1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 #include "tensorflow/compiler/xla/client/lib/math.h"
17
18 #include <cmath>
19
20 #include "tensorflow/compiler/xla/client/lib/arithmetic.h"
21 #include "tensorflow/compiler/xla/client/lib/constants.h"
22 #include "tensorflow/compiler/xla/client/lib/loops.h"
23 #include "tensorflow/compiler/xla/client/xla_builder.h"
24 #include "tensorflow/compiler/xla/primitive_util.h"
25 #include "tensorflow/compiler/xla/shape_util.h"
26 #include "tensorflow/compiler/xla/status_macros.h"
27
28 namespace xla {
29 namespace {
30
31 // Evaluate the polynomial given `x` and coefficients in decreasing order.
32 template <typename FP>
EvaluatePolynomial(XlaOp x,absl::Span<const FP> coefficients)33 XlaOp EvaluatePolynomial(XlaOp x, absl::Span<const FP> coefficients) {
34 static_assert(std::is_floating_point<FP>::value,
35 "Template-argument 'FP' must be a floating-point type");
36 XlaOp poly = ScalarLike(x, 0.0);
37 for (FP c : coefficients) {
38 poly = poly * x + ScalarLike(x, c);
39 }
40 return poly;
41 }
42
43 // Evaluate the chebyshev polynomial given `x` and coefficients in decreasing
44 // order.
45 template <typename FP>
EvaluateChebyshevPolynomial(XlaOp x,absl::Span<const FP> coefficients)46 XlaOp EvaluateChebyshevPolynomial(XlaOp x, absl::Span<const FP> coefficients) {
47 static_assert(std::is_floating_point<FP>::value,
48 "Template-argument 'FP' must be a floating-point type");
49 XlaOp b0 = ScalarLike(x, 0.0);
50 XlaOp b1 = ScalarLike(x, 0.0);
51 XlaOp b2 = ScalarLike(x, 0.0);
52 for (FP c : coefficients) {
53 b2 = b1;
54 b1 = b0;
55 b0 = x * b1 - b2 + ScalarLike(x, c);
56 }
57 return ScalarLike(x, 0.5) * (b0 - b2);
58 }
59
60 } // namespace
61
62 // Returns operation(operand), except if `operand` is one of the types in
63 // upcast_types, in which case first converts it to F32, and then converts the
64 // result down to the original type.
DoWithUpcastToF32(XlaOp operand,absl::Span<const PrimitiveType> upcast_types,const std::function<XlaOp (XlaOp)> & operation)65 static XlaOp DoWithUpcastToF32(XlaOp operand,
66 absl::Span<const PrimitiveType> upcast_types,
67 const std::function<XlaOp(XlaOp)>& operation) {
68 auto& b = *operand.builder();
69 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
70 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand));
71 PrimitiveType elem_ty = shape.element_type();
72 bool needs_upcast = absl::c_linear_search(upcast_types, elem_ty);
73
74 if (needs_upcast) {
75 operand = ConvertElementType(operand, F32);
76 }
77 XlaOp result = operation(operand);
78 if (needs_upcast) {
79 result = ConvertElementType(result, elem_ty);
80 }
81 return result;
82 });
83 }
84
85 // TODO(jlebar): Use this function in more places in this file to restrict the
86 // domain of other functions.
EnsureOperandIsRealFp(absl::string_view op_name,XlaOp operand)87 static Status EnsureOperandIsRealFp(absl::string_view op_name, XlaOp operand) {
88 auto& b = *operand.builder();
89 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand));
90 auto elem_ty = shape.element_type();
91 if (!primitive_util::IsFloatingPointType(elem_ty)) {
92 return InvalidArgument(
93 "Operands to %s must be real-valued floating-point, but got %s",
94 op_name, PrimitiveType_Name(elem_ty));
95 }
96 return OkStatus();
97 }
98
IsPosInf(XlaOp operand)99 XlaOp IsPosInf(XlaOp operand) {
100 auto& b = *operand.builder();
101 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
102 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsPosInf", operand));
103 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand));
104 // Note that this is only correct for floating-point types. If we wanted it
105 // to be correct for all types, we'd need to Gt(MaxFiniteValue).
106 return Eq(operand, MaxValue(&b, shape.element_type()));
107 });
108 }
109
IsNegInf(XlaOp operand)110 XlaOp IsNegInf(XlaOp operand) {
111 auto& b = *operand.builder();
112 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
113 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsNegInf", operand));
114 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand));
115 // Note that this is only correct for floating-point types. If we wanted it
116 // to be correct for all types, we'd need to Lt(MinFiniteValue).
117 return Eq(operand, MinValue(&b, shape.element_type()));
118 });
119 }
120
IsInf(XlaOp operand)121 XlaOp IsInf(XlaOp operand) {
122 auto& b = *operand.builder();
123 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
124 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsInf", operand));
125 return IsPosInf(Abs(operand));
126 });
127 }
128
IsNan(XlaOp operand)129 XlaOp IsNan(XlaOp operand) {
130 auto& b = *operand.builder();
131 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
132 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsNan", operand));
133 return Ne(operand, operand);
134 });
135 }
136
IsNegZero(XlaOp operand)137 XlaOp IsNegZero(XlaOp operand) {
138 auto& b = *operand.builder();
139 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
140 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IsNegZero", operand));
141 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(operand));
142
143 // The bitwise representation of -0 in bfloat16 and IEEE 754 is 0x80...0
144 // (sign bit on, all other bits off).
145 switch (shape.element_type()) {
146 case F64:
147 return Eq(BitcastConvertType(operand, U64),
148 ConstantR0WithType(&b, U64, uint64_t{1} << 63));
149 case F32:
150 return Eq(BitcastConvertType(operand, U32),
151 ConstantR0WithType(&b, U32, uint32_t{1} << 31));
152 case F16:
153 case BF16:
154 // Not all XLA backends handle U16 well, so we convert to F32/U32.
155 // TODO(jlebar): It would be nice if we could stay in (B)F16/U16 for
156 // backends that *do* support it.
157 return Eq(BitcastConvertType(ConvertElementType(operand, F32), U32),
158 ConstantR0WithType(&b, U32, uint32_t{1} << 31));
159 default:
160 LOG(FATAL) << "Expected real fp type.";
161 }
162 });
163 }
164
Square(XlaOp operand)165 XlaOp Square(XlaOp operand) { return operand * operand; }
166
Reciprocal(XlaOp operand)167 XlaOp Reciprocal(XlaOp operand) { return ScalarLike(operand, 1.0) / operand; }
168
169 // Computes an approximation of the error function complement (1 - erf(x)).
170 //
171 // Precondition: abs(x) >= 1. Otherwise, use ErfImpl.
172 //
173 // This follows Cephes's f32 implementation of erfc.
ErfcImpl32(XlaOp x)174 static XlaOp ErfcImpl32(XlaOp x) {
175 // Coefficients for erfc(f32), from Cephes.
176 const double kMaxlog = 88.72283905206835;
177 // erfc(x) = exp(-x^2) P(1/x^2), 1 < x < 2
178 static const std::array<float, 9> kErfcPCoefficient{
179 +2.326819970068386E-2, -1.387039388740657E-1, +3.687424674597105E-1,
180 -5.824733027278666E-1, +6.210004621745983E-1, -4.944515323274145E-1,
181 +3.404879937665872E-1, -2.741127028184656E-1, +5.638259427386472E-1,
182 };
183 // erfc(x) = exp(-x^2) R(1/x^2), 2 <= x < kMaxlog
184 static const std::array<float, 8> kErfcRCoefficient{
185 -1.047766399936249E+1, +1.297719955372516E+1, -7.495518717768503E+0,
186 +2.921019019210786E+0, -1.015265279202700E+0, +4.218463358204948E-1,
187 -2.820767439740514E-1, +5.641895067754075E-1,
188 };
189 XlaOp abs_x = Abs(x);
190 XlaOp z = Exp(-x * x);
191 XlaOp q = ScalarLike(x, 1) / abs_x;
192 XlaOp y = q * q;
193 XlaOp p = Select(Lt(abs_x, ScalarLike(x, 2.0)),
194 EvaluatePolynomial<float>(y, kErfcPCoefficient),
195 EvaluatePolynomial<float>(y, kErfcRCoefficient));
196 y = z * q * p;
197 XlaOp y_clamp = Select(Lt(z, ScalarLike(x, -kMaxlog)), ScalarLike(x, 0), y);
198 return Select(Lt(x, ScalarLike(x, 0)), ScalarLike(x, 2.0) - y_clamp, y_clamp);
199 }
200
201 // Compute a polynomial approximation of the error function.
202 //
203 // Precondition: abs(x) <= 1. Otherwise, use ErfcImpl.
204 //
205 // This follows Cephes's f32 implementation of erf.
ErfImpl32Cephes(XlaOp x)206 static XlaOp ErfImpl32Cephes(XlaOp x) {
207 // Coefficients for by erf(f32), from Cephes.
208 //
209 // erf(x) = x P(x^2), 0 < x < 1
210 static const std::array<float, 7> kErfTCoefficient{
211 +7.853861353153693E-5, -8.010193625184903E-4, +5.188327685732524E-3,
212 -2.685381193529856E-2, +1.128358514861418E-1, -3.761262582423300E-1,
213 +1.128379165726710E+0,
214 };
215 return x * EvaluatePolynomial<float>(x * x, kErfTCoefficient);
216 }
217
ErfcImpl64(XlaOp x)218 static XlaOp ErfcImpl64(XlaOp x) {
219 // Coefficients for erfc(f64), from Cephes.
220 const double kMaxlog = 7.09782712893383996843E2;
221 // erfc(x) = exp(-x^2) P(|x|) / Q(|x|), 1 < x < 8
222 static const std::array<double, 9> kErfcPCoefficient{
223 2.46196981473530512524E-10, 5.64189564831068821977E-1,
224 7.46321056442269912687E0, 4.86371970985681366614E1,
225 1.96520832956077098242E2, 5.26445194995477358631E2,
226 9.34528527171957607540E2, 1.02755188689515710272E3,
227 5.57535335369399327526E2};
228 static const std::array<double, 9> kErfcQCoefficient{
229 1.00000000000000000000E0, 1.32281951154744992508E1,
230 8.67072140885989742329E1, 3.54937778887819891062E2,
231 9.75708501743205489753E2, 1.82390916687909736289E3,
232 2.24633760818710981792E3, 1.65666309194161350182E3,
233 5.57535340817727675546E2};
234
235 // erfc(x) = exp(-x^2) R(|x|) / S(|x|), 8 <= x < kMaxlog
236 static const std::array<double, 6> kErfcRCoefficient{
237 5.64189583547755073984E-1, 1.27536670759978104416E0,
238 5.01905042251180477414E0, 6.16021097993053585195E0,
239 7.40974269950448939160E0, 2.97886665372100240670E0};
240 static const std::array<double, 7> kErfcSCoefficient{
241 1.00000000000000000000E0, 2.26052863220117276590E0,
242 9.39603524938001434673E0, 1.20489539808096656605E1,
243 1.70814450747565897222E1, 9.60896809063285878198E0,
244 3.36907645100081516050E0};
245
246 XlaOp z = -x * x;
247 XlaOp abs_x = Abs(x);
248 XlaOp y =
249 Select(Lt(abs_x, ScalarLike(x, 8.0)),
250 Exp(z) * EvaluatePolynomial<double>(abs_x, kErfcPCoefficient) /
251 EvaluatePolynomial<double>(abs_x, kErfcQCoefficient),
252 Exp(z) * EvaluatePolynomial<double>(abs_x, kErfcRCoefficient) /
253 EvaluatePolynomial<double>(abs_x, kErfcSCoefficient));
254 XlaOp y_clamp = Select(Lt(z, ScalarLike(x, -kMaxlog)), ScalarLike(x, 0), y);
255 return Select(Lt(x, ScalarLike(x, 0)), ScalarLike(x, 2.0) - y_clamp, y_clamp);
256 }
257
258 // Compute a polynomial approximation of the error function.
259 //
260 // Precondition: abs(x) <= 1. Otherwise, use ErfcImpl.
ErfImpl64(XlaOp x)261 static XlaOp ErfImpl64(XlaOp x) {
262 // Coefficients for by erf(f64), from Cephes.
263 //
264 // erf(x) = x T(x^2) / U(x^2), 0 < x < 1
265 static std::array<double, 5> kErfTCoefficient{
266 9.60497373987051638749E0, 9.00260197203842689217E1,
267 2.23200534594684319226E3, 7.00332514112805075473E3,
268 5.55923013010394962768E4};
269 static std::array<double, 6> kErfUCoefficient{
270 1.00000000000000000000E0, 3.35617141647503099647E1,
271 5.21357949780152679795E2, 4.59432382970980127987E3,
272 2.26290000613890934246E4, 4.92673942608635921086E4};
273 XlaOp z = x * x;
274 return x * EvaluatePolynomial<double>(z, kErfTCoefficient) /
275 EvaluatePolynomial<double>(z, kErfUCoefficient);
276 }
277
Erfc(XlaOp x)278 XlaOp Erfc(XlaOp x) {
279 auto& b = *x.builder();
280 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
281 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Erfc", x));
282 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(x));
283 // erfc(x) =
284 // erfc_impl(x) if x > 1
285 // 1 - erf_impl(x) otherwise
286 if (shape.element_type() == F64) {
287 return Select(Gt(Abs(x), ScalarLike(x, 1)), ErfcImpl64(x),
288 ScalarLike(x, 1) - ErfImpl64(x));
289 }
290 // Erf(c)Impl don't have enough precision when run with bf16 intermediates
291 // (not surprising!), so upcast to f32 in this case.
292 return DoWithUpcastToF32(x, {BF16, F16}, [](XlaOp x) {
293 return Select(Gt(Abs(x), ScalarLike(x, 1)), ErfcImpl32(x),
294 ScalarLike(x, 1) - ErfImpl32Cephes(x));
295 });
296 });
297 }
298
299 // Compute a polynomial approximation of the error function.
300 // This is the same approximation used by Eigen.
ErfImpl32(XlaOp x)301 static XlaOp ErfImpl32(XlaOp x) {
302 static const std::array<float, 7> kAlpha{
303 -2.72614225801306e-10f, 2.77068142495902e-08f, -2.10102402082508e-06f,
304 -5.69250639462346e-05f, -7.34990630326855e-04f, -2.95459980854025e-03f,
305 -1.60960333262415e-02f,
306 };
307
308 static const std::array<float, 5> kBeta{
309 -1.45660718464996e-05f, -2.13374055278905e-04f, -1.68282697438203e-03f,
310 -7.37332916720468e-03f, -1.42647390514189e-02f,
311 };
312
313 x = Clamp(ScalarLike(x, -4.f), x, ScalarLike(x, 4.f));
314 auto x2 = x * x;
315 return x * EvaluatePolynomial<float>(x2, kAlpha) /
316 EvaluatePolynomial<float>(x2, kBeta);
317 }
318
Erf(XlaOp x)319 XlaOp Erf(XlaOp x) {
320 auto& b = *x.builder();
321 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
322 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Erf", x));
323 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(x));
324 // erf(x) =
325 // erf_impl(x) if x < 1
326 // 1 - erfc_impl(x) otherwise
327 if (shape.element_type() == F64) {
328 return Select(Lt(Abs(x), ScalarLike(x, 1)), ErfImpl64(x),
329 ScalarLike(x, 1) - ErfcImpl64(x));
330 }
331 // Erf(c)Impl don't have enough precision when run with bf16 intermediates
332 // (not surprising!), so upcast to f32 in this case.
333 return DoWithUpcastToF32(x, {BF16, F16},
334 [](XlaOp x) { return ErfImpl32(x); });
335 });
336 }
337
338 namespace {
339
340 // Approximation for the inverse error function from
341 // Giles, M., "Approximating the erfinv function".
342 // The approximation has the form:
343 // w = -log((1 - x) * (1 + x))
344 // if ( w < 5 ) {
345 // w = w - 2.5
346 // p = sum_{i=1}^n lq[i]*w^i
347 // } else {
348 // w = sqrt(w) - 3
349 // p = sum_{i=1}^n gq[i]*w^i
350 // }
351 // return p*x
ErfInv32(XlaOp x)352 XlaOp ErfInv32(XlaOp x) {
353 constexpr int kDegree = 9;
354 constexpr std::array<float, 9> w_less_than_5_constants = {
355 2.81022636e-08f, 3.43273939e-07f, -3.5233877e-06f,
356 -4.39150654e-06f, 0.00021858087f, -0.00125372503f,
357 -0.00417768164f, 0.246640727f, 1.50140941f};
358 constexpr std::array<float, 9> w_greater_than_5_constants = {
359 -0.000200214257f, 0.000100950558f, 0.00134934322f,
360 -0.00367342844f, 0.00573950773f, -0.0076224613f,
361 0.00943887047f, 1.00167406f, 2.83297682f};
362
363 // Compute logarithm of (1+arg) using log1p(arg) which is more precise than
364 // log(1+arg) when arg is close to zero. For more details, see
365 // https://en.cppreference.com/w/cpp/numeric/math/log1p
366 auto w = -Log1p(-x * x);
367
368 auto lt = Lt(w, ScalarLike(x, 5.0));
369 auto coefficient = [&](int i) {
370 return Select(lt, FullLike(x, w_less_than_5_constants[i]),
371 FullLike(x, w_greater_than_5_constants[i]));
372 };
373 w = Select(lt, w - ScalarLike(x, 2.5), Sqrt(w) - ScalarLike(x, 3.0));
374 auto p = coefficient(0);
375 for (int i = 1; i < kDegree; ++i) {
376 p = coefficient(i) + p * w;
377 }
378
379 // Result modulo edge cases.
380 XlaOp result = p * x;
381
382 // Handle edge cases, namely erfinv(+/-1) = +/-inf. (The above computation is
383 // indeterminate, and can give nan or -/+inf.)
384 auto& b = *x.builder();
385 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
386 TF_ASSIGN_OR_RETURN(Shape shape, b.GetShape(x));
387 return Select(Eq(Abs(x), ScalarLike(x, 1)),
388 x * MaxValue(&b, shape.element_type()), result);
389 });
390 }
391
ErfInv64(XlaOp x)392 XlaOp ErfInv64(XlaOp x) {
393 constexpr std::array<double, 23> w_less_than_6_25_constants = {
394 -3.6444120640178196996e-21, -1.685059138182016589e-19,
395 1.2858480715256400167e-18, 1.115787767802518096e-17,
396 -1.333171662854620906e-16, 2.0972767875968561637e-17,
397 6.6376381343583238325e-15, -4.0545662729752068639e-14,
398 -8.1519341976054721522e-14, 2.6335093153082322977e-12,
399 -1.2975133253453532498e-11, -5.4154120542946279317e-11,
400 1.051212273321532285e-09, -4.1126339803469836976e-09,
401 -2.9070369957882005086e-08, 4.2347877827932403518e-07,
402 -1.3654692000834678645e-06, -1.3882523362786468719e-05,
403 0.0001867342080340571352, -0.00074070253416626697512,
404 -0.0060336708714301490533, 0.24015818242558961693,
405 1.6536545626831027356};
406 constexpr std::array<double, 19> w_less_than_16_constants = {
407 2.2137376921775787049e-09, 9.0756561938885390979e-08,
408 -2.7517406297064545428e-07, 1.8239629214389227755e-08,
409 1.5027403968909827627e-06, -4.013867526981545969e-06,
410 2.9234449089955446044e-06, 1.2475304481671778723e-05,
411 -4.7318229009055733981e-05, 6.8284851459573175448e-05,
412 2.4031110387097893999e-05, -0.0003550375203628474796,
413 0.00095328937973738049703, -0.0016882755560235047313,
414 0.0024914420961078508066, -0.0037512085075692412107,
415 0.005370914553590063617, 1.0052589676941592334,
416 3.0838856104922207635,
417 };
418 constexpr std::array<double, 17> w_greater_than_16_constants = {
419 -2.7109920616438573243e-11, -2.5556418169965252055e-10,
420 1.5076572693500548083e-09, -3.7894654401267369937e-09,
421 7.6157012080783393804e-09, -1.4960026627149240478e-08,
422 2.9147953450901080826e-08, -6.7711997758452339498e-08,
423 2.2900482228026654717e-07, -9.9298272942317002539e-07,
424 4.5260625972231537039e-06, -1.9681778105531670567e-05,
425 7.5995277030017761139e-05, -0.00021503011930044477347,
426 -0.00013871931833623122026, 1.0103004648645343977,
427 4.8499064014085844221,
428 };
429 // Compute logarithm of (1+arg) using log1p(arg) which is more precise than
430 // log(1+arg) when arg is close to zero. For more details, see
431 // https://en.cppreference.com/w/cpp/numeric/math/log1p
432 auto w = -Log1p(-x * x);
433
434 auto lt_6_25 = Lt(w, ScalarLike(x, 6.25));
435 auto lt_16 = Lt(w, ScalarLike(x, 16));
436 auto coefficient = [&](int i) {
437 auto c = FullLike(x, w_less_than_6_25_constants[i]);
438 if (i < 19) {
439 c = Select(lt_6_25, c, FullLike(x, w_less_than_16_constants[i]));
440 }
441 if (i < 17) {
442 c = Select(lt_16, c, FullLike(x, w_greater_than_16_constants[i]));
443 }
444 return c;
445 };
446 auto sqrt_w = Sqrt(w);
447 w = Select(lt_6_25, w - ScalarLike(x, 3.125),
448 sqrt_w - Select(lt_16, ScalarLike(x, 3.25), ScalarLike(x, 5.0)));
449 auto p = coefficient(0);
450 for (int i = 1; i < 17; ++i) {
451 p = coefficient(i) + p * w;
452 }
453 for (int i = 17; i < 19; ++i) {
454 p = Select(lt_16, coefficient(i) + p * w, p);
455 }
456 for (int i = 19; i < 23; ++i) {
457 p = Select(lt_6_25, coefficient(i) + p * w, p);
458 }
459 // Result modulo edge cases.
460 XlaOp result = p * x;
461
462 // Handle edge cases, namely erfinv(+/-1) = +/-inf. (The above computation is
463 // indeterminate, and can give nan or -/+inf.)
464 auto& b = *x.builder();
465 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
466 TF_ASSIGN_OR_RETURN(Shape shape, b.GetShape(x));
467 return Select(Eq(Abs(x), ScalarLike(x, 1)),
468 x * MaxValue(&b, shape.element_type()), result);
469 });
470 }
471
472 } // namespace
473
ErfInv(XlaOp x)474 XlaOp ErfInv(XlaOp x) {
475 auto& b = *x.builder();
476 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
477 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("ErfInv", x));
478 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(x));
479 if (shape.element_type() == F64) {
480 return ErfInv64(x);
481 }
482 return DoWithUpcastToF32(x, {BF16, F16},
483 [](XlaOp x) { return ErfInv32(x); });
484 });
485 }
486
487 namespace {
488 // Coefficients for the Lanczos approximation of the gamma function. The
489 // coefficients are uniquely determined by the choice of g and n (kLanczosGamma
490 // and kLanczosCoefficients.size() + 1). The coefficients below correspond to
491 // [7, 9]. [5, 7], [7, 9], [9, 10], and [607/128.0, 15] were evaluated and [7,
492 // 9] seemed to be the least sensitive to the quality of the log function. In
493 // particular, [5, 7] is the only choice where -1.5e-5 <= lgamma(2) <= 1.5e-5
494 // for a particularly inaccurate log function.
495 static constexpr double kLanczosGamma = 7; // aka g
496 static constexpr double kBaseLanczosCoeff = 0.99999999999980993227684700473478;
497 static constexpr std::array<double, 8> kLanczosCoefficients = {
498 676.520368121885098567009190444019, -1259.13921672240287047156078755283,
499 771.3234287776530788486528258894, -176.61502916214059906584551354,
500 12.507343278686904814458936853, -0.13857109526572011689554707,
501 9.984369578019570859563e-6, 1.50563273514931155834e-7};
502 } // namespace
503
504 // Compute the Lgamma function using Lanczos' approximation from "A Precision
505 // Approximation of the Gamma Function". SIAM Journal on Numerical Analysis
506 // series B. Vol. 1:
507 // lgamma(z + 1) = (log(2) + log(pi)) / 2 + (z + 1/2) * log(t(z)) - t(z) + A(z)
508 // t(z) = z + kLanczosGamma + 1/2
509 // A(z) = kBaseLanczosCoeff + sigma(k = 1, n, kLanczosCoefficients[i] / (z + k))
Lgamma(XlaOp input)510 XlaOp Lgamma(XlaOp input) {
511 auto do_it = [](XlaOp input) {
512 XlaOp one_half = ScalarLike(input, 0.5);
513 XlaOp one = ScalarLike(input, 1);
514
515 XlaOp pi = ScalarLike(input, M_PI);
516 XlaOp log_pi = ScalarLike(input, std::log(M_PI));
517 XlaOp log_sqrt_two_pi =
518 ScalarLike(input, (std::log(2) + std::log(M_PI)) / 2);
519
520 XlaOp lanczos_gamma_plus_one_half = ScalarLike(input, kLanczosGamma + 0.5);
521 XlaOp log_lanczos_gamma_plus_one_half =
522 ScalarLike(input, std::log(kLanczosGamma + 0.5));
523
524 XlaOp base_lanczos_coeff = ScalarLike(input, kBaseLanczosCoeff);
525
526 // If the input is less than 0.5 use Euler's reflection formula:
527 // gamma(x) = pi / (sin(pi * x) * gamma(1 - x))
528 XlaOp need_to_reflect = Lt(input, one_half);
529 XlaOp z = Select(need_to_reflect, -input, input - one);
530
531 XlaOp x = base_lanczos_coeff;
532 for (int i = 0, end = kLanczosCoefficients.size(); i < end; ++i) {
533 XlaOp lanczos_coefficient = ScalarLike(input, kLanczosCoefficients[i]);
534 XlaOp index = ScalarLike(input, i);
535 x = x + lanczos_coefficient / (z + index + one);
536 }
537
538 // To improve accuracy on platforms with less-precise log implementations,
539 // compute log(lanczos_gamma_plus_one_half) at compile time and use log1p on
540 // the device.
541 // log(t) = log(kLanczosGamma + 0.5 + z)
542 // = log(kLanczosGamma + 0.5) + log1p(z / (kLanczosGamma + 0.5))
543 XlaOp t = lanczos_gamma_plus_one_half + z;
544 XlaOp log_t = log_lanczos_gamma_plus_one_half +
545 Log1p(z / lanczos_gamma_plus_one_half);
546
547 // Compute the final result (modulo reflection). t(z) may be large, and we
548 // need to be careful not to overflow to infinity in the first term of
549 //
550 // (z + 1/2) * log(t(z)) - t(z).
551 //
552 // Therefore we compute this as
553 //
554 // (z + 1/2 - t(z) / log(t(z))) * log(t(z)).
555 //
556 XlaOp log_y = log_sqrt_two_pi + (z + one_half - t / log_t) * log_t + Log(x);
557
558 // Compute the reflected value, used when x < 0.5:
559 //
560 // lgamma(x) = log(pi) - lgamma(1-x) - log(abs(sin(pi * x))).
561 //
562 // (The abs is because lgamma is the log of the absolute value of the gamma
563 // function.)
564 //
565 // We have to be careful when computing the final term above. gamma(x) goes
566 // to +/-inf at every integer x < 0, and this is controlled by the
567 // sin(pi * x) term. The slope is large, so precision is particularly
568 // important.
569 //
570 // Because abs(sin(pi * x)) has period 1, we can equivalently use
571 // abs(sin(pi * frac(x))), where frac(x) is the fractional part of x. This
572 // is more numerically accurate: It doesn't overflow to inf like pi * x can,
573 // and if x is an integer, it evaluates to 0 exactly, which is significant
574 // because we then take the log of this value, and log(0) is inf.
575 //
576 // We don't have a frac(x) primitive in XLA and computing it is tricky, but
577 // because abs(sin(pi * x)) = abs(sin(pi * abs(x))), it's good enough for
578 // our purposes to use abs(frac(x)) = abs(x) - floor(abs(x)).
579 //
580 // Furthermore, pi * abs(frac(x)) loses precision when abs(frac(x)) is close
581 // to 1. To remedy this, we can use the fact that sin(pi * x) in the domain
582 // [0, 1] is symmetric across the line Y=0.5.
583 //
584 XlaOp abs_input = Abs(input);
585 XlaOp abs_frac_input = abs_input - Floor(abs_input);
586 // Convert values of abs_frac_input > 0.5 to (1 - frac_input) to improve
587 // precision of pi * abs_frac_input for values of abs_frac_input close to 1.
588 XlaOp reduced_frac_input =
589 Select(Gt(abs_frac_input, ScalarLike(abs_frac_input, 0.5)),
590 ScalarLike(abs_frac_input, 1) - abs_frac_input, abs_frac_input);
591 XlaOp reflection_denom = Log(Sin(pi * reduced_frac_input));
592
593 // Avoid computing -inf - inf, which is nan. If reflection_denom is +/-inf,
594 // then it "wins" and the result is +/-inf.
595 XlaOp reflection =
596 Select(IsFinite(reflection_denom), log_pi - reflection_denom - log_y,
597 -reflection_denom);
598 XlaOp result = Select(need_to_reflect, reflection, log_y);
599
600 // lgamma(+/-inf) = +inf.
601 XlaOp inf_bcast = FullLike(input, std::numeric_limits<float>::infinity());
602 return Select(IsInf(input), inf_bcast, result);
603 };
604
605 auto& b = *input.builder();
606 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
607 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Lgamma", input));
608 // F16 and BF16 don't provide sufficient precision for intermediate results
609 // here (although it's better than you might expect!), so do the
610 // computations in F32.
611 return DoWithUpcastToF32(input, {BF16, F16}, do_it);
612 });
613 }
614
615 // Computes an approximation of the lbeta function which is equivalent to
616 // log(abs(Beta(a, b))) but avoids overflow by computing it with lgamma.
Lbeta(XlaOp a,XlaOp b)617 static XlaOp Lbeta(XlaOp a, XlaOp b) {
618 // Beta(a, b) can be computed using Gamma as per
619 // http://dlmf.nist.gov/5.12.E1 as follows:
620 // Beta(a, b) = (Gamma(a) * Gamma(b)) / Gamma(a + b)
621 //
622 // To avoid overflow, we compute in the log domain.
623 //
624 // As per http://dlmf.nist.gov/4.8.E2 we can transform:
625 // Log(a * b)
626 // into:
627 // Log(a) + Log(b)
628 //
629 // Likewise, per https://dlmf.nist.gov/4.8.E4, we can turn:
630 // Log(a - b)
631 // into:
632 // Log(a) - Log(b)
633 //
634 // This means that we can compute Log(Beta(a, b)) by:
635 // Log(Gamma(a)) + Log(Gamma(b)) - Log(Gamma(a + b))
636 return Lgamma(a) + Lgamma(b) - Lgamma(a + b);
637 }
638
639 // Compute the Digamma function using Lanczos' approximation from "A Precision
640 // Approximation of the Gamma Function". SIAM Journal on Numerical Analysis
641 // series B. Vol. 1:
642 // digamma(z + 1) = log(t(z)) + A'(z) / A(z) - kLanczosGamma / t(z)
643 // t(z) = z + kLanczosGamma + 1/2
644 // A(z) = kBaseLanczosCoeff + sigma(k = 1, n, kLanczosCoefficients[i] / (z + k))
645 // A'(z) = sigma(k = 1, n, kLanczosCoefficients[i] / (z + k) / (z + k))
Digamma(XlaOp input)646 XlaOp Digamma(XlaOp input) {
647 auto do_it = [](XlaOp input) {
648 XlaOp zero = ScalarLike(input, 0);
649 XlaOp one_half = ScalarLike(input, 0.5);
650 XlaOp one = ScalarLike(input, 1);
651
652 XlaOp pi = ScalarLike(input, M_PI);
653
654 XlaOp lanczos_gamma = ScalarLike(input, kLanczosGamma);
655 XlaOp lanczos_gamma_plus_one_half = ScalarLike(input, kLanczosGamma + 0.5);
656 XlaOp log_lanczos_gamma_plus_one_half =
657 ScalarLike(input, std::log(kLanczosGamma + 0.5));
658
659 XlaOp base_lanczos_coeff = ScalarLike(input, kBaseLanczosCoeff);
660
661 // If the input is less than 0.5 use Euler's reflection formula:
662 // digamma(x) = digamma(1 - x) - pi * cot(pi * x)
663 XlaOp need_to_reflect = Lt(input, one_half);
664 XlaOp z = Select(need_to_reflect, -input, input - one);
665
666 XlaOp num = zero;
667 XlaOp denom = base_lanczos_coeff;
668 for (int i = 0, end = kLanczosCoefficients.size(); i < end; ++i) {
669 XlaOp lanczos_coefficient = ScalarLike(input, kLanczosCoefficients[i]);
670 XlaOp index = ScalarLike(input, i);
671 num = num - lanczos_coefficient / ((z + index + one) * (z + index + one));
672 denom = denom + lanczos_coefficient / (z + index + one);
673 }
674
675 // To improve accuracy on platforms with less-precise log implementations,
676 // compute log(lanczos_gamma_plus_one_half) at compile time and use log1p on
677 // the device.
678 // log(t) = log(kLanczosGamma + 0.5 + z)
679 // = log(kLanczosGamma + 0.5) + log1p(z / (kLanczosGamma + 0.5))
680 XlaOp t = lanczos_gamma_plus_one_half + z;
681 XlaOp log_t = log_lanczos_gamma_plus_one_half +
682 Log1p(z / lanczos_gamma_plus_one_half);
683
684 XlaOp y = log_t + num / denom - lanczos_gamma / t;
685
686 // We need to be careful how we compute cot(pi * input) below: For
687 // near-integral values of `input`, pi * input can lose precision.
688 //
689 // Input is already known to be less than 0.5 (otherwise we don't have to
690 // reflect). We shift values smaller than -0.5 into the range [-.5, .5] to
691 // increase precision of pi * input and the resulting cotangent.
692 XlaOp reduced_input = input + Abs(Floor(input + ScalarLike(input, 0.5)));
693 XlaOp reflection =
694 y - pi * Cos(pi * reduced_input) / Sin(pi * reduced_input);
695 XlaOp real_result = Select(need_to_reflect, reflection, y);
696
697 // Digamma has poles at negative integers and zero; return nan for those.
698 return Select(And(Le(input, zero), Eq(input, Floor(input))),
699 FullLike(input, std::numeric_limits<float>::quiet_NaN()),
700 real_result);
701 };
702
703 auto& b = *input.builder();
704 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
705 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Digamma", input));
706 return DoWithUpcastToF32(input, {BF16, F16}, do_it);
707 });
708 }
709
710 // Incomplete gamma functions
711
712 namespace {
713
714 enum kIgammaMode { VALUE, DERIVATIVE, SAMPLE_DERIVATIVE };
715
716 // Helper function for computing Igamma using a power series.
717 template <kIgammaMode mode>
IgammaSeries(XlaOp ax,XlaOp x,XlaOp a,XlaOp enabled,xla::PrimitiveType type)718 XlaOp IgammaSeries(XlaOp ax, XlaOp x, XlaOp a, XlaOp enabled,
719 xla::PrimitiveType type) {
720 // vals: (enabled, r, c, ans, x)
721 // 'enabled' is a predication mask that says for which elements we should
722 // execute the loop body. Disabled elements have no effect in the loop body.
723 // TODO(phawkins): in general this isn't an optimal implementation on any
724 // backend. For example, on GPU, we should probably vectorize to the warp
725 // size, and then run independent loops for each warp's worth of
726 // data.
727 auto cond = [&](absl::Span<const XlaOp> vals,
728 XlaBuilder* builder) -> StatusOr<XlaOp> {
729 XlaOp enabled = vals[0];
730 return Any(enabled);
731 };
732 auto body = [&](absl::Span<const XlaOp> vals,
733 XlaBuilder* builder) -> StatusOr<std::vector<XlaOp>> {
734 XlaOp enabled = vals[0];
735 XlaOp r = vals[1];
736 XlaOp c = vals[2];
737 XlaOp ans = vals[3];
738 XlaOp x = vals[4];
739 XlaOp dc_da = vals[5];
740 XlaOp dans_da = vals[6];
741
742 r = r + ScalarLike(r, 1);
743 dc_da = dc_da * (x / r) + (ScalarLike(r, -1) * c * x) / (r * r);
744 dans_da = dans_da + dc_da;
745 c = c * (x / r);
746 ans = ans + c;
747 XlaOp conditional;
748 if (mode == VALUE) {
749 conditional = And(enabled, Gt(c / ans, Epsilon(builder, type)));
750 } else {
751 conditional =
752 And(enabled, Gt(Abs(dc_da / dans_da), Epsilon(builder, type)));
753 }
754
755 return std::vector<XlaOp>{
756 conditional,
757 Select(enabled, r, vals[1]),
758 Select(enabled, c, vals[2]),
759 Select(enabled, ans, vals[3]),
760 Select(enabled, x, vals[4]),
761 Select(enabled, dc_da, vals[5]),
762 Select(enabled, dans_da, vals[6]),
763 };
764 };
765 auto& b = *ax.builder();
766 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
767 std::vector<XlaOp> vals = {
768 enabled, a, FullLike(a, 1), FullLike(a, 1), x, FullLike(a, 0),
769 FullLike(a, 0),
770 };
771
772 TF_ASSIGN_OR_RETURN(vals, WhileLoopHelper(cond, body, vals, "igamma", &b));
773 XlaOp ans = vals[3];
774 XlaOp dans_da = vals[6];
775 if (mode == VALUE) {
776 return (ans * ax) / a;
777 }
778
779 XlaOp dlogax_da = Log(x) - Digamma(a + ScalarLike(a, 1));
780
781 switch (mode) {
782 case DERIVATIVE:
783 return ax * (ans * dlogax_da + dans_da) / a;
784 case SAMPLE_DERIVATIVE:
785 default:
786 return -(dans_da + ans * dlogax_da) * x / a;
787 }
788 });
789 }
790
791 // Helper function for computing Igammac using a continued fraction.
792 template <kIgammaMode mode>
IgammacContinuedFraction(XlaOp ax,XlaOp x,XlaOp a,XlaOp enabled,xla::PrimitiveType type)793 XlaOp IgammacContinuedFraction(XlaOp ax, XlaOp x, XlaOp a, XlaOp enabled,
794 xla::PrimitiveType type) {
795 // vals: enabled, ans, t, y, z, c, pkm1, qkm1, pkm2, qkm2
796 auto cond = [&](absl::Span<const XlaOp> vals,
797 XlaBuilder* builder) -> StatusOr<XlaOp> {
798 XlaOp enabled = vals[0];
799 XlaOp c = vals[5];
800 return And(Lt(c, ScalarLike(c, 2000)), Any(enabled));
801 };
802 auto body = [&](absl::Span<const XlaOp> vals,
803 XlaBuilder* builder) -> StatusOr<std::vector<XlaOp>> {
804 XlaOp enabled = vals[0];
805 XlaOp ans = vals[1];
806 XlaOp t = vals[2];
807 XlaOp y = vals[3];
808 XlaOp z = vals[4];
809 XlaOp c = vals[5];
810 XlaOp pkm1 = vals[6];
811 XlaOp qkm1 = vals[7];
812 XlaOp pkm2 = vals[8];
813 XlaOp qkm2 = vals[9];
814
815 XlaOp dpkm2_da = vals[10];
816 XlaOp dqkm2_da = vals[11];
817 XlaOp dpkm1_da = vals[12];
818 XlaOp dqkm1_da = vals[13];
819 XlaOp dans_da = vals[14];
820
821 c = c + ScalarLike(c, 1);
822 y = y + ScalarLike(y, 1);
823 z = z + ScalarLike(z, 2);
824 XlaOp yc = y * c;
825 XlaOp pk = pkm1 * z - pkm2 * yc;
826 XlaOp qk = qkm1 * z - qkm2 * yc;
827 XlaOp qk_is_nonzero = Ne(qk, ScalarLike(qk, 0));
828 XlaOp r = pk / qk;
829
830 t = Select(qk_is_nonzero, Abs((ans - r) / r), FullLike(t, 1));
831 ans = Select(qk_is_nonzero, r, ans);
832
833 XlaOp dpk_da = dpkm1_da * z - pkm1 - dpkm2_da * yc + pkm2 * c;
834 XlaOp dqk_da = dqkm1_da * z - qkm1 - dqkm2_da * yc + qkm2 * c;
835 XlaOp dans_da_new =
836 Select(qk_is_nonzero, (dpk_da - ans * dqk_da) / qk, dans_da);
837 XlaOp grad_conditional =
838 Select(qk_is_nonzero, Abs(dans_da_new - dans_da), FullLike(dans_da, 1));
839
840 pkm2 = pkm1;
841 pkm1 = pk;
842 qkm2 = qkm1;
843 qkm1 = qk;
844
845 dpkm2_da = dpkm1_da;
846 dqkm2_da = dqkm1_da;
847 dpkm1_da = dpk_da;
848 dqkm1_da = dqk_da;
849
850 XlaOp rescale = Gt(Abs(pk), Reciprocal(Epsilon(builder, type)));
851 pkm2 = Select(rescale, pkm2 * Epsilon(builder, type), pkm2);
852 pkm1 = Select(rescale, pkm1 * Epsilon(builder, type), pkm1);
853 qkm2 = Select(rescale, qkm2 * Epsilon(builder, type), qkm2);
854 qkm1 = Select(rescale, qkm1 * Epsilon(builder, type), qkm1);
855
856 dpkm2_da = Select(rescale, dpkm2_da * Epsilon(builder, type), dpkm2_da);
857 dqkm2_da = Select(rescale, dqkm2_da * Epsilon(builder, type), dqkm2_da);
858 dpkm1_da = Select(rescale, dpkm1_da * Epsilon(builder, type), dpkm1_da);
859 dqkm1_da = Select(rescale, dqkm1_da * Epsilon(builder, type), dqkm1_da);
860
861 XlaOp conditional;
862 if (mode == VALUE) {
863 conditional = And(enabled, Gt(t, Epsilon(builder, type)));
864 } else {
865 conditional = And(enabled, Gt(grad_conditional, Epsilon(builder, type)));
866 }
867
868 return std::vector<XlaOp>{conditional,
869 Select(enabled, ans, vals[1]),
870 Select(enabled, t, vals[2]),
871 Select(enabled, y, vals[3]),
872 Select(enabled, z, vals[4]),
873 c,
874 Select(enabled, pkm1, vals[6]),
875 Select(enabled, qkm1, vals[7]),
876 Select(enabled, pkm2, vals[8]),
877 Select(enabled, qkm2, vals[9]),
878 Select(enabled, dpkm2_da, vals[10]),
879 Select(enabled, dqkm2_da, vals[11]),
880 Select(enabled, dpkm1_da, vals[12]),
881 Select(enabled, dqkm1_da, vals[13]),
882 Select(enabled, dans_da_new, vals[14])};
883 };
884
885 auto& b = *ax.builder();
886 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
887 XlaOp y = ScalarLike(a, 1) - a;
888 XlaOp z = x + y + ScalarLike(x, 1);
889 XlaOp c = ScalarLike(x, 0);
890 XlaOp pkm2 = FullLike(x, 1);
891 XlaOp qkm2 = x;
892 XlaOp pkm1 = x + ScalarLike(x, 1);
893 XlaOp qkm1 = z * x;
894 XlaOp ans = pkm1 / qkm1;
895 XlaOp t = FullLike(x, 1);
896 XlaOp dpkm2_da = FullLike(x, 0);
897 XlaOp dqkm2_da = FullLike(x, 0);
898 XlaOp dpkm1_da = FullLike(x, 0);
899 XlaOp dqkm1_da = -x;
900 XlaOp dans_da = (dpkm1_da - ans * dqkm1_da) / qkm1;
901 std::vector<XlaOp> vals = {enabled, ans, t, y, z,
902 c, pkm1, qkm1, pkm2, qkm2,
903 dpkm2_da, dqkm2_da, dpkm1_da, dqkm1_da, dans_da};
904
905 TF_ASSIGN_OR_RETURN(vals, WhileLoopHelper(cond, body, vals, "igammac", &b));
906 ans = vals[1];
907 if (mode == VALUE) {
908 return ans * ax;
909 }
910
911 dans_da = vals[14];
912 XlaOp dlogax_da = Log(x) - Digamma(a);
913
914 switch (mode) {
915 case DERIVATIVE:
916 return ax * (ans * dlogax_da + dans_da);
917 case SAMPLE_DERIVATIVE:
918 default:
919 return -(dans_da + ans * dlogax_da) * x;
920 }
921 });
922 }
923
924 } // namespace
925
Igamma(XlaOp a,XlaOp x)926 XlaOp Igamma(XlaOp a, XlaOp x) {
927 auto& b = *a.builder();
928 auto doit = [&b](XlaOp a, XlaOp x, PrimitiveType type) -> XlaOp {
929 XlaOp is_nan = Or(IsNan(a), IsNan(x));
930 XlaOp x_is_zero = Eq(x, ScalarLike(x, 0));
931 XlaOp x_is_infinity =
932 Eq(x, ScalarLike(x, std::numeric_limits<float>::infinity()));
933 XlaOp domain_error = Or(Lt(x, ScalarLike(x, 0)), Le(a, ScalarLike(a, 0)));
934 XlaOp use_igammac = And(Gt(x, ScalarLike(x, 1)), Gt(x, a));
935 XlaOp ax = a * Log(x) - x - Lgamma(a);
936 XlaOp underflow = Lt(ax, -Log(MaxFiniteValue(&b, type)));
937 ax = Exp(ax);
938 XlaOp enabled = Not(Or(Or(Or(x_is_zero, domain_error), underflow), is_nan));
939 const double nan = std::numeric_limits<double>::quiet_NaN();
940 XlaOp output = Select(
941 use_igammac,
942 ScalarLike(a, 1) - IgammacContinuedFraction<VALUE>(
943 ax, x, a, And(enabled, use_igammac), type),
944 IgammaSeries<VALUE>(ax, x, a, And(enabled, Not(use_igammac)), type));
945 output = Select(x_is_zero, ZerosLike(output), output);
946 output = Select(x_is_infinity, FullLike(output, 1), output);
947 output = Select(Or(domain_error, is_nan), FullLike(a, nan), output);
948 return output;
949 };
950 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
951 TF_ASSIGN_OR_RETURN(auto a_shape, b.GetShape(a));
952 TF_ASSIGN_OR_RETURN(auto x_shape, b.GetShape(x));
953 if (a_shape != x_shape) {
954 return InvalidArgument(
955 "Arguments to Igamma must have equal shapes and types; got %s and %s",
956 a_shape.ToString(), x_shape.ToString());
957 }
958 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Igamma", a));
959 PrimitiveType a_x_type = a_shape.element_type();
960 bool needs_upcast =
961 a_shape.element_type() == F16 || a_shape.element_type() == BF16;
962
963 if (needs_upcast) {
964 a = ConvertElementType(a, F32);
965 x = ConvertElementType(x, F32);
966 a_x_type = F32;
967 }
968 XlaOp result = doit(a, x, a_x_type);
969 if (needs_upcast) {
970 result = ConvertElementType(result, a_shape.element_type());
971 }
972 return result;
973 });
974 }
975
IgammaGradA(XlaOp a,XlaOp x)976 XlaOp IgammaGradA(XlaOp a, XlaOp x) {
977 auto& b = *a.builder();
978 auto doit = [&b](XlaOp a, XlaOp x, PrimitiveType type) -> XlaOp {
979 XlaOp is_nan = Or(IsNan(a), IsNan(x));
980 XlaOp x_is_zero = Eq(x, ScalarLike(x, 0));
981 XlaOp domain_error = Or(Lt(x, ScalarLike(x, 0)), Le(a, ScalarLike(a, 0)));
982 XlaOp use_igammac = And(Gt(x, ScalarLike(x, 1)), Gt(x, a));
983 XlaOp ax = a * Log(x) - x - Lgamma(a);
984 XlaOp underflow = Lt(ax, -Log(MaxFiniteValue(&b, type)));
985 ax = Exp(ax);
986 XlaOp enabled = Not(Or(Or(Or(x_is_zero, domain_error), underflow), is_nan));
987 const double nan = std::numeric_limits<double>::quiet_NaN();
988 XlaOp output = Select(use_igammac,
989 -IgammacContinuedFraction<DERIVATIVE>(
990 ax, x, a, And(enabled, use_igammac), type),
991 IgammaSeries<DERIVATIVE>(
992 ax, x, a, And(enabled, Not(use_igammac)), type));
993 output = Select(x_is_zero, ZerosLike(output), output);
994 output = Select(Or(domain_error, is_nan), FullLike(a, nan), output);
995 return output;
996 };
997 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
998 TF_ASSIGN_OR_RETURN(auto a_shape, b.GetShape(a));
999 TF_ASSIGN_OR_RETURN(auto x_shape, b.GetShape(x));
1000 if (a_shape != x_shape) {
1001 return InvalidArgument(
1002 "Arguments to IgammaGradA must have equal shapes and types; got %s "
1003 "and %s",
1004 a_shape.ToString(), x_shape.ToString());
1005 }
1006 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("IgammaGradA", a));
1007 bool needs_upcast =
1008 a_shape.element_type() == F16 || a_shape.element_type() == BF16;
1009
1010 if (needs_upcast) {
1011 a = ConvertElementType(a, F32);
1012 x = ConvertElementType(x, F32);
1013 }
1014 XlaOp result = doit(a, x, a_shape.element_type());
1015 if (needs_upcast) {
1016 result = ConvertElementType(result, a_shape.element_type());
1017 }
1018 return result;
1019 });
1020 }
1021
1022 // Gradient of Gamma sample from Gamma(a, 1) with respect to `a`.
RandomGammaGrad(XlaOp a,XlaOp x)1023 XlaOp RandomGammaGrad(XlaOp a, XlaOp x) {
1024 auto& b = *a.builder();
1025 auto doit = [&b](XlaOp a, XlaOp x, PrimitiveType type) -> XlaOp {
1026 XlaOp is_nan = Or(IsNan(a), IsNan(x));
1027 XlaOp x_is_zero = Eq(x, ScalarLike(x, 0));
1028 XlaOp domain_error = Or(Lt(x, ScalarLike(x, 0)), Le(a, ScalarLike(a, 0)));
1029 XlaOp use_igammac = And(Gt(x, ScalarLike(x, 1)), Gt(x, a));
1030 XlaOp ax = a * Log(x) - x - Lgamma(a);
1031 XlaOp underflow = Lt(ax, -Log(MaxFiniteValue(&b, type)));
1032 ax = Exp(ax);
1033 XlaOp enabled = Not(Or(Or(Or(x_is_zero, domain_error), underflow), is_nan));
1034 const double nan = std::numeric_limits<double>::quiet_NaN();
1035 XlaOp output = Select(use_igammac,
1036 -IgammacContinuedFraction<SAMPLE_DERIVATIVE>(
1037 ax, x, a, And(enabled, use_igammac), type),
1038 IgammaSeries<SAMPLE_DERIVATIVE>(
1039 ax, x, a, And(enabled, Not(use_igammac)), type));
1040 output = Select(x_is_zero, ZerosLike(output), output);
1041 output = Select(Or(domain_error, is_nan), FullLike(a, nan), output);
1042 return output;
1043 };
1044 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1045 TF_ASSIGN_OR_RETURN(auto a_shape, b.GetShape(a));
1046 TF_ASSIGN_OR_RETURN(auto x_shape, b.GetShape(x));
1047 if (a_shape != x_shape) {
1048 return InvalidArgument(
1049 "Arguments to RandomGammaGrad must have equal shapes and types; got "
1050 "%s and %s",
1051 a_shape.ToString(), x_shape.ToString());
1052 }
1053 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("RandomGammaGrad", a));
1054 bool needs_upcast =
1055 a_shape.element_type() == F16 || a_shape.element_type() == BF16;
1056
1057 if (needs_upcast) {
1058 a = ConvertElementType(a, F32);
1059 x = ConvertElementType(x, F32);
1060 }
1061 XlaOp result = doit(a, x, a_shape.element_type());
1062 if (needs_upcast) {
1063 result = ConvertElementType(result, a_shape.element_type());
1064 }
1065 return result;
1066 });
1067 }
1068
Igammac(XlaOp a,XlaOp x)1069 XlaOp Igammac(XlaOp a, XlaOp x) {
1070 auto& b = *a.builder();
1071 auto doit = [&b](XlaOp a, XlaOp x, PrimitiveType type) -> XlaOp {
1072 XlaOp out_of_range = Or(Le(x, ScalarLike(x, 0)), Le(a, ScalarLike(a, 0)));
1073 XlaOp use_igamma = Or(Lt(x, ScalarLike(x, 1)), Lt(x, a));
1074 XlaOp ax = a * Log(x) - x - Lgamma(a);
1075 XlaOp underflow = Lt(ax, -Log(MaxFiniteValue(&b, type)));
1076 XlaOp enabled = Not(Or(out_of_range, underflow));
1077 ax = Exp(ax);
1078 XlaOp result =
1079 Select(use_igamma,
1080 ScalarLike(a, 1) - IgammaSeries<VALUE>(
1081 ax, x, a, And(enabled, use_igamma), type),
1082 IgammacContinuedFraction<VALUE>(
1083 ax, x, a, And(enabled, Not(use_igamma)), type));
1084 XlaOp x_is_infinity =
1085 Eq(x, ScalarLike(x, std::numeric_limits<float>::infinity()));
1086 result = Select(x_is_infinity, ZerosLike(result), result);
1087 return Select(out_of_range, FullLike(a, 1), result);
1088 };
1089 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1090 TF_ASSIGN_OR_RETURN(auto a_shape, b.GetShape(a));
1091 TF_ASSIGN_OR_RETURN(auto x_shape, b.GetShape(x));
1092 if (a_shape != x_shape) {
1093 return InvalidArgument(
1094 "Arguments to Igammac must have equal shapes and types; "
1095 "got %s and %s",
1096 a_shape.ToString(), x_shape.ToString());
1097 }
1098 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Igammac", a));
1099 PrimitiveType a_x_type = a_shape.element_type();
1100 bool needs_upcast =
1101 a_shape.element_type() == F16 || a_shape.element_type() == BF16;
1102
1103 if (needs_upcast) {
1104 a = ConvertElementType(a, F32);
1105 x = ConvertElementType(x, F32);
1106 a_x_type = F32;
1107 }
1108 XlaOp result = doit(a, x, a_x_type);
1109 if (needs_upcast) {
1110 result = ConvertElementType(result, a_shape.element_type());
1111 }
1112 return result;
1113 });
1114 }
1115
1116 // Implements Banker's rounding: numbers that are equidistant between two
1117 // integers are rounded towards even.
RoundToEven(XlaOp x)1118 XlaOp RoundToEven(XlaOp x) {
1119 auto& b = *x.builder();
1120 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1121 // Reject non-real non-fp inputs (What does it even mean to round a complex
1122 // number? Do you round each component equally? In that case, you should
1123 // just ask for that explicitly.)
1124 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("RoundToEven", x));
1125
1126 return RoundNearestEven(x);
1127 });
1128 }
1129
1130 // Trigonometric functions.
1131
1132 // acos(x) = 2 * atan(sqrt(1 - x^2) / (1 + x)) if x != -1
1133 // pi if x == -1
1134 // For complex:
1135 // acos(x) = -(i * log(x + i * sqrt((1 + x) * (1 - x))))
Acos(XlaOp x)1136 XlaOp Acos(XlaOp x) {
1137 XlaBuilder* b = x.builder();
1138 return b->ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1139 TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x));
1140
1141 if (primitive_util::IsComplexType(shape.element_type())) {
1142 auto one = ScalarLike(x, 1);
1143 auto imag_one = Complex(
1144 Zero(b, primitive_util::ComplexComponentType(shape.element_type())),
1145 One(b, primitive_util::ComplexComponentType(shape.element_type())));
1146
1147 auto result =
1148 Neg(imag_one * Log(x + imag_one * Sqrt((one + x) * (one - x))));
1149 return result;
1150 }
1151 return Select(Ne(x, FullLike(x, -1)),
1152 ScalarLike(x, 2.0) * Atan2(Sqrt(ScalarLike(x, 1.0) - x * x),
1153 ScalarLike(x, 1.0) + x),
1154 FullLike(x, M_PI));
1155 });
1156 }
1157
1158 // asin(x) = 2 * atan(x / (1 + sqrt(1 - x^2)))
Asin(XlaOp x)1159 XlaOp Asin(XlaOp x) {
1160 return ScalarLike(x, 2.0) *
1161 Atan2(x, ScalarLike(x, 1.0) + Sqrt(ScalarLike(x, 1.0) - x * x));
1162 }
1163
Atan(XlaOp x)1164 XlaOp Atan(XlaOp x) { return Atan2(x, ScalarLike(x, 1.0)); }
1165
Tan(XlaOp x)1166 XlaOp Tan(XlaOp x) {
1167 return DoWithUpcastToF32(x, {F16}, [](XlaOp x) { return Sin(x) / Cos(x); });
1168 }
1169
1170 // Hyperbolic trigonometric functions.
1171
1172 // acosh(x) = log(x + sqrt(x^2 - 1)) if x >= -1
1173 // = log(x + sqrt((x+1)*(x-1)))
1174 // acosh(x) = nan if x < -1
1175 //
1176 // If x^2 will overflow, we approximate sqrt(x^2 - 1) == x and compute as
1177 // log(2*x) = log(2) + log(x). (Note this works because negative x never
1178 // overflows; x < -1 simply yields nan. This is quite different than asinh!)
Acosh(XlaOp x)1179 XlaOp Acosh(XlaOp x) {
1180 XlaBuilder* b = x.builder();
1181 return b->ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1182 TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x));
1183
1184 auto one = ScalarLike(x, 1);
1185 auto neg_one = ScalarLike(x, -1);
1186 auto nan = FullLike(x, std::numeric_limits<float>::quiet_NaN());
1187
1188 // return
1189 //
1190 // nan if x < -1
1191 // log(x) + log(2) if x >= sqrt_max_value
1192 // log(x + sqrt((x+1)*(x-1))) otherwise
1193 //
1194 // TODO(jlebar): For now, we ignore the question of overflow if x is a
1195 // complex type, because we don't yet have exhaustive tests for complex trig
1196 // functions.
1197 auto naive_result = Log(x + Sqrt((x + one) * (x - one)));
1198 if (primitive_util::IsComplexType(shape.element_type())) {
1199 return naive_result;
1200 }
1201 auto overflow_result = Log(x) + Log(ScalarLike(x, 2));
1202
1203 auto sqrt_max_value = Sqrt(MaxFiniteValue(b, shape.element_type()));
1204 return Select(Lt(x, neg_one), nan,
1205 Select(Ge(x, sqrt_max_value), overflow_result, naive_result));
1206 });
1207 }
1208
1209 // asinh(x) = log(x + sqrt(x^2 + 1))
1210 //
1211 // If x^2 will overflow and x is positive, we can approximate x + sqrt(x^2 + 1)
1212 // as 2*x and return log(2) + log(x).
1213 //
1214 // If x is negative, the above would give us some trouble; we can't approximate
1215 // the result as x + abs(x) = 0! But we're saved by the fact that asinh(-x) =
1216 // -asinh(x).
Asinh(XlaOp x)1217 XlaOp Asinh(XlaOp x) {
1218 XlaBuilder* b = x.builder();
1219 auto do_it = [&](XlaOp x) -> StatusOr<XlaOp> {
1220 TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x));
1221 auto one = ScalarLike(x, 1);
1222
1223 // Let a = abs(x). Compute
1224 //
1225 // y = log(a + sqrt(a*a + 1)) if a < sqrt_max_value, or
1226 // y = log(a) + log(2) otherwise
1227 //
1228 // and then return
1229 //
1230 // y * sign(x).
1231 //
1232 // TODO(jlebar): For now, we ignore the question of overflow if x is a
1233 // complex type, because we don't yet have exhaustive tests for complex trig
1234 // functions.
1235 if (primitive_util::IsComplexType(shape.element_type())) {
1236 return Log(x + Sqrt(x * x + one));
1237 }
1238 // For small x, sqrt(x**2 + 1) will evaluate to 1 due to floating point
1239 // arithmetic. However, we would like to retain the low order term of this,
1240 // which is around 0.5 * x**2 using a binomial expansion.
1241 // Let z = sqrt(a**2 + 1)
1242 // log(a + sqrt(a**2 + 1)) =
1243 // log((a + sqrt(a**2 + 1)) * (1 + sqrt(a**2 + 1)) / (1 + sqrt(a**2 + 1))) =
1244 // log((a + a**2 + 1 + a * z + z) / (1 + z)) =
1245 // log(1 + a + a**2 / (1 + z)) =
1246 // log(1 + a + a ** 2 / (1 + sqrt(a**2 + 1)))
1247 // This rewrite retains the lower order term.
1248 auto a = Abs(x);
1249 auto small_result = Log1p(a + a * a / (one + Sqrt(a * a + one)));
1250 auto naive_result = Log(a + Sqrt(a * a + one));
1251 auto overflow_result = Log(Abs(a)) + Log(ScalarLike(a, 2));
1252 auto sqrt_max_value = Sqrt(MaxFiniteValue(b, shape.element_type()));
1253 return Sign(x) * Select(Ge(a, sqrt_max_value), overflow_result,
1254 Select(Le(a, one), small_result, naive_result));
1255 };
1256 // These upcasts are not strictly necessary on all platforms to get within our
1257 // error tolerances, so we could relax this if it ever mattered.
1258 return DoWithUpcastToF32(x, {BF16, F16}, [&](XlaOp x) {
1259 return b->ReportErrorOrReturn(do_it(x));
1260 });
1261 }
1262
1263 // atanh(x) = 0.5 * log((1 + x) / (1 - x)) if abs(x) <= 1
1264 // atanh(x) = nan otherwise
Atanh(XlaOp x)1265 XlaOp Atanh(XlaOp x) {
1266 XlaBuilder* b = x.builder();
1267 auto do_it = [&](XlaOp x) -> StatusOr<XlaOp> {
1268 TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x));
1269 auto naive_result = (Log1p(x) - Log1p(-x)) * ScalarLike(x, 0.5);
1270
1271 // TODO(jlebar): For now, we ignore the nan edge case for complex inputs,
1272 // because we don't yet have exhaustive tests for complex trig functions.
1273 if (primitive_util::IsComplexType(shape.element_type())) {
1274 return naive_result;
1275 }
1276
1277 auto nan = FullLike(x, std::numeric_limits<float>::quiet_NaN());
1278 return Select(Gt(Abs(x), ScalarLike(x, 1)), nan, naive_result);
1279 };
1280 return DoWithUpcastToF32(x, {BF16}, [&](XlaOp x) { //
1281 return b->ReportErrorOrReturn(do_it(x));
1282 });
1283 }
1284
1285 // Cosh(x) = (e^x + e^-x) / 2
1286 // = e^(x + log(1/2)) + e^(-x + log(1/2)).
1287 //
1288 // The second formulation avoids overflowing when e^x = inf but (e^x)/2 is not
1289 // inf.
1290 //
1291 // This incorrectly overflows to inf for two f32 input values, namely
1292 // +/-89.4159851, due to rounding error when computing x +/- log(1/2). The
1293 // correct answer of 3.40281961e+38 (0x7f7fffec) is very close to max-float, so
1294 // we deem this acceptable.
Cosh(XlaOp x)1295 XlaOp Cosh(XlaOp x) {
1296 return DoWithUpcastToF32(x, {BF16, F16}, [](XlaOp x) {
1297 auto log_one_half = Log(ScalarLike(x, 0.5));
1298 return Exp(x + log_one_half) + Exp(-x + log_one_half);
1299 });
1300 }
1301
1302 // Sinh(x) = (e^x - e^-x) / 2
1303 // = e^(x + log(1/2)) - e^(-x + log(1/2)).
1304 //
1305 // The second formulation avoids overflowing when e^x = inf but (e^x)/2 is not
1306 // inf.
1307 //
1308 // This incorrectly overflows to +/-inf for two f32 input values, namely
1309 // +/-89.4159851, due to rounding error when computing x +/- log(1/2). The
1310 // correct answer of 3.40281961e+38 (0x7f7fffec) is very close to max-float, so
1311 // we deem this acceptable.
Sinh(XlaOp x)1312 XlaOp Sinh(XlaOp x) {
1313 XlaBuilder* b = x.builder();
1314 auto do_it = [&](XlaOp x) -> StatusOr<XlaOp> {
1315 TF_ASSIGN_OR_RETURN(auto shape, b->GetShape(x));
1316 auto one_half = ScalarLike(x, 0.5);
1317 auto log_one_half = Log(ScalarLike(x, 0.5));
1318 auto large_sinh_result = Exp(x + log_one_half) - Exp(-x + log_one_half);
1319
1320 if (primitive_util::IsComplexType(shape.element_type())) {
1321 return large_sinh_result;
1322 }
1323
1324 // Here we use e^x = e^(x / 2) * e^(x / 2). This avoids overflow for large
1325 // values of x.
1326
1327 // For smaller x, we get unwanted cancellations of e^x - e^-x, resulting in
1328 // 0.
1329 // Rewrite this to avoid that. We use expm1(x) because that preserves the
1330 // first order term of the taylor series of e^x.
1331 // (e^(x) - e^(-x)) / 2. =
1332 // (e^(x) - 1 + 1 - e^(-x)) / 2.
1333 // (expm1(x) + (e^(x) - 1) / e^x) / 2.
1334 // (expm1(x) + expm1(x) / (expm1(x) + 1)) / 2.
1335 auto expm1 = Expm1(x);
1336 auto one = ScalarLike(x, 1.);
1337 auto small_sinh_result = one_half * (expm1 + expm1 / (expm1 + one));
1338 return Select(Lt(Abs(x), one), small_sinh_result, large_sinh_result);
1339 };
1340 return DoWithUpcastToF32(x, {BF16, F16}, [&](XlaOp x) {
1341 return b->ReportErrorOrReturn(do_it(x));
1342 });
1343 }
1344
MaybeConjugate(XlaOp x,bool conjugate)1345 XlaOp MaybeConjugate(XlaOp x, bool conjugate) {
1346 XlaBuilder* builder = x.builder();
1347 return builder->ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1348 TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x));
1349 auto perform_conj =
1350 primitive_util::IsComplexType(shape.element_type()) && conjugate;
1351 return perform_conj ? Conj(x) : x;
1352 });
1353 }
1354
NextAfter(XlaOp from,XlaOp to)1355 XlaOp NextAfter(XlaOp from, XlaOp to) {
1356 auto builder = from.builder();
1357 return builder->ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1358 TF_ASSIGN_OR_RETURN(auto shape, builder->GetShape(from));
1359 int bitwidth = primitive_util::BitWidth(shape.element_type());
1360 auto int_type = primitive_util::UnsignedIntegralTypeForBitWidth(bitwidth);
1361 auto from_as_int = BitcastConvertType(from, int_type);
1362 auto to_as_int = BitcastConvertType(to, int_type);
1363
1364 // The result is NaN if either "from" or "to" are NaN.
1365 auto from_is_nan = Ne(from, from);
1366 auto to_is_nan = Ne(to, to);
1367 auto nan_input = Or(from_is_nan, to_is_nan);
1368 auto result_for_nan =
1369 Broadcast(ScalarLike(from, std::numeric_limits<double>::quiet_NaN()),
1370 shape.dimensions());
1371 result_for_nan = BitcastConvertType(result_for_nan, int_type);
1372
1373 // The sign bit is the MSB.
1374 const int64_t sign_mask = int64_t{1} << (bitwidth - 1);
1375 // Discard the sign bit to make the result non-negative.
1376 auto from_abs = And(from_as_int, ScalarLike(from_as_int, ~sign_mask));
1377 auto to_abs = And(to_as_int, ScalarLike(to_as_int, ~sign_mask));
1378
1379 // When both "from" and "to" are equal, the result is "to".
1380 // N.B. It would not make a difference if we chose the result to be "from".
1381 auto from_and_to_are_equal = Eq(from_as_int, to_as_int);
1382 auto result_for_equal = to_as_int;
1383
1384 // When both "from" and "to" are both 0, the result is "to". This ensures we
1385 // get a zero signed like "to".
1386 auto from_is_zero = Eq(from_abs, ZerosLike(from_abs));
1387 auto to_is_zero = Eq(to_abs, ZerosLike(to_abs));
1388 auto result_for_both_zero = to_as_int;
1389
1390 auto from_sign = And(from_as_int, ScalarLike(from_as_int, sign_mask));
1391 auto to_sign = And(to_as_int, ScalarLike(to_as_int, sign_mask));
1392
1393 // If from == 0 && to != 0, we need to return the smallest subnormal number
1394 // signed like "to".
1395 auto result_for_from_zero_to_non_zero =
1396 Or(to_sign, ScalarLike(from_as_int, 1));
1397
1398 // If the sign of "from" and "to" disagree:
1399 // - we need to make the magnitude of "from" smaller so that it is closer to
1400 // zero.
1401 //
1402 // Otherwise the signs agree:
1403 // - "from" with a magnitude larger than "to" means we need to make the
1404 // magnitude smaller.
1405 // - "from" with a magnitude smaller than "to" means we need to make the
1406 // magnitude larger.
1407 // - "from" with the same magnitude and sign as "to" has already been
1408 // handled.
1409 auto signs_disagree = Ne(from_sign, to_sign);
1410 auto from_magnitude_larger_than_to = Gt(from_abs, to_abs);
1411 auto result_has_smaller_magnitude =
1412 Or(from_magnitude_larger_than_to, signs_disagree);
1413 auto magnitude_adjustment =
1414 Select(result_has_smaller_magnitude,
1415 Broadcast(ScalarLike(from_as_int, -1), shape.dimensions()),
1416 Broadcast(ScalarLike(from_as_int, 1), shape.dimensions()));
1417 auto result = Add(from_as_int, magnitude_adjustment);
1418 // Handle from == ±0.
1419 result = Select(from_is_zero,
1420 Select(to_is_zero, result_for_both_zero,
1421 result_for_from_zero_to_non_zero),
1422 result);
1423 // Handle from == to.
1424 result = Select(from_and_to_are_equal, result_for_equal, result);
1425 // Handle isnan(from) || isnan(to).
1426 result = Select(nan_input, result_for_nan, result);
1427
1428 // Cast back to the original type.
1429 return BitcastConvertType(result, shape.element_type());
1430 });
1431 }
1432
1433 // Computes an approximation to the modified Bessel function of the first kind,
1434 // zeroth order.
1435 // The following implementation follows Cephes' F32 and F64 implementation of
1436 // i0e.
I0eImpl32(XlaOp x)1437 static XlaOp I0eImpl32(XlaOp x) {
1438 static const std::array<float, 18> kI0eCoeffsA{
1439 -1.30002500998624804212E-8f, 6.04699502254191894932E-8f,
1440 -2.67079385394061173391E-7f, 1.11738753912010371815E-6f,
1441 -4.41673835845875056359E-6f, 1.64484480707288970893E-5f,
1442 -5.75419501008210370398E-5f, 1.88502885095841655729E-4f,
1443 -5.76375574538582365885E-4f, 1.63947561694133579842E-3f,
1444 -4.32430999505057594430E-3f, 1.05464603945949983183E-2f,
1445 -2.37374148058994688156E-2f, 4.93052842396707084878E-2f,
1446 -9.49010970480476444210E-2f, 1.71620901522208775349E-1f,
1447 -3.04682672343198398683E-1f, 6.76795274409476084995E-1f};
1448
1449 static const std::array<float, 7> kI0eCoeffsB{
1450 3.39623202570838634515E-9f, 2.26666899049817806459E-8f,
1451 2.04891858946906374183E-7f, 2.89137052083475648297E-6f,
1452 6.88975834691682398426E-5f, 3.36911647825569408990E-3f,
1453 8.04490411014108831608E-1f};
1454
1455 x = Abs(x);
1456 auto half = xla::ScalarLike(x, 0.5);
1457 auto two = xla::ScalarLike(x, 2.0);
1458 auto thirty_two = xla::ScalarLike(x, 32.0);
1459 auto result_le_8 =
1460 EvaluateChebyshevPolynomial<float>(half * x - two, kI0eCoeffsA);
1461 auto result_gt_8 =
1462 EvaluateChebyshevPolynomial<float>(thirty_two / x - two, kI0eCoeffsB) /
1463 Sqrt(x);
1464 return Select(Le(x, xla::ScalarLike(x, 8.0)), result_le_8, result_gt_8);
1465 }
1466
I0eImpl64(XlaOp x)1467 static XlaOp I0eImpl64(XlaOp x) {
1468 static const std::array<double, 30> kI0eCoeffsA{
1469 -4.41534164647933937950E-18, 3.33079451882223809783E-17,
1470 -2.43127984654795469359E-16, 1.71539128555513303061E-15,
1471 -1.16853328779934516808E-14, 7.67618549860493561688E-14,
1472 -4.85644678311192946090E-13, 2.95505266312963983461E-12,
1473 -1.72682629144155570723E-11, 9.67580903537323691224E-11,
1474 -5.18979560163526290666E-10, 2.65982372468238665035E-9,
1475 -1.30002500998624804212E-8, 6.04699502254191894932E-8,
1476 -2.67079385394061173391E-7, 1.11738753912010371815E-6,
1477 -4.41673835845875056359E-6, 1.64484480707288970893E-5,
1478 -5.75419501008210370398E-5, 1.88502885095841655729E-4,
1479 -5.76375574538582365885E-4, 1.63947561694133579842E-3,
1480 -4.32430999505057594430E-3, 1.05464603945949983183E-2,
1481 -2.37374148058994688156E-2, 4.93052842396707084878E-2,
1482 -9.49010970480476444210E-2, 1.71620901522208775349E-1,
1483 -3.04682672343198398683E-1, 6.76795274409476084995E-1};
1484
1485 static const std::array<double, 25> kI0eCoeffsB{
1486 -7.23318048787475395456E-18, -4.83050448594418207126E-18,
1487 4.46562142029675999901E-17, 3.46122286769746109310E-17,
1488 -2.82762398051658348494E-16, -3.42548561967721913462E-16,
1489 1.77256013305652638360E-15, 3.81168066935262242075E-15,
1490 -9.55484669882830764870E-15, -4.15056934728722208663E-14,
1491 1.54008621752140982691E-14, 3.85277838274214270114E-13,
1492 7.18012445138366623367E-13, -1.79417853150680611778E-12,
1493 -1.32158118404477131188E-11, -3.14991652796324136454E-11,
1494 1.18891471078464383424E-11, 4.94060238822496958910E-10,
1495 3.39623202570838634515E-9, 2.26666899049817806459E-8,
1496 2.04891858946906374183E-7, 2.89137052083475648297E-6,
1497 6.88975834691682398426E-5, 3.36911647825569408990E-3,
1498 8.04490411014108831608E-1};
1499
1500 x = Abs(x);
1501 auto half = xla::ScalarLike(x, 0.5);
1502 auto two = xla::ScalarLike(x, 2.0);
1503 auto thirty_two = xla::ScalarLike(x, 32.0);
1504 auto result_le_8 =
1505 EvaluateChebyshevPolynomial<double>(half * x - two, kI0eCoeffsA);
1506 auto result_gt_8 =
1507 EvaluateChebyshevPolynomial<double>(thirty_two / x - two, kI0eCoeffsB) /
1508 Sqrt(x);
1509 return Select(Le(x, xla::ScalarLike(x, 8.0)), result_le_8, result_gt_8);
1510 }
1511
BesselI0e(XlaOp x)1512 XlaOp BesselI0e(XlaOp x) {
1513 auto& b = *x.builder();
1514 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1515 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("BesselI0e", x));
1516 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(x));
1517 if (shape.element_type() == F64) {
1518 return I0eImpl64(x);
1519 }
1520 // I0eF32Impl don't have enough precision when run with bf16 intermediates
1521 // (not surprising!), so upcast to f32 in this case.
1522 return DoWithUpcastToF32(x, {BF16, F16},
1523 [](XlaOp x) { return I0eImpl32(x); });
1524 });
1525 }
1526
1527 // Computes an approximation to the modified Bessel function of the first kind,
1528 // first order.
1529 // The following implementation follows Cephes' F32 and F64 implementation of
1530 // i1e.
1531
I1eImpl32(XlaOp x)1532 static XlaOp I1eImpl32(XlaOp x) {
1533 static const std::array<float, 17> kI1eCoeffsA{
1534 9.38153738649577178388E-9f, -4.44505912879632808065E-8f,
1535 2.00329475355213526229E-7f, -8.56872026469545474066E-7f,
1536 3.47025130813767847674E-6f, -1.32731636560394358279E-5f,
1537 4.78156510755005422638E-5f, -1.61760815825896745588E-4f,
1538 5.12285956168575772895E-4f, -1.51357245063125314899E-3f,
1539 4.15642294431288815669E-3f, -1.05640848946261981558E-2f,
1540 2.47264490306265168283E-2f, -5.29459812080949914269E-2f,
1541 1.02643658689847095384E-1f, -1.76416518357834055153E-1f,
1542 2.52587186443633654823E-1f};
1543
1544 static const std::array<float, 7> kI1eCoeffsB{
1545 -3.83538038596423702205E-9f, -2.63146884688951950684E-8f,
1546 -2.51223623787020892529E-7f, -3.88256480887769039346E-6f,
1547 -1.10588938762623716291E-4f, -9.76109749136146840777E-3f,
1548 7.78576235018280120474E-1f};
1549 XlaOp z = Abs(x);
1550 auto half = xla::ScalarLike(x, 0.5);
1551 auto two = xla::ScalarLike(x, 2.0);
1552 auto thirty_two = xla::ScalarLike(x, 32.0);
1553 auto result_le_8 =
1554 z * EvaluateChebyshevPolynomial<float>(half * z - two, kI1eCoeffsA);
1555 auto result_gt_8 =
1556 EvaluateChebyshevPolynomial<float>(thirty_two / z - two, kI1eCoeffsB) /
1557 Sqrt(z);
1558 return Sign(x) *
1559 Select(Le(z, xla::ScalarLike(x, 8.0)), result_le_8, result_gt_8);
1560 }
1561
I1eImpl64(XlaOp x)1562 static XlaOp I1eImpl64(XlaOp x) {
1563 static const std::array<double, 29> kI1eCoeffsA{
1564 2.77791411276104639959E-18, -2.11142121435816608115E-17,
1565 1.55363195773620046921E-16, -1.10559694773538630805E-15,
1566 7.60068429473540693410E-15, -5.04218550472791168711E-14,
1567 3.22379336594557470981E-13, -1.98397439776494371520E-12,
1568 1.17361862988909016308E-11, -6.66348972350202774223E-11,
1569 3.62559028155211703701E-10, -1.88724975172282928790E-9,
1570 9.38153738649577178388E-9, -4.44505912879632808065E-8,
1571 2.00329475355213526229E-7, -8.56872026469545474066E-7,
1572 3.47025130813767847674E-6, -1.32731636560394358279E-5,
1573 4.78156510755005422638E-5, -1.61760815825896745588E-4,
1574 5.12285956168575772895E-4, -1.51357245063125314899E-3,
1575 4.15642294431288815669E-3, -1.05640848946261981558E-2,
1576 2.47264490306265168283E-2, -5.29459812080949914269E-2,
1577 1.02643658689847095384E-1, -1.76416518357834055153E-1,
1578 2.52587186443633654823E-1};
1579
1580 static const std::array<double, 25> kI1eCoeffsB{
1581 7.51729631084210481353E-18, 4.41434832307170791151E-18,
1582 -4.65030536848935832153E-17, -3.20952592199342395980E-17,
1583 2.96262899764595013876E-16, 3.30820231092092828324E-16,
1584 -1.88035477551078244854E-15, -3.81440307243700780478E-15,
1585 1.04202769841288027642E-14, 4.27244001671195135429E-14,
1586 -2.10154184277266431302E-14, -4.08355111109219731823E-13,
1587 -7.19855177624590851209E-13, 2.03562854414708950722E-12,
1588 1.41258074366137813316E-11, 3.25260358301548823856E-11,
1589 -1.89749581235054123450E-11, -5.58974346219658380687E-10,
1590 -3.83538038596423702205E-9, -2.63146884688951950684E-8,
1591 -2.51223623787020892529E-7, -3.88256480887769039346E-6,
1592 -1.10588938762623716291E-4, -9.76109749136146840777E-3,
1593 7.78576235018280120474E-1};
1594
1595 XlaOp z = Abs(x);
1596 auto half = xla::ScalarLike(x, 0.5);
1597 auto two = xla::ScalarLike(x, 2.0);
1598 auto thirty_two = xla::ScalarLike(x, 32.0);
1599 auto result_le_8 =
1600 z * EvaluateChebyshevPolynomial<double>(half * z - two, kI1eCoeffsA);
1601 auto result_gt_8 =
1602 EvaluateChebyshevPolynomial<double>(thirty_two / z - two, kI1eCoeffsB) /
1603 Sqrt(z);
1604 return Sign(x) *
1605 Select(Le(z, xla::ScalarLike(x, 8.0)), result_le_8, result_gt_8);
1606 }
1607
BesselI1e(XlaOp x)1608 XlaOp BesselI1e(XlaOp x) {
1609 auto& b = *x.builder();
1610 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1611 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("BesselI1e", x));
1612 TF_ASSIGN_OR_RETURN(auto shape, b.GetShape(x));
1613 if (shape.element_type() == F64) {
1614 return I1eImpl64(x);
1615 }
1616 // I1eF32Impl don't have enough precision when run with bf16 intermediates
1617 // (not surprising!), so upcast to f32 in this case.
1618 return DoWithUpcastToF32(x, {BF16, F16},
1619 [](XlaOp x) { return I1eImpl32(x); });
1620 });
1621 }
1622
1623 // I J Thompson and A R Barnett. 1986. Coulomb and Bessel functions of complex
1624 // arguments and order. J. Comput. Phys. 64, 2 (June 1986), 490-509.
1625 // DOI=http://dx.doi.org/10.1016/0021-9991(86)90046-X
LentzThompsonBarnettAlgorithm(int64_t num_iterations,double small,double threshold,const ForEachIndexBodyFunction & nth_partial_numerator,const ForEachIndexBodyFunction & nth_partial_denominator,absl::Span<const XlaOp> inputs,absl::string_view name)1626 static XlaOp LentzThompsonBarnettAlgorithm(
1627 int64_t num_iterations, double small, double threshold,
1628 const ForEachIndexBodyFunction& nth_partial_numerator,
1629 const ForEachIndexBodyFunction& nth_partial_denominator,
1630 absl::Span<const XlaOp> inputs, absl::string_view name) {
1631 auto& b = *inputs.front().builder();
1632 return b.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1633 TF_RET_CHECK(num_iterations < INT32_MAX);
1634
1635 enum {
1636 // Position in the evaluation.
1637 kIterationIdx,
1638 // Whether or not we have reached the desired tolerance.
1639 kValuesUnconvergedIdx,
1640 // Ratio between nth canonical numerator and the nth-1 canonical
1641 // numerator.
1642 kCIdx,
1643 // Ratio between nth-1 canonical denominator and the nth canonical
1644 // denominator.
1645 kDIdx,
1646 // Computed approximant in the evaluation.
1647 kHIdx,
1648 // Inputs follow all of the other state.
1649 kFirstInputIdx,
1650 };
1651 auto while_cond_fn = [num_iterations](
1652 absl::Span<const XlaOp> values,
1653 XlaBuilder* cond_builder) -> StatusOr<XlaOp> {
1654 auto iteration = values[kIterationIdx];
1655 auto iterations_remain_cond =
1656 Lt(iteration, ScalarLike(iteration, num_iterations));
1657 auto values_unconverged_cond = values[kValuesUnconvergedIdx];
1658 return And(iterations_remain_cond, values_unconverged_cond);
1659 };
1660
1661 auto while_body_fn =
1662 [small, threshold, &nth_partial_numerator, &nth_partial_denominator](
1663 absl::Span<const XlaOp> values,
1664 XlaBuilder* body_builder) -> StatusOr<std::vector<XlaOp>> {
1665 XlaOp iteration = values[kIterationIdx];
1666
1667 TF_ASSIGN_OR_RETURN(
1668 std::vector<XlaOp> partial_numerator,
1669 nth_partial_numerator(iteration, values.subspan(kFirstInputIdx),
1670 body_builder));
1671 TF_RET_CHECK(partial_numerator.size() == 1);
1672
1673 TF_ASSIGN_OR_RETURN(
1674 std::vector<XlaOp> partial_denominator,
1675 nth_partial_denominator(iteration, values.subspan(kFirstInputIdx),
1676 body_builder));
1677 TF_RET_CHECK(partial_denominator.size() == 1);
1678
1679 auto c = partial_denominator[0] + partial_numerator[0] / values[kCIdx];
1680 auto small_constant = FullLike(c, small);
1681 c = Select(Lt(Abs(c), small_constant), small_constant, c);
1682
1683 auto d = partial_denominator[0] + partial_numerator[0] * values[kDIdx];
1684 d = Select(Lt(Abs(d), small_constant), small_constant, d);
1685
1686 d = Reciprocal(d);
1687
1688 auto delta = c * d;
1689 auto h = values[kHIdx] * delta;
1690
1691 std::vector<XlaOp> updated_values(values.size());
1692 updated_values[kIterationIdx] = Add(iteration, ScalarLike(iteration, 1));
1693 updated_values[kCIdx] = c;
1694 updated_values[kDIdx] = d;
1695 updated_values[kHIdx] = h;
1696 std::copy(values.begin() + kFirstInputIdx, values.end(),
1697 updated_values.begin() + kFirstInputIdx);
1698
1699 // If any values are greater than the tolerance, we have not converged.
1700 auto tolerance_comparison =
1701 Ge(Abs(Sub(delta, FullLike(delta, 1.0))), FullLike(delta, threshold));
1702 updated_values[kValuesUnconvergedIdx] =
1703 ReduceAll(tolerance_comparison, ConstantR0<bool>(body_builder, false),
1704 CreateScalarOrComputation(PRED, body_builder));
1705 return updated_values;
1706 };
1707
1708 TF_ASSIGN_OR_RETURN(std::vector<XlaOp> partial_denominator,
1709 nth_partial_denominator(Zero(&b, U32), inputs, &b));
1710 TF_RET_CHECK(partial_denominator.size() == 1);
1711 auto h = partial_denominator[0];
1712 auto small_constant = FullLike(h, small);
1713 h = Select(Lt(Abs(h), small_constant), small_constant, h);
1714
1715 std::vector<XlaOp> values(kFirstInputIdx + inputs.size());
1716 values[kIterationIdx] = One(&b, U32);
1717 values[kValuesUnconvergedIdx] = ConstantR0<bool>(&b, true);
1718 values[kCIdx] = h;
1719 values[kDIdx] = FullLike(h, 0.0);
1720 values[kHIdx] = h;
1721 std::copy(inputs.begin(), inputs.end(), values.begin() + kFirstInputIdx);
1722 TF_ASSIGN_OR_RETURN(values, WhileLoopHelper(while_cond_fn, while_body_fn,
1723 values, name, &b));
1724 return values[kHIdx];
1725 });
1726 }
1727
RegularizedIncompleteBeta(XlaOp a,XlaOp b,XlaOp x)1728 XlaOp RegularizedIncompleteBeta(XlaOp a, XlaOp b, XlaOp x) {
1729 auto& builder = *x.builder();
1730 return builder.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1731 TF_ASSIGN_OR_RETURN(Shape shape, builder.GetShape(a));
1732 TF_ASSIGN_OR_RETURN(Shape b_shape, builder.GetShape(b));
1733 TF_ASSIGN_OR_RETURN(Shape x_shape, builder.GetShape(x));
1734 if (b_shape.element_type() != shape.element_type() ||
1735 x_shape.element_type() != shape.element_type()) {
1736 return InvalidArgument(
1737 "Operands to RegularizedIncompleteBeta must have identical types, "
1738 "got shapes %s, %s, and %s",
1739 shape.ToString(), b_shape.ToString(), x_shape.ToString());
1740 }
1741 if (!primitive_util::IsFloatingPointType(shape.element_type())) {
1742 return InvalidArgument(
1743 "Operands to RegularizedIncompleteBeta must be real-valued "
1744 "floating-point, but got %s",
1745 PrimitiveType_Name(shape.element_type()));
1746 }
1747 PrimitiveType element_type = shape.element_type();
1748 if (element_type == F16 || element_type == BF16) {
1749 element_type = F32;
1750 a = ConvertElementType(a, F32);
1751 b = ConvertElementType(b, F32);
1752 x = ConvertElementType(x, F32);
1753 }
1754
1755 // The partial numerator for the incomplete beta function is given
1756 // here: http://dlmf.nist.gov/8.17.E23 Note that there is a special
1757 // case: the partial numerator for the first iteration is one.
1758 auto NthPartialBetaincNumerator =
1759 [&](XlaOp iteration, absl::Span<const XlaOp> inputs,
1760 XlaBuilder* builder) -> StatusOr<std::vector<XlaOp>> {
1761 auto a = inputs[0];
1762 auto b = inputs[1];
1763 auto x = inputs[2];
1764 auto iteration_bcast = Broadcast(iteration, shape.dimensions());
1765 auto iteration_is_even =
1766 Eq(iteration_bcast % FullLike(iteration_bcast, 2),
1767 FullLike(iteration_bcast, 0));
1768 auto iteration_is_one = Eq(iteration_bcast, FullLike(iteration_bcast, 1));
1769 auto iteration_minus_one = iteration_bcast - FullLike(iteration_bcast, 1);
1770 auto m = iteration_minus_one / FullLike(iteration_minus_one, 2);
1771 m = ConvertElementType(m, element_type);
1772 auto one = FullLike(a, 1.0);
1773 auto two = FullLike(a, 2.0);
1774 // Partial numerator terms.
1775 auto even_numerator =
1776 -(a + m) * (a + b + m) * x / ((a + two * m) * (a + two * m + one));
1777 auto odd_numerator =
1778 m * (b - m) * x / ((a + two * m - one) * (a + two * m));
1779 auto one_numerator = ScalarLike(x, 1.0);
1780 auto numerator = Select(iteration_is_even, even_numerator, odd_numerator);
1781 return std::vector<XlaOp>{
1782 Select(iteration_is_one, one_numerator, numerator)};
1783 };
1784
1785 auto NthPartialBetaincDenominator =
1786 [&shape](XlaOp iteration, absl::Span<const XlaOp> inputs,
1787 XlaBuilder* builder) -> StatusOr<std::vector<XlaOp>> {
1788 auto x = inputs[2];
1789 auto iteration_bcast = Broadcast(iteration, shape.dimensions());
1790 return std::vector<XlaOp>{
1791 Select(Eq(iteration_bcast, ScalarLike(iteration_bcast, 0)),
1792 ScalarLike(x, 0.0), ScalarLike(x, 1.0))};
1793 };
1794
1795 // Determine if the inputs are out of range.
1796 auto result_is_nan =
1797 Or(Or(Or(Le(a, ScalarLike(a, 0.0)), Le(b, ScalarLike(b, 0.0))),
1798 Lt(x, ScalarLike(x, 0.0))),
1799 Gt(x, ScalarLike(x, 1.0)));
1800
1801 // The continued fraction will converge rapidly when x < (a+1)/(a+b+2)
1802 // as per: http://dlmf.nist.gov/8.17.E23
1803 //
1804 // Otherwise, we can rewrite using the symmetry relation as per:
1805 // http://dlmf.nist.gov/8.17.E4
1806 auto converges_rapidly =
1807 Lt(x, (a + FullLike(a, 1.0)) / (a + b + FullLike(b, 2.0)));
1808 auto a_orig = a;
1809 a = Select(converges_rapidly, a, b);
1810 b = Select(converges_rapidly, b, a_orig);
1811 x = Select(converges_rapidly, x, Sub(FullLike(x, 1.0), x));
1812
1813 XlaOp continued_fraction;
1814
1815 // Thresholds and iteration counts taken from Cephes.
1816 if (element_type == F32) {
1817 continued_fraction = LentzThompsonBarnettAlgorithm(
1818 /*num_iterations=*/200,
1819 /*small=*/std::numeric_limits<float>::epsilon() / 2.0f,
1820 /*threshold=*/std::numeric_limits<float>::epsilon() / 2.0f,
1821 /*nth_partial_numerator=*/NthPartialBetaincNumerator,
1822 /*nth_partial_denominator=*/NthPartialBetaincDenominator, {a, b, x},
1823 "Betainc");
1824 } else {
1825 TF_RET_CHECK(element_type == F64);
1826 continued_fraction = LentzThompsonBarnettAlgorithm(
1827 /*num_iterations=*/600,
1828 /*small=*/std::numeric_limits<double>::epsilon() / 2.0f,
1829 /*threshold=*/std::numeric_limits<double>::epsilon() / 2.0f,
1830 /*nth_partial_numerator=*/NthPartialBetaincNumerator,
1831 /*nth_partial_denominator=*/NthPartialBetaincDenominator, {a, b, x},
1832 "Betainc");
1833 }
1834
1835 // We want to compute the regularized complete beta function so we need to
1836 // combine the continued fraction with a few more terms as well as dividing
1837 // it by Beta(a, b). To avoid overflow, we compute in the log domain.
1838 // See http://dlmf.nist.gov/8.17.E22 for an easier to read version of this
1839 // formula.
1840 auto lbeta = Lbeta(a, b);
1841 auto result =
1842 continued_fraction * Exp(Log(x) * a + Log1p(-x) * b - lbeta) / a;
1843 result = Select(result_is_nan, NanValue(&builder, element_type), result);
1844
1845 // We have an additional fixup to do if we are taking advantage of the
1846 // symmetry relation.
1847 auto out =
1848 Select(converges_rapidly, result, Sub(FullLike(result, 1.0), result));
1849 return shape.element_type() == element_type
1850 ? out
1851 : ConvertElementType(out, shape.element_type());
1852 });
1853 }
1854
Polygamma(XlaOp n,XlaOp x)1855 XlaOp Polygamma(XlaOp n, XlaOp x) {
1856 auto& builder = *x.builder();
1857 auto doit = [](XlaOp n, XlaOp x, PrimitiveType type) -> XlaOp {
1858 XlaOp n_plus_one = n + ScalarLike(n, 1.);
1859 XlaOp sign =
1860 (ScalarLike(n, 2.) * Rem(n, ScalarLike(n, 2.)) - ScalarLike(n, 1.));
1861
1862 const double nan = std::numeric_limits<double>::quiet_NaN();
1863
1864 XlaOp output = Select(Eq(n, ScalarLike(n, 0.)), Digamma(x),
1865 sign * Exp(Lgamma(n_plus_one)) * Zeta(n_plus_one, x));
1866 // Check that n is a natural number.
1867 output = Select(Or(Ne(n, Floor(n)), Lt(n, ScalarLike(n, 0.))),
1868 ScalarLike(n, nan), output);
1869 return output;
1870 };
1871 return builder.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1872 TF_ASSIGN_OR_RETURN(auto n_shape, builder.GetShape(n));
1873 TF_ASSIGN_OR_RETURN(auto x_shape, builder.GetShape(x));
1874 if (n_shape != x_shape) {
1875 return InvalidArgument(
1876 "Arguments to Polygamma must have equal shapes and types; "
1877 "got %s and %s",
1878 n_shape.ToString(), x_shape.ToString());
1879 }
1880 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Zeta", x));
1881 bool needs_upcast =
1882 n_shape.element_type() == F16 || x_shape.element_type() == BF16;
1883
1884 if (needs_upcast) {
1885 n = ConvertElementType(n, F32);
1886 x = ConvertElementType(x, F32);
1887 }
1888 XlaOp result = doit(n, x, n_shape.element_type());
1889 if (needs_upcast) {
1890 result = ConvertElementType(result, n_shape.element_type());
1891 }
1892 return result;
1893 });
1894 }
1895
Zeta(XlaOp x,XlaOp q)1896 XlaOp Zeta(XlaOp x, XlaOp q) {
1897 auto& builder = *x.builder();
1898 auto doit = [&builder](XlaOp x, XlaOp q, PrimitiveType type) -> XlaOp {
1899 // (2k) ! / B_{2k}, where B_{2k} are the Bernoulli numbers.
1900 // These are ordered in reverse.
1901 static const std::array<double, 12> kZetaCoeffs{
1902 -7.1661652561756670113e18,
1903 1.8152105401943546773e17,
1904 -4.5979787224074726105e15,
1905 1.1646782814350067249e14,
1906 -2.950130727918164224e12,
1907 7.47242496e10,
1908 -1.8924375803183791606e9,
1909 47900160.0,
1910 -1209600.0,
1911 30240.0,
1912 -720.0,
1913 12.0,
1914 };
1915
1916 // For speed we'll always use 9 iterations for the initial series estimate,
1917 // and a 12 term expansion for the Euler-Maclaurin formula.
1918
1919 XlaOp a = q;
1920 XlaOp neg_power = ScalarLike(a, 0.);
1921 XlaOp initial_sum = Pow(q, Neg(x));
1922 for (int i = 0; i < 9; ++i) {
1923 a = a + ScalarLike(a, 1.);
1924 neg_power = Pow(a, Neg(x));
1925 initial_sum = initial_sum + neg_power;
1926 }
1927 a = a + ScalarLike(a, 1.);
1928 neg_power = Pow(a, Neg(x));
1929 XlaOp s = initial_sum + neg_power * a / (x - ScalarLike(a, 1.));
1930 XlaOp a_inverse_square = Reciprocal(Square(a));
1931 XlaOp horner_sum = ScalarLike(a, 0.);
1932 XlaOp factor = ScalarLike(a, 1.);
1933 // Use Horner's rule for this.
1934 // Note this differs from Cephes which does a 'naive' polynomial evaluation.
1935 // Using Horner's rule allows to avoid some NaN's and Infs from happening,
1936 // resulting in more numerically stable code.
1937 for (int i = 0; i < 11; ++i) {
1938 factor =
1939 (x - ScalarLike(x, 22 - 2 * i)) * (x - ScalarLike(x, 21 - 2 * i));
1940 horner_sum = factor * a_inverse_square *
1941 (horner_sum + ScalarLike(a, 1. / kZetaCoeffs[i]));
1942 }
1943 s = s + neg_power *
1944 (ScalarLike(neg_power, 0.5) +
1945 x / a * (ScalarLike(a, 1. / kZetaCoeffs[11]) + horner_sum));
1946
1947 const double nan = std::numeric_limits<double>::quiet_NaN();
1948 const double inf = std::numeric_limits<double>::infinity();
1949 // Use the initial zeta sum without the correction term coming
1950 // from Euler-Maclaurin if it is accurate enough.
1951 XlaOp output =
1952 Select(Lt(Abs(neg_power), Abs(initial_sum) * Epsilon(&builder, type)),
1953 initial_sum, s);
1954
1955 // This is the harmonic series.
1956 output = Select(Eq(x, ScalarLike(x, 1.)), ScalarLike(x, inf), output);
1957
1958 // Function is not defined for x < 1.
1959 output = Select(Lt(x, ScalarLike(x, 1.)), ScalarLike(x, nan), output);
1960
1961 // For q <= 0, x must be an integer.
1962 XlaOp x_domain_error = And(Le(q, ScalarLike(x, 0.)), Ne(x, Floor(x)));
1963 output = Select(x_domain_error, ScalarLike(x, nan), output);
1964
1965 // For all integer q <= 0, zeta has a pole. The limit is only defined as
1966 // +inf if x is and even integer.
1967 XlaOp at_pole = And(Le(q, ScalarLike(x, 0.)), Eq(q, Floor(q)));
1968 XlaOp x_is_even_int =
1969 And(Eq(Rem(x, ScalarLike(x, 2.)), ScalarLike(x, 0.)), Eq(x, Floor(x)));
1970 output = Select(
1971 at_pole, Select(x_is_even_int, ScalarLike(x, inf), ScalarLike(x, nan)),
1972 output);
1973
1974 return output;
1975 };
1976 return builder.ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
1977 TF_ASSIGN_OR_RETURN(auto x_shape, builder.GetShape(x));
1978 TF_ASSIGN_OR_RETURN(auto q_shape, builder.GetShape(q));
1979 if (x_shape != q_shape) {
1980 return InvalidArgument(
1981 "Arguments to Zeta must have equal shapes and types; got %s and %s",
1982 x_shape.ToString(), q_shape.ToString());
1983 }
1984 TF_RETURN_IF_ERROR(EnsureOperandIsRealFp("Zeta", x));
1985 bool needs_upcast =
1986 x_shape.element_type() == F16 || x_shape.element_type() == BF16;
1987
1988 if (needs_upcast) {
1989 x = ConvertElementType(x, F32);
1990 q = ConvertElementType(q, F32);
1991 }
1992 XlaOp result = doit(x, q, x_shape.element_type());
1993 if (needs_upcast) {
1994 result = ConvertElementType(result, x_shape.element_type());
1995 }
1996 return result;
1997 });
1998 }
1999
2000 } // namespace xla
2001