1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 // %Y = add i32 %X, 1
15 // %Z = add i32 %Y, 1
16 // into:
17 // %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
30 // shifts.
31 // ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/Analysis/AliasAnalysis.h"
45 #include "llvm/Analysis/AssumptionCache.h"
46 #include "llvm/Analysis/BasicAliasAnalysis.h"
47 #include "llvm/Analysis/BlockFrequencyInfo.h"
48 #include "llvm/Analysis/CFG.h"
49 #include "llvm/Analysis/ConstantFolding.h"
50 #include "llvm/Analysis/EHPersonalities.h"
51 #include "llvm/Analysis/GlobalsModRef.h"
52 #include "llvm/Analysis/InstructionSimplify.h"
53 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
54 #include "llvm/Analysis/LoopInfo.h"
55 #include "llvm/Analysis/MemoryBuiltins.h"
56 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
57 #include "llvm/Analysis/ProfileSummaryInfo.h"
58 #include "llvm/Analysis/TargetFolder.h"
59 #include "llvm/Analysis/TargetLibraryInfo.h"
60 #include "llvm/Analysis/TargetTransformInfo.h"
61 #include "llvm/Analysis/Utils/Local.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/Analysis/VectorUtils.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DIBuilder.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfo.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CommandLine.h"
94 #include "llvm/Support/Compiler.h"
95 #include "llvm/Support/Debug.h"
96 #include "llvm/Support/DebugCounter.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Transforms/InstCombine/InstCombine.h"
101 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <algorithm>
104 #include <cassert>
105 #include <cstdint>
106 #include <memory>
107 #include <optional>
108 #include <string>
109 #include <utility>
110
111 #define DEBUG_TYPE "instcombine"
112 #include "llvm/Transforms/Utils/InstructionWorklist.h"
113 #include <optional>
114
115 using namespace llvm;
116 using namespace llvm::PatternMatch;
117
118 STATISTIC(NumWorklistIterations,
119 "Number of instruction combining iterations performed");
120
121 STATISTIC(NumCombined , "Number of insts combined");
122 STATISTIC(NumConstProp, "Number of constant folds");
123 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
124 STATISTIC(NumSunkInst , "Number of instructions sunk");
125 STATISTIC(NumExpand, "Number of expansions");
126 STATISTIC(NumFactor , "Number of factorizations");
127 STATISTIC(NumReassoc , "Number of reassociations");
128 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
129 "Controls which instructions are visited");
130
131 // FIXME: these limits eventually should be as low as 2.
132 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
133 #ifndef NDEBUG
134 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
135 #else
136 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
137 #endif
138
139 static cl::opt<bool>
140 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
141 cl::init(true));
142
143 static cl::opt<unsigned> MaxSinkNumUsers(
144 "instcombine-max-sink-users", cl::init(32),
145 cl::desc("Maximum number of undroppable users for instruction sinking"));
146
147 static cl::opt<unsigned> LimitMaxIterations(
148 "instcombine-max-iterations",
149 cl::desc("Limit the maximum number of instruction combining iterations"),
150 cl::init(InstCombineDefaultMaxIterations));
151
152 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
153 "instcombine-infinite-loop-threshold",
154 cl::desc("Number of instruction combining iterations considered an "
155 "infinite loop"),
156 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
157
158 static cl::opt<unsigned>
159 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
160 cl::desc("Maximum array size considered when doing a combine"));
161
162 // FIXME: Remove this flag when it is no longer necessary to convert
163 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
164 // increases variable availability at the cost of accuracy. Variables that
165 // cannot be promoted by mem2reg or SROA will be described as living in memory
166 // for their entire lifetime. However, passes like DSE and instcombine can
167 // delete stores to the alloca, leading to misleading and inaccurate debug
168 // information. This flag can be removed when those passes are fixed.
169 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
170 cl::Hidden, cl::init(true));
171
172 std::optional<Instruction *>
targetInstCombineIntrinsic(IntrinsicInst & II)173 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
174 // Handle target specific intrinsics
175 if (II.getCalledFunction()->isTargetIntrinsic()) {
176 return TTI.instCombineIntrinsic(*this, II);
177 }
178 return std::nullopt;
179 }
180
targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed)181 std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
182 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
183 bool &KnownBitsComputed) {
184 // Handle target specific intrinsics
185 if (II.getCalledFunction()->isTargetIntrinsic()) {
186 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
187 KnownBitsComputed);
188 }
189 return std::nullopt;
190 }
191
targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp)192 std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
193 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
194 APInt &UndefElts3,
195 std::function<void(Instruction *, unsigned, APInt, APInt &)>
196 SimplifyAndSetOp) {
197 // Handle target specific intrinsics
198 if (II.getCalledFunction()->isTargetIntrinsic()) {
199 return TTI.simplifyDemandedVectorEltsIntrinsic(
200 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
201 SimplifyAndSetOp);
202 }
203 return std::nullopt;
204 }
205
EmitGEPOffset(User * GEP)206 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
207 return llvm::emitGEPOffset(&Builder, DL, GEP);
208 }
209
210 /// Legal integers and common types are considered desirable. This is used to
211 /// avoid creating instructions with types that may not be supported well by the
212 /// the backend.
213 /// NOTE: This treats i8, i16 and i32 specially because they are common
214 /// types in frontend languages.
isDesirableIntType(unsigned BitWidth) const215 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
216 switch (BitWidth) {
217 case 8:
218 case 16:
219 case 32:
220 return true;
221 default:
222 return DL.isLegalInteger(BitWidth);
223 }
224 }
225
226 /// Return true if it is desirable to convert an integer computation from a
227 /// given bit width to a new bit width.
228 /// We don't want to convert from a legal or desirable type (like i8) to an
229 /// illegal type or from a smaller to a larger illegal type. A width of '1'
230 /// is always treated as a desirable type because i1 is a fundamental type in
231 /// IR, and there are many specialized optimizations for i1 types.
232 /// Common/desirable widths are equally treated as legal to convert to, in
233 /// order to open up more combining opportunities.
shouldChangeType(unsigned FromWidth,unsigned ToWidth) const234 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
235 unsigned ToWidth) const {
236 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
237 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
238
239 // Convert to desirable widths even if they are not legal types.
240 // Only shrink types, to prevent infinite loops.
241 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
242 return true;
243
244 // If this is a legal or desiable integer from type, and the result would be
245 // an illegal type, don't do the transformation.
246 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
247 return false;
248
249 // Otherwise, if both are illegal, do not increase the size of the result. We
250 // do allow things like i160 -> i64, but not i64 -> i160.
251 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
252 return false;
253
254 return true;
255 }
256
257 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
258 /// We don't want to convert from a legal to an illegal type or from a smaller
259 /// to a larger illegal type. i1 is always treated as a legal type because it is
260 /// a fundamental type in IR, and there are many specialized optimizations for
261 /// i1 types.
shouldChangeType(Type * From,Type * To) const262 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
263 // TODO: This could be extended to allow vectors. Datalayout changes might be
264 // needed to properly support that.
265 if (!From->isIntegerTy() || !To->isIntegerTy())
266 return false;
267
268 unsigned FromWidth = From->getPrimitiveSizeInBits();
269 unsigned ToWidth = To->getPrimitiveSizeInBits();
270 return shouldChangeType(FromWidth, ToWidth);
271 }
272
273 // Return true, if No Signed Wrap should be maintained for I.
274 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
275 // where both B and C should be ConstantInts, results in a constant that does
276 // not overflow. This function only handles the Add and Sub opcodes. For
277 // all other opcodes, the function conservatively returns false.
maintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)278 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
279 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
280 if (!OBO || !OBO->hasNoSignedWrap())
281 return false;
282
283 // We reason about Add and Sub Only.
284 Instruction::BinaryOps Opcode = I.getOpcode();
285 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
286 return false;
287
288 const APInt *BVal, *CVal;
289 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
290 return false;
291
292 bool Overflow = false;
293 if (Opcode == Instruction::Add)
294 (void)BVal->sadd_ov(*CVal, Overflow);
295 else
296 (void)BVal->ssub_ov(*CVal, Overflow);
297
298 return !Overflow;
299 }
300
hasNoUnsignedWrap(BinaryOperator & I)301 static bool hasNoUnsignedWrap(BinaryOperator &I) {
302 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
303 return OBO && OBO->hasNoUnsignedWrap();
304 }
305
hasNoSignedWrap(BinaryOperator & I)306 static bool hasNoSignedWrap(BinaryOperator &I) {
307 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
308 return OBO && OBO->hasNoSignedWrap();
309 }
310
311 /// Conservatively clears subclassOptionalData after a reassociation or
312 /// commutation. We preserve fast-math flags when applicable as they can be
313 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)314 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
315 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
316 if (!FPMO) {
317 I.clearSubclassOptionalData();
318 return;
319 }
320
321 FastMathFlags FMF = I.getFastMathFlags();
322 I.clearSubclassOptionalData();
323 I.setFastMathFlags(FMF);
324 }
325
326 /// Combine constant operands of associative operations either before or after a
327 /// cast to eliminate one of the associative operations:
328 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
329 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
simplifyAssocCastAssoc(BinaryOperator * BinOp1,InstCombinerImpl & IC)330 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
331 InstCombinerImpl &IC) {
332 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
333 if (!Cast || !Cast->hasOneUse())
334 return false;
335
336 // TODO: Enhance logic for other casts and remove this check.
337 auto CastOpcode = Cast->getOpcode();
338 if (CastOpcode != Instruction::ZExt)
339 return false;
340
341 // TODO: Enhance logic for other BinOps and remove this check.
342 if (!BinOp1->isBitwiseLogicOp())
343 return false;
344
345 auto AssocOpcode = BinOp1->getOpcode();
346 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
347 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
348 return false;
349
350 Constant *C1, *C2;
351 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
352 !match(BinOp2->getOperand(1), m_Constant(C2)))
353 return false;
354
355 // TODO: This assumes a zext cast.
356 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
357 // to the destination type might lose bits.
358
359 // Fold the constants together in the destination type:
360 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
361 Type *DestTy = C1->getType();
362 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
363 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
364 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
365 IC.replaceOperand(*BinOp1, 1, FoldedC);
366 return true;
367 }
368
369 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
370 // inttoptr ( ptrtoint (x) ) --> x
simplifyIntToPtrRoundTripCast(Value * Val)371 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
372 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
373 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
374 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
375 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
376 Type *CastTy = IntToPtr->getDestTy();
377 if (PtrToInt &&
378 CastTy->getPointerAddressSpace() ==
379 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
380 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
381 DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
382 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
383 "", PtrToInt);
384 }
385 }
386 return nullptr;
387 }
388
389 /// This performs a few simplifications for operators that are associative or
390 /// commutative:
391 ///
392 /// Commutative operators:
393 ///
394 /// 1. Order operands such that they are listed from right (least complex) to
395 /// left (most complex). This puts constants before unary operators before
396 /// binary operators.
397 ///
398 /// Associative operators:
399 ///
400 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
401 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
402 ///
403 /// Associative and commutative operators:
404 ///
405 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
406 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
407 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
408 /// if C1 and C2 are constants.
SimplifyAssociativeOrCommutative(BinaryOperator & I)409 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
410 Instruction::BinaryOps Opcode = I.getOpcode();
411 bool Changed = false;
412
413 do {
414 // Order operands such that they are listed from right (least complex) to
415 // left (most complex). This puts constants before unary operators before
416 // binary operators.
417 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
418 getComplexity(I.getOperand(1)))
419 Changed = !I.swapOperands();
420
421 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
422 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
423
424 if (I.isAssociative()) {
425 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
426 if (Op0 && Op0->getOpcode() == Opcode) {
427 Value *A = Op0->getOperand(0);
428 Value *B = Op0->getOperand(1);
429 Value *C = I.getOperand(1);
430
431 // Does "B op C" simplify?
432 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
433 // It simplifies to V. Form "A op V".
434 replaceOperand(I, 0, A);
435 replaceOperand(I, 1, V);
436 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
437 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
438
439 // Conservatively clear all optional flags since they may not be
440 // preserved by the reassociation. Reset nsw/nuw based on the above
441 // analysis.
442 ClearSubclassDataAfterReassociation(I);
443
444 // Note: this is only valid because SimplifyBinOp doesn't look at
445 // the operands to Op0.
446 if (IsNUW)
447 I.setHasNoUnsignedWrap(true);
448
449 if (IsNSW)
450 I.setHasNoSignedWrap(true);
451
452 Changed = true;
453 ++NumReassoc;
454 continue;
455 }
456 }
457
458 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
459 if (Op1 && Op1->getOpcode() == Opcode) {
460 Value *A = I.getOperand(0);
461 Value *B = Op1->getOperand(0);
462 Value *C = Op1->getOperand(1);
463
464 // Does "A op B" simplify?
465 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
466 // It simplifies to V. Form "V op C".
467 replaceOperand(I, 0, V);
468 replaceOperand(I, 1, C);
469 // Conservatively clear the optional flags, since they may not be
470 // preserved by the reassociation.
471 ClearSubclassDataAfterReassociation(I);
472 Changed = true;
473 ++NumReassoc;
474 continue;
475 }
476 }
477 }
478
479 if (I.isAssociative() && I.isCommutative()) {
480 if (simplifyAssocCastAssoc(&I, *this)) {
481 Changed = true;
482 ++NumReassoc;
483 continue;
484 }
485
486 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
487 if (Op0 && Op0->getOpcode() == Opcode) {
488 Value *A = Op0->getOperand(0);
489 Value *B = Op0->getOperand(1);
490 Value *C = I.getOperand(1);
491
492 // Does "C op A" simplify?
493 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
494 // It simplifies to V. Form "V op B".
495 replaceOperand(I, 0, V);
496 replaceOperand(I, 1, B);
497 // Conservatively clear the optional flags, since they may not be
498 // preserved by the reassociation.
499 ClearSubclassDataAfterReassociation(I);
500 Changed = true;
501 ++NumReassoc;
502 continue;
503 }
504 }
505
506 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
507 if (Op1 && Op1->getOpcode() == Opcode) {
508 Value *A = I.getOperand(0);
509 Value *B = Op1->getOperand(0);
510 Value *C = Op1->getOperand(1);
511
512 // Does "C op A" simplify?
513 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
514 // It simplifies to V. Form "B op V".
515 replaceOperand(I, 0, B);
516 replaceOperand(I, 1, V);
517 // Conservatively clear the optional flags, since they may not be
518 // preserved by the reassociation.
519 ClearSubclassDataAfterReassociation(I);
520 Changed = true;
521 ++NumReassoc;
522 continue;
523 }
524 }
525
526 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
527 // if C1 and C2 are constants.
528 Value *A, *B;
529 Constant *C1, *C2, *CRes;
530 if (Op0 && Op1 &&
531 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
532 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
533 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
534 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
535 bool IsNUW = hasNoUnsignedWrap(I) &&
536 hasNoUnsignedWrap(*Op0) &&
537 hasNoUnsignedWrap(*Op1);
538 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
539 BinaryOperator::CreateNUW(Opcode, A, B) :
540 BinaryOperator::Create(Opcode, A, B);
541
542 if (isa<FPMathOperator>(NewBO)) {
543 FastMathFlags Flags = I.getFastMathFlags();
544 Flags &= Op0->getFastMathFlags();
545 Flags &= Op1->getFastMathFlags();
546 NewBO->setFastMathFlags(Flags);
547 }
548 InsertNewInstWith(NewBO, I);
549 NewBO->takeName(Op1);
550 replaceOperand(I, 0, NewBO);
551 replaceOperand(I, 1, CRes);
552 // Conservatively clear the optional flags, since they may not be
553 // preserved by the reassociation.
554 ClearSubclassDataAfterReassociation(I);
555 if (IsNUW)
556 I.setHasNoUnsignedWrap(true);
557
558 Changed = true;
559 continue;
560 }
561 }
562
563 // No further simplifications.
564 return Changed;
565 } while (true);
566 }
567
568 /// Return whether "X LOp (Y ROp Z)" is always equal to
569 /// "(X LOp Y) ROp (X LOp Z)".
leftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)570 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
571 Instruction::BinaryOps ROp) {
572 // X & (Y | Z) <--> (X & Y) | (X & Z)
573 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
574 if (LOp == Instruction::And)
575 return ROp == Instruction::Or || ROp == Instruction::Xor;
576
577 // X | (Y & Z) <--> (X | Y) & (X | Z)
578 if (LOp == Instruction::Or)
579 return ROp == Instruction::And;
580
581 // X * (Y + Z) <--> (X * Y) + (X * Z)
582 // X * (Y - Z) <--> (X * Y) - (X * Z)
583 if (LOp == Instruction::Mul)
584 return ROp == Instruction::Add || ROp == Instruction::Sub;
585
586 return false;
587 }
588
589 /// Return whether "(X LOp Y) ROp Z" is always equal to
590 /// "(X ROp Z) LOp (Y ROp Z)".
rightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)591 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
592 Instruction::BinaryOps ROp) {
593 if (Instruction::isCommutative(ROp))
594 return leftDistributesOverRight(ROp, LOp);
595
596 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
597 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
598
599 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
600 // but this requires knowing that the addition does not overflow and other
601 // such subtleties.
602 }
603
604 /// This function returns identity value for given opcode, which can be used to
605 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps Opcode,Value * V)606 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
607 if (isa<Constant>(V))
608 return nullptr;
609
610 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
611 }
612
613 /// This function predicates factorization using distributive laws. By default,
614 /// it just returns the 'Op' inputs. But for special-cases like
615 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
616 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
617 /// allow more factorization opportunities.
618 static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode,BinaryOperator * Op,Value * & LHS,Value * & RHS)619 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
620 Value *&LHS, Value *&RHS) {
621 assert(Op && "Expected a binary operator");
622 LHS = Op->getOperand(0);
623 RHS = Op->getOperand(1);
624 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
625 Constant *C;
626 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
627 // X << C --> X * (1 << C)
628 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
629 return Instruction::Mul;
630 }
631 // TODO: We can add other conversions e.g. shr => div etc.
632 }
633 return Op->getOpcode();
634 }
635
636 /// This tries to simplify binary operations by factorizing out common terms
637 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(BinaryOperator & I,const SimplifyQuery & SQ,InstCombiner::BuilderTy & Builder,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)638 static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ,
639 InstCombiner::BuilderTy &Builder,
640 Instruction::BinaryOps InnerOpcode, Value *A,
641 Value *B, Value *C, Value *D) {
642 assert(A && B && C && D && "All values must be provided");
643
644 Value *V = nullptr;
645 Value *RetVal = nullptr;
646 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
647 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
648
649 // Does "X op' Y" always equal "Y op' X"?
650 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
651
652 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
653 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
654 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
655 // commutative case, "(A op' B) op (C op' A)"?
656 if (A == C || (InnerCommutative && A == D)) {
657 if (A != C)
658 std::swap(C, D);
659 // Consider forming "A op' (B op D)".
660 // If "B op D" simplifies then it can be formed with no cost.
661 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
662
663 // If "B op D" doesn't simplify then only go on if one of the existing
664 // operations "A op' B" and "C op' D" will be zapped as no longer used.
665 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
666 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
667 if (V)
668 RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
669 }
670 }
671
672 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
673 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
674 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
675 // commutative case, "(A op' B) op (B op' D)"?
676 if (B == D || (InnerCommutative && B == C)) {
677 if (B != D)
678 std::swap(C, D);
679 // Consider forming "(A op C) op' B".
680 // If "A op C" simplifies then it can be formed with no cost.
681 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
682
683 // If "A op C" doesn't simplify then only go on if one of the existing
684 // operations "A op' B" and "C op' D" will be zapped as no longer used.
685 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
686 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
687 if (V)
688 RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
689 }
690 }
691
692 if (!RetVal)
693 return nullptr;
694
695 ++NumFactor;
696 RetVal->takeName(&I);
697
698 // Try to add no-overflow flags to the final value.
699 if (isa<OverflowingBinaryOperator>(RetVal)) {
700 bool HasNSW = false;
701 bool HasNUW = false;
702 if (isa<OverflowingBinaryOperator>(&I)) {
703 HasNSW = I.hasNoSignedWrap();
704 HasNUW = I.hasNoUnsignedWrap();
705 }
706 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
707 HasNSW &= LOBO->hasNoSignedWrap();
708 HasNUW &= LOBO->hasNoUnsignedWrap();
709 }
710
711 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
712 HasNSW &= ROBO->hasNoSignedWrap();
713 HasNUW &= ROBO->hasNoUnsignedWrap();
714 }
715
716 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
717 // We can propagate 'nsw' if we know that
718 // %Y = mul nsw i16 %X, C
719 // %Z = add nsw i16 %Y, %X
720 // =>
721 // %Z = mul nsw i16 %X, C+1
722 //
723 // iff C+1 isn't INT_MIN
724 const APInt *CInt;
725 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
726 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
727
728 // nuw can be propagated with any constant or nuw value.
729 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
730 }
731 }
732 return RetVal;
733 }
734
tryFactorizationFolds(BinaryOperator & I)735 Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) {
736 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
737 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
738 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
739 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
740 Value *A, *B, *C, *D;
741 Instruction::BinaryOps LHSOpcode, RHSOpcode;
742
743 if (Op0)
744 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
745 if (Op1)
746 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
747
748 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
749 // a common term.
750 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
751 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
752 return V;
753
754 // The instruction has the form "(A op' B) op (C)". Try to factorize common
755 // term.
756 if (Op0)
757 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
758 if (Value *V =
759 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
760 return V;
761
762 // The instruction has the form "(B) op (C op' D)". Try to factorize common
763 // term.
764 if (Op1)
765 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
766 if (Value *V =
767 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
768 return V;
769
770 return nullptr;
771 }
772
773 /// This tries to simplify binary operations which some other binary operation
774 /// distributes over either by factorizing out common terms
775 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
776 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
777 /// Returns the simplified value, or null if it didn't simplify.
foldUsingDistributiveLaws(BinaryOperator & I)778 Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) {
779 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
780 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
781 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
782 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
783
784 // Factorization.
785 if (Value *R = tryFactorizationFolds(I))
786 return R;
787
788 // Expansion.
789 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
790 // The instruction has the form "(A op' B) op C". See if expanding it out
791 // to "(A op C) op' (B op C)" results in simplifications.
792 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
793 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
794
795 // Disable the use of undef because it's not safe to distribute undef.
796 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
797 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
798 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
799
800 // Do "A op C" and "B op C" both simplify?
801 if (L && R) {
802 // They do! Return "L op' R".
803 ++NumExpand;
804 C = Builder.CreateBinOp(InnerOpcode, L, R);
805 C->takeName(&I);
806 return C;
807 }
808
809 // Does "A op C" simplify to the identity value for the inner opcode?
810 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
811 // They do! Return "B op C".
812 ++NumExpand;
813 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
814 C->takeName(&I);
815 return C;
816 }
817
818 // Does "B op C" simplify to the identity value for the inner opcode?
819 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
820 // They do! Return "A op C".
821 ++NumExpand;
822 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
823 C->takeName(&I);
824 return C;
825 }
826 }
827
828 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
829 // The instruction has the form "A op (B op' C)". See if expanding it out
830 // to "(A op B) op' (A op C)" results in simplifications.
831 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
832 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
833
834 // Disable the use of undef because it's not safe to distribute undef.
835 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
836 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
837 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
838
839 // Do "A op B" and "A op C" both simplify?
840 if (L && R) {
841 // They do! Return "L op' R".
842 ++NumExpand;
843 A = Builder.CreateBinOp(InnerOpcode, L, R);
844 A->takeName(&I);
845 return A;
846 }
847
848 // Does "A op B" simplify to the identity value for the inner opcode?
849 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
850 // They do! Return "A op C".
851 ++NumExpand;
852 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
853 A->takeName(&I);
854 return A;
855 }
856
857 // Does "A op C" simplify to the identity value for the inner opcode?
858 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
859 // They do! Return "A op B".
860 ++NumExpand;
861 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
862 A->takeName(&I);
863 return A;
864 }
865 }
866
867 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
868 }
869
SimplifySelectsFeedingBinaryOp(BinaryOperator & I,Value * LHS,Value * RHS)870 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
871 Value *LHS,
872 Value *RHS) {
873 Value *A, *B, *C, *D, *E, *F;
874 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
875 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
876 if (!LHSIsSelect && !RHSIsSelect)
877 return nullptr;
878
879 FastMathFlags FMF;
880 BuilderTy::FastMathFlagGuard Guard(Builder);
881 if (isa<FPMathOperator>(&I)) {
882 FMF = I.getFastMathFlags();
883 Builder.setFastMathFlags(FMF);
884 }
885
886 Instruction::BinaryOps Opcode = I.getOpcode();
887 SimplifyQuery Q = SQ.getWithInstruction(&I);
888
889 Value *Cond, *True = nullptr, *False = nullptr;
890
891 // Special-case for add/negate combination. Replace the zero in the negation
892 // with the trailing add operand:
893 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
894 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
895 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
896 // We need an 'add' and exactly 1 arm of the select to have been simplified.
897 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
898 return nullptr;
899
900 Value *N;
901 if (True && match(FVal, m_Neg(m_Value(N)))) {
902 Value *Sub = Builder.CreateSub(Z, N);
903 return Builder.CreateSelect(Cond, True, Sub, I.getName());
904 }
905 if (False && match(TVal, m_Neg(m_Value(N)))) {
906 Value *Sub = Builder.CreateSub(Z, N);
907 return Builder.CreateSelect(Cond, Sub, False, I.getName());
908 }
909 return nullptr;
910 };
911
912 if (LHSIsSelect && RHSIsSelect && A == D) {
913 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
914 Cond = A;
915 True = simplifyBinOp(Opcode, B, E, FMF, Q);
916 False = simplifyBinOp(Opcode, C, F, FMF, Q);
917
918 if (LHS->hasOneUse() && RHS->hasOneUse()) {
919 if (False && !True)
920 True = Builder.CreateBinOp(Opcode, B, E);
921 else if (True && !False)
922 False = Builder.CreateBinOp(Opcode, C, F);
923 }
924 } else if (LHSIsSelect && LHS->hasOneUse()) {
925 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
926 Cond = A;
927 True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
928 False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
929 if (Value *NewSel = foldAddNegate(B, C, RHS))
930 return NewSel;
931 } else if (RHSIsSelect && RHS->hasOneUse()) {
932 // X op (D ? E : F) -> D ? (X op E) : (X op F)
933 Cond = D;
934 True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
935 False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
936 if (Value *NewSel = foldAddNegate(E, F, LHS))
937 return NewSel;
938 }
939
940 if (!True || !False)
941 return nullptr;
942
943 Value *SI = Builder.CreateSelect(Cond, True, False);
944 SI->takeName(&I);
945 return SI;
946 }
947
948 /// Freely adapt every user of V as-if V was changed to !V.
949 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
freelyInvertAllUsersOf(Value * I,Value * IgnoredUser)950 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) {
951 for (User *U : make_early_inc_range(I->users())) {
952 if (U == IgnoredUser)
953 continue; // Don't consider this user.
954 switch (cast<Instruction>(U)->getOpcode()) {
955 case Instruction::Select: {
956 auto *SI = cast<SelectInst>(U);
957 SI->swapValues();
958 SI->swapProfMetadata();
959 break;
960 }
961 case Instruction::Br:
962 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
963 break;
964 case Instruction::Xor:
965 replaceInstUsesWith(cast<Instruction>(*U), I);
966 break;
967 default:
968 llvm_unreachable("Got unexpected user - out of sync with "
969 "canFreelyInvertAllUsersOf() ?");
970 }
971 }
972 }
973
974 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
975 /// constant zero (which is the 'negate' form).
dyn_castNegVal(Value * V) const976 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
977 Value *NegV;
978 if (match(V, m_Neg(m_Value(NegV))))
979 return NegV;
980
981 // Constants can be considered to be negated values if they can be folded.
982 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
983 return ConstantExpr::getNeg(C);
984
985 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
986 if (C->getType()->getElementType()->isIntegerTy())
987 return ConstantExpr::getNeg(C);
988
989 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
990 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
991 Constant *Elt = CV->getAggregateElement(i);
992 if (!Elt)
993 return nullptr;
994
995 if (isa<UndefValue>(Elt))
996 continue;
997
998 if (!isa<ConstantInt>(Elt))
999 return nullptr;
1000 }
1001 return ConstantExpr::getNeg(CV);
1002 }
1003
1004 // Negate integer vector splats.
1005 if (auto *CV = dyn_cast<Constant>(V))
1006 if (CV->getType()->isVectorTy() &&
1007 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1008 return ConstantExpr::getNeg(CV);
1009
1010 return nullptr;
1011 }
1012
1013 /// A binop with a constant operand and a sign-extended boolean operand may be
1014 /// converted into a select of constants by applying the binary operation to
1015 /// the constant with the two possible values of the extended boolean (0 or -1).
foldBinopOfSextBoolToSelect(BinaryOperator & BO)1016 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1017 // TODO: Handle non-commutative binop (constant is operand 0).
1018 // TODO: Handle zext.
1019 // TODO: Peek through 'not' of cast.
1020 Value *BO0 = BO.getOperand(0);
1021 Value *BO1 = BO.getOperand(1);
1022 Value *X;
1023 Constant *C;
1024 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1025 !X->getType()->isIntOrIntVectorTy(1))
1026 return nullptr;
1027
1028 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1029 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
1030 Constant *Zero = ConstantInt::getNullValue(BO.getType());
1031 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1032 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1033 return SelectInst::Create(X, TVal, FVal);
1034 }
1035
constantFoldOperationIntoSelectOperand(Instruction & I,SelectInst * SI,Value * SO)1036 static Constant *constantFoldOperationIntoSelectOperand(
1037 Instruction &I, SelectInst *SI, Value *SO) {
1038 auto *ConstSO = dyn_cast<Constant>(SO);
1039 if (!ConstSO)
1040 return nullptr;
1041
1042 SmallVector<Constant *> ConstOps;
1043 for (Value *Op : I.operands()) {
1044 if (Op == SI)
1045 ConstOps.push_back(ConstSO);
1046 else if (auto *C = dyn_cast<Constant>(Op))
1047 ConstOps.push_back(C);
1048 else
1049 llvm_unreachable("Operands should be select or constant");
1050 }
1051 return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout());
1052 }
1053
foldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner::BuilderTy & Builder)1054 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
1055 InstCombiner::BuilderTy &Builder) {
1056 if (auto *Cast = dyn_cast<CastInst>(&I))
1057 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
1058
1059 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1060 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
1061 "Expected constant-foldable intrinsic");
1062 Intrinsic::ID IID = II->getIntrinsicID();
1063 if (II->arg_size() == 1)
1064 return Builder.CreateUnaryIntrinsic(IID, SO);
1065
1066 // This works for real binary ops like min/max (where we always expect the
1067 // constant operand to be canonicalized as op1) and unary ops with a bonus
1068 // constant argument like ctlz/cttz.
1069 // TODO: Handle non-commutative binary intrinsics as below for binops.
1070 assert(II->arg_size() == 2 && "Expected binary intrinsic");
1071 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
1072 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
1073 }
1074
1075 if (auto *EI = dyn_cast<ExtractElementInst>(&I))
1076 return Builder.CreateExtractElement(SO, EI->getIndexOperand());
1077
1078 assert(I.isBinaryOp() && "Unexpected opcode for select folding");
1079
1080 // Figure out if the constant is the left or the right argument.
1081 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1082 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1083
1084 Value *Op0 = SO, *Op1 = ConstOperand;
1085 if (!ConstIsRHS)
1086 std::swap(Op0, Op1);
1087
1088 Value *NewBO = Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), Op0,
1089 Op1, SO->getName() + ".op");
1090 if (auto *NewBOI = dyn_cast<Instruction>(NewBO))
1091 NewBOI->copyIRFlags(&I);
1092 return NewBO;
1093 }
1094
FoldOpIntoSelect(Instruction & Op,SelectInst * SI,bool FoldWithMultiUse)1095 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1096 bool FoldWithMultiUse) {
1097 // Don't modify shared select instructions unless set FoldWithMultiUse
1098 if (!SI->hasOneUse() && !FoldWithMultiUse)
1099 return nullptr;
1100
1101 Value *TV = SI->getTrueValue();
1102 Value *FV = SI->getFalseValue();
1103 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1104 return nullptr;
1105
1106 // Bool selects with constant operands can be folded to logical ops.
1107 if (SI->getType()->isIntOrIntVectorTy(1))
1108 return nullptr;
1109
1110 // If it's a bitcast involving vectors, make sure it has the same number of
1111 // elements on both sides.
1112 if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1113 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1114 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1115
1116 // Verify that either both or neither are vectors.
1117 if ((SrcTy == nullptr) != (DestTy == nullptr))
1118 return nullptr;
1119
1120 // If vectors, verify that they have the same number of elements.
1121 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1122 return nullptr;
1123 }
1124
1125 // Test if a CmpInst instruction is used exclusively by a select as
1126 // part of a minimum or maximum operation. If so, refrain from doing
1127 // any other folding. This helps out other analyses which understand
1128 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1129 // and CodeGen. And in this case, at least one of the comparison
1130 // operands has at least one user besides the compare (the select),
1131 // which would often largely negate the benefit of folding anyway.
1132 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1133 if (CI->hasOneUse()) {
1134 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1135
1136 // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1137 // We have to ensure that vector constants that only differ with
1138 // undef elements are treated as equivalent.
1139 auto areLooselyEqual = [](Value *A, Value *B) {
1140 if (A == B)
1141 return true;
1142
1143 // Test for vector constants.
1144 Constant *ConstA, *ConstB;
1145 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1146 return false;
1147
1148 // TODO: Deal with FP constants?
1149 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1150 return false;
1151
1152 // Compare for equality including undefs as equal.
1153 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1154 const APInt *C;
1155 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne();
1156 };
1157
1158 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1159 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1160 return nullptr;
1161 }
1162 }
1163
1164 // Make sure that one of the select arms constant folds successfully.
1165 Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, TV);
1166 Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, FV);
1167 if (!NewTV && !NewFV)
1168 return nullptr;
1169
1170 // Create an instruction for the arm that did not fold.
1171 if (!NewTV)
1172 NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1173 if (!NewFV)
1174 NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1175 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1176 }
1177
foldOpIntoPhi(Instruction & I,PHINode * PN)1178 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1179 unsigned NumPHIValues = PN->getNumIncomingValues();
1180 if (NumPHIValues == 0)
1181 return nullptr;
1182
1183 // We normally only transform phis with a single use. However, if a PHI has
1184 // multiple uses and they are all the same operation, we can fold *all* of the
1185 // uses into the PHI.
1186 if (!PN->hasOneUse()) {
1187 // Walk the use list for the instruction, comparing them to I.
1188 for (User *U : PN->users()) {
1189 Instruction *UI = cast<Instruction>(U);
1190 if (UI != &I && !I.isIdenticalTo(UI))
1191 return nullptr;
1192 }
1193 // Otherwise, we can replace *all* users with the new PHI we form.
1194 }
1195
1196 // Check to see whether the instruction can be folded into each phi operand.
1197 // If there is one operand that does not fold, remember the BB it is in.
1198 // If there is more than one or if *it* is a PHI, bail out.
1199 SmallVector<Value *> NewPhiValues;
1200 BasicBlock *NonSimplifiedBB = nullptr;
1201 Value *NonSimplifiedInVal = nullptr;
1202 for (unsigned i = 0; i != NumPHIValues; ++i) {
1203 Value *InVal = PN->getIncomingValue(i);
1204 BasicBlock *InBB = PN->getIncomingBlock(i);
1205
1206 // NB: It is a precondition of this transform that the operands be
1207 // phi translatable! This is usually trivially satisfied by limiting it
1208 // to constant ops, and for selects we do a more sophisticated check.
1209 SmallVector<Value *> Ops;
1210 for (Value *Op : I.operands()) {
1211 if (Op == PN)
1212 Ops.push_back(InVal);
1213 else
1214 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1215 }
1216
1217 // Don't consider the simplification successful if we get back a constant
1218 // expression. That's just an instruction in hiding.
1219 // Also reject the case where we simplify back to the phi node. We wouldn't
1220 // be able to remove it in that case.
1221 Value *NewVal = simplifyInstructionWithOperands(
1222 &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1223 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr())) {
1224 NewPhiValues.push_back(NewVal);
1225 continue;
1226 }
1227
1228 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
1229 if (NonSimplifiedBB) return nullptr; // More than one non-simplified value.
1230
1231 NonSimplifiedBB = InBB;
1232 NonSimplifiedInVal = InVal;
1233 NewPhiValues.push_back(nullptr);
1234
1235 // If the InVal is an invoke at the end of the pred block, then we can't
1236 // insert a computation after it without breaking the edge.
1237 if (isa<InvokeInst>(InVal))
1238 if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB)
1239 return nullptr;
1240
1241 // If the incoming non-constant value is reachable from the phis block,
1242 // we'll push the operation across a loop backedge. This could result in
1243 // an infinite combine loop, and is generally non-profitable (especially
1244 // if the operation was originally outside the loop).
1245 if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT,
1246 LI))
1247 return nullptr;
1248 }
1249
1250 // If there is exactly one non-simplified value, we can insert a copy of the
1251 // operation in that block. However, if this is a critical edge, we would be
1252 // inserting the computation on some other paths (e.g. inside a loop). Only
1253 // do this if the pred block is unconditionally branching into the phi block.
1254 // Also, make sure that the pred block is not dead code.
1255 if (NonSimplifiedBB != nullptr) {
1256 BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator());
1257 if (!BI || !BI->isUnconditional() ||
1258 !DT.isReachableFromEntry(NonSimplifiedBB))
1259 return nullptr;
1260 }
1261
1262 // Okay, we can do the transformation: create the new PHI node.
1263 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1264 InsertNewInstBefore(NewPN, *PN);
1265 NewPN->takeName(PN);
1266
1267 // If we are going to have to insert a new computation, do so right before the
1268 // predecessor's terminator.
1269 Instruction *Clone = nullptr;
1270 if (NonSimplifiedBB) {
1271 Clone = I.clone();
1272 for (Use &U : Clone->operands()) {
1273 if (U == PN)
1274 U = NonSimplifiedInVal;
1275 else
1276 U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB);
1277 }
1278 InsertNewInstBefore(Clone, *NonSimplifiedBB->getTerminator());
1279 }
1280
1281 for (unsigned i = 0; i != NumPHIValues; ++i) {
1282 if (NewPhiValues[i])
1283 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
1284 else
1285 NewPN->addIncoming(Clone, PN->getIncomingBlock(i));
1286 }
1287
1288 for (User *U : make_early_inc_range(PN->users())) {
1289 Instruction *User = cast<Instruction>(U);
1290 if (User == &I) continue;
1291 replaceInstUsesWith(*User, NewPN);
1292 eraseInstFromFunction(*User);
1293 }
1294 return replaceInstUsesWith(I, NewPN);
1295 }
1296
foldBinopWithPhiOperands(BinaryOperator & BO)1297 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
1298 // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1299 // we are guarding against replicating the binop in >1 predecessor.
1300 // This could miss matching a phi with 2 constant incoming values.
1301 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1302 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1303 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1304 Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1305 return nullptr;
1306
1307 // TODO: Remove the restriction for binop being in the same block as the phis.
1308 if (BO.getParent() != Phi0->getParent() ||
1309 BO.getParent() != Phi1->getParent())
1310 return nullptr;
1311
1312 // Match a pair of incoming constants for one of the predecessor blocks.
1313 BasicBlock *ConstBB, *OtherBB;
1314 Constant *C0, *C1;
1315 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1316 ConstBB = Phi0->getIncomingBlock(0);
1317 OtherBB = Phi0->getIncomingBlock(1);
1318 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1319 ConstBB = Phi0->getIncomingBlock(1);
1320 OtherBB = Phi0->getIncomingBlock(0);
1321 } else {
1322 return nullptr;
1323 }
1324 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1325 return nullptr;
1326
1327 // The block that we are hoisting to must reach here unconditionally.
1328 // Otherwise, we could be speculatively executing an expensive or
1329 // non-speculative op.
1330 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1331 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1332 !DT.isReachableFromEntry(OtherBB))
1333 return nullptr;
1334
1335 // TODO: This check could be tightened to only apply to binops (div/rem) that
1336 // are not safe to speculatively execute. But that could allow hoisting
1337 // potentially expensive instructions (fdiv for example).
1338 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1339 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
1340 return nullptr;
1341
1342 // Fold constants for the predecessor block with constant incoming values.
1343 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
1344 if (!NewC)
1345 return nullptr;
1346
1347 // Make a new binop in the predecessor block with the non-constant incoming
1348 // values.
1349 Builder.SetInsertPoint(PredBlockBranch);
1350 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1351 Phi0->getIncomingValueForBlock(OtherBB),
1352 Phi1->getIncomingValueForBlock(OtherBB));
1353 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1354 NotFoldedNewBO->copyIRFlags(&BO);
1355
1356 // Replace the binop with a phi of the new values. The old phis are dead.
1357 PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1358 NewPhi->addIncoming(NewBO, OtherBB);
1359 NewPhi->addIncoming(NewC, ConstBB);
1360 return NewPhi;
1361 }
1362
foldBinOpIntoSelectOrPhi(BinaryOperator & I)1363 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1364 if (!isa<Constant>(I.getOperand(1)))
1365 return nullptr;
1366
1367 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1368 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1369 return NewSel;
1370 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1371 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1372 return NewPhi;
1373 }
1374 return nullptr;
1375 }
1376
1377 /// Given a pointer type and a constant offset, determine whether or not there
1378 /// is a sequence of GEP indices into the pointed type that will land us at the
1379 /// specified offset. If so, fill them into NewIndices and return the resultant
1380 /// element type, otherwise return null.
findElementAtOffset(PointerType * PtrTy,int64_t IntOffset,SmallVectorImpl<Value * > & NewIndices,const DataLayout & DL)1381 static Type *findElementAtOffset(PointerType *PtrTy, int64_t IntOffset,
1382 SmallVectorImpl<Value *> &NewIndices,
1383 const DataLayout &DL) {
1384 // Only used by visitGEPOfBitcast(), which is skipped for opaque pointers.
1385 Type *Ty = PtrTy->getNonOpaquePointerElementType();
1386 if (!Ty->isSized())
1387 return nullptr;
1388
1389 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset);
1390 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset);
1391 if (!Offset.isZero())
1392 return nullptr;
1393
1394 for (const APInt &Index : Indices)
1395 NewIndices.push_back(ConstantInt::get(PtrTy->getContext(), Index));
1396 return Ty;
1397 }
1398
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)1399 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1400 // If this GEP has only 0 indices, it is the same pointer as
1401 // Src. If Src is not a trivial GEP too, don't combine
1402 // the indices.
1403 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1404 !Src.hasOneUse())
1405 return false;
1406 return true;
1407 }
1408
1409 /// Return a value X such that Val = X * Scale, or null if none.
1410 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)1411 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1412 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1413 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1414 Scale.getBitWidth() && "Scale not compatible with value!");
1415
1416 // If Val is zero or Scale is one then Val = Val * Scale.
1417 if (match(Val, m_Zero()) || Scale == 1) {
1418 NoSignedWrap = true;
1419 return Val;
1420 }
1421
1422 // If Scale is zero then it does not divide Val.
1423 if (Scale.isMinValue())
1424 return nullptr;
1425
1426 // Look through chains of multiplications, searching for a constant that is
1427 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1428 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1429 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1430 // down from Val:
1431 //
1432 // Val = M1 * X || Analysis starts here and works down
1433 // M1 = M2 * Y || Doesn't descend into terms with more
1434 // M2 = Z * 4 \/ than one use
1435 //
1436 // Then to modify a term at the bottom:
1437 //
1438 // Val = M1 * X
1439 // M1 = Z * Y || Replaced M2 with Z
1440 //
1441 // Then to work back up correcting nsw flags.
1442
1443 // Op - the term we are currently analyzing. Starts at Val then drills down.
1444 // Replaced with its descaled value before exiting from the drill down loop.
1445 Value *Op = Val;
1446
1447 // Parent - initially null, but after drilling down notes where Op came from.
1448 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1449 // 0'th operand of Val.
1450 std::pair<Instruction *, unsigned> Parent;
1451
1452 // Set if the transform requires a descaling at deeper levels that doesn't
1453 // overflow.
1454 bool RequireNoSignedWrap = false;
1455
1456 // Log base 2 of the scale. Negative if not a power of 2.
1457 int32_t logScale = Scale.exactLogBase2();
1458
1459 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1460 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1461 // If Op is a constant divisible by Scale then descale to the quotient.
1462 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1463 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1464 if (!Remainder.isMinValue())
1465 // Not divisible by Scale.
1466 return nullptr;
1467 // Replace with the quotient in the parent.
1468 Op = ConstantInt::get(CI->getType(), Quotient);
1469 NoSignedWrap = true;
1470 break;
1471 }
1472
1473 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1474 if (BO->getOpcode() == Instruction::Mul) {
1475 // Multiplication.
1476 NoSignedWrap = BO->hasNoSignedWrap();
1477 if (RequireNoSignedWrap && !NoSignedWrap)
1478 return nullptr;
1479
1480 // There are three cases for multiplication: multiplication by exactly
1481 // the scale, multiplication by a constant different to the scale, and
1482 // multiplication by something else.
1483 Value *LHS = BO->getOperand(0);
1484 Value *RHS = BO->getOperand(1);
1485
1486 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1487 // Multiplication by a constant.
1488 if (CI->getValue() == Scale) {
1489 // Multiplication by exactly the scale, replace the multiplication
1490 // by its left-hand side in the parent.
1491 Op = LHS;
1492 break;
1493 }
1494
1495 // Otherwise drill down into the constant.
1496 if (!Op->hasOneUse())
1497 return nullptr;
1498
1499 Parent = std::make_pair(BO, 1);
1500 continue;
1501 }
1502
1503 // Multiplication by something else. Drill down into the left-hand side
1504 // since that's where the reassociate pass puts the good stuff.
1505 if (!Op->hasOneUse())
1506 return nullptr;
1507
1508 Parent = std::make_pair(BO, 0);
1509 continue;
1510 }
1511
1512 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1513 isa<ConstantInt>(BO->getOperand(1))) {
1514 // Multiplication by a power of 2.
1515 NoSignedWrap = BO->hasNoSignedWrap();
1516 if (RequireNoSignedWrap && !NoSignedWrap)
1517 return nullptr;
1518
1519 Value *LHS = BO->getOperand(0);
1520 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1521 getLimitedValue(Scale.getBitWidth());
1522 // Op = LHS << Amt.
1523
1524 if (Amt == logScale) {
1525 // Multiplication by exactly the scale, replace the multiplication
1526 // by its left-hand side in the parent.
1527 Op = LHS;
1528 break;
1529 }
1530 if (Amt < logScale || !Op->hasOneUse())
1531 return nullptr;
1532
1533 // Multiplication by more than the scale. Reduce the multiplying amount
1534 // by the scale in the parent.
1535 Parent = std::make_pair(BO, 1);
1536 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1537 break;
1538 }
1539 }
1540
1541 if (!Op->hasOneUse())
1542 return nullptr;
1543
1544 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1545 if (Cast->getOpcode() == Instruction::SExt) {
1546 // Op is sign-extended from a smaller type, descale in the smaller type.
1547 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1548 APInt SmallScale = Scale.trunc(SmallSize);
1549 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1550 // descale Op as (sext Y) * Scale. In order to have
1551 // sext (Y * SmallScale) = (sext Y) * Scale
1552 // some conditions need to hold however: SmallScale must sign-extend to
1553 // Scale and the multiplication Y * SmallScale should not overflow.
1554 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1555 // SmallScale does not sign-extend to Scale.
1556 return nullptr;
1557 assert(SmallScale.exactLogBase2() == logScale);
1558 // Require that Y * SmallScale must not overflow.
1559 RequireNoSignedWrap = true;
1560
1561 // Drill down through the cast.
1562 Parent = std::make_pair(Cast, 0);
1563 Scale = SmallScale;
1564 continue;
1565 }
1566
1567 if (Cast->getOpcode() == Instruction::Trunc) {
1568 // Op is truncated from a larger type, descale in the larger type.
1569 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1570 // trunc (Y * sext Scale) = (trunc Y) * Scale
1571 // always holds. However (trunc Y) * Scale may overflow even if
1572 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1573 // from this point up in the expression (see later).
1574 if (RequireNoSignedWrap)
1575 return nullptr;
1576
1577 // Drill down through the cast.
1578 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1579 Parent = std::make_pair(Cast, 0);
1580 Scale = Scale.sext(LargeSize);
1581 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1582 logScale = -1;
1583 assert(Scale.exactLogBase2() == logScale);
1584 continue;
1585 }
1586 }
1587
1588 // Unsupported expression, bail out.
1589 return nullptr;
1590 }
1591
1592 // If Op is zero then Val = Op * Scale.
1593 if (match(Op, m_Zero())) {
1594 NoSignedWrap = true;
1595 return Op;
1596 }
1597
1598 // We know that we can successfully descale, so from here on we can safely
1599 // modify the IR. Op holds the descaled version of the deepest term in the
1600 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1601 // not to overflow.
1602
1603 if (!Parent.first)
1604 // The expression only had one term.
1605 return Op;
1606
1607 // Rewrite the parent using the descaled version of its operand.
1608 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1609 assert(Op != Parent.first->getOperand(Parent.second) &&
1610 "Descaling was a no-op?");
1611 replaceOperand(*Parent.first, Parent.second, Op);
1612 Worklist.push(Parent.first);
1613
1614 // Now work back up the expression correcting nsw flags. The logic is based
1615 // on the following observation: if X * Y is known not to overflow as a signed
1616 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1617 // then X * Z will not overflow as a signed multiplication either. As we work
1618 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1619 // current level has strictly smaller absolute value than the original.
1620 Instruction *Ancestor = Parent.first;
1621 do {
1622 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1623 // If the multiplication wasn't nsw then we can't say anything about the
1624 // value of the descaled multiplication, and we have to clear nsw flags
1625 // from this point on up.
1626 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1627 NoSignedWrap &= OpNoSignedWrap;
1628 if (NoSignedWrap != OpNoSignedWrap) {
1629 BO->setHasNoSignedWrap(NoSignedWrap);
1630 Worklist.push(Ancestor);
1631 }
1632 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1633 // The fact that the descaled input to the trunc has smaller absolute
1634 // value than the original input doesn't tell us anything useful about
1635 // the absolute values of the truncations.
1636 NoSignedWrap = false;
1637 }
1638 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1639 "Failed to keep proper track of nsw flags while drilling down?");
1640
1641 if (Ancestor == Val)
1642 // Got to the top, all done!
1643 return Val;
1644
1645 // Move up one level in the expression.
1646 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1647 Ancestor = Ancestor->user_back();
1648 } while (true);
1649 }
1650
foldVectorBinop(BinaryOperator & Inst)1651 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1652 if (!isa<VectorType>(Inst.getType()))
1653 return nullptr;
1654
1655 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1656 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1657 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1658 cast<VectorType>(Inst.getType())->getElementCount());
1659 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1660 cast<VectorType>(Inst.getType())->getElementCount());
1661
1662 // If both operands of the binop are vector concatenations, then perform the
1663 // narrow binop on each pair of the source operands followed by concatenation
1664 // of the results.
1665 Value *L0, *L1, *R0, *R1;
1666 ArrayRef<int> Mask;
1667 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1668 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1669 LHS->hasOneUse() && RHS->hasOneUse() &&
1670 cast<ShuffleVectorInst>(LHS)->isConcat() &&
1671 cast<ShuffleVectorInst>(RHS)->isConcat()) {
1672 // This transform does not have the speculative execution constraint as
1673 // below because the shuffle is a concatenation. The new binops are
1674 // operating on exactly the same elements as the existing binop.
1675 // TODO: We could ease the mask requirement to allow different undef lanes,
1676 // but that requires an analysis of the binop-with-undef output value.
1677 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1678 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1679 BO->copyIRFlags(&Inst);
1680 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1681 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1682 BO->copyIRFlags(&Inst);
1683 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1684 }
1685
1686 auto createBinOpReverse = [&](Value *X, Value *Y) {
1687 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
1688 if (auto *BO = dyn_cast<BinaryOperator>(V))
1689 BO->copyIRFlags(&Inst);
1690 Module *M = Inst.getModule();
1691 Function *F = Intrinsic::getDeclaration(
1692 M, Intrinsic::experimental_vector_reverse, V->getType());
1693 return CallInst::Create(F, V);
1694 };
1695
1696 // NOTE: Reverse shuffles don't require the speculative execution protection
1697 // below because they don't affect which lanes take part in the computation.
1698
1699 Value *V1, *V2;
1700 if (match(LHS, m_VecReverse(m_Value(V1)))) {
1701 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
1702 if (match(RHS, m_VecReverse(m_Value(V2))) &&
1703 (LHS->hasOneUse() || RHS->hasOneUse() ||
1704 (LHS == RHS && LHS->hasNUses(2))))
1705 return createBinOpReverse(V1, V2);
1706
1707 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
1708 if (LHS->hasOneUse() && isSplatValue(RHS))
1709 return createBinOpReverse(V1, RHS);
1710 }
1711 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
1712 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
1713 return createBinOpReverse(LHS, V2);
1714
1715 // It may not be safe to reorder shuffles and things like div, urem, etc.
1716 // because we may trap when executing those ops on unknown vector elements.
1717 // See PR20059.
1718 if (!isSafeToSpeculativelyExecute(&Inst))
1719 return nullptr;
1720
1721 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1722 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1723 if (auto *BO = dyn_cast<BinaryOperator>(XY))
1724 BO->copyIRFlags(&Inst);
1725 return new ShuffleVectorInst(XY, M);
1726 };
1727
1728 // If both arguments of the binary operation are shuffles that use the same
1729 // mask and shuffle within a single vector, move the shuffle after the binop.
1730 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1731 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1732 V1->getType() == V2->getType() &&
1733 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1734 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1735 return createBinOpShuffle(V1, V2, Mask);
1736 }
1737
1738 // If both arguments of a commutative binop are select-shuffles that use the
1739 // same mask with commuted operands, the shuffles are unnecessary.
1740 if (Inst.isCommutative() &&
1741 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1742 match(RHS,
1743 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1744 auto *LShuf = cast<ShuffleVectorInst>(LHS);
1745 auto *RShuf = cast<ShuffleVectorInst>(RHS);
1746 // TODO: Allow shuffles that contain undefs in the mask?
1747 // That is legal, but it reduces undef knowledge.
1748 // TODO: Allow arbitrary shuffles by shuffling after binop?
1749 // That might be legal, but we have to deal with poison.
1750 if (LShuf->isSelect() &&
1751 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1752 RShuf->isSelect() &&
1753 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1754 // Example:
1755 // LHS = shuffle V1, V2, <0, 5, 6, 3>
1756 // RHS = shuffle V2, V1, <0, 5, 6, 3>
1757 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1758 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1759 NewBO->copyIRFlags(&Inst);
1760 return NewBO;
1761 }
1762 }
1763
1764 // If one argument is a shuffle within one vector and the other is a constant,
1765 // try moving the shuffle after the binary operation. This canonicalization
1766 // intends to move shuffles closer to other shuffles and binops closer to
1767 // other binops, so they can be folded. It may also enable demanded elements
1768 // transforms.
1769 Constant *C;
1770 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1771 if (InstVTy &&
1772 match(&Inst,
1773 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1774 m_ImmConstant(C))) &&
1775 cast<FixedVectorType>(V1->getType())->getNumElements() <=
1776 InstVTy->getNumElements()) {
1777 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1778 "Shuffle should not change scalar type");
1779
1780 // Find constant NewC that has property:
1781 // shuffle(NewC, ShMask) = C
1782 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1783 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1784 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1785 bool ConstOp1 = isa<Constant>(RHS);
1786 ArrayRef<int> ShMask = Mask;
1787 unsigned SrcVecNumElts =
1788 cast<FixedVectorType>(V1->getType())->getNumElements();
1789 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1790 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1791 bool MayChange = true;
1792 unsigned NumElts = InstVTy->getNumElements();
1793 for (unsigned I = 0; I < NumElts; ++I) {
1794 Constant *CElt = C->getAggregateElement(I);
1795 if (ShMask[I] >= 0) {
1796 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1797 Constant *NewCElt = NewVecC[ShMask[I]];
1798 // Bail out if:
1799 // 1. The constant vector contains a constant expression.
1800 // 2. The shuffle needs an element of the constant vector that can't
1801 // be mapped to a new constant vector.
1802 // 3. This is a widening shuffle that copies elements of V1 into the
1803 // extended elements (extending with undef is allowed).
1804 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1805 I >= SrcVecNumElts) {
1806 MayChange = false;
1807 break;
1808 }
1809 NewVecC[ShMask[I]] = CElt;
1810 }
1811 // If this is a widening shuffle, we must be able to extend with undef
1812 // elements. If the original binop does not produce an undef in the high
1813 // lanes, then this transform is not safe.
1814 // Similarly for undef lanes due to the shuffle mask, we can only
1815 // transform binops that preserve undef.
1816 // TODO: We could shuffle those non-undef constant values into the
1817 // result by using a constant vector (rather than an undef vector)
1818 // as operand 1 of the new binop, but that might be too aggressive
1819 // for target-independent shuffle creation.
1820 if (I >= SrcVecNumElts || ShMask[I] < 0) {
1821 Constant *MaybeUndef =
1822 ConstOp1
1823 ? ConstantFoldBinaryOpOperands(Opcode, UndefScalar, CElt, DL)
1824 : ConstantFoldBinaryOpOperands(Opcode, CElt, UndefScalar, DL);
1825 if (!MaybeUndef || !match(MaybeUndef, m_Undef())) {
1826 MayChange = false;
1827 break;
1828 }
1829 }
1830 }
1831 if (MayChange) {
1832 Constant *NewC = ConstantVector::get(NewVecC);
1833 // It may not be safe to execute a binop on a vector with undef elements
1834 // because the entire instruction can be folded to undef or create poison
1835 // that did not exist in the original code.
1836 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1837 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1838
1839 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1840 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1841 Value *NewLHS = ConstOp1 ? V1 : NewC;
1842 Value *NewRHS = ConstOp1 ? NewC : V1;
1843 return createBinOpShuffle(NewLHS, NewRHS, Mask);
1844 }
1845 }
1846
1847 // Try to reassociate to sink a splat shuffle after a binary operation.
1848 if (Inst.isAssociative() && Inst.isCommutative()) {
1849 // Canonicalize shuffle operand as LHS.
1850 if (isa<ShuffleVectorInst>(RHS))
1851 std::swap(LHS, RHS);
1852
1853 Value *X;
1854 ArrayRef<int> MaskC;
1855 int SplatIndex;
1856 Value *Y, *OtherOp;
1857 if (!match(LHS,
1858 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1859 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1860 X->getType() != Inst.getType() ||
1861 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
1862 return nullptr;
1863
1864 // FIXME: This may not be safe if the analysis allows undef elements. By
1865 // moving 'Y' before the splat shuffle, we are implicitly assuming
1866 // that it is not undef/poison at the splat index.
1867 if (isSplatValue(OtherOp, SplatIndex)) {
1868 std::swap(Y, OtherOp);
1869 } else if (!isSplatValue(Y, SplatIndex)) {
1870 return nullptr;
1871 }
1872
1873 // X and Y are splatted values, so perform the binary operation on those
1874 // values followed by a splat followed by the 2nd binary operation:
1875 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1876 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1877 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1878 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1879 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1880
1881 // Intersect FMF on both new binops. Other (poison-generating) flags are
1882 // dropped to be safe.
1883 if (isa<FPMathOperator>(R)) {
1884 R->copyFastMathFlags(&Inst);
1885 R->andIRFlags(RHS);
1886 }
1887 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1888 NewInstBO->copyIRFlags(R);
1889 return R;
1890 }
1891
1892 return nullptr;
1893 }
1894
1895 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1896 /// of a value. This requires a potentially expensive known bits check to make
1897 /// sure the narrow op does not overflow.
narrowMathIfNoOverflow(BinaryOperator & BO)1898 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1899 // We need at least one extended operand.
1900 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1901
1902 // If this is a sub, we swap the operands since we always want an extension
1903 // on the RHS. The LHS can be an extension or a constant.
1904 if (BO.getOpcode() == Instruction::Sub)
1905 std::swap(Op0, Op1);
1906
1907 Value *X;
1908 bool IsSext = match(Op0, m_SExt(m_Value(X)));
1909 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1910 return nullptr;
1911
1912 // If both operands are the same extension from the same source type and we
1913 // can eliminate at least one (hasOneUse), this might work.
1914 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1915 Value *Y;
1916 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1917 cast<Operator>(Op1)->getOpcode() == CastOpc &&
1918 (Op0->hasOneUse() || Op1->hasOneUse()))) {
1919 // If that did not match, see if we have a suitable constant operand.
1920 // Truncating and extending must produce the same constant.
1921 Constant *WideC;
1922 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1923 return nullptr;
1924 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1925 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1926 return nullptr;
1927 Y = NarrowC;
1928 }
1929
1930 // Swap back now that we found our operands.
1931 if (BO.getOpcode() == Instruction::Sub)
1932 std::swap(X, Y);
1933
1934 // Both operands have narrow versions. Last step: the math must not overflow
1935 // in the narrow width.
1936 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1937 return nullptr;
1938
1939 // bo (ext X), (ext Y) --> ext (bo X, Y)
1940 // bo (ext X), C --> ext (bo X, C')
1941 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1942 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1943 if (IsSext)
1944 NewBinOp->setHasNoSignedWrap();
1945 else
1946 NewBinOp->setHasNoUnsignedWrap();
1947 }
1948 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1949 }
1950
isMergedGEPInBounds(GEPOperator & GEP1,GEPOperator & GEP2)1951 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1952 // At least one GEP must be inbounds.
1953 if (!GEP1.isInBounds() && !GEP2.isInBounds())
1954 return false;
1955
1956 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1957 (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1958 }
1959
1960 /// Thread a GEP operation with constant indices through the constant true/false
1961 /// arms of a select.
foldSelectGEP(GetElementPtrInst & GEP,InstCombiner::BuilderTy & Builder)1962 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1963 InstCombiner::BuilderTy &Builder) {
1964 if (!GEP.hasAllConstantIndices())
1965 return nullptr;
1966
1967 Instruction *Sel;
1968 Value *Cond;
1969 Constant *TrueC, *FalseC;
1970 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1971 !match(Sel,
1972 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1973 return nullptr;
1974
1975 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1976 // Propagate 'inbounds' and metadata from existing instructions.
1977 // Note: using IRBuilder to create the constants for efficiency.
1978 SmallVector<Value *, 4> IndexC(GEP.indices());
1979 bool IsInBounds = GEP.isInBounds();
1980 Type *Ty = GEP.getSourceElementType();
1981 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds);
1982 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds);
1983 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1984 }
1985
visitGEPOfGEP(GetElementPtrInst & GEP,GEPOperator * Src)1986 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
1987 GEPOperator *Src) {
1988 // Combine Indices - If the source pointer to this getelementptr instruction
1989 // is a getelementptr instruction with matching element type, combine the
1990 // indices of the two getelementptr instructions into a single instruction.
1991 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1992 return nullptr;
1993
1994 if (Src->getResultElementType() == GEP.getSourceElementType() &&
1995 Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1996 Src->hasOneUse()) {
1997 Value *GO1 = GEP.getOperand(1);
1998 Value *SO1 = Src->getOperand(1);
1999
2000 if (LI) {
2001 // Try to reassociate loop invariant GEP chains to enable LICM.
2002 if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2003 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2004 // invariant: this breaks the dependence between GEPs and allows LICM
2005 // to hoist the invariant part out of the loop.
2006 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2007 // The swapped GEPs are inbounds if both original GEPs are inbounds
2008 // and the sign of the offsets is the same. For simplicity, only
2009 // handle both offsets being non-negative.
2010 bool IsInBounds = Src->isInBounds() && GEP.isInBounds() &&
2011 isKnownNonNegative(SO1, DL, 0, &AC, &GEP, &DT) &&
2012 isKnownNonNegative(GO1, DL, 0, &AC, &GEP, &DT);
2013 // Put NewSrc at same location as %src.
2014 Builder.SetInsertPoint(cast<Instruction>(Src));
2015 Value *NewSrc = Builder.CreateGEP(GEP.getSourceElementType(),
2016 Src->getPointerOperand(), GO1,
2017 Src->getName(), IsInBounds);
2018 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
2019 GEP.getSourceElementType(), NewSrc, {SO1});
2020 NewGEP->setIsInBounds(IsInBounds);
2021 return NewGEP;
2022 }
2023 }
2024 }
2025 }
2026
2027 // Note that if our source is a gep chain itself then we wait for that
2028 // chain to be resolved before we perform this transformation. This
2029 // avoids us creating a TON of code in some cases.
2030 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2031 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2032 return nullptr; // Wait until our source is folded to completion.
2033
2034 // For constant GEPs, use a more general offset-based folding approach.
2035 // Only do this for opaque pointers, as the result element type may change.
2036 Type *PtrTy = Src->getType()->getScalarType();
2037 if (PtrTy->isOpaquePointerTy() && GEP.hasAllConstantIndices() &&
2038 (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2039 // Split Src into a variable part and a constant suffix.
2040 gep_type_iterator GTI = gep_type_begin(*Src);
2041 Type *BaseType = GTI.getIndexedType();
2042 bool IsFirstType = true;
2043 unsigned NumVarIndices = 0;
2044 for (auto Pair : enumerate(Src->indices())) {
2045 if (!isa<ConstantInt>(Pair.value())) {
2046 BaseType = GTI.getIndexedType();
2047 IsFirstType = false;
2048 NumVarIndices = Pair.index() + 1;
2049 }
2050 ++GTI;
2051 }
2052
2053 // Determine the offset for the constant suffix of Src.
2054 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
2055 if (NumVarIndices != Src->getNumIndices()) {
2056 // FIXME: getIndexedOffsetInType() does not handled scalable vectors.
2057 if (isa<ScalableVectorType>(BaseType))
2058 return nullptr;
2059
2060 SmallVector<Value *> ConstantIndices;
2061 if (!IsFirstType)
2062 ConstantIndices.push_back(
2063 Constant::getNullValue(Type::getInt32Ty(GEP.getContext())));
2064 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
2065 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
2066 }
2067
2068 // Add the offset for GEP (which is fully constant).
2069 if (!GEP.accumulateConstantOffset(DL, Offset))
2070 return nullptr;
2071
2072 APInt OffsetOld = Offset;
2073 // Convert the total offset back into indices.
2074 SmallVector<APInt> ConstIndices =
2075 DL.getGEPIndicesForOffset(BaseType, Offset);
2076 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) {
2077 // If both GEP are constant-indexed, and cannot be merged in either way,
2078 // convert them to a GEP of i8.
2079 if (Src->hasAllConstantIndices())
2080 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2081 ? GetElementPtrInst::CreateInBounds(
2082 Builder.getInt8Ty(), Src->getOperand(0),
2083 Builder.getInt(OffsetOld), GEP.getName())
2084 : GetElementPtrInst::Create(
2085 Builder.getInt8Ty(), Src->getOperand(0),
2086 Builder.getInt(OffsetOld), GEP.getName());
2087 return nullptr;
2088 }
2089
2090 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP));
2091 SmallVector<Value *> Indices;
2092 append_range(Indices, drop_end(Src->indices(),
2093 Src->getNumIndices() - NumVarIndices));
2094 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
2095 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
2096 // Even if the total offset is inbounds, we may end up representing it
2097 // by first performing a larger negative offset, and then a smaller
2098 // positive one. The large negative offset might go out of bounds. Only
2099 // preserve inbounds if all signs are the same.
2100 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative();
2101 }
2102
2103 return IsInBounds
2104 ? GetElementPtrInst::CreateInBounds(Src->getSourceElementType(),
2105 Src->getOperand(0), Indices,
2106 GEP.getName())
2107 : GetElementPtrInst::Create(Src->getSourceElementType(),
2108 Src->getOperand(0), Indices,
2109 GEP.getName());
2110 }
2111
2112 if (Src->getResultElementType() != GEP.getSourceElementType())
2113 return nullptr;
2114
2115 SmallVector<Value*, 8> Indices;
2116
2117 // Find out whether the last index in the source GEP is a sequential idx.
2118 bool EndsWithSequential = false;
2119 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2120 I != E; ++I)
2121 EndsWithSequential = I.isSequential();
2122
2123 // Can we combine the two pointer arithmetics offsets?
2124 if (EndsWithSequential) {
2125 // Replace: gep (gep %P, long B), long A, ...
2126 // With: T = long A+B; gep %P, T, ...
2127 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2128 Value *GO1 = GEP.getOperand(1);
2129
2130 // If they aren't the same type, then the input hasn't been processed
2131 // by the loop above yet (which canonicalizes sequential index types to
2132 // intptr_t). Just avoid transforming this until the input has been
2133 // normalized.
2134 if (SO1->getType() != GO1->getType())
2135 return nullptr;
2136
2137 Value *Sum =
2138 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2139 // Only do the combine when we are sure the cost after the
2140 // merge is never more than that before the merge.
2141 if (Sum == nullptr)
2142 return nullptr;
2143
2144 // Update the GEP in place if possible.
2145 if (Src->getNumOperands() == 2) {
2146 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2147 replaceOperand(GEP, 0, Src->getOperand(0));
2148 replaceOperand(GEP, 1, Sum);
2149 return &GEP;
2150 }
2151 Indices.append(Src->op_begin()+1, Src->op_end()-1);
2152 Indices.push_back(Sum);
2153 Indices.append(GEP.op_begin()+2, GEP.op_end());
2154 } else if (isa<Constant>(*GEP.idx_begin()) &&
2155 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2156 Src->getNumOperands() != 1) {
2157 // Otherwise we can do the fold if the first index of the GEP is a zero
2158 Indices.append(Src->op_begin()+1, Src->op_end());
2159 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2160 }
2161
2162 if (!Indices.empty())
2163 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2164 ? GetElementPtrInst::CreateInBounds(
2165 Src->getSourceElementType(), Src->getOperand(0), Indices,
2166 GEP.getName())
2167 : GetElementPtrInst::Create(Src->getSourceElementType(),
2168 Src->getOperand(0), Indices,
2169 GEP.getName());
2170
2171 return nullptr;
2172 }
2173
2174 // Note that we may have also stripped an address space cast in between.
visitGEPOfBitcast(BitCastInst * BCI,GetElementPtrInst & GEP)2175 Instruction *InstCombinerImpl::visitGEPOfBitcast(BitCastInst *BCI,
2176 GetElementPtrInst &GEP) {
2177 // With opaque pointers, there is no pointer element type we can use to
2178 // adjust the GEP type.
2179 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2180 if (SrcType->isOpaque())
2181 return nullptr;
2182
2183 Type *GEPEltType = GEP.getSourceElementType();
2184 Type *SrcEltType = SrcType->getNonOpaquePointerElementType();
2185 Value *SrcOp = BCI->getOperand(0);
2186
2187 // GEP directly using the source operand if this GEP is accessing an element
2188 // of a bitcasted pointer to vector or array of the same dimensions:
2189 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2190 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2191 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2192 const DataLayout &DL) {
2193 auto *VecVTy = cast<FixedVectorType>(VecTy);
2194 return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2195 ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2196 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2197 };
2198 if (GEP.getNumOperands() == 3 &&
2199 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2200 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2201 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2202 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2203
2204 // Create a new GEP here, as using `setOperand()` followed by
2205 // `setSourceElementType()` won't actually update the type of the
2206 // existing GEP Value. Causing issues if this Value is accessed when
2207 // constructing an AddrSpaceCastInst
2208 SmallVector<Value *, 8> Indices(GEP.indices());
2209 Value *NGEP =
2210 Builder.CreateGEP(SrcEltType, SrcOp, Indices, "", GEP.isInBounds());
2211 NGEP->takeName(&GEP);
2212
2213 // Preserve GEP address space to satisfy users
2214 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2215 return new AddrSpaceCastInst(NGEP, GEP.getType());
2216
2217 return replaceInstUsesWith(GEP, NGEP);
2218 }
2219
2220 // See if we can simplify:
2221 // X = bitcast A* to B*
2222 // Y = gep X, <...constant indices...>
2223 // into a gep of the original struct. This is important for SROA and alias
2224 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2225 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEP.getType());
2226 APInt Offset(OffsetBits, 0);
2227
2228 // If the bitcast argument is an allocation, The bitcast is for convertion
2229 // to actual type of allocation. Removing such bitcasts, results in having
2230 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2231 // struct or array hierarchy.
2232 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2233 // a better chance to succeed.
2234 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2235 !isAllocationFn(SrcOp, &TLI)) {
2236 // If this GEP instruction doesn't move the pointer, just replace the GEP
2237 // with a bitcast of the real input to the dest type.
2238 if (!Offset) {
2239 // If the bitcast is of an allocation, and the allocation will be
2240 // converted to match the type of the cast, don't touch this.
2241 if (isa<AllocaInst>(SrcOp)) {
2242 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2243 if (Instruction *I = visitBitCast(*BCI)) {
2244 if (I != BCI) {
2245 I->takeName(BCI);
2246 I->insertInto(BCI->getParent(), BCI->getIterator());
2247 replaceInstUsesWith(*BCI, I);
2248 }
2249 return &GEP;
2250 }
2251 }
2252
2253 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2254 return new AddrSpaceCastInst(SrcOp, GEP.getType());
2255 return new BitCastInst(SrcOp, GEP.getType());
2256 }
2257
2258 // Otherwise, if the offset is non-zero, we need to find out if there is a
2259 // field at Offset in 'A's type. If so, we can pull the cast through the
2260 // GEP.
2261 SmallVector<Value *, 8> NewIndices;
2262 if (findElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices, DL)) {
2263 Value *NGEP = Builder.CreateGEP(SrcEltType, SrcOp, NewIndices, "",
2264 GEP.isInBounds());
2265
2266 if (NGEP->getType() == GEP.getType())
2267 return replaceInstUsesWith(GEP, NGEP);
2268 NGEP->takeName(&GEP);
2269
2270 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2271 return new AddrSpaceCastInst(NGEP, GEP.getType());
2272 return new BitCastInst(NGEP, GEP.getType());
2273 }
2274 }
2275
2276 return nullptr;
2277 }
2278
visitGetElementPtrInst(GetElementPtrInst & GEP)2279 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2280 Value *PtrOp = GEP.getOperand(0);
2281 SmallVector<Value *, 8> Indices(GEP.indices());
2282 Type *GEPType = GEP.getType();
2283 Type *GEPEltType = GEP.getSourceElementType();
2284 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
2285 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
2286 SQ.getWithInstruction(&GEP)))
2287 return replaceInstUsesWith(GEP, V);
2288
2289 // For vector geps, use the generic demanded vector support.
2290 // Skip if GEP return type is scalable. The number of elements is unknown at
2291 // compile-time.
2292 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2293 auto VWidth = GEPFVTy->getNumElements();
2294 APInt UndefElts(VWidth, 0);
2295 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2296 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2297 UndefElts)) {
2298 if (V != &GEP)
2299 return replaceInstUsesWith(GEP, V);
2300 return &GEP;
2301 }
2302
2303 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2304 // possible (decide on canonical form for pointer broadcast), 3) exploit
2305 // undef elements to decrease demanded bits
2306 }
2307
2308 // Eliminate unneeded casts for indices, and replace indices which displace
2309 // by multiples of a zero size type with zero.
2310 bool MadeChange = false;
2311
2312 // Index width may not be the same width as pointer width.
2313 // Data layout chooses the right type based on supported integer types.
2314 Type *NewScalarIndexTy =
2315 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2316
2317 gep_type_iterator GTI = gep_type_begin(GEP);
2318 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2319 ++I, ++GTI) {
2320 // Skip indices into struct types.
2321 if (GTI.isStruct())
2322 continue;
2323
2324 Type *IndexTy = (*I)->getType();
2325 Type *NewIndexType =
2326 IndexTy->isVectorTy()
2327 ? VectorType::get(NewScalarIndexTy,
2328 cast<VectorType>(IndexTy)->getElementCount())
2329 : NewScalarIndexTy;
2330
2331 // If the element type has zero size then any index over it is equivalent
2332 // to an index of zero, so replace it with zero if it is not zero already.
2333 Type *EltTy = GTI.getIndexedType();
2334 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2335 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2336 *I = Constant::getNullValue(NewIndexType);
2337 MadeChange = true;
2338 }
2339
2340 if (IndexTy != NewIndexType) {
2341 // If we are using a wider index than needed for this platform, shrink
2342 // it to what we need. If narrower, sign-extend it to what we need.
2343 // This explicit cast can make subsequent optimizations more obvious.
2344 *I = Builder.CreateIntCast(*I, NewIndexType, true);
2345 MadeChange = true;
2346 }
2347 }
2348 if (MadeChange)
2349 return &GEP;
2350
2351 // Check to see if the inputs to the PHI node are getelementptr instructions.
2352 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2353 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2354 if (!Op1)
2355 return nullptr;
2356
2357 // Don't fold a GEP into itself through a PHI node. This can only happen
2358 // through the back-edge of a loop. Folding a GEP into itself means that
2359 // the value of the previous iteration needs to be stored in the meantime,
2360 // thus requiring an additional register variable to be live, but not
2361 // actually achieving anything (the GEP still needs to be executed once per
2362 // loop iteration).
2363 if (Op1 == &GEP)
2364 return nullptr;
2365
2366 int DI = -1;
2367
2368 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2369 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2370 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2371 Op1->getSourceElementType() != Op2->getSourceElementType())
2372 return nullptr;
2373
2374 // As for Op1 above, don't try to fold a GEP into itself.
2375 if (Op2 == &GEP)
2376 return nullptr;
2377
2378 // Keep track of the type as we walk the GEP.
2379 Type *CurTy = nullptr;
2380
2381 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2382 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2383 return nullptr;
2384
2385 if (Op1->getOperand(J) != Op2->getOperand(J)) {
2386 if (DI == -1) {
2387 // We have not seen any differences yet in the GEPs feeding the
2388 // PHI yet, so we record this one if it is allowed to be a
2389 // variable.
2390
2391 // The first two arguments can vary for any GEP, the rest have to be
2392 // static for struct slots
2393 if (J > 1) {
2394 assert(CurTy && "No current type?");
2395 if (CurTy->isStructTy())
2396 return nullptr;
2397 }
2398
2399 DI = J;
2400 } else {
2401 // The GEP is different by more than one input. While this could be
2402 // extended to support GEPs that vary by more than one variable it
2403 // doesn't make sense since it greatly increases the complexity and
2404 // would result in an R+R+R addressing mode which no backend
2405 // directly supports and would need to be broken into several
2406 // simpler instructions anyway.
2407 return nullptr;
2408 }
2409 }
2410
2411 // Sink down a layer of the type for the next iteration.
2412 if (J > 0) {
2413 if (J == 1) {
2414 CurTy = Op1->getSourceElementType();
2415 } else {
2416 CurTy =
2417 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2418 }
2419 }
2420 }
2421 }
2422
2423 // If not all GEPs are identical we'll have to create a new PHI node.
2424 // Check that the old PHI node has only one use so that it will get
2425 // removed.
2426 if (DI != -1 && !PN->hasOneUse())
2427 return nullptr;
2428
2429 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2430 if (DI == -1) {
2431 // All the GEPs feeding the PHI are identical. Clone one down into our
2432 // BB so that it can be merged with the current GEP.
2433 } else {
2434 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2435 // into the current block so it can be merged, and create a new PHI to
2436 // set that index.
2437 PHINode *NewPN;
2438 {
2439 IRBuilderBase::InsertPointGuard Guard(Builder);
2440 Builder.SetInsertPoint(PN);
2441 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2442 PN->getNumOperands());
2443 }
2444
2445 for (auto &I : PN->operands())
2446 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2447 PN->getIncomingBlock(I));
2448
2449 NewGEP->setOperand(DI, NewPN);
2450 }
2451
2452 NewGEP->insertInto(GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
2453 return replaceOperand(GEP, 0, NewGEP);
2454 }
2455
2456 if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2457 if (Instruction *I = visitGEPOfGEP(GEP, Src))
2458 return I;
2459
2460 // Skip if GEP source element type is scalable. The type alloc size is unknown
2461 // at compile-time.
2462 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2463 unsigned AS = GEP.getPointerAddressSpace();
2464 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2465 DL.getIndexSizeInBits(AS)) {
2466 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
2467
2468 bool Matched = false;
2469 uint64_t C;
2470 Value *V = nullptr;
2471 if (TyAllocSize == 1) {
2472 V = GEP.getOperand(1);
2473 Matched = true;
2474 } else if (match(GEP.getOperand(1),
2475 m_AShr(m_Value(V), m_ConstantInt(C)))) {
2476 if (TyAllocSize == 1ULL << C)
2477 Matched = true;
2478 } else if (match(GEP.getOperand(1),
2479 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2480 if (TyAllocSize == C)
2481 Matched = true;
2482 }
2483
2484 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2485 // only if both point to the same underlying object (otherwise provenance
2486 // is not necessarily retained).
2487 Value *Y;
2488 Value *X = GEP.getOperand(0);
2489 if (Matched &&
2490 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2491 getUnderlyingObject(X) == getUnderlyingObject(Y))
2492 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2493 }
2494 }
2495
2496 // We do not handle pointer-vector geps here.
2497 if (GEPType->isVectorTy())
2498 return nullptr;
2499
2500 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2501 Value *StrippedPtr = PtrOp->stripPointerCasts();
2502 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2503
2504 // TODO: The basic approach of these folds is not compatible with opaque
2505 // pointers, because we can't use bitcasts as a hint for a desirable GEP
2506 // type. Instead, we should perform canonicalization directly on the GEP
2507 // type. For now, skip these.
2508 if (StrippedPtr != PtrOp && !StrippedPtrTy->isOpaque()) {
2509 bool HasZeroPointerIndex = false;
2510 Type *StrippedPtrEltTy = StrippedPtrTy->getNonOpaquePointerElementType();
2511
2512 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2513 HasZeroPointerIndex = C->isZero();
2514
2515 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2516 // into : GEP [10 x i8]* X, i32 0, ...
2517 //
2518 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2519 // into : GEP i8* X, ...
2520 //
2521 // This occurs when the program declares an array extern like "int X[];"
2522 if (HasZeroPointerIndex) {
2523 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2524 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2525 if (CATy->getElementType() == StrippedPtrEltTy) {
2526 // -> GEP i8* X, ...
2527 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2528 GetElementPtrInst *Res = GetElementPtrInst::Create(
2529 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2530 Res->setIsInBounds(GEP.isInBounds());
2531 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2532 return Res;
2533 // Insert Res, and create an addrspacecast.
2534 // e.g.,
2535 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2536 // ->
2537 // %0 = GEP i8 addrspace(1)* X, ...
2538 // addrspacecast i8 addrspace(1)* %0 to i8*
2539 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2540 }
2541
2542 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2543 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2544 if (CATy->getElementType() == XATy->getElementType()) {
2545 // -> GEP [10 x i8]* X, i32 0, ...
2546 // At this point, we know that the cast source type is a pointer
2547 // to an array of the same type as the destination pointer
2548 // array. Because the array type is never stepped over (there
2549 // is a leading zero) we can fold the cast into this GEP.
2550 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2551 GEP.setSourceElementType(XATy);
2552 return replaceOperand(GEP, 0, StrippedPtr);
2553 }
2554 // Cannot replace the base pointer directly because StrippedPtr's
2555 // address space is different. Instead, create a new GEP followed by
2556 // an addrspacecast.
2557 // e.g.,
2558 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2559 // i32 0, ...
2560 // ->
2561 // %0 = GEP [10 x i8] addrspace(1)* X, ...
2562 // addrspacecast i8 addrspace(1)* %0 to i8*
2563 SmallVector<Value *, 8> Idx(GEP.indices());
2564 Value *NewGEP =
2565 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2566 GEP.getName(), GEP.isInBounds());
2567 return new AddrSpaceCastInst(NewGEP, GEPType);
2568 }
2569 }
2570 }
2571 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2572 // Skip if GEP source element type is scalable. The type alloc size is
2573 // unknown at compile-time.
2574 // Transform things like: %t = getelementptr i32*
2575 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2
2576 // x i32]* %str, i32 0, i32 %V; bitcast
2577 if (StrippedPtrEltTy->isArrayTy() &&
2578 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2579 DL.getTypeAllocSize(GEPEltType)) {
2580 Type *IdxType = DL.getIndexType(GEPType);
2581 Value *Idx[2] = {Constant::getNullValue(IdxType), GEP.getOperand(1)};
2582 Value *NewGEP = Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2583 GEP.getName(), GEP.isInBounds());
2584
2585 // V and GEP are both pointer types --> BitCast
2586 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2587 }
2588
2589 // Transform things like:
2590 // %V = mul i64 %N, 4
2591 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2592 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
2593 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2594 // Check that changing the type amounts to dividing the index by a scale
2595 // factor.
2596 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
2597 uint64_t SrcSize =
2598 DL.getTypeAllocSize(StrippedPtrEltTy).getFixedValue();
2599 if (ResSize && SrcSize % ResSize == 0) {
2600 Value *Idx = GEP.getOperand(1);
2601 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2602 uint64_t Scale = SrcSize / ResSize;
2603
2604 // Earlier transforms ensure that the index has the right type
2605 // according to Data Layout, which considerably simplifies the
2606 // logic by eliminating implicit casts.
2607 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2608 "Index type does not match the Data Layout preferences");
2609
2610 bool NSW;
2611 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2612 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2613 // If the multiplication NewIdx * Scale may overflow then the new
2614 // GEP may not be "inbounds".
2615 Value *NewGEP =
2616 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2617 GEP.getName(), GEP.isInBounds() && NSW);
2618
2619 // The NewGEP must be pointer typed, so must the old one -> BitCast
2620 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2621 GEPType);
2622 }
2623 }
2624 }
2625
2626 // Similarly, transform things like:
2627 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2628 // (where tmp = 8*tmp2) into:
2629 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2630 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2631 StrippedPtrEltTy->isArrayTy()) {
2632 // Check that changing to the array element type amounts to dividing the
2633 // index by a scale factor.
2634 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
2635 uint64_t ArrayEltSize =
2636 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2637 .getFixedValue();
2638 if (ResSize && ArrayEltSize % ResSize == 0) {
2639 Value *Idx = GEP.getOperand(1);
2640 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2641 uint64_t Scale = ArrayEltSize / ResSize;
2642
2643 // Earlier transforms ensure that the index has the right type
2644 // according to the Data Layout, which considerably simplifies
2645 // the logic by eliminating implicit casts.
2646 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2647 "Index type does not match the Data Layout preferences");
2648
2649 bool NSW;
2650 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2651 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2652 // If the multiplication NewIdx * Scale may overflow then the new
2653 // GEP may not be "inbounds".
2654 Type *IndTy = DL.getIndexType(GEPType);
2655 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2656
2657 Value *NewGEP =
2658 Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2659 GEP.getName(), GEP.isInBounds() && NSW);
2660 // The NewGEP must be pointer typed, so must the old one -> BitCast
2661 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2662 GEPType);
2663 }
2664 }
2665 }
2666 }
2667 }
2668
2669 // addrspacecast between types is canonicalized as a bitcast, then an
2670 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2671 // through the addrspacecast.
2672 Value *ASCStrippedPtrOp = PtrOp;
2673 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2674 // X = bitcast A addrspace(1)* to B addrspace(1)*
2675 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2676 // Z = gep Y, <...constant indices...>
2677 // Into an addrspacecasted GEP of the struct.
2678 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2679 ASCStrippedPtrOp = BC;
2680 }
2681
2682 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp))
2683 if (Instruction *I = visitGEPOfBitcast(BCI, GEP))
2684 return I;
2685
2686 if (!GEP.isInBounds()) {
2687 unsigned IdxWidth =
2688 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2689 APInt BasePtrOffset(IdxWidth, 0);
2690 Value *UnderlyingPtrOp =
2691 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2692 BasePtrOffset);
2693 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2694 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2695 BasePtrOffset.isNonNegative()) {
2696 APInt AllocSize(
2697 IdxWidth,
2698 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinValue());
2699 if (BasePtrOffset.ule(AllocSize)) {
2700 return GetElementPtrInst::CreateInBounds(
2701 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
2702 }
2703 }
2704 }
2705 }
2706
2707 if (Instruction *R = foldSelectGEP(GEP, Builder))
2708 return R;
2709
2710 return nullptr;
2711 }
2712
isNeverEqualToUnescapedAlloc(Value * V,const TargetLibraryInfo & TLI,Instruction * AI)2713 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
2714 Instruction *AI) {
2715 if (isa<ConstantPointerNull>(V))
2716 return true;
2717 if (auto *LI = dyn_cast<LoadInst>(V))
2718 return isa<GlobalVariable>(LI->getPointerOperand());
2719 // Two distinct allocations will never be equal.
2720 return isAllocLikeFn(V, &TLI) && V != AI;
2721 }
2722
2723 /// Given a call CB which uses an address UsedV, return true if we can prove the
2724 /// call's only possible effect is storing to V.
isRemovableWrite(CallBase & CB,Value * UsedV,const TargetLibraryInfo & TLI)2725 static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2726 const TargetLibraryInfo &TLI) {
2727 if (!CB.use_empty())
2728 // TODO: add recursion if returned attribute is present
2729 return false;
2730
2731 if (CB.isTerminator())
2732 // TODO: remove implementation restriction
2733 return false;
2734
2735 if (!CB.willReturn() || !CB.doesNotThrow())
2736 return false;
2737
2738 // If the only possible side effect of the call is writing to the alloca,
2739 // and the result isn't used, we can safely remove any reads implied by the
2740 // call including those which might read the alloca itself.
2741 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2742 return Dest && Dest->Ptr == UsedV;
2743 }
2744
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakTrackingVH> & Users,const TargetLibraryInfo & TLI)2745 static bool isAllocSiteRemovable(Instruction *AI,
2746 SmallVectorImpl<WeakTrackingVH> &Users,
2747 const TargetLibraryInfo &TLI) {
2748 SmallVector<Instruction*, 4> Worklist;
2749 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
2750 Worklist.push_back(AI);
2751
2752 do {
2753 Instruction *PI = Worklist.pop_back_val();
2754 for (User *U : PI->users()) {
2755 Instruction *I = cast<Instruction>(U);
2756 switch (I->getOpcode()) {
2757 default:
2758 // Give up the moment we see something we can't handle.
2759 return false;
2760
2761 case Instruction::AddrSpaceCast:
2762 case Instruction::BitCast:
2763 case Instruction::GetElementPtr:
2764 Users.emplace_back(I);
2765 Worklist.push_back(I);
2766 continue;
2767
2768 case Instruction::ICmp: {
2769 ICmpInst *ICI = cast<ICmpInst>(I);
2770 // We can fold eq/ne comparisons with null to false/true, respectively.
2771 // We also fold comparisons in some conditions provided the alloc has
2772 // not escaped (see isNeverEqualToUnescapedAlloc).
2773 if (!ICI->isEquality())
2774 return false;
2775 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2776 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2777 return false;
2778 Users.emplace_back(I);
2779 continue;
2780 }
2781
2782 case Instruction::Call:
2783 // Ignore no-op and store intrinsics.
2784 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2785 switch (II->getIntrinsicID()) {
2786 default:
2787 return false;
2788
2789 case Intrinsic::memmove:
2790 case Intrinsic::memcpy:
2791 case Intrinsic::memset: {
2792 MemIntrinsic *MI = cast<MemIntrinsic>(II);
2793 if (MI->isVolatile() || MI->getRawDest() != PI)
2794 return false;
2795 [[fallthrough]];
2796 }
2797 case Intrinsic::assume:
2798 case Intrinsic::invariant_start:
2799 case Intrinsic::invariant_end:
2800 case Intrinsic::lifetime_start:
2801 case Intrinsic::lifetime_end:
2802 case Intrinsic::objectsize:
2803 Users.emplace_back(I);
2804 continue;
2805 case Intrinsic::launder_invariant_group:
2806 case Intrinsic::strip_invariant_group:
2807 Users.emplace_back(I);
2808 Worklist.push_back(I);
2809 continue;
2810 }
2811 }
2812
2813 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
2814 Users.emplace_back(I);
2815 continue;
2816 }
2817
2818 if (getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
2819 getAllocationFamily(I, &TLI) == Family) {
2820 assert(Family);
2821 Users.emplace_back(I);
2822 continue;
2823 }
2824
2825 if (getReallocatedOperand(cast<CallBase>(I)) == PI &&
2826 getAllocationFamily(I, &TLI) == Family) {
2827 assert(Family);
2828 Users.emplace_back(I);
2829 Worklist.push_back(I);
2830 continue;
2831 }
2832
2833 return false;
2834
2835 case Instruction::Store: {
2836 StoreInst *SI = cast<StoreInst>(I);
2837 if (SI->isVolatile() || SI->getPointerOperand() != PI)
2838 return false;
2839 Users.emplace_back(I);
2840 continue;
2841 }
2842 }
2843 llvm_unreachable("missing a return?");
2844 }
2845 } while (!Worklist.empty());
2846 return true;
2847 }
2848
visitAllocSite(Instruction & MI)2849 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2850 assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
2851
2852 // If we have a malloc call which is only used in any amount of comparisons to
2853 // null and free calls, delete the calls and replace the comparisons with true
2854 // or false as appropriate.
2855
2856 // This is based on the principle that we can substitute our own allocation
2857 // function (which will never return null) rather than knowledge of the
2858 // specific function being called. In some sense this can change the permitted
2859 // outputs of a program (when we convert a malloc to an alloca, the fact that
2860 // the allocation is now on the stack is potentially visible, for example),
2861 // but we believe in a permissible manner.
2862 SmallVector<WeakTrackingVH, 64> Users;
2863
2864 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2865 // before each store.
2866 SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2867 std::unique_ptr<DIBuilder> DIB;
2868 if (isa<AllocaInst>(MI)) {
2869 findDbgUsers(DVIs, &MI);
2870 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2871 }
2872
2873 if (isAllocSiteRemovable(&MI, Users, TLI)) {
2874 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2875 // Lowering all @llvm.objectsize calls first because they may
2876 // use a bitcast/GEP of the alloca we are removing.
2877 if (!Users[i])
2878 continue;
2879
2880 Instruction *I = cast<Instruction>(&*Users[i]);
2881
2882 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2883 if (II->getIntrinsicID() == Intrinsic::objectsize) {
2884 Value *Result =
2885 lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/true);
2886 replaceInstUsesWith(*I, Result);
2887 eraseInstFromFunction(*I);
2888 Users[i] = nullptr; // Skip examining in the next loop.
2889 }
2890 }
2891 }
2892 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2893 if (!Users[i])
2894 continue;
2895
2896 Instruction *I = cast<Instruction>(&*Users[i]);
2897
2898 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2899 replaceInstUsesWith(*C,
2900 ConstantInt::get(Type::getInt1Ty(C->getContext()),
2901 C->isFalseWhenEqual()));
2902 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2903 for (auto *DVI : DVIs)
2904 if (DVI->isAddressOfVariable())
2905 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2906 } else {
2907 // Casts, GEP, or anything else: we're about to delete this instruction,
2908 // so it can not have any valid uses.
2909 replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2910 }
2911 eraseInstFromFunction(*I);
2912 }
2913
2914 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2915 // Replace invoke with a NOP intrinsic to maintain the original CFG
2916 Module *M = II->getModule();
2917 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2918 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2919 std::nullopt, "", II->getParent());
2920 }
2921
2922 // Remove debug intrinsics which describe the value contained within the
2923 // alloca. In addition to removing dbg.{declare,addr} which simply point to
2924 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2925 //
2926 // ```
2927 // define void @foo(i32 %0) {
2928 // %a = alloca i32 ; Deleted.
2929 // store i32 %0, i32* %a
2930 // dbg.value(i32 %0, "arg0") ; Not deleted.
2931 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
2932 // call void @trivially_inlinable_no_op(i32* %a)
2933 // ret void
2934 // }
2935 // ```
2936 //
2937 // This may not be required if we stop describing the contents of allocas
2938 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2939 // the LowerDbgDeclare utility.
2940 //
2941 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2942 // "arg0" dbg.value may be stale after the call. However, failing to remove
2943 // the DW_OP_deref dbg.value causes large gaps in location coverage.
2944 for (auto *DVI : DVIs)
2945 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2946 DVI->eraseFromParent();
2947
2948 return eraseInstFromFunction(MI);
2949 }
2950 return nullptr;
2951 }
2952
2953 /// Move the call to free before a NULL test.
2954 ///
2955 /// Check if this free is accessed after its argument has been test
2956 /// against NULL (property 0).
2957 /// If yes, it is legal to move this call in its predecessor block.
2958 ///
2959 /// The move is performed only if the block containing the call to free
2960 /// will be removed, i.e.:
2961 /// 1. it has only one predecessor P, and P has two successors
2962 /// 2. it contains the call, noops, and an unconditional branch
2963 /// 3. its successor is the same as its predecessor's successor
2964 ///
2965 /// The profitability is out-of concern here and this function should
2966 /// be called only if the caller knows this transformation would be
2967 /// profitable (e.g., for code size).
tryToMoveFreeBeforeNullTest(CallInst & FI,const DataLayout & DL)2968 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2969 const DataLayout &DL) {
2970 Value *Op = FI.getArgOperand(0);
2971 BasicBlock *FreeInstrBB = FI.getParent();
2972 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2973
2974 // Validate part of constraint #1: Only one predecessor
2975 // FIXME: We can extend the number of predecessor, but in that case, we
2976 // would duplicate the call to free in each predecessor and it may
2977 // not be profitable even for code size.
2978 if (!PredBB)
2979 return nullptr;
2980
2981 // Validate constraint #2: Does this block contains only the call to
2982 // free, noops, and an unconditional branch?
2983 BasicBlock *SuccBB;
2984 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2985 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2986 return nullptr;
2987
2988 // If there are only 2 instructions in the block, at this point,
2989 // this is the call to free and unconditional.
2990 // If there are more than 2 instructions, check that they are noops
2991 // i.e., they won't hurt the performance of the generated code.
2992 if (FreeInstrBB->size() != 2) {
2993 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2994 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2995 continue;
2996 auto *Cast = dyn_cast<CastInst>(&Inst);
2997 if (!Cast || !Cast->isNoopCast(DL))
2998 return nullptr;
2999 }
3000 }
3001 // Validate the rest of constraint #1 by matching on the pred branch.
3002 Instruction *TI = PredBB->getTerminator();
3003 BasicBlock *TrueBB, *FalseBB;
3004 ICmpInst::Predicate Pred;
3005 if (!match(TI, m_Br(m_ICmp(Pred,
3006 m_CombineOr(m_Specific(Op),
3007 m_Specific(Op->stripPointerCasts())),
3008 m_Zero()),
3009 TrueBB, FalseBB)))
3010 return nullptr;
3011 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
3012 return nullptr;
3013
3014 // Validate constraint #3: Ensure the null case just falls through.
3015 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3016 return nullptr;
3017 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3018 "Broken CFG: missing edge from predecessor to successor");
3019
3020 // At this point, we know that everything in FreeInstrBB can be moved
3021 // before TI.
3022 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3023 if (&Instr == FreeInstrBBTerminator)
3024 break;
3025 Instr.moveBefore(TI);
3026 }
3027 assert(FreeInstrBB->size() == 1 &&
3028 "Only the branch instruction should remain");
3029
3030 // Now that we've moved the call to free before the NULL check, we have to
3031 // remove any attributes on its parameter that imply it's non-null, because
3032 // those attributes might have only been valid because of the NULL check, and
3033 // we can get miscompiles if we keep them. This is conservative if non-null is
3034 // also implied by something other than the NULL check, but it's guaranteed to
3035 // be correct, and the conservativeness won't matter in practice, since the
3036 // attributes are irrelevant for the call to free itself and the pointer
3037 // shouldn't be used after the call.
3038 AttributeList Attrs = FI.getAttributes();
3039 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3040 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3041 if (Dereferenceable.isValid()) {
3042 uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3043 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3044 Attribute::Dereferenceable);
3045 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
3046 }
3047 FI.setAttributes(Attrs);
3048
3049 return &FI;
3050 }
3051
visitFree(CallInst & FI,Value * Op)3052 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) {
3053 // free undef -> unreachable.
3054 if (isa<UndefValue>(Op)) {
3055 // Leave a marker since we can't modify the CFG here.
3056 CreateNonTerminatorUnreachable(&FI);
3057 return eraseInstFromFunction(FI);
3058 }
3059
3060 // If we have 'free null' delete the instruction. This can happen in stl code
3061 // when lots of inlining happens.
3062 if (isa<ConstantPointerNull>(Op))
3063 return eraseInstFromFunction(FI);
3064
3065 // If we had free(realloc(...)) with no intervening uses, then eliminate the
3066 // realloc() entirely.
3067 CallInst *CI = dyn_cast<CallInst>(Op);
3068 if (CI && CI->hasOneUse())
3069 if (Value *ReallocatedOp = getReallocatedOperand(CI))
3070 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
3071
3072 // If we optimize for code size, try to move the call to free before the null
3073 // test so that simplify cfg can remove the empty block and dead code
3074 // elimination the branch. I.e., helps to turn something like:
3075 // if (foo) free(foo);
3076 // into
3077 // free(foo);
3078 //
3079 // Note that we can only do this for 'free' and not for any flavor of
3080 // 'operator delete'; there is no 'operator delete' symbol for which we are
3081 // permitted to invent a call, even if we're passing in a null pointer.
3082 if (MinimizeSize) {
3083 LibFunc Func;
3084 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3085 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
3086 return I;
3087 }
3088
3089 return nullptr;
3090 }
3091
isMustTailCall(Value * V)3092 static bool isMustTailCall(Value *V) {
3093 if (auto *CI = dyn_cast<CallInst>(V))
3094 return CI->isMustTailCall();
3095 return false;
3096 }
3097
visitReturnInst(ReturnInst & RI)3098 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
3099 if (RI.getNumOperands() == 0) // ret void
3100 return nullptr;
3101
3102 Value *ResultOp = RI.getOperand(0);
3103 Type *VTy = ResultOp->getType();
3104 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
3105 return nullptr;
3106
3107 // Don't replace result of musttail calls.
3108 if (isMustTailCall(ResultOp))
3109 return nullptr;
3110
3111 // There might be assume intrinsics dominating this return that completely
3112 // determine the value. If so, constant fold it.
3113 KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
3114 if (Known.isConstant())
3115 return replaceOperand(RI, 0,
3116 Constant::getIntegerValue(VTy, Known.getConstant()));
3117
3118 return nullptr;
3119 }
3120
3121 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
visitUnreachableInst(UnreachableInst & I)3122 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
3123 // Try to remove the previous instruction if it must lead to unreachable.
3124 // This includes instructions like stores and "llvm.assume" that may not get
3125 // removed by simple dead code elimination.
3126 while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3127 // While we theoretically can erase EH, that would result in a block that
3128 // used to start with an EH no longer starting with EH, which is invalid.
3129 // To make it valid, we'd need to fixup predecessors to no longer refer to
3130 // this block, but that changes CFG, which is not allowed in InstCombine.
3131 if (Prev->isEHPad())
3132 return nullptr; // Can not drop any more instructions. We're done here.
3133
3134 if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
3135 return nullptr; // Can not drop any more instructions. We're done here.
3136 // Otherwise, this instruction can be freely erased,
3137 // even if it is not side-effect free.
3138
3139 // A value may still have uses before we process it here (for example, in
3140 // another unreachable block), so convert those to poison.
3141 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3142 eraseInstFromFunction(*Prev);
3143 }
3144 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
3145 // FIXME: recurse into unconditional predecessors?
3146 return nullptr;
3147 }
3148
visitUnconditionalBranchInst(BranchInst & BI)3149 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
3150 assert(BI.isUnconditional() && "Only for unconditional branches.");
3151
3152 // If this store is the second-to-last instruction in the basic block
3153 // (excluding debug info and bitcasts of pointers) and if the block ends with
3154 // an unconditional branch, try to move the store to the successor block.
3155
3156 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3157 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3158 return BBI->isDebugOrPseudoInst() ||
3159 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3160 };
3161
3162 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3163 do {
3164 if (BBI != FirstInstr)
3165 --BBI;
3166 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3167
3168 return dyn_cast<StoreInst>(BBI);
3169 };
3170
3171 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3172 if (mergeStoreIntoSuccessor(*SI))
3173 return &BI;
3174
3175 return nullptr;
3176 }
3177
visitBranchInst(BranchInst & BI)3178 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3179 if (BI.isUnconditional())
3180 return visitUnconditionalBranchInst(BI);
3181
3182 // Change br (not X), label True, label False to: br X, label False, True
3183 Value *Cond = BI.getCondition();
3184 Value *X;
3185 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
3186 // Swap Destinations and condition...
3187 BI.swapSuccessors();
3188 return replaceOperand(BI, 0, X);
3189 }
3190
3191 // Canonicalize logical-and-with-invert as logical-or-with-invert.
3192 // This is done by inverting the condition and swapping successors:
3193 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
3194 Value *Y;
3195 if (isa<SelectInst>(Cond) &&
3196 match(Cond,
3197 m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) {
3198 Value *NotX = Builder.CreateNot(X, "not." + X->getName());
3199 Value *Or = Builder.CreateLogicalOr(NotX, Y);
3200 BI.swapSuccessors();
3201 return replaceOperand(BI, 0, Or);
3202 }
3203
3204 // If the condition is irrelevant, remove the use so that other
3205 // transforms on the condition become more effective.
3206 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
3207 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
3208
3209 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3210 CmpInst::Predicate Pred;
3211 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
3212 !isCanonicalPredicate(Pred)) {
3213 // Swap destinations and condition.
3214 auto *Cmp = cast<CmpInst>(Cond);
3215 Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
3216 BI.swapSuccessors();
3217 Worklist.push(Cmp);
3218 return &BI;
3219 }
3220
3221 return nullptr;
3222 }
3223
visitSwitchInst(SwitchInst & SI)3224 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3225 Value *Cond = SI.getCondition();
3226 Value *Op0;
3227 ConstantInt *AddRHS;
3228 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3229 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3230 for (auto Case : SI.cases()) {
3231 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3232 assert(isa<ConstantInt>(NewCase) &&
3233 "Result of expression should be constant");
3234 Case.setValue(cast<ConstantInt>(NewCase));
3235 }
3236 return replaceOperand(SI, 0, Op0);
3237 }
3238
3239 KnownBits Known = computeKnownBits(Cond, 0, &SI);
3240 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3241 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3242
3243 // Compute the number of leading bits we can ignore.
3244 // TODO: A better way to determine this would use ComputeNumSignBits().
3245 for (const auto &C : SI.cases()) {
3246 LeadingKnownZeros = std::min(
3247 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3248 LeadingKnownOnes = std::min(
3249 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3250 }
3251
3252 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3253
3254 // Shrink the condition operand if the new type is smaller than the old type.
3255 // But do not shrink to a non-standard type, because backend can't generate
3256 // good code for that yet.
3257 // TODO: We can make it aggressive again after fixing PR39569.
3258 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3259 shouldChangeType(Known.getBitWidth(), NewWidth)) {
3260 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3261 Builder.SetInsertPoint(&SI);
3262 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3263
3264 for (auto Case : SI.cases()) {
3265 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3266 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3267 }
3268 return replaceOperand(SI, 0, NewCond);
3269 }
3270
3271 return nullptr;
3272 }
3273
3274 Instruction *
foldExtractOfOverflowIntrinsic(ExtractValueInst & EV)3275 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
3276 auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand());
3277 if (!WO)
3278 return nullptr;
3279
3280 Intrinsic::ID OvID = WO->getIntrinsicID();
3281 const APInt *C = nullptr;
3282 if (match(WO->getRHS(), m_APIntAllowUndef(C))) {
3283 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
3284 OvID == Intrinsic::umul_with_overflow)) {
3285 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3286 if (C->isAllOnes())
3287 return BinaryOperator::CreateNeg(WO->getLHS());
3288 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
3289 if (C->isPowerOf2()) {
3290 return BinaryOperator::CreateShl(
3291 WO->getLHS(),
3292 ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
3293 }
3294 }
3295 }
3296
3297 // We're extracting from an overflow intrinsic. See if we're the only user.
3298 // That allows us to simplify multiple result intrinsics to simpler things
3299 // that just get one value.
3300 if (!WO->hasOneUse())
3301 return nullptr;
3302
3303 // Check if we're grabbing only the result of a 'with overflow' intrinsic
3304 // and replace it with a traditional binary instruction.
3305 if (*EV.idx_begin() == 0) {
3306 Instruction::BinaryOps BinOp = WO->getBinaryOp();
3307 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3308 // Replace the old instruction's uses with poison.
3309 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3310 eraseInstFromFunction(*WO);
3311 return BinaryOperator::Create(BinOp, LHS, RHS);
3312 }
3313
3314 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
3315
3316 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
3317 if (OvID == Intrinsic::usub_with_overflow)
3318 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
3319
3320 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
3321 // +1 is not possible because we assume signed values.
3322 if (OvID == Intrinsic::smul_with_overflow &&
3323 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
3324 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
3325
3326 // If only the overflow result is used, and the right hand side is a
3327 // constant (or constant splat), we can remove the intrinsic by directly
3328 // checking for overflow.
3329 if (C) {
3330 // Compute the no-wrap range for LHS given RHS=C, then construct an
3331 // equivalent icmp, potentially using an offset.
3332 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
3333 WO->getBinaryOp(), *C, WO->getNoWrapKind());
3334
3335 CmpInst::Predicate Pred;
3336 APInt NewRHSC, Offset;
3337 NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3338 auto *OpTy = WO->getRHS()->getType();
3339 auto *NewLHS = WO->getLHS();
3340 if (Offset != 0)
3341 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3342 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3343 ConstantInt::get(OpTy, NewRHSC));
3344 }
3345
3346 return nullptr;
3347 }
3348
visitExtractValueInst(ExtractValueInst & EV)3349 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3350 Value *Agg = EV.getAggregateOperand();
3351
3352 if (!EV.hasIndices())
3353 return replaceInstUsesWith(EV, Agg);
3354
3355 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
3356 SQ.getWithInstruction(&EV)))
3357 return replaceInstUsesWith(EV, V);
3358
3359 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3360 // We're extracting from an insertvalue instruction, compare the indices
3361 const unsigned *exti, *exte, *insi, *inse;
3362 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3363 exte = EV.idx_end(), inse = IV->idx_end();
3364 exti != exte && insi != inse;
3365 ++exti, ++insi) {
3366 if (*insi != *exti)
3367 // The insert and extract both reference distinctly different elements.
3368 // This means the extract is not influenced by the insert, and we can
3369 // replace the aggregate operand of the extract with the aggregate
3370 // operand of the insert. i.e., replace
3371 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3372 // %E = extractvalue { i32, { i32 } } %I, 0
3373 // with
3374 // %E = extractvalue { i32, { i32 } } %A, 0
3375 return ExtractValueInst::Create(IV->getAggregateOperand(),
3376 EV.getIndices());
3377 }
3378 if (exti == exte && insi == inse)
3379 // Both iterators are at the end: Index lists are identical. Replace
3380 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3381 // %C = extractvalue { i32, { i32 } } %B, 1, 0
3382 // with "i32 42"
3383 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3384 if (exti == exte) {
3385 // The extract list is a prefix of the insert list. i.e. replace
3386 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3387 // %E = extractvalue { i32, { i32 } } %I, 1
3388 // with
3389 // %X = extractvalue { i32, { i32 } } %A, 1
3390 // %E = insertvalue { i32 } %X, i32 42, 0
3391 // by switching the order of the insert and extract (though the
3392 // insertvalue should be left in, since it may have other uses).
3393 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3394 EV.getIndices());
3395 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3396 ArrayRef(insi, inse));
3397 }
3398 if (insi == inse)
3399 // The insert list is a prefix of the extract list
3400 // We can simply remove the common indices from the extract and make it
3401 // operate on the inserted value instead of the insertvalue result.
3402 // i.e., replace
3403 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3404 // %E = extractvalue { i32, { i32 } } %I, 1, 0
3405 // with
3406 // %E extractvalue { i32 } { i32 42 }, 0
3407 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3408 ArrayRef(exti, exte));
3409 }
3410
3411 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
3412 return R;
3413
3414 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
3415 // If the (non-volatile) load only has one use, we can rewrite this to a
3416 // load from a GEP. This reduces the size of the load. If a load is used
3417 // only by extractvalue instructions then this either must have been
3418 // optimized before, or it is a struct with padding, in which case we
3419 // don't want to do the transformation as it loses padding knowledge.
3420 if (L->isSimple() && L->hasOneUse()) {
3421 // extractvalue has integer indices, getelementptr has Value*s. Convert.
3422 SmallVector<Value*, 4> Indices;
3423 // Prefix an i32 0 since we need the first element.
3424 Indices.push_back(Builder.getInt32(0));
3425 for (unsigned Idx : EV.indices())
3426 Indices.push_back(Builder.getInt32(Idx));
3427
3428 // We need to insert these at the location of the old load, not at that of
3429 // the extractvalue.
3430 Builder.SetInsertPoint(L);
3431 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3432 L->getPointerOperand(), Indices);
3433 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3434 // Whatever aliasing information we had for the orignal load must also
3435 // hold for the smaller load, so propagate the annotations.
3436 NL->setAAMetadata(L->getAAMetadata());
3437 // Returning the load directly will cause the main loop to insert it in
3438 // the wrong spot, so use replaceInstUsesWith().
3439 return replaceInstUsesWith(EV, NL);
3440 }
3441 }
3442
3443 if (auto *PN = dyn_cast<PHINode>(Agg))
3444 if (Instruction *Res = foldOpIntoPhi(EV, PN))
3445 return Res;
3446
3447 // We could simplify extracts from other values. Note that nested extracts may
3448 // already be simplified implicitly by the above: extract (extract (insert) )
3449 // will be translated into extract ( insert ( extract ) ) first and then just
3450 // the value inserted, if appropriate. Similarly for extracts from single-use
3451 // loads: extract (extract (load)) will be translated to extract (load (gep))
3452 // and if again single-use then via load (gep (gep)) to load (gep).
3453 // However, double extracts from e.g. function arguments or return values
3454 // aren't handled yet.
3455 return nullptr;
3456 }
3457
3458 /// Return 'true' if the given typeinfo will match anything.
isCatchAll(EHPersonality Personality,Constant * TypeInfo)3459 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3460 switch (Personality) {
3461 case EHPersonality::GNU_C:
3462 case EHPersonality::GNU_C_SjLj:
3463 case EHPersonality::Rust:
3464 // The GCC C EH and Rust personality only exists to support cleanups, so
3465 // it's not clear what the semantics of catch clauses are.
3466 return false;
3467 case EHPersonality::Unknown:
3468 return false;
3469 case EHPersonality::GNU_Ada:
3470 // While __gnat_all_others_value will match any Ada exception, it doesn't
3471 // match foreign exceptions (or didn't, before gcc-4.7).
3472 return false;
3473 case EHPersonality::GNU_CXX:
3474 case EHPersonality::GNU_CXX_SjLj:
3475 case EHPersonality::GNU_ObjC:
3476 case EHPersonality::MSVC_X86SEH:
3477 case EHPersonality::MSVC_TableSEH:
3478 case EHPersonality::MSVC_CXX:
3479 case EHPersonality::CoreCLR:
3480 case EHPersonality::Wasm_CXX:
3481 case EHPersonality::XL_CXX:
3482 return TypeInfo->isNullValue();
3483 }
3484 llvm_unreachable("invalid enum");
3485 }
3486
shorter_filter(const Value * LHS,const Value * RHS)3487 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3488 return
3489 cast<ArrayType>(LHS->getType())->getNumElements()
3490 <
3491 cast<ArrayType>(RHS->getType())->getNumElements();
3492 }
3493
visitLandingPadInst(LandingPadInst & LI)3494 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3495 // The logic here should be correct for any real-world personality function.
3496 // However if that turns out not to be true, the offending logic can always
3497 // be conditioned on the personality function, like the catch-all logic is.
3498 EHPersonality Personality =
3499 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3500
3501 // Simplify the list of clauses, eg by removing repeated catch clauses
3502 // (these are often created by inlining).
3503 bool MakeNewInstruction = false; // If true, recreate using the following:
3504 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3505 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
3506
3507 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3508 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3509 bool isLastClause = i + 1 == e;
3510 if (LI.isCatch(i)) {
3511 // A catch clause.
3512 Constant *CatchClause = LI.getClause(i);
3513 Constant *TypeInfo = CatchClause->stripPointerCasts();
3514
3515 // If we already saw this clause, there is no point in having a second
3516 // copy of it.
3517 if (AlreadyCaught.insert(TypeInfo).second) {
3518 // This catch clause was not already seen.
3519 NewClauses.push_back(CatchClause);
3520 } else {
3521 // Repeated catch clause - drop the redundant copy.
3522 MakeNewInstruction = true;
3523 }
3524
3525 // If this is a catch-all then there is no point in keeping any following
3526 // clauses or marking the landingpad as having a cleanup.
3527 if (isCatchAll(Personality, TypeInfo)) {
3528 if (!isLastClause)
3529 MakeNewInstruction = true;
3530 CleanupFlag = false;
3531 break;
3532 }
3533 } else {
3534 // A filter clause. If any of the filter elements were already caught
3535 // then they can be dropped from the filter. It is tempting to try to
3536 // exploit the filter further by saying that any typeinfo that does not
3537 // occur in the filter can't be caught later (and thus can be dropped).
3538 // However this would be wrong, since typeinfos can match without being
3539 // equal (for example if one represents a C++ class, and the other some
3540 // class derived from it).
3541 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3542 Constant *FilterClause = LI.getClause(i);
3543 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3544 unsigned NumTypeInfos = FilterType->getNumElements();
3545
3546 // An empty filter catches everything, so there is no point in keeping any
3547 // following clauses or marking the landingpad as having a cleanup. By
3548 // dealing with this case here the following code is made a bit simpler.
3549 if (!NumTypeInfos) {
3550 NewClauses.push_back(FilterClause);
3551 if (!isLastClause)
3552 MakeNewInstruction = true;
3553 CleanupFlag = false;
3554 break;
3555 }
3556
3557 bool MakeNewFilter = false; // If true, make a new filter.
3558 SmallVector<Constant *, 16> NewFilterElts; // New elements.
3559 if (isa<ConstantAggregateZero>(FilterClause)) {
3560 // Not an empty filter - it contains at least one null typeinfo.
3561 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3562 Constant *TypeInfo =
3563 Constant::getNullValue(FilterType->getElementType());
3564 // If this typeinfo is a catch-all then the filter can never match.
3565 if (isCatchAll(Personality, TypeInfo)) {
3566 // Throw the filter away.
3567 MakeNewInstruction = true;
3568 continue;
3569 }
3570
3571 // There is no point in having multiple copies of this typeinfo, so
3572 // discard all but the first copy if there is more than one.
3573 NewFilterElts.push_back(TypeInfo);
3574 if (NumTypeInfos > 1)
3575 MakeNewFilter = true;
3576 } else {
3577 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3578 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3579 NewFilterElts.reserve(NumTypeInfos);
3580
3581 // Remove any filter elements that were already caught or that already
3582 // occurred in the filter. While there, see if any of the elements are
3583 // catch-alls. If so, the filter can be discarded.
3584 bool SawCatchAll = false;
3585 for (unsigned j = 0; j != NumTypeInfos; ++j) {
3586 Constant *Elt = Filter->getOperand(j);
3587 Constant *TypeInfo = Elt->stripPointerCasts();
3588 if (isCatchAll(Personality, TypeInfo)) {
3589 // This element is a catch-all. Bail out, noting this fact.
3590 SawCatchAll = true;
3591 break;
3592 }
3593
3594 // Even if we've seen a type in a catch clause, we don't want to
3595 // remove it from the filter. An unexpected type handler may be
3596 // set up for a call site which throws an exception of the same
3597 // type caught. In order for the exception thrown by the unexpected
3598 // handler to propagate correctly, the filter must be correctly
3599 // described for the call site.
3600 //
3601 // Example:
3602 //
3603 // void unexpected() { throw 1;}
3604 // void foo() throw (int) {
3605 // std::set_unexpected(unexpected);
3606 // try {
3607 // throw 2.0;
3608 // } catch (int i) {}
3609 // }
3610
3611 // There is no point in having multiple copies of the same typeinfo in
3612 // a filter, so only add it if we didn't already.
3613 if (SeenInFilter.insert(TypeInfo).second)
3614 NewFilterElts.push_back(cast<Constant>(Elt));
3615 }
3616 // A filter containing a catch-all cannot match anything by definition.
3617 if (SawCatchAll) {
3618 // Throw the filter away.
3619 MakeNewInstruction = true;
3620 continue;
3621 }
3622
3623 // If we dropped something from the filter, make a new one.
3624 if (NewFilterElts.size() < NumTypeInfos)
3625 MakeNewFilter = true;
3626 }
3627 if (MakeNewFilter) {
3628 FilterType = ArrayType::get(FilterType->getElementType(),
3629 NewFilterElts.size());
3630 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3631 MakeNewInstruction = true;
3632 }
3633
3634 NewClauses.push_back(FilterClause);
3635
3636 // If the new filter is empty then it will catch everything so there is
3637 // no point in keeping any following clauses or marking the landingpad
3638 // as having a cleanup. The case of the original filter being empty was
3639 // already handled above.
3640 if (MakeNewFilter && !NewFilterElts.size()) {
3641 assert(MakeNewInstruction && "New filter but not a new instruction!");
3642 CleanupFlag = false;
3643 break;
3644 }
3645 }
3646 }
3647
3648 // If several filters occur in a row then reorder them so that the shortest
3649 // filters come first (those with the smallest number of elements). This is
3650 // advantageous because shorter filters are more likely to match, speeding up
3651 // unwinding, but mostly because it increases the effectiveness of the other
3652 // filter optimizations below.
3653 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3654 unsigned j;
3655 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3656 for (j = i; j != e; ++j)
3657 if (!isa<ArrayType>(NewClauses[j]->getType()))
3658 break;
3659
3660 // Check whether the filters are already sorted by length. We need to know
3661 // if sorting them is actually going to do anything so that we only make a
3662 // new landingpad instruction if it does.
3663 for (unsigned k = i; k + 1 < j; ++k)
3664 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3665 // Not sorted, so sort the filters now. Doing an unstable sort would be
3666 // correct too but reordering filters pointlessly might confuse users.
3667 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3668 shorter_filter);
3669 MakeNewInstruction = true;
3670 break;
3671 }
3672
3673 // Look for the next batch of filters.
3674 i = j + 1;
3675 }
3676
3677 // If typeinfos matched if and only if equal, then the elements of a filter L
3678 // that occurs later than a filter F could be replaced by the intersection of
3679 // the elements of F and L. In reality two typeinfos can match without being
3680 // equal (for example if one represents a C++ class, and the other some class
3681 // derived from it) so it would be wrong to perform this transform in general.
3682 // However the transform is correct and useful if F is a subset of L. In that
3683 // case L can be replaced by F, and thus removed altogether since repeating a
3684 // filter is pointless. So here we look at all pairs of filters F and L where
3685 // L follows F in the list of clauses, and remove L if every element of F is
3686 // an element of L. This can occur when inlining C++ functions with exception
3687 // specifications.
3688 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3689 // Examine each filter in turn.
3690 Value *Filter = NewClauses[i];
3691 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3692 if (!FTy)
3693 // Not a filter - skip it.
3694 continue;
3695 unsigned FElts = FTy->getNumElements();
3696 // Examine each filter following this one. Doing this backwards means that
3697 // we don't have to worry about filters disappearing under us when removed.
3698 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3699 Value *LFilter = NewClauses[j];
3700 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3701 if (!LTy)
3702 // Not a filter - skip it.
3703 continue;
3704 // If Filter is a subset of LFilter, i.e. every element of Filter is also
3705 // an element of LFilter, then discard LFilter.
3706 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3707 // If Filter is empty then it is a subset of LFilter.
3708 if (!FElts) {
3709 // Discard LFilter.
3710 NewClauses.erase(J);
3711 MakeNewInstruction = true;
3712 // Move on to the next filter.
3713 continue;
3714 }
3715 unsigned LElts = LTy->getNumElements();
3716 // If Filter is longer than LFilter then it cannot be a subset of it.
3717 if (FElts > LElts)
3718 // Move on to the next filter.
3719 continue;
3720 // At this point we know that LFilter has at least one element.
3721 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3722 // Filter is a subset of LFilter iff Filter contains only zeros (as we
3723 // already know that Filter is not longer than LFilter).
3724 if (isa<ConstantAggregateZero>(Filter)) {
3725 assert(FElts <= LElts && "Should have handled this case earlier!");
3726 // Discard LFilter.
3727 NewClauses.erase(J);
3728 MakeNewInstruction = true;
3729 }
3730 // Move on to the next filter.
3731 continue;
3732 }
3733 ConstantArray *LArray = cast<ConstantArray>(LFilter);
3734 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3735 // Since Filter is non-empty and contains only zeros, it is a subset of
3736 // LFilter iff LFilter contains a zero.
3737 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3738 for (unsigned l = 0; l != LElts; ++l)
3739 if (LArray->getOperand(l)->isNullValue()) {
3740 // LFilter contains a zero - discard it.
3741 NewClauses.erase(J);
3742 MakeNewInstruction = true;
3743 break;
3744 }
3745 // Move on to the next filter.
3746 continue;
3747 }
3748 // At this point we know that both filters are ConstantArrays. Loop over
3749 // operands to see whether every element of Filter is also an element of
3750 // LFilter. Since filters tend to be short this is probably faster than
3751 // using a method that scales nicely.
3752 ConstantArray *FArray = cast<ConstantArray>(Filter);
3753 bool AllFound = true;
3754 for (unsigned f = 0; f != FElts; ++f) {
3755 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3756 AllFound = false;
3757 for (unsigned l = 0; l != LElts; ++l) {
3758 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3759 if (LTypeInfo == FTypeInfo) {
3760 AllFound = true;
3761 break;
3762 }
3763 }
3764 if (!AllFound)
3765 break;
3766 }
3767 if (AllFound) {
3768 // Discard LFilter.
3769 NewClauses.erase(J);
3770 MakeNewInstruction = true;
3771 }
3772 // Move on to the next filter.
3773 }
3774 }
3775
3776 // If we changed any of the clauses, replace the old landingpad instruction
3777 // with a new one.
3778 if (MakeNewInstruction) {
3779 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3780 NewClauses.size());
3781 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3782 NLI->addClause(NewClauses[i]);
3783 // A landing pad with no clauses must have the cleanup flag set. It is
3784 // theoretically possible, though highly unlikely, that we eliminated all
3785 // clauses. If so, force the cleanup flag to true.
3786 if (NewClauses.empty())
3787 CleanupFlag = true;
3788 NLI->setCleanup(CleanupFlag);
3789 return NLI;
3790 }
3791
3792 // Even if none of the clauses changed, we may nonetheless have understood
3793 // that the cleanup flag is pointless. Clear it if so.
3794 if (LI.isCleanup() != CleanupFlag) {
3795 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3796 LI.setCleanup(CleanupFlag);
3797 return &LI;
3798 }
3799
3800 return nullptr;
3801 }
3802
3803 Value *
pushFreezeToPreventPoisonFromPropagating(FreezeInst & OrigFI)3804 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3805 // Try to push freeze through instructions that propagate but don't produce
3806 // poison as far as possible. If an operand of freeze follows three
3807 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3808 // guaranteed-non-poison operands then push the freeze through to the one
3809 // operand that is not guaranteed non-poison. The actual transform is as
3810 // follows.
3811 // Op1 = ... ; Op1 can be posion
3812 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3813 // ; single guaranteed-non-poison operands
3814 // ... = Freeze(Op0)
3815 // =>
3816 // Op1 = ...
3817 // Op1.fr = Freeze(Op1)
3818 // ... = Inst(Op1.fr, NonPoisonOps...)
3819 auto *OrigOp = OrigFI.getOperand(0);
3820 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3821
3822 // While we could change the other users of OrigOp to use freeze(OrigOp), that
3823 // potentially reduces their optimization potential, so let's only do this iff
3824 // the OrigOp is only used by the freeze.
3825 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3826 return nullptr;
3827
3828 // We can't push the freeze through an instruction which can itself create
3829 // poison. If the only source of new poison is flags, we can simply
3830 // strip them (since we know the only use is the freeze and nothing can
3831 // benefit from them.)
3832 if (canCreateUndefOrPoison(cast<Operator>(OrigOp),
3833 /*ConsiderFlagsAndMetadata*/ false))
3834 return nullptr;
3835
3836 // If operand is guaranteed not to be poison, there is no need to add freeze
3837 // to the operand. So we first find the operand that is not guaranteed to be
3838 // poison.
3839 Use *MaybePoisonOperand = nullptr;
3840 for (Use &U : OrigOpInst->operands()) {
3841 if (isa<MetadataAsValue>(U.get()) ||
3842 isGuaranteedNotToBeUndefOrPoison(U.get()))
3843 continue;
3844 if (!MaybePoisonOperand)
3845 MaybePoisonOperand = &U;
3846 else
3847 return nullptr;
3848 }
3849
3850 OrigOpInst->dropPoisonGeneratingFlagsAndMetadata();
3851
3852 // If all operands are guaranteed to be non-poison, we can drop freeze.
3853 if (!MaybePoisonOperand)
3854 return OrigOp;
3855
3856 Builder.SetInsertPoint(OrigOpInst);
3857 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
3858 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3859
3860 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3861 return OrigOp;
3862 }
3863
foldFreezeIntoRecurrence(FreezeInst & FI,PHINode * PN)3864 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI,
3865 PHINode *PN) {
3866 // Detect whether this is a recurrence with a start value and some number of
3867 // backedge values. We'll check whether we can push the freeze through the
3868 // backedge values (possibly dropping poison flags along the way) until we
3869 // reach the phi again. In that case, we can move the freeze to the start
3870 // value.
3871 Use *StartU = nullptr;
3872 SmallVector<Value *> Worklist;
3873 for (Use &U : PN->incoming_values()) {
3874 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
3875 // Add backedge value to worklist.
3876 Worklist.push_back(U.get());
3877 continue;
3878 }
3879
3880 // Don't bother handling multiple start values.
3881 if (StartU)
3882 return nullptr;
3883 StartU = &U;
3884 }
3885
3886 if (!StartU || Worklist.empty())
3887 return nullptr; // Not a recurrence.
3888
3889 Value *StartV = StartU->get();
3890 BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
3891 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
3892 // We can't insert freeze if the the start value is the result of the
3893 // terminator (e.g. an invoke).
3894 if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
3895 return nullptr;
3896
3897 SmallPtrSet<Value *, 32> Visited;
3898 SmallVector<Instruction *> DropFlags;
3899 while (!Worklist.empty()) {
3900 Value *V = Worklist.pop_back_val();
3901 if (!Visited.insert(V).second)
3902 continue;
3903
3904 if (Visited.size() > 32)
3905 return nullptr; // Limit the total number of values we inspect.
3906
3907 // Assume that PN is non-poison, because it will be after the transform.
3908 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
3909 continue;
3910
3911 Instruction *I = dyn_cast<Instruction>(V);
3912 if (!I || canCreateUndefOrPoison(cast<Operator>(I),
3913 /*ConsiderFlagsAndMetadata*/ false))
3914 return nullptr;
3915
3916 DropFlags.push_back(I);
3917 append_range(Worklist, I->operands());
3918 }
3919
3920 for (Instruction *I : DropFlags)
3921 I->dropPoisonGeneratingFlagsAndMetadata();
3922
3923 if (StartNeedsFreeze) {
3924 Builder.SetInsertPoint(StartBB->getTerminator());
3925 Value *FrozenStartV = Builder.CreateFreeze(StartV,
3926 StartV->getName() + ".fr");
3927 replaceUse(*StartU, FrozenStartV);
3928 }
3929 return replaceInstUsesWith(FI, PN);
3930 }
3931
freezeOtherUses(FreezeInst & FI)3932 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) {
3933 Value *Op = FI.getOperand(0);
3934
3935 if (isa<Constant>(Op) || Op->hasOneUse())
3936 return false;
3937
3938 // Move the freeze directly after the definition of its operand, so that
3939 // it dominates the maximum number of uses. Note that it may not dominate
3940 // *all* uses if the operand is an invoke/callbr and the use is in a phi on
3941 // the normal/default destination. This is why the domination check in the
3942 // replacement below is still necessary.
3943 Instruction *MoveBefore;
3944 if (isa<Argument>(Op)) {
3945 MoveBefore =
3946 &*FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
3947 } else {
3948 MoveBefore = cast<Instruction>(Op)->getInsertionPointAfterDef();
3949 if (!MoveBefore)
3950 return false;
3951 }
3952
3953 bool Changed = false;
3954 if (&FI != MoveBefore) {
3955 FI.moveBefore(MoveBefore);
3956 Changed = true;
3957 }
3958
3959 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3960 bool Dominates = DT.dominates(&FI, U);
3961 Changed |= Dominates;
3962 return Dominates;
3963 });
3964
3965 return Changed;
3966 }
3967
visitFreeze(FreezeInst & I)3968 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3969 Value *Op0 = I.getOperand(0);
3970
3971 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3972 return replaceInstUsesWith(I, V);
3973
3974 // freeze (phi const, x) --> phi const, (freeze x)
3975 if (auto *PN = dyn_cast<PHINode>(Op0)) {
3976 if (Instruction *NV = foldOpIntoPhi(I, PN))
3977 return NV;
3978 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
3979 return NV;
3980 }
3981
3982 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3983 return replaceInstUsesWith(I, NI);
3984
3985 // If I is freeze(undef), check its uses and fold it to a fixed constant.
3986 // - or: pick -1
3987 // - select's condition: if the true value is constant, choose it by making
3988 // the condition true.
3989 // - default: pick 0
3990 //
3991 // Note that this transform is intentionally done here rather than
3992 // via an analysis in InstSimplify or at individual user sites. That is
3993 // because we must produce the same value for all uses of the freeze -
3994 // it's the reason "freeze" exists!
3995 //
3996 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
3997 // duplicating logic for binops at least.
3998 auto getUndefReplacement = [&I](Type *Ty) {
3999 Constant *BestValue = nullptr;
4000 Constant *NullValue = Constant::getNullValue(Ty);
4001 for (const auto *U : I.users()) {
4002 Constant *C = NullValue;
4003 if (match(U, m_Or(m_Value(), m_Value())))
4004 C = ConstantInt::getAllOnesValue(Ty);
4005 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
4006 C = ConstantInt::getTrue(Ty);
4007
4008 if (!BestValue)
4009 BestValue = C;
4010 else if (BestValue != C)
4011 BestValue = NullValue;
4012 }
4013 assert(BestValue && "Must have at least one use");
4014 return BestValue;
4015 };
4016
4017 if (match(Op0, m_Undef()))
4018 return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
4019
4020 Constant *C;
4021 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) {
4022 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType());
4023 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC));
4024 }
4025
4026 // Replace uses of Op with freeze(Op).
4027 if (freezeOtherUses(I))
4028 return &I;
4029
4030 return nullptr;
4031 }
4032
4033 /// Check for case where the call writes to an otherwise dead alloca. This
4034 /// shows up for unused out-params in idiomatic C/C++ code. Note that this
4035 /// helper *only* analyzes the write; doesn't check any other legality aspect.
SoleWriteToDeadLocal(Instruction * I,TargetLibraryInfo & TLI)4036 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
4037 auto *CB = dyn_cast<CallBase>(I);
4038 if (!CB)
4039 // TODO: handle e.g. store to alloca here - only worth doing if we extend
4040 // to allow reload along used path as described below. Otherwise, this
4041 // is simply a store to a dead allocation which will be removed.
4042 return false;
4043 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
4044 if (!Dest)
4045 return false;
4046 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
4047 if (!AI)
4048 // TODO: allow malloc?
4049 return false;
4050 // TODO: allow memory access dominated by move point? Note that since AI
4051 // could have a reference to itself captured by the call, we would need to
4052 // account for cycles in doing so.
4053 SmallVector<const User *> AllocaUsers;
4054 SmallPtrSet<const User *, 4> Visited;
4055 auto pushUsers = [&](const Instruction &I) {
4056 for (const User *U : I.users()) {
4057 if (Visited.insert(U).second)
4058 AllocaUsers.push_back(U);
4059 }
4060 };
4061 pushUsers(*AI);
4062 while (!AllocaUsers.empty()) {
4063 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
4064 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
4065 isa<AddrSpaceCastInst>(UserI)) {
4066 pushUsers(*UserI);
4067 continue;
4068 }
4069 if (UserI == CB)
4070 continue;
4071 // TODO: support lifetime.start/end here
4072 return false;
4073 }
4074 return true;
4075 }
4076
4077 /// Try to move the specified instruction from its current block into the
4078 /// beginning of DestBlock, which can only happen if it's safe to move the
4079 /// instruction past all of the instructions between it and the end of its
4080 /// block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock,TargetLibraryInfo & TLI)4081 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock,
4082 TargetLibraryInfo &TLI) {
4083 BasicBlock *SrcBlock = I->getParent();
4084
4085 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
4086 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
4087 I->isTerminator())
4088 return false;
4089
4090 // Do not sink static or dynamic alloca instructions. Static allocas must
4091 // remain in the entry block, and dynamic allocas must not be sunk in between
4092 // a stacksave / stackrestore pair, which would incorrectly shorten its
4093 // lifetime.
4094 if (isa<AllocaInst>(I))
4095 return false;
4096
4097 // Do not sink into catchswitch blocks.
4098 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
4099 return false;
4100
4101 // Do not sink convergent call instructions.
4102 if (auto *CI = dyn_cast<CallInst>(I)) {
4103 if (CI->isConvergent())
4104 return false;
4105 }
4106
4107 // Unless we can prove that the memory write isn't visibile except on the
4108 // path we're sinking to, we must bail.
4109 if (I->mayWriteToMemory()) {
4110 if (!SoleWriteToDeadLocal(I, TLI))
4111 return false;
4112 }
4113
4114 // We can only sink load instructions if there is nothing between the load and
4115 // the end of block that could change the value.
4116 if (I->mayReadFromMemory()) {
4117 // We don't want to do any sophisticated alias analysis, so we only check
4118 // the instructions after I in I's parent block if we try to sink to its
4119 // successor block.
4120 if (DestBlock->getUniquePredecessor() != I->getParent())
4121 return false;
4122 for (BasicBlock::iterator Scan = std::next(I->getIterator()),
4123 E = I->getParent()->end();
4124 Scan != E; ++Scan)
4125 if (Scan->mayWriteToMemory())
4126 return false;
4127 }
4128
4129 I->dropDroppableUses([DestBlock](const Use *U) {
4130 if (auto *I = dyn_cast<Instruction>(U->getUser()))
4131 return I->getParent() != DestBlock;
4132 return true;
4133 });
4134 /// FIXME: We could remove droppable uses that are not dominated by
4135 /// the new position.
4136
4137 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
4138 I->moveBefore(&*InsertPos);
4139 ++NumSunkInst;
4140
4141 // Also sink all related debug uses from the source basic block. Otherwise we
4142 // get debug use before the def. Attempt to salvage debug uses first, to
4143 // maximise the range variables have location for. If we cannot salvage, then
4144 // mark the location undef: we know it was supposed to receive a new location
4145 // here, but that computation has been sunk.
4146 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
4147 findDbgUsers(DbgUsers, I);
4148 // Process the sinking DbgUsers in reverse order, as we only want to clone the
4149 // last appearing debug intrinsic for each given variable.
4150 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
4151 for (DbgVariableIntrinsic *DVI : DbgUsers)
4152 if (DVI->getParent() == SrcBlock)
4153 DbgUsersToSink.push_back(DVI);
4154 llvm::sort(DbgUsersToSink,
4155 [](auto *A, auto *B) { return B->comesBefore(A); });
4156
4157 SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
4158 SmallSet<DebugVariable, 4> SunkVariables;
4159 for (auto *User : DbgUsersToSink) {
4160 // A dbg.declare instruction should not be cloned, since there can only be
4161 // one per variable fragment. It should be left in the original place
4162 // because the sunk instruction is not an alloca (otherwise we could not be
4163 // here).
4164 if (isa<DbgDeclareInst>(User))
4165 continue;
4166
4167 DebugVariable DbgUserVariable =
4168 DebugVariable(User->getVariable(), User->getExpression(),
4169 User->getDebugLoc()->getInlinedAt());
4170
4171 if (!SunkVariables.insert(DbgUserVariable).second)
4172 continue;
4173
4174 // Leave dbg.assign intrinsics in their original positions and there should
4175 // be no need to insert a clone.
4176 if (isa<DbgAssignIntrinsic>(User))
4177 continue;
4178
4179 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
4180 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
4181 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
4182 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
4183 }
4184
4185 // Perform salvaging without the clones, then sink the clones.
4186 if (!DIIClones.empty()) {
4187 salvageDebugInfoForDbgValues(*I, DbgUsers);
4188 // The clones are in reverse order of original appearance, reverse again to
4189 // maintain the original order.
4190 for (auto &DIIClone : llvm::reverse(DIIClones)) {
4191 DIIClone->insertBefore(&*InsertPos);
4192 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
4193 }
4194 }
4195
4196 return true;
4197 }
4198
run()4199 bool InstCombinerImpl::run() {
4200 while (!Worklist.isEmpty()) {
4201 // Walk deferred instructions in reverse order, and push them to the
4202 // worklist, which means they'll end up popped from the worklist in-order.
4203 while (Instruction *I = Worklist.popDeferred()) {
4204 // Check to see if we can DCE the instruction. We do this already here to
4205 // reduce the number of uses and thus allow other folds to trigger.
4206 // Note that eraseInstFromFunction() may push additional instructions on
4207 // the deferred worklist, so this will DCE whole instruction chains.
4208 if (isInstructionTriviallyDead(I, &TLI)) {
4209 eraseInstFromFunction(*I);
4210 ++NumDeadInst;
4211 continue;
4212 }
4213
4214 Worklist.push(I);
4215 }
4216
4217 Instruction *I = Worklist.removeOne();
4218 if (I == nullptr) continue; // skip null values.
4219
4220 // Check to see if we can DCE the instruction.
4221 if (isInstructionTriviallyDead(I, &TLI)) {
4222 eraseInstFromFunction(*I);
4223 ++NumDeadInst;
4224 continue;
4225 }
4226
4227 if (!DebugCounter::shouldExecute(VisitCounter))
4228 continue;
4229
4230 // Instruction isn't dead, see if we can constant propagate it.
4231 if (!I->use_empty() &&
4232 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
4233 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
4234 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
4235 << '\n');
4236
4237 // Add operands to the worklist.
4238 replaceInstUsesWith(*I, C);
4239 ++NumConstProp;
4240 if (isInstructionTriviallyDead(I, &TLI))
4241 eraseInstFromFunction(*I);
4242 MadeIRChange = true;
4243 continue;
4244 }
4245 }
4246
4247 // See if we can trivially sink this instruction to its user if we can
4248 // prove that the successor is not executed more frequently than our block.
4249 // Return the UserBlock if successful.
4250 auto getOptionalSinkBlockForInst =
4251 [this](Instruction *I) -> std::optional<BasicBlock *> {
4252 if (!EnableCodeSinking)
4253 return std::nullopt;
4254
4255 BasicBlock *BB = I->getParent();
4256 BasicBlock *UserParent = nullptr;
4257 unsigned NumUsers = 0;
4258
4259 for (auto *U : I->users()) {
4260 if (U->isDroppable())
4261 continue;
4262 if (NumUsers > MaxSinkNumUsers)
4263 return std::nullopt;
4264
4265 Instruction *UserInst = cast<Instruction>(U);
4266 // Special handling for Phi nodes - get the block the use occurs in.
4267 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
4268 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
4269 if (PN->getIncomingValue(i) == I) {
4270 // Bail out if we have uses in different blocks. We don't do any
4271 // sophisticated analysis (i.e finding NearestCommonDominator of
4272 // these use blocks).
4273 if (UserParent && UserParent != PN->getIncomingBlock(i))
4274 return std::nullopt;
4275 UserParent = PN->getIncomingBlock(i);
4276 }
4277 }
4278 assert(UserParent && "expected to find user block!");
4279 } else {
4280 if (UserParent && UserParent != UserInst->getParent())
4281 return std::nullopt;
4282 UserParent = UserInst->getParent();
4283 }
4284
4285 // Make sure these checks are done only once, naturally we do the checks
4286 // the first time we get the userparent, this will save compile time.
4287 if (NumUsers == 0) {
4288 // Try sinking to another block. If that block is unreachable, then do
4289 // not bother. SimplifyCFG should handle it.
4290 if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
4291 return std::nullopt;
4292
4293 auto *Term = UserParent->getTerminator();
4294 // See if the user is one of our successors that has only one
4295 // predecessor, so that we don't have to split the critical edge.
4296 // Another option where we can sink is a block that ends with a
4297 // terminator that does not pass control to other block (such as
4298 // return or unreachable or resume). In this case:
4299 // - I dominates the User (by SSA form);
4300 // - the User will be executed at most once.
4301 // So sinking I down to User is always profitable or neutral.
4302 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
4303 return std::nullopt;
4304
4305 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
4306 }
4307
4308 NumUsers++;
4309 }
4310
4311 // No user or only has droppable users.
4312 if (!UserParent)
4313 return std::nullopt;
4314
4315 return UserParent;
4316 };
4317
4318 auto OptBB = getOptionalSinkBlockForInst(I);
4319 if (OptBB) {
4320 auto *UserParent = *OptBB;
4321 // Okay, the CFG is simple enough, try to sink this instruction.
4322 if (TryToSinkInstruction(I, UserParent, TLI)) {
4323 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
4324 MadeIRChange = true;
4325 // We'll add uses of the sunk instruction below, but since
4326 // sinking can expose opportunities for it's *operands* add
4327 // them to the worklist
4328 for (Use &U : I->operands())
4329 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
4330 Worklist.push(OpI);
4331 }
4332 }
4333
4334 // Now that we have an instruction, try combining it to simplify it.
4335 Builder.SetInsertPoint(I);
4336 Builder.CollectMetadataToCopy(
4337 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4338
4339 #ifndef NDEBUG
4340 std::string OrigI;
4341 #endif
4342 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
4343 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
4344
4345 if (Instruction *Result = visit(*I)) {
4346 ++NumCombined;
4347 // Should we replace the old instruction with a new one?
4348 if (Result != I) {
4349 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
4350 << " New = " << *Result << '\n');
4351
4352 Result->copyMetadata(*I,
4353 {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4354 // Everything uses the new instruction now.
4355 I->replaceAllUsesWith(Result);
4356
4357 // Move the name to the new instruction first.
4358 Result->takeName(I);
4359
4360 // Insert the new instruction into the basic block...
4361 BasicBlock *InstParent = I->getParent();
4362 BasicBlock::iterator InsertPos = I->getIterator();
4363
4364 // Are we replace a PHI with something that isn't a PHI, or vice versa?
4365 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
4366 // We need to fix up the insertion point.
4367 if (isa<PHINode>(I)) // PHI -> Non-PHI
4368 InsertPos = InstParent->getFirstInsertionPt();
4369 else // Non-PHI -> PHI
4370 InsertPos = InstParent->getFirstNonPHI()->getIterator();
4371 }
4372
4373 Result->insertInto(InstParent, InsertPos);
4374
4375 // Push the new instruction and any users onto the worklist.
4376 Worklist.pushUsersToWorkList(*Result);
4377 Worklist.push(Result);
4378
4379 eraseInstFromFunction(*I);
4380 } else {
4381 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
4382 << " New = " << *I << '\n');
4383
4384 // If the instruction was modified, it's possible that it is now dead.
4385 // if so, remove it.
4386 if (isInstructionTriviallyDead(I, &TLI)) {
4387 eraseInstFromFunction(*I);
4388 } else {
4389 Worklist.pushUsersToWorkList(*I);
4390 Worklist.push(I);
4391 }
4392 }
4393 MadeIRChange = true;
4394 }
4395 }
4396
4397 Worklist.zap();
4398 return MadeIRChange;
4399 }
4400
4401 // Track the scopes used by !alias.scope and !noalias. In a function, a
4402 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
4403 // by both sets. If not, the declaration of the scope can be safely omitted.
4404 // The MDNode of the scope can be omitted as well for the instructions that are
4405 // part of this function. We do not do that at this point, as this might become
4406 // too time consuming to do.
4407 class AliasScopeTracker {
4408 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
4409 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
4410
4411 public:
analyse(Instruction * I)4412 void analyse(Instruction *I) {
4413 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
4414 if (!I->hasMetadataOtherThanDebugLoc())
4415 return;
4416
4417 auto Track = [](Metadata *ScopeList, auto &Container) {
4418 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
4419 if (!MDScopeList || !Container.insert(MDScopeList).second)
4420 return;
4421 for (const auto &MDOperand : MDScopeList->operands())
4422 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
4423 Container.insert(MDScope);
4424 };
4425
4426 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
4427 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
4428 }
4429
isNoAliasScopeDeclDead(Instruction * Inst)4430 bool isNoAliasScopeDeclDead(Instruction *Inst) {
4431 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
4432 if (!Decl)
4433 return false;
4434
4435 assert(Decl->use_empty() &&
4436 "llvm.experimental.noalias.scope.decl in use ?");
4437 const MDNode *MDSL = Decl->getScopeList();
4438 assert(MDSL->getNumOperands() == 1 &&
4439 "llvm.experimental.noalias.scope should refer to a single scope");
4440 auto &MDOperand = MDSL->getOperand(0);
4441 if (auto *MD = dyn_cast<MDNode>(MDOperand))
4442 return !UsedAliasScopesAndLists.contains(MD) ||
4443 !UsedNoAliasScopesAndLists.contains(MD);
4444
4445 // Not an MDNode ? throw away.
4446 return true;
4447 }
4448 };
4449
4450 /// Populate the IC worklist from a function, by walking it in depth-first
4451 /// order and adding all reachable code to the worklist.
4452 ///
4453 /// This has a couple of tricks to make the code faster and more powerful. In
4454 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4455 /// them to the worklist (this significantly speeds up instcombine on code where
4456 /// many instructions are dead or constant). Additionally, if we find a branch
4457 /// whose condition is a known constant, we only visit the reachable successors.
prepareICWorklistFromFunction(Function & F,const DataLayout & DL,const TargetLibraryInfo * TLI,InstructionWorklist & ICWorklist)4458 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
4459 const TargetLibraryInfo *TLI,
4460 InstructionWorklist &ICWorklist) {
4461 bool MadeIRChange = false;
4462 SmallPtrSet<BasicBlock *, 32> Visited;
4463 SmallVector<BasicBlock*, 256> Worklist;
4464 Worklist.push_back(&F.front());
4465
4466 SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4467 DenseMap<Constant *, Constant *> FoldedConstants;
4468 AliasScopeTracker SeenAliasScopes;
4469
4470 do {
4471 BasicBlock *BB = Worklist.pop_back_val();
4472
4473 // We have now visited this block! If we've already been here, ignore it.
4474 if (!Visited.insert(BB).second)
4475 continue;
4476
4477 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4478 // ConstantProp instruction if trivially constant.
4479 if (!Inst.use_empty() &&
4480 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4481 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) {
4482 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4483 << '\n');
4484 Inst.replaceAllUsesWith(C);
4485 ++NumConstProp;
4486 if (isInstructionTriviallyDead(&Inst, TLI))
4487 Inst.eraseFromParent();
4488 MadeIRChange = true;
4489 continue;
4490 }
4491
4492 // See if we can constant fold its operands.
4493 for (Use &U : Inst.operands()) {
4494 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4495 continue;
4496
4497 auto *C = cast<Constant>(U);
4498 Constant *&FoldRes = FoldedConstants[C];
4499 if (!FoldRes)
4500 FoldRes = ConstantFoldConstant(C, DL, TLI);
4501
4502 if (FoldRes != C) {
4503 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4504 << "\n Old = " << *C
4505 << "\n New = " << *FoldRes << '\n');
4506 U = FoldRes;
4507 MadeIRChange = true;
4508 }
4509 }
4510
4511 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4512 // these call instructions consumes non-trivial amount of time and
4513 // provides no value for the optimization.
4514 if (!Inst.isDebugOrPseudoInst()) {
4515 InstrsForInstructionWorklist.push_back(&Inst);
4516 SeenAliasScopes.analyse(&Inst);
4517 }
4518 }
4519
4520 // Recursively visit successors. If this is a branch or switch on a
4521 // constant, only visit the reachable successor.
4522 Instruction *TI = BB->getTerminator();
4523 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4524 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4525 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4526 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4527 Worklist.push_back(ReachableBB);
4528 continue;
4529 }
4530 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4531 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4532 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4533 continue;
4534 }
4535 }
4536
4537 append_range(Worklist, successors(TI));
4538 } while (!Worklist.empty());
4539
4540 // Remove instructions inside unreachable blocks. This prevents the
4541 // instcombine code from having to deal with some bad special cases, and
4542 // reduces use counts of instructions.
4543 for (BasicBlock &BB : F) {
4544 if (Visited.count(&BB))
4545 continue;
4546
4547 unsigned NumDeadInstInBB;
4548 unsigned NumDeadDbgInstInBB;
4549 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4550 removeAllNonTerminatorAndEHPadInstructions(&BB);
4551
4552 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4553 NumDeadInst += NumDeadInstInBB;
4554 }
4555
4556 // Once we've found all of the instructions to add to instcombine's worklist,
4557 // add them in reverse order. This way instcombine will visit from the top
4558 // of the function down. This jives well with the way that it adds all uses
4559 // of instructions to the worklist after doing a transformation, thus avoiding
4560 // some N^2 behavior in pathological cases.
4561 ICWorklist.reserve(InstrsForInstructionWorklist.size());
4562 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4563 // DCE instruction if trivially dead. As we iterate in reverse program
4564 // order here, we will clean up whole chains of dead instructions.
4565 if (isInstructionTriviallyDead(Inst, TLI) ||
4566 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4567 ++NumDeadInst;
4568 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4569 salvageDebugInfo(*Inst);
4570 Inst->eraseFromParent();
4571 MadeIRChange = true;
4572 continue;
4573 }
4574
4575 ICWorklist.push(Inst);
4576 }
4577
4578 return MadeIRChange;
4579 }
4580
combineInstructionsOverFunction(Function & F,InstructionWorklist & Worklist,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,TargetTransformInfo & TTI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,unsigned MaxIterations,LoopInfo * LI)4581 static bool combineInstructionsOverFunction(
4582 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4583 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4584 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4585 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4586 auto &DL = F.getParent()->getDataLayout();
4587 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4588
4589 /// Builder - This is an IRBuilder that automatically inserts new
4590 /// instructions into the worklist when they are created.
4591 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4592 F.getContext(), TargetFolder(DL),
4593 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4594 Worklist.add(I);
4595 if (auto *Assume = dyn_cast<AssumeInst>(I))
4596 AC.registerAssumption(Assume);
4597 }));
4598
4599 // Lower dbg.declare intrinsics otherwise their value may be clobbered
4600 // by instcombiner.
4601 bool MadeIRChange = false;
4602 if (ShouldLowerDbgDeclare)
4603 MadeIRChange = LowerDbgDeclare(F);
4604 // LowerDbgDeclare calls RemoveRedundantDbgInstrs, but LowerDbgDeclare will
4605 // almost never return true when running an assignment tracking build. Take
4606 // this opportunity to do some clean up for assignment tracking builds too.
4607 if (!MadeIRChange && isAssignmentTrackingEnabled(*F.getParent())) {
4608 for (auto &BB : F)
4609 RemoveRedundantDbgInstrs(&BB);
4610 }
4611
4612 // Iterate while there is work to do.
4613 unsigned Iteration = 0;
4614 while (true) {
4615 ++NumWorklistIterations;
4616 ++Iteration;
4617
4618 if (Iteration > InfiniteLoopDetectionThreshold) {
4619 report_fatal_error(
4620 "Instruction Combining seems stuck in an infinite loop after " +
4621 Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4622 }
4623
4624 if (Iteration > MaxIterations) {
4625 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4626 << " on " << F.getName()
4627 << " reached; stopping before reaching a fixpoint\n");
4628 break;
4629 }
4630
4631 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4632 << F.getName() << "\n");
4633
4634 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4635
4636 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4637 ORE, BFI, PSI, DL, LI);
4638 IC.MaxArraySizeForCombine = MaxArraySize;
4639
4640 if (!IC.run())
4641 break;
4642
4643 MadeIRChange = true;
4644 }
4645
4646 return MadeIRChange;
4647 }
4648
InstCombinePass()4649 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4650
InstCombinePass(unsigned MaxIterations)4651 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4652 : MaxIterations(MaxIterations) {}
4653
run(Function & F,FunctionAnalysisManager & AM)4654 PreservedAnalyses InstCombinePass::run(Function &F,
4655 FunctionAnalysisManager &AM) {
4656 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4657 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4658 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4659 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4660 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4661
4662 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4663
4664 auto *AA = &AM.getResult<AAManager>(F);
4665 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4666 ProfileSummaryInfo *PSI =
4667 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4668 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4669 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4670
4671 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4672 BFI, PSI, MaxIterations, LI))
4673 // No changes, all analyses are preserved.
4674 return PreservedAnalyses::all();
4675
4676 // Mark all the analyses that instcombine updates as preserved.
4677 PreservedAnalyses PA;
4678 PA.preserveSet<CFGAnalyses>();
4679 return PA;
4680 }
4681
getAnalysisUsage(AnalysisUsage & AU) const4682 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4683 AU.setPreservesCFG();
4684 AU.addRequired<AAResultsWrapperPass>();
4685 AU.addRequired<AssumptionCacheTracker>();
4686 AU.addRequired<TargetLibraryInfoWrapperPass>();
4687 AU.addRequired<TargetTransformInfoWrapperPass>();
4688 AU.addRequired<DominatorTreeWrapperPass>();
4689 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4690 AU.addPreserved<DominatorTreeWrapperPass>();
4691 AU.addPreserved<AAResultsWrapperPass>();
4692 AU.addPreserved<BasicAAWrapperPass>();
4693 AU.addPreserved<GlobalsAAWrapperPass>();
4694 AU.addRequired<ProfileSummaryInfoWrapperPass>();
4695 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4696 }
4697
runOnFunction(Function & F)4698 bool InstructionCombiningPass::runOnFunction(Function &F) {
4699 if (skipFunction(F))
4700 return false;
4701
4702 // Required analyses.
4703 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4704 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4705 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4706 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4707 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4708 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4709
4710 // Optional analyses.
4711 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4712 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4713 ProfileSummaryInfo *PSI =
4714 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4715 BlockFrequencyInfo *BFI =
4716 (PSI && PSI->hasProfileSummary()) ?
4717 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4718 nullptr;
4719
4720 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4721 BFI, PSI, MaxIterations, LI);
4722 }
4723
4724 char InstructionCombiningPass::ID = 0;
4725
InstructionCombiningPass()4726 InstructionCombiningPass::InstructionCombiningPass()
4727 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4728 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4729 }
4730
InstructionCombiningPass(unsigned MaxIterations)4731 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4732 : FunctionPass(ID), MaxIterations(MaxIterations) {
4733 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4734 }
4735
4736 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4737 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4738 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4739 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4740 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4741 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4742 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4743 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4744 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4745 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4746 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4747 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4748 "Combine redundant instructions", false, false)
4749
4750 // Initialization Routines
4751 void llvm::initializeInstCombine(PassRegistry &Registry) {
4752 initializeInstructionCombiningPassPass(Registry);
4753 }
4754
LLVMInitializeInstCombine(LLVMPassRegistryRef R)4755 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4756 initializeInstructionCombiningPassPass(*unwrap(R));
4757 }
4758
createInstructionCombiningPass()4759 FunctionPass *llvm::createInstructionCombiningPass() {
4760 return new InstructionCombiningPass();
4761 }
4762
createInstructionCombiningPass(unsigned MaxIterations)4763 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4764 return new InstructionCombiningPass(MaxIterations);
4765 }
4766
LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM)4767 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4768 unwrap(PM)->add(createInstructionCombiningPass());
4769 }
4770