xref: /aosp_15_r20/external/pigweed/pw_kvs/sectors.cc (revision 61c4878ac05f98d0ceed94b57d316916de578985)
1 // Copyright 2020 The Pigweed Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
4 // use this file except in compliance with the License. You may obtain a copy of
5 // the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
11 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
12 // License for the specific language governing permissions and limitations under
13 // the License.
14 
15 #define PW_LOG_MODULE_NAME "KVS"
16 #define PW_LOG_LEVEL PW_KVS_LOG_LEVEL
17 
18 #include "pw_kvs/internal/sectors.h"
19 
20 #include "pw_kvs_private/config.h"
21 #include "pw_log/log.h"
22 
23 namespace pw::kvs::internal {
24 namespace {
25 
26 // Returns true if the container conatins the value.
27 // TODO(hepler): At some point move this to pw_containers, along with adding
28 // tests.
29 template <typename Container, typename T>
Contains(const Container & container,const T & value)30 bool Contains(const Container& container, const T& value) {
31   return std::find(std::begin(container), std::end(container), value) !=
32          std::end(container);
33 }
34 
35 }  // namespace
36 
Find(FindMode find_mode,SectorDescriptor ** found_sector,size_t size,span<const Address> addresses_to_skip,span<const Address> reserved_addresses)37 Status Sectors::Find(FindMode find_mode,
38                      SectorDescriptor** found_sector,
39                      size_t size,
40                      span<const Address> addresses_to_skip,
41                      span<const Address> reserved_addresses) {
42   SectorDescriptor* first_empty_sector = nullptr;
43   bool at_least_two_empty_sectors = (find_mode == kGarbageCollect);
44 
45   // Used for the GC reclaimable bytes check
46   SectorDescriptor* non_empty_least_reclaimable_sector = nullptr;
47   const size_t sector_size_bytes = partition_.sector_size_bytes();
48 
49   // Build a list of sectors to avoid.
50   //
51   // This is overly strict. reserved_addresses is populated when there are
52   // sectors reserved for a new entry. It is safe to garbage collect into
53   // these sectors, as long as there remains room for the pending entry. These
54   // reserved sectors could also be garbage collected if they have recoverable
55   // space. For simplicitly, avoid both the relocating key's redundant entries
56   // (addresses_to_skip) and the sectors reserved for pending writes
57   // (reserved_addresses).
58   // TODO(hepler): Look into improving garbage collection.
59   size_t sectors_to_skip = 0;
60   for (Address address : addresses_to_skip) {
61     temp_sectors_to_skip_[sectors_to_skip++] = &FromAddress(address);
62   }
63   for (Address address : reserved_addresses) {
64     temp_sectors_to_skip_[sectors_to_skip++] = &FromAddress(address);
65   }
66 
67   PW_LOG_DEBUG(
68       "Find sector with %u bytes available, starting with sector %u, %s",
69       unsigned(size),
70       Index(last_new_),
71       (find_mode == kAppendEntry) ? "Append" : "GC");
72   for (size_t i = 0; i < sectors_to_skip; ++i) {
73     PW_LOG_DEBUG("  Skip sector %u", Index(temp_sectors_to_skip_[i]));
74   }
75 
76   // last_new_ is the sector that was last selected as the "new empty sector" to
77   // write to. This last new sector is used as the starting point for the next
78   // "find a new empty sector to write to" operation. By using the last new
79   // sector as the start point we will cycle which empty sector is selected
80   // next, spreading the wear across all the empty sectors and get a wear
81   // leveling benefit, rather than putting more wear on the lower number
82   // sectors.
83   SectorDescriptor* sector = last_new_;
84 
85   // Look for a sector to use with enough space. The search uses a 3 priority
86   // tier process.
87   //
88   // Tier 1 is sector that already has valid data. During GC only select a
89   // sector that has no reclaimable bytes. Immediately use the first matching
90   // sector that is found.
91   //
92   // Tier 2 is find sectors that are empty/erased. While scanning for a partial
93   // sector, keep track of the first empty sector and if a second empty sector
94   // was seen. If during GC then count the second empty sector as always seen.
95   //
96   // Tier 3 is during garbage collection, find sectors with enough space that
97   // are not empty but have recoverable bytes. Pick the sector with the least
98   // recoverable bytes to minimize the likelyhood of this sector needing to be
99   // garbage collected soon.
100   for (size_t j = 0; j < descriptors_.size(); j++) {
101     sector += 1;
102     if (sector == descriptors_.end()) {
103       sector = descriptors_.begin();
104     }
105 
106     // Skip sectors in the skip list.
107     if (Contains(span(temp_sectors_to_skip_, sectors_to_skip), sector)) {
108       continue;
109     }
110 
111     if (!sector->Empty(sector_size_bytes) && sector->HasSpace(size)) {
112       if ((find_mode == kAppendEntry) ||
113           (sector->RecoverableBytes(sector_size_bytes) == 0)) {
114         *found_sector = sector;
115         return OkStatus();
116       } else {
117         if ((non_empty_least_reclaimable_sector == nullptr) ||
118             (non_empty_least_reclaimable_sector->RecoverableBytes(
119                  sector_size_bytes) <
120              sector->RecoverableBytes(sector_size_bytes))) {
121           non_empty_least_reclaimable_sector = sector;
122         }
123       }
124     }
125 
126     if (sector->Empty(sector_size_bytes)) {
127       if (first_empty_sector == nullptr) {
128         first_empty_sector = sector;
129       } else {
130         at_least_two_empty_sectors = true;
131       }
132     }
133   }
134 
135   // Tier 2 check: If the scan for a partial sector does not find a suitable
136   // sector, use the first empty sector that was found. Normally it is required
137   // to keep 1 empty sector after the sector found here, but that rule does not
138   // apply during GC.
139   if (first_empty_sector != nullptr && at_least_two_empty_sectors) {
140     PW_LOG_DEBUG(
141         "  Found a usable empty sector; returning the first found (%u)",
142         Index(first_empty_sector));
143     last_new_ = first_empty_sector;
144     *found_sector = first_empty_sector;
145     return OkStatus();
146   }
147 
148   // Tier 3 check: If we got this far, use the sector with least recoverable
149   // bytes
150   if (non_empty_least_reclaimable_sector != nullptr) {
151     *found_sector = non_empty_least_reclaimable_sector;
152     PW_LOG_DEBUG(
153         "  Found a usable sector %u, with %u B recoverable, in GC",
154         Index(*found_sector),
155         unsigned((*found_sector)->RecoverableBytes(sector_size_bytes)));
156     return OkStatus();
157   }
158 
159   // No sector was found.
160   PW_LOG_DEBUG("  Unable to find a usable sector");
161   *found_sector = nullptr;
162   return Status::ResourceExhausted();
163 }
164 
WearLeveledSectorFromIndex(size_t idx) const165 SectorDescriptor& Sectors::WearLeveledSectorFromIndex(size_t idx) const {
166   return descriptors_[(Index(last_new_) + 1 + idx) % descriptors_.size()];
167 }
168 
169 // TODO(hepler): Consider breaking this function into smaller sub-chunks.
FindSectorToGarbageCollect(span<const Address> reserved_addresses) const170 SectorDescriptor* Sectors::FindSectorToGarbageCollect(
171     span<const Address> reserved_addresses) const {
172   const size_t sector_size_bytes = partition_.sector_size_bytes();
173   SectorDescriptor* sector_candidate = nullptr;
174   size_t candidate_bytes = 0;
175 
176   // Build a vector of sectors to avoid.
177   for (size_t i = 0; i < reserved_addresses.size(); ++i) {
178     temp_sectors_to_skip_[i] = &FromAddress(reserved_addresses[i]);
179     PW_LOG_DEBUG("    Skip sector %u", Index(reserved_addresses[i]));
180   }
181   const span sectors_to_skip(temp_sectors_to_skip_, reserved_addresses.size());
182 
183   // Step 1: Try to find a sectors with stale keys and no valid keys (no
184   // relocation needed). Use the first such sector found, as that will help the
185   // KVS "rotate" around the partition. Initially this would select the sector
186   // with the most reclaimable space, but that can cause GC sector selection to
187   // "ping-pong" between two sectors when updating large keys.
188   for (size_t i = 0; i < descriptors_.size(); ++i) {
189     SectorDescriptor& sector = WearLeveledSectorFromIndex(i);
190     if ((sector.valid_bytes() == 0) &&
191         (sector.RecoverableBytes(sector_size_bytes) > 0) &&
192         !Contains(sectors_to_skip, &sector)) {
193       sector_candidate = &sector;
194       break;
195     }
196   }
197 
198   // Step 2: If step 1 yields no sectors, just find the sector with the most
199   // reclaimable bytes but no addresses to avoid.
200   if (sector_candidate == nullptr) {
201     for (size_t i = 0; i < descriptors_.size(); ++i) {
202       SectorDescriptor& sector = WearLeveledSectorFromIndex(i);
203       if ((sector.RecoverableBytes(sector_size_bytes) > candidate_bytes) &&
204           !Contains(sectors_to_skip, &sector)) {
205         sector_candidate = &sector;
206         candidate_bytes = sector.RecoverableBytes(sector_size_bytes);
207       }
208     }
209   }
210 
211   // Step 3: If no sectors with reclaimable bytes, select the sector with the
212   // most free bytes. This at least will allow entries of existing keys to get
213   // spread to other sectors, including sectors that already have copies of the
214   // current key being written.
215   if (sector_candidate == nullptr) {
216     for (size_t i = 0; i < descriptors_.size(); ++i) {
217       SectorDescriptor& sector = WearLeveledSectorFromIndex(i);
218       if ((sector.valid_bytes() > candidate_bytes) &&
219           !Contains(sectors_to_skip, &sector)) {
220         sector_candidate = &sector;
221         candidate_bytes = sector.valid_bytes();
222         PW_LOG_DEBUG("    Doing GC on sector with no reclaimable bytes!");
223       }
224     }
225   }
226 
227   if (sector_candidate != nullptr) {
228     PW_LOG_DEBUG(
229         "Found sector %u to Garbage Collect, %u recoverable bytes",
230         Index(sector_candidate),
231         unsigned(sector_candidate->RecoverableBytes(sector_size_bytes)));
232   } else {
233     PW_LOG_DEBUG("Unable to find sector to garbage collect!");
234   }
235   return sector_candidate;
236 }
237 
238 }  // namespace pw::kvs::internal
239