disable selinux first using\n"
571            "setenforce 0\n";
572   }
573 
574   return info.ToString(log_contents);
575 }
576 
577 }  // namespace android
578 
LogUnreachableMemory(bool log_contents,size_t limit)579 bool LogUnreachableMemory(bool log_contents, size_t limit) {
580   android::UnreachableMemoryInfo info;
581   if (!android::GetUnreachableMemory(info, limit)) {
582     return false;
583   }
584 
585   for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) {
586     MEM_ALOGE("%s", it->ToString(log_contents).c_str());
587   }
588   return true;
589 }
590 
NoLeaks()591 bool NoLeaks() {
592   android::UnreachableMemoryInfo info;
593   if (!android::GetUnreachableMemory(info, 0)) {
594     return false;
595   }
596 
597   return info.num_leaks == 0;
598 }
599