xref: /aosp_15_r20/external/tensorflow/tensorflow/lite/delegates/gpu/cl/cl_operation.h (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_LITE_DELEGATES_GPU_CL_CL_OPERATION_H_
17 #define TENSORFLOW_LITE_DELEGATES_GPU_CL_CL_OPERATION_H_
18 
19 #include <cstdint>
20 #include <string>
21 #include <utility>
22 #include <vector>
23 
24 #include "tensorflow/lite/delegates/gpu/cl/cl_arguments.h"
25 #include "tensorflow/lite/delegates/gpu/cl/cl_command_queue.h"
26 #include "tensorflow/lite/delegates/gpu/cl/cl_context.h"
27 #include "tensorflow/lite/delegates/gpu/cl/cl_device.h"
28 #include "tensorflow/lite/delegates/gpu/cl/cl_kernel.h"
29 #include "tensorflow/lite/delegates/gpu/cl/program_cache.h"
30 #include "tensorflow/lite/delegates/gpu/cl/tensor.h"
31 #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h"
32 
33 namespace tflite {
34 namespace gpu {
35 namespace cl {
36 
37 struct CreationContext {
38   const CLDevice* device;
39   CLContext* context;
40   CLCommandQueue* queue;
41   ProgramCache* cache;
42 
GetGpuInfoCreationContext43   const GpuInfo& GetGpuInfo() const { return device->info_; }
44 };
45 
46 class ClOperation {
47  public:
48   ClOperation() = default;
49   virtual ~ClOperation() = default;
50   // Move only
51   ClOperation(ClOperation&& operation) = default;
52   ClOperation& operator=(ClOperation&& operation) = default;
53   ClOperation(const ClOperation&) = delete;
54   ClOperation& operator=(const ClOperation&) = delete;
55 
Init(std::unique_ptr<GPUOperation> && gpu_operation)56   void Init(std::unique_ptr<GPUOperation>&& gpu_operation) {
57     operation_ = std::move(gpu_operation);
58   }
59 
GetGpuOperation()60   GPUOperation& GetGpuOperation() { return *operation_; }
GetGpuOperation()61   const GPUOperation& GetGpuOperation() const { return *operation_; }
GetKernelFingerprint()62   uint64_t GetKernelFingerprint() const { return kernel_fingerprint_; }
63 
GetDefinition()64   const OperationDef& GetDefinition() const {
65     return operation_->GetDefinition();
66   }
67 
68   // should be called after changes of inputs/outputs.
69   absl::Status UpdateParams();
70 
71   absl::Status SetSrcTensor(int index, Tensor* tensor);
72   absl::Status SetDstTensor(int index, Tensor* tensor);
73 
AddToQueue(CLCommandQueue * queue)74   absl::Status AddToQueue(CLCommandQueue* queue) {
75     RETURN_IF_ERROR(cl_args_.Bind(kernel_.kernel()));
76     return queue->Dispatch(kernel_, operation_->GetWorkGroupsCount(),
77                            operation_->work_group_size_);
78   }
79 
AddToCommanBuffer(cl_command_buffer_khr cb)80   absl::Status AddToCommanBuffer(cl_command_buffer_khr cb) {
81     RETURN_IF_ERROR(cl_args_.Bind(kernel_.kernel()));
82     std::array<size_t, 3> local;
83     std::array<size_t, 3> global;
84     for (int i = 0; i < 3; ++i) {
85       local[i] = operation_->work_group_size_[i];
86       global[i] =
87           operation_->GetWorkGroupsCount()[i] * operation_->work_group_size_[i];
88     }
89     const int error_code = clCommandNDRangeKernelKHR(
90         cb, nullptr, nullptr, kernel_.kernel(), 3, nullptr, global.data(),
91         local.data(), 0, nullptr, nullptr, nullptr);
92     if (error_code != CL_SUCCESS) {
93       return absl::UnknownError(
94           absl::StrCat("Failed to clCommandNDRangeKernelKHR - ",
95                        CLErrorCodeToString(error_code)));
96     }
97     return absl::OkStatus();
98   }
99 
AddToQueue(ProfilingCommandQueue * queue,CLEvent * event)100   absl::Status AddToQueue(ProfilingCommandQueue* queue, CLEvent* event) {
101     RETURN_IF_ERROR(cl_args_.Bind(kernel_.kernel()));
102     return queue->CLCommandQueue::Dispatch(kernel_,
103                                            operation_->GetWorkGroupsCount(),
104                                            operation_->work_group_size_, event);
105   }
106 
107   // for better profiling
108   absl::Status AddToQueueNTimes(ProfilingCommandQueue* queue, int n,
109                                 int flush_period = 0) {
110     RETURN_IF_ERROR(cl_args_.Bind(kernel_.kernel()));
111     return queue->DispatchNTimes(kernel_, operation_->GetWorkGroupsCount(),
112                                  operation_->work_group_size_, n, flush_period);
113   }
114 
115   absl::Status Tune(TuningType tuning_type, const GpuInfo& gpu_info,
116                     ProfilingCommandQueue* profiling_queue);
117 
118   absl::Status Compile(const CreationContext& creation_context);
119 
120   absl::Status RestoreDeserialized(const ProgramCache& program_cache,
121                                    uint64_t fingerprint,
122                                    const GpuInfo& gpu_info,
123                                    const int3& work_group_size,
124                                    CLContext* context);
125 
GetWorkGroupSize()126   int3 GetWorkGroupSize() const { return operation_->work_group_size_; }
127 
128  private:
129   std::unique_ptr<GPUOperation> operation_;
130   CLKernel kernel_;
131   uint64_t kernel_fingerprint_;
132   CLArguments cl_args_;
133 };
134 
135 }  // namespace cl
136 }  // namespace gpu
137 }  // namespace tflite
138 
139 #endif  // TENSORFLOW_LITE_DELEGATES_GPU_CL_CL_OPERATION_H_
140