xref: /aosp_15_r20/art/runtime/runtime.cc (revision 795d594fd825385562da6b089ea9b2033f3abf5a)
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "runtime.h"
18 
19 #include <optional>
20 #include <utility>
21 
22 #ifdef __linux__
23 #include <sys/prctl.h>
24 #endif
25 
26 #include <fcntl.h>
27 #include <signal.h>
28 #include <sys/mount.h>
29 #include <sys/syscall.h>
30 
31 #if defined(__APPLE__)
32 #include <crt_externs.h>  // for _NSGetEnviron
33 #endif
34 
35 #include <android-base/properties.h>
36 #include <android-base/strings.h>
37 #include <string.h>
38 
39 #include <cstdio>
40 #include <cstdlib>
41 #include <limits>
42 #include <thread>
43 #include <unordered_set>
44 #include <vector>
45 
46 #include "arch/arm/registers_arm.h"
47 #include "arch/arm64/registers_arm64.h"
48 #include "arch/context.h"
49 #include "arch/instruction_set_features.h"
50 #include "arch/x86/registers_x86.h"
51 #include "arch/x86_64/registers_x86_64.h"
52 #include "art_field-inl.h"
53 #include "art_method-inl.h"
54 #include "asm_support.h"
55 #include "base/aborting.h"
56 #include "base/arena_allocator.h"
57 #include "base/atomic.h"
58 #include "base/dumpable.h"
59 #include "base/file_utils.h"
60 #include "base/flags.h"
61 #include "base/malloc_arena_pool.h"
62 #include "base/mem_map_arena_pool.h"
63 #include "base/memory_tool.h"
64 #include "base/mutex.h"
65 #include "base/os.h"
66 #include "base/pointer_size.h"
67 #include "base/quasi_atomic.h"
68 #include "base/sdk_version.h"
69 #include "base/stl_util.h"
70 #include "base/systrace.h"
71 #include "base/unix_file/fd_file.h"
72 #include "base/utils.h"
73 #include "class_linker-inl.h"
74 #include "class_root-inl.h"
75 #include "compiler_callbacks.h"
76 #include "debugger.h"
77 #include "dex/art_dex_file_loader.h"
78 #include "dex/dex_file_loader.h"
79 #include "entrypoints/entrypoint_utils-inl.h"
80 #include "entrypoints/runtime_asm_entrypoints.h"
81 #include "experimental_flags.h"
82 #include "fault_handler.h"
83 #include "gc/accounting/card_table-inl.h"
84 #include "gc/heap.h"
85 #include "gc/scoped_gc_critical_section.h"
86 #include "gc/space/image_space.h"
87 #include "gc/space/space-inl.h"
88 #include "gc/system_weak.h"
89 #include "gc/task_processor.h"
90 #include "handle_scope-inl.h"
91 #include "hidden_api.h"
92 #include "indirect_reference_table.h"
93 #include "instrumentation.h"
94 #include "intern_table-inl.h"
95 #include "interpreter/interpreter.h"
96 #include "jit/jit.h"
97 #include "jit/jit_code_cache.h"
98 #include "jit/profile_saver.h"
99 #include "jni/java_vm_ext.h"
100 #include "jni/jni_id_manager.h"
101 #include "jni_id_type.h"
102 #include "linear_alloc.h"
103 #include "memory_representation.h"
104 #include "metrics/statsd.h"
105 #include "mirror/array.h"
106 #include "mirror/class-alloc-inl.h"
107 #include "mirror/class-inl.h"
108 #include "mirror/class_ext.h"
109 #include "mirror/class_loader-inl.h"
110 #include "mirror/emulated_stack_frame.h"
111 #include "mirror/field.h"
112 #include "mirror/method.h"
113 #include "mirror/method_handle_impl.h"
114 #include "mirror/method_handles_lookup.h"
115 #include "mirror/method_type.h"
116 #include "mirror/stack_trace_element.h"
117 #include "mirror/throwable.h"
118 #include "mirror/var_handle.h"
119 #include "monitor.h"
120 #include "native/dalvik_system_BaseDexClassLoader.h"
121 #include "native/dalvik_system_DexFile.h"
122 #include "native/dalvik_system_VMDebug.h"
123 #include "native/dalvik_system_VMRuntime.h"
124 #include "native/dalvik_system_VMStack.h"
125 #include "native/dalvik_system_ZygoteHooks.h"
126 #include "native/java_lang_Class.h"
127 #include "native/java_lang_Object.h"
128 #include "native/java_lang_StackStreamFactory.h"
129 #include "native/java_lang_String.h"
130 #include "native/java_lang_StringFactory.h"
131 #include "native/java_lang_System.h"
132 #include "native/java_lang_Thread.h"
133 #include "native/java_lang_Throwable.h"
134 #include "native/java_lang_VMClassLoader.h"
135 #include "native/java_lang_invoke_MethodHandle.h"
136 #include "native/java_lang_invoke_MethodHandleImpl.h"
137 #include "native/java_lang_ref_FinalizerReference.h"
138 #include "native/java_lang_ref_Reference.h"
139 #include "native/java_lang_reflect_Array.h"
140 #include "native/java_lang_reflect_Constructor.h"
141 #include "native/java_lang_reflect_Executable.h"
142 #include "native/java_lang_reflect_Field.h"
143 #include "native/java_lang_reflect_Method.h"
144 #include "native/java_lang_reflect_Parameter.h"
145 #include "native/java_lang_reflect_Proxy.h"
146 #include "native/java_util_concurrent_atomic_AtomicLong.h"
147 #include "native/jdk_internal_misc_Unsafe.h"
148 #include "native/libcore_io_Memory.h"
149 #include "native/libcore_util_CharsetUtils.h"
150 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
151 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
152 #include "native/sun_misc_Unsafe.h"
153 #include "native_bridge_art_interface.h"
154 #include "native_stack_dump.h"
155 #include "nativehelper/scoped_local_ref.h"
156 #include "nterp_helpers.h"
157 #include "oat/elf_file.h"
158 #include "oat/image-inl.h"
159 #include "oat/oat.h"
160 #include "oat/oat_file_manager.h"
161 #include "oat/oat_quick_method_header.h"
162 #include "object_callbacks.h"
163 #include "odr_statslog/odr_statslog.h"
164 #include "parsed_options.h"
165 #include "quick/quick_method_frame_info.h"
166 #include "reflection.h"
167 #include "runtime_callbacks.h"
168 #include "runtime_common.h"
169 #include "runtime_image.h"
170 #include "runtime_intrinsics.h"
171 #include "runtime_options.h"
172 #include "scoped_thread_state_change-inl.h"
173 #include "sigchain.h"
174 #include "signal_catcher.h"
175 #include "signal_set.h"
176 #include "thread.h"
177 #include "thread_list.h"
178 #include "ti/agent.h"
179 #include "trace.h"
180 #include "vdex_file.h"
181 #include "verifier/class_verifier.h"
182 #include "well_known_classes-inl.h"
183 
184 #ifdef ART_TARGET_ANDROID
185 #include <android/api-level.h>
186 #include <android/set_abort_message.h>
187 #include "com_android_apex.h"
188 namespace apex = com::android::apex;
189 
190 #endif
191 
192 // Static asserts to check the values of generated assembly-support macros.
193 #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME);
194 #include "asm_defines.def"
195 #undef ASM_DEFINE
196 
197 namespace art HIDDEN {
198 
199 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
200 static constexpr bool kEnableJavaStackTraceHandler = false;
201 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
202 // linking.
203 static constexpr double kLowMemoryMinLoadFactor = 0.5;
204 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
205 static constexpr double kNormalMinLoadFactor = 0.4;
206 static constexpr double kNormalMaxLoadFactor = 0.7;
207 
208 #ifdef ART_PAGE_SIZE_AGNOSTIC
209 // Declare the constant as ALWAYS_HIDDEN to ensure it isn't visible from outside libart.so.
210 const size_t PageSize::value_ ALWAYS_HIDDEN = GetPageSizeSlow();
211 PageSize gPageSize ALWAYS_HIDDEN;
212 #endif
213 
214 Runtime* Runtime::instance_ = nullptr;
215 
216 struct TraceConfig {
217   Trace::TraceMode trace_mode;
218   TraceOutputMode trace_output_mode;
219   std::string trace_file;
220   size_t trace_file_size;
221   TraceClockSource clock_source;
222 };
223 
224 namespace {
225 
226 #ifdef __APPLE__
GetEnviron()227 inline char** GetEnviron() {
228   // When Google Test is built as a framework on MacOS X, the environ variable
229   // is unavailable. Apple's documentation (man environ) recommends using
230   // _NSGetEnviron() instead.
231   return *_NSGetEnviron();
232 }
233 #else
234 // Some POSIX platforms expect you to declare environ. extern "C" makes
235 // it reside in the global namespace.
236 EXPORT extern "C" char** environ;
237 inline char** GetEnviron() { return environ; }
238 #endif
239 
CheckConstants()240 void CheckConstants() {
241   CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset());
242 }
243 
244 }  // namespace
245 
Runtime()246 Runtime::Runtime()
247     : resolution_method_(nullptr),
248       imt_conflict_method_(nullptr),
249       imt_unimplemented_method_(nullptr),
250       instruction_set_(InstructionSet::kNone),
251       compiler_callbacks_(nullptr),
252       is_zygote_(false),
253       is_primary_zygote_(false),
254       is_system_server_(false),
255       must_relocate_(false),
256       is_concurrent_gc_enabled_(true),
257       is_explicit_gc_disabled_(false),
258       is_eagerly_release_explicit_gc_disabled_(false),
259       image_dex2oat_enabled_(true),
260       default_stack_size_(0),
261       heap_(nullptr),
262       max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
263       monitor_list_(nullptr),
264       monitor_pool_(nullptr),
265       thread_list_(nullptr),
266       intern_table_(nullptr),
267       class_linker_(nullptr),
268       signal_catcher_(nullptr),
269       java_vm_(nullptr),
270       thread_pool_ref_count_(0u),
271       fault_message_(nullptr),
272       threads_being_born_(0),
273       shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
274       shutting_down_(false),
275       shutting_down_started_(false),
276       started_(false),
277       finished_starting_(false),
278       vfprintf_(nullptr),
279       exit_(nullptr),
280       abort_(nullptr),
281       stats_enabled_(false),
282       is_running_on_memory_tool_(kRunningOnMemoryTool),
283       instrumentation_(),
284       main_thread_group_(nullptr),
285       system_thread_group_(nullptr),
286       system_class_loader_(nullptr),
287       dump_gc_performance_on_shutdown_(false),
288       active_transaction_(false),
289       verify_(verifier::VerifyMode::kNone),
290       target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)),
291       compat_framework_(),
292       implicit_null_checks_(false),
293       implicit_so_checks_(false),
294       implicit_suspend_checks_(false),
295       no_sig_chain_(false),
296       force_native_bridge_(false),
297       is_native_bridge_loaded_(false),
298       is_native_debuggable_(false),
299       async_exceptions_thrown_(false),
300       non_standard_exits_enabled_(false),
301       runtime_debug_state_(RuntimeDebugState::kNonJavaDebuggable),
302       monitor_timeout_enable_(false),
303       monitor_timeout_ns_(0),
304       zygote_max_failed_boots_(0),
305       experimental_flags_(ExperimentalFlags::kNone),
306       oat_file_manager_(nullptr),
307       is_low_memory_mode_(false),
308       madvise_willneed_total_dex_size_(0),
309       madvise_willneed_odex_filesize_(0),
310       madvise_willneed_art_filesize_(0),
311       safe_mode_(false),
312       hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
313       core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
314       test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
315       dedupe_hidden_api_warnings_(true),
316       hidden_api_access_event_log_rate_(0),
317       dump_native_stack_on_sig_quit_(true),
318       // Initially assume we perceive jank in case the process state is never updated.
319       process_state_(kProcessStateJankPerceptible),
320       zygote_no_threads_(false),
321       verifier_logging_threshold_ms_(100),
322       verifier_missing_kthrow_fatal_(false),
323       perfetto_hprof_enabled_(false),
324       perfetto_javaheapprof_enabled_(false),
325       out_of_memory_error_hook_(nullptr) {
326   static_assert(Runtime::kCalleeSaveSize ==
327                     static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
328   CheckConstants();
329 
330   std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
331   interpreter::CheckInterpreterAsmConstants();
332   callbacks_.reset(new RuntimeCallbacks());
333   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
334     deoptimization_counts_[i] = 0u;
335   }
336 }
337 
~Runtime()338 Runtime::~Runtime() {
339   ScopedTrace trace("Runtime shutdown");
340   if (is_native_bridge_loaded_) {
341     UnloadNativeBridge();
342   }
343 
344   Thread* self = Thread::Current();
345   const bool attach_shutdown_thread = self == nullptr;
346   if (attach_shutdown_thread) {
347     // We can only create a peer if the runtime is actually started. This is only not true during
348     // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
349     // In this case we will just try again without allocating a peer so that shutdown can continue.
350     // Very few things are actually capable of distinguishing between the peer & peerless states so
351     // this should be fine.
352     // Running callbacks is prone to deadlocks in libjdwp tests that need an event handler lock to
353     // process any event. We also need to enter a GCCriticalSection when processing certain events
354     // (for ex: removing the last breakpoint). These two restrictions together make the tear down
355     // of the jdwp tests deadlock prone if we fail to finish Thread::Attach callback.
356     // (TODO:b/251163712) Remove this once we update deopt manager to not use GCCriticalSection.
357     bool thread_attached = AttachCurrentThread("Shutdown thread",
358                                                /* as_daemon= */ false,
359                                                GetSystemThreadGroup(),
360                                                /* create_peer= */ IsStarted(),
361                                                /* should_run_callbacks= */ false);
362     if (UNLIKELY(!thread_attached)) {
363       LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
364       CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
365                                 /* as_daemon= */   false,
366                                 /* thread_group=*/ nullptr,
367                                 /* create_peer= */ false));
368     }
369     self = Thread::Current();
370   } else {
371     LOG(WARNING) << "Current thread not detached in Runtime shutdown";
372   }
373 
374   if (dump_gc_performance_on_shutdown_) {
375     heap_->CalculatePreGcWeightedAllocatedBytes();
376     uint64_t process_cpu_end_time = ProcessCpuNanoTime();
377     ScopedLogSeverity sls(LogSeverity::INFO);
378     // This can't be called from the Heap destructor below because it
379     // could call RosAlloc::InspectAll() which needs the thread_list
380     // to be still alive.
381     heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
382 
383     uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime();
384     uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime();
385     float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time;
386     LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time)
387         << " out of process CPU time " << PrettyDuration(process_cpu_time)
388         << " (" << ratio << ")"
389         << "\n";
390     double pre_gc_weighted_allocated_bytes =
391         heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time;
392     // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real
393     // GC. Both numerator and denominator take into account until the end of the last GC,
394     // instead of the whole process life time like pre_gc_weighted_allocated_bytes.
395     double post_gc_weighted_allocated_bytes =
396         heap_->GetPostGcWeightedAllocatedBytes() /
397           (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime());
398 
399     LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: "
400         << static_cast<uint64_t>(pre_gc_weighted_allocated_bytes)
401         << " (" <<  PrettySize(pre_gc_weighted_allocated_bytes)  << ")";
402     LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: "
403         << static_cast<uint64_t>(post_gc_weighted_allocated_bytes)
404         << " (" <<  PrettySize(post_gc_weighted_allocated_bytes)  << ")"
405         << "\n";
406   }
407 
408   // Wait for the workers of thread pools to be created since there can't be any
409   // threads attaching during shutdown.
410   WaitForThreadPoolWorkersToStart();
411   if (jit_ != nullptr) {
412     jit_->WaitForWorkersToBeCreated();
413     // Stop the profile saver thread before marking the runtime as shutting down.
414     // The saver will try to dump the profiles before being sopped and that
415     // requires holding the mutator lock.
416     jit_->StopProfileSaver();
417     // Delete thread pool before the thread list since we don't want to wait forever on the
418     // JIT compiler threads. Also this should be run before marking the runtime
419     // as shutting down as some tasks may require mutator access.
420     jit_->DeleteThreadPool();
421   }
422   if (oat_file_manager_ != nullptr) {
423     oat_file_manager_->WaitForWorkersToBeCreated();
424   }
425   // Disable GC before deleting the thread-pool and shutting down runtime as it
426   // restricts attaching new threads.
427   heap_->DisableGCForShutdown();
428   heap_->WaitForWorkersToBeCreated();
429   // Make sure to let the GC complete if it is running.
430   heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
431 
432   // Shutdown any trace before SetShuttingDown. Trace uses thread pool workers to flush entries
433   // and we want to make sure they are fully created. Threads cannot attach while shutting down.
434   Trace::Shutdown();
435 
436   {
437     ScopedTrace trace2("Wait for shutdown cond");
438     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
439     shutting_down_started_ = true;
440     while (threads_being_born_ > 0) {
441       shutdown_cond_->Wait(self);
442     }
443     SetShuttingDown();
444   }
445   // Shutdown and wait for the daemons.
446   CHECK(self != nullptr);
447   if (IsFinishedStarting()) {
448     ScopedTrace trace2("Waiting for Daemons");
449     self->ClearException();
450     ScopedObjectAccess soa(self);
451     WellKnownClasses::java_lang_Daemons_stop->InvokeStatic<'V'>(self);
452   }
453 
454   // Report death. Clients may require a working thread, still, so do it before GC completes and
455   // all non-daemon threads are done.
456   {
457     ScopedObjectAccess soa(self);
458     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
459   }
460 
461   // Delete thread pools before detaching the current thread in case tasks
462   // getting deleted need to have access to Thread::Current.
463   heap_->DeleteThreadPool();
464   if (oat_file_manager_ != nullptr) {
465     oat_file_manager_->DeleteThreadPool();
466   }
467   DeleteThreadPool();
468   CHECK(thread_pool_ == nullptr);
469 
470   if (attach_shutdown_thread) {
471     DetachCurrentThread(/* should_run_callbacks= */ false);
472     self = nullptr;
473   }
474 
475   // Make sure our internal threads are dead before we start tearing down things they're using.
476   GetRuntimeCallbacks()->StopDebugger();
477   // Deletion ordering is tricky. Null out everything we've deleted.
478   delete signal_catcher_;
479   signal_catcher_ = nullptr;
480 
481   // Shutdown metrics reporting.
482   metrics_reporter_.reset();
483 
484   // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
485   // Also wait for daemon threads to quiesce, so that in addition to being "suspended", they
486   // no longer access monitor and thread list data structures. We leak user daemon threads
487   // themselves, since we have no mechanism for shutting them down.
488   {
489     ScopedTrace trace2("Delete thread list");
490     thread_list_->ShutDown();
491   }
492 
493   // TODO Maybe do some locking.
494   for (auto& agent : agents_) {
495     agent->Unload();
496   }
497 
498   // TODO Maybe do some locking
499   for (auto& plugin : plugins_) {
500     plugin.Unload();
501   }
502 
503   // Finally delete the thread list.
504   // Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked.
505   // We assume that by this point, we've waited long enough for things to quiesce.
506   delete thread_list_;
507   thread_list_ = nullptr;
508 
509   // Delete the JIT after thread list to ensure that there is no remaining threads which could be
510   // accessing the instrumentation when we delete it.
511   if (jit_ != nullptr) {
512     VLOG(jit) << "Deleting jit";
513     jit_.reset(nullptr);
514     jit_code_cache_.reset(nullptr);
515   }
516 
517   // Shutdown the fault manager if it was initialized.
518   fault_manager.Shutdown();
519 
520   ScopedTrace trace2("Delete state");
521   delete monitor_list_;
522   monitor_list_ = nullptr;
523   delete monitor_pool_;
524   monitor_pool_ = nullptr;
525   delete class_linker_;
526   class_linker_ = nullptr;
527   delete small_lrt_allocator_;
528   small_lrt_allocator_ = nullptr;
529   delete heap_;
530   heap_ = nullptr;
531   delete intern_table_;
532   intern_table_ = nullptr;
533   delete oat_file_manager_;
534   oat_file_manager_ = nullptr;
535   Thread::Shutdown();
536   QuasiAtomic::Shutdown();
537 
538   // Destroy allocators before shutting down the MemMap because they may use it.
539   java_vm_.reset();
540   linear_alloc_.reset();
541   delete ReleaseStartupLinearAlloc();
542   linear_alloc_arena_pool_.reset();
543   arena_pool_.reset();
544   jit_arena_pool_.reset();
545   protected_fault_page_.Reset();
546   MemMap::Shutdown();
547 
548   // TODO: acquire a static mutex on Runtime to avoid racing.
549   CHECK(instance_ == nullptr || instance_ == this);
550   instance_ = nullptr;
551 
552   // Well-known classes must be deleted or it is impossible to successfully start another Runtime
553   // instance. We rely on a small initialization order issue in Runtime::Start() that requires
554   // elements of WellKnownClasses to be null, see b/65500943.
555   WellKnownClasses::Clear();
556 
557 #ifdef ART_PAGE_SIZE_AGNOSTIC
558   // This is added to ensure no test is able to access gPageSize prior to initializing Runtime just
559   // because a Runtime instance was created (and subsequently destroyed) by another test.
560   gPageSize.DisallowAccess();
561 #endif
562 }
563 
564 struct AbortState {
Dumpart::AbortState565   void Dump(std::ostream& os) const {
566     if (gAborting > 1) {
567       os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
568       DumpRecursiveAbort(os);
569       return;
570     }
571     gAborting++;
572     os << "Runtime aborting...\n";
573     if (Runtime::Current() == nullptr) {
574       os << "(Runtime does not yet exist!)\n";
575       DumpNativeStack(os, GetTid(), "  native: ", nullptr);
576       return;
577     }
578     Thread* self = Thread::Current();
579 
580     // Dump all threads first and then the aborting thread. While this is counter the logical flow,
581     // it improves the chance of relevant data surviving in the Android logs.
582 
583     DumpAllThreads(os, self);
584 
585     if (self == nullptr) {
586       os << "(Aborting thread was not attached to runtime!)\n";
587       DumpNativeStack(os, GetTid(), "  native: ", nullptr);
588     } else {
589       os << "Aborting thread:\n";
590       if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
591         DumpThread(os, self);
592       } else {
593         if (Locks::mutator_lock_->SharedTryLock(self)) {
594           DumpThread(os, self);
595           Locks::mutator_lock_->SharedUnlock(self);
596         }
597       }
598     }
599   }
600 
601   // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState602   void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
603     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
604     self->Dump(os);
605     if (self->IsExceptionPending()) {
606       mirror::Throwable* exception = self->GetException();
607       os << "Pending exception " << exception->Dump();
608     }
609   }
610 
DumpAllThreadsart::AbortState611   void DumpAllThreads(std::ostream& os, Thread* self) const {
612     Runtime* runtime = Runtime::Current();
613     if (runtime != nullptr) {
614       ThreadList* thread_list = runtime->GetThreadList();
615       if (thread_list != nullptr) {
616         // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be
617         // grabbed).
618         // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout
619         //                    acquiring the locks.
620         bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
621         bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self);
622         if (tll_already_held || tscl_already_held) {
623           os << "Skipping all-threads dump as locks are held:"
624              << (tll_already_held ? "" : " thread_list_lock")
625              << (tscl_already_held ? "" : " thread_suspend_count_lock")
626              << "\n";
627           return;
628         }
629         bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self);
630         if (ml_already_exlusively_held) {
631           os << "Skipping all-threads dump as mutator lock is exclusively held.";
632           return;
633         }
634         bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
635         if (!ml_already_held) {
636           os << "Dumping all threads without mutator lock held\n";
637         }
638         os << "All threads:\n";
639         thread_list->Dump(os);
640       }
641     }
642   }
643 
644   // For recursive aborts.
DumpRecursiveAbortart::AbortState645   void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
646     // The only thing we'll attempt is dumping the native stack of the current thread. We will only
647     // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
648     // die.
649     // Note: as we're using a global counter for the recursive abort detection, there is a potential
650     //       race here and it is not OK to just print when the counter is "2" (one from
651     //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
652     static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
653     if (gAborting < kOnlyPrintWhenRecursionLessThan) {
654       gAborting++;
655       DumpNativeStack(os, GetTid());
656     }
657   }
658 };
659 
SetAbortMessage(const char * msg)660 void Runtime::SetAbortMessage(const char* msg) {
661   auto old_value = gAborting.fetch_add(1);  // set before taking any locks
662 
663   // Only set the first abort message.
664   if (old_value == 0) {
665 #ifdef ART_TARGET_ANDROID
666     android_set_abort_message(msg);
667 #endif
668     // Set the runtime fault message in case our unexpected-signal code will run.
669     Runtime* current = Runtime::Current();
670     if (current != nullptr) {
671       current->SetFaultMessage(msg);
672     }
673   }
674 }
675 
Abort(const char * msg)676 void Runtime::Abort(const char* msg) {
677   SetAbortMessage(msg);
678 
679   // May be coming from an unattached thread.
680   if (Thread::Current() == nullptr) {
681     Runtime* current = Runtime::Current();
682     if (current != nullptr && current->IsStarted() && !current->IsShuttingDownUnsafe()) {
683       // We do not flag this to the unexpected-signal handler so that that may dump the stack.
684       abort();
685       UNREACHABLE();
686     }
687   }
688 
689   {
690     // Ensure that we don't have multiple threads trying to abort at once,
691     // which would result in significantly worse diagnostics.
692     ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNativeForAbort);
693     Locks::abort_lock_->ExclusiveLock(Thread::Current());
694   }
695 
696   // Get any pending output out of the way.
697   fflush(nullptr);
698 
699   // Many people have difficulty distinguish aborts from crashes,
700   // so be explicit.
701   // Note: use cerr on the host to print log lines immediately, so we get at least some output
702   //       in case of recursive aborts. We lose annotation with the source file and line number
703   //       here, which is a minor issue. The same is significantly more complicated on device,
704   //       which is why we ignore the issue there.
705   AbortState state;
706   if (kIsTargetBuild) {
707     LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
708   } else {
709     std::cerr << Dumpable<AbortState>(state);
710   }
711 
712   // Sometimes we dump long messages, and the Android abort message only retains the first line.
713   // In those cases, just log the message again, to avoid logcat limits.
714   if (msg != nullptr && strchr(msg, '\n') != nullptr) {
715     LOG(FATAL_WITHOUT_ABORT) << msg;
716   }
717 
718   FlagRuntimeAbort();
719 
720   // Call the abort hook if we have one.
721   if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
722     LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
723     Runtime::Current()->abort_();
724     // notreached
725     LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
726   }
727 
728   abort();
729   // notreached
730 }
731 
732 /**
733  * Update entrypoints of methods before the first fork. This
734  * helps sharing pages where ArtMethods are allocated between the zygote and
735  * forked apps.
736  */
737 class UpdateMethodsPreFirstForkVisitor : public ClassVisitor {
738  public:
UpdateMethodsPreFirstForkVisitor(ClassLinker * class_linker)739   explicit UpdateMethodsPreFirstForkVisitor(ClassLinker* class_linker)
740       : class_linker_(class_linker),
741         can_use_nterp_(interpreter::CanRuntimeUseNterp()) {}
742 
operator ()(ObjPtr<mirror::Class> klass)743   bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
744     bool is_initialized = klass->IsVisiblyInitialized();
745     for (ArtMethod& method : klass->GetDeclaredMethods(kRuntimePointerSize)) {
746       if (!is_initialized && method.NeedsClinitCheckBeforeCall() && can_use_nterp_) {
747         const void* existing = method.GetEntryPointFromQuickCompiledCode();
748         if (class_linker_->IsQuickResolutionStub(existing) && CanMethodUseNterp(&method)) {
749           method.SetEntryPointFromQuickCompiledCode(interpreter::GetNterpWithClinitEntryPoint());
750         }
751       }
752     }
753     return true;
754   }
755 
756  private:
757   ClassLinker* const class_linker_;
758   const bool can_use_nterp_;
759 
760   DISALLOW_COPY_AND_ASSIGN(UpdateMethodsPreFirstForkVisitor);
761 };
762 
763 // Wait until the kernel thinks we are single-threaded again.
WaitUntilSingleThreaded()764 static void WaitUntilSingleThreaded() {
765 #if defined(__linux__)
766   // Read num_threads field from /proc/self/stat, avoiding higher-level IO libraries that may
767   // break atomicity of the read.
768   static constexpr size_t kNumTries = 2000;
769   static constexpr size_t kNumThreadsIndex = 20;
770   static constexpr size_t BUF_SIZE = 500;
771   static constexpr size_t BUF_PRINT_SIZE = 150;  // Only log this much on failure to limit length.
772   static_assert(BUF_SIZE > BUF_PRINT_SIZE);
773   char buf[BUF_SIZE];
774   size_t bytes_read = 0;
775   uint64_t millis = 0;
776   for (size_t tries = 0; tries < kNumTries; ++tries) {
777     bytes_read = GetOsThreadStat(getpid(), buf, BUF_SIZE);
778     CHECK_NE(bytes_read, 0u);
779     size_t pos = 0;
780     while (pos < bytes_read && buf[pos++] != ')') {}
781     ++pos;
782     // We're now positioned at the beginning of the third field. Don't count blanks embedded in
783     // second (command) field.
784     size_t blanks_seen = 2;
785     while (pos < bytes_read && blanks_seen < kNumThreadsIndex - 1) {
786       if (buf[pos++] == ' ') {
787         ++blanks_seen;
788       }
789     }
790     CHECK(pos < bytes_read - 2);
791     // pos is first character of num_threads field.
792     CHECK_EQ(buf[pos + 1], ' ');  // We never have more than single-digit threads here.
793     if (buf[pos] == '1') {
794       return;  //  num_threads == 1; success.
795     }
796     if (millis == 0) {
797       millis = MilliTime();
798     }
799     usleep(tries < 10 ? 1000 : 2000);
800   }
801   buf[std::min(BUF_PRINT_SIZE, bytes_read)] = '\0';  // Truncate buf before printing.
802   LOG(ERROR) << "Not single threaded: bytes_read = " << bytes_read << " stat contents = \"" << buf
803              << "...\"";
804   LOG(ERROR) << "Other threads' abbreviated stats: " << GetOtherThreadOsStats();
805   bytes_read = GetOsThreadStat(getpid(), buf, BUF_PRINT_SIZE);
806   CHECK_NE(bytes_read, 0u);
807   LOG(ERROR) << "After re-read: bytes_read = " << bytes_read << " stat contents = \"" << buf
808              << "...\"";
809   LOG(FATAL) << "Failed to reach single-threaded state: wait_time = " << MilliTime() - millis;
810 #else  // Not Linux; shouldn't matter, but this has a high probability of working slowly.
811   usleep(20'000);
812 #endif
813 }
814 
PreZygoteFork()815 void Runtime::PreZygoteFork() {
816   if (GetJit() != nullptr) {
817     GetJit()->PreZygoteFork();
818   }
819   // All other threads have already been joined, but they may not have finished
820   // removing themselves from the thread list. Wait until the other threads have completely
821   // finished, and are no longer in the thread list.
822   // TODO: Since the threads Unregister() themselves before exiting, the first wait should be
823   // unnecessary. But since we're reading from a /proc entry that's concurrently changing, for
824   // now we play this as safe as possible.
825   ThreadList* tl = GetThreadList();
826   {
827     Thread* self = Thread::Current();
828     MutexLock mu(self, *Locks::thread_list_lock_);
829     tl->WaitForUnregisterToComplete(self);
830     if (kIsDebugBuild) {
831       auto list = tl->GetList();
832       if (list.size() != 1) {
833         for (Thread* t : list) {
834           std::string name;
835           t->GetThreadName(name);
836           LOG(ERROR) << "Remaining pre-fork thread: " << name;
837         }
838       }
839     }
840     CHECK_EQ(tl->Size(), 1u);
841     // And then wait until the kernel thinks the threads are gone.
842     WaitUntilSingleThreaded();
843   }
844 
845   if (!heap_->HasZygoteSpace()) {
846     Thread* self = Thread::Current();
847     // This is the first fork. Update ArtMethods in the boot classpath now to
848     // avoid having forked apps dirty the memory.
849 
850     // Ensure we call FixupStaticTrampolines on all methods that are
851     // initialized.
852     class_linker_->MakeInitializedClassesVisiblyInitialized(self, /*wait=*/ true);
853 
854     ScopedObjectAccess soa(self);
855     UpdateMethodsPreFirstForkVisitor visitor(class_linker_);
856     class_linker_->VisitClasses(&visitor);
857   }
858   heap_->PreZygoteFork();
859   PreZygoteForkNativeBridge();
860 }
861 
PostZygoteFork()862 void Runtime::PostZygoteFork() {
863   jit::Jit* jit = GetJit();
864   if (jit != nullptr) {
865     jit->PostZygoteFork();
866     // Ensure that the threads in the JIT pool have been created with the right
867     // priority.
868     if (kIsDebugBuild && jit->GetThreadPool() != nullptr) {
869       jit->GetThreadPool()->CheckPthreadPriority(
870           IsZygote() ? jit->GetZygoteThreadPoolPthreadPriority()
871                      : jit->GetThreadPoolPthreadPriority());
872     }
873   }
874   // Reset all stats.
875   ResetStats(0xFFFFFFFF);
876 }
877 
CallExitHook(jint status)878 void Runtime::CallExitHook(jint status) {
879   if (exit_ != nullptr) {
880     ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNative);
881     exit_(status);
882     LOG(WARNING) << "Exit hook returned instead of exiting!";
883   }
884 }
885 
SweepSystemWeaks(IsMarkedVisitor * visitor)886 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
887   // Userfaultfd compaction updates weak intern-table page-by-page via
888   // LinearAlloc.
889   if (!GetHeap()->IsPerformingUffdCompaction()) {
890     GetInternTable()->SweepInternTableWeaks(visitor);
891   }
892   GetMonitorList()->SweepMonitorList(visitor);
893   GetJavaVM()->SweepJniWeakGlobals(visitor);
894   GetHeap()->SweepAllocationRecords(visitor);
895   // Sweep JIT tables only if the GC is moving as in other cases the entries are
896   // not updated.
897   if (GetJit() != nullptr && GetHeap()->IsMovingGc()) {
898     // Visit JIT literal tables. Objects in these tables are classes and strings
899     // and only classes can be affected by class unloading. The strings always
900     // stay alive as they are strongly interned.
901     // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
902     // from mutators. See b/32167580.
903     GetJit()->GetCodeCache()->SweepRootTables(visitor);
904   }
905 
906   // All other generic system-weak holders.
907   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
908     holder->Sweep(visitor);
909   }
910 }
911 
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)912 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
913                            bool ignore_unrecognized,
914                            RuntimeArgumentMap* runtime_options) {
915   Locks::Init();
916   InitLogging(/* argv= */ nullptr, Abort);  // Calls Locks::Init() as a side effect.
917   bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
918   if (!parsed) {
919     LOG(ERROR) << "Failed to parse options";
920     return false;
921   }
922   return true;
923 }
924 
925 // Callback to check whether it is safe to call Abort (e.g., to use a call to
926 // LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
927 // properly initialized, and has not shut down.
IsSafeToCallAbort()928 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
929   Runtime* runtime = Runtime::Current();
930   return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
931 }
932 
AddGeneratedCodeRange(const void * start,size_t size)933 void Runtime::AddGeneratedCodeRange(const void* start, size_t size) {
934   if (HandlesSignalsInCompiledCode()) {
935     fault_manager.AddGeneratedCodeRange(start, size);
936   }
937 }
938 
RemoveGeneratedCodeRange(const void * start,size_t size)939 void Runtime::RemoveGeneratedCodeRange(const void* start, size_t size) {
940   if (HandlesSignalsInCompiledCode()) {
941     fault_manager.RemoveGeneratedCodeRange(start, size);
942   }
943 }
944 
Create(RuntimeArgumentMap && runtime_options)945 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
946   // TODO: acquire a static mutex on Runtime to avoid racing.
947   if (Runtime::instance_ != nullptr) {
948     return false;
949   }
950   instance_ = new Runtime;
951   Locks::SetClientCallback(IsSafeToCallAbort);
952   if (!instance_->Init(std::move(runtime_options))) {
953     // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
954     // leak memory, instead. Fix the destructor. b/19100793.
955     // delete instance_;
956     instance_ = nullptr;
957     return false;
958   }
959   return true;
960 }
961 
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)962 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
963   RuntimeArgumentMap runtime_options;
964   return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
965       Create(std::move(runtime_options));
966 }
967 
CreateSystemClassLoader(Runtime * runtime)968 static jobject CreateSystemClassLoader(Runtime* runtime) {
969   if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
970     return nullptr;
971   }
972 
973   ScopedObjectAccess soa(Thread::Current());
974   ClassLinker* cl = runtime->GetClassLinker();
975   auto pointer_size = cl->GetImagePointerSize();
976 
977   ObjPtr<mirror::Class> class_loader_class = GetClassRoot<mirror::ClassLoader>(cl);
978   DCHECK(class_loader_class->IsInitialized());  // Class roots have been initialized.
979 
980   ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
981       "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
982   CHECK(getSystemClassLoader != nullptr);
983   CHECK(getSystemClassLoader->IsStatic());
984 
985   ObjPtr<mirror::Object> system_class_loader = getSystemClassLoader->InvokeStatic<'L'>(soa.Self());
986   CHECK(system_class_loader != nullptr)
987       << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "<null>");
988 
989   ScopedAssertNoThreadSuspension sants(__FUNCTION__);
990   jobject g_system_class_loader =
991       runtime->GetJavaVM()->AddGlobalRef(soa.Self(), system_class_loader);
992   soa.Self()->SetClassLoaderOverride(g_system_class_loader);
993 
994   ObjPtr<mirror::Class> thread_class = WellKnownClasses::java_lang_Thread.Get();
995   ArtField* contextClassLoader =
996       thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
997   CHECK(contextClassLoader != nullptr);
998 
999   // We can't run in a transaction yet.
1000   contextClassLoader->SetObject<false>(soa.Self()->GetPeer(), system_class_loader);
1001 
1002   return g_system_class_loader;
1003 }
1004 
GetCompilerExecutable() const1005 std::string Runtime::GetCompilerExecutable() const {
1006   if (!compiler_executable_.empty()) {
1007     return compiler_executable_;
1008   }
1009   std::string compiler_executable = GetArtBinDir() + "/dex2oat";
1010   if (kIsDebugBuild) {
1011     compiler_executable += 'd';
1012   }
1013   if (kIsTargetBuild) {
1014     compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32";
1015   }
1016   return compiler_executable;
1017 }
1018 
RunRootClinits(Thread * self)1019 void Runtime::RunRootClinits(Thread* self) {
1020   class_linker_->RunRootClinits(self);
1021 
1022   GcRoot<mirror::Throwable>* exceptions[] = {
1023       &pre_allocated_OutOfMemoryError_when_throwing_exception_,
1024       // &pre_allocated_OutOfMemoryError_when_throwing_oome_,             // Same class as above.
1025       // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,   // Same class as above.
1026       &pre_allocated_NoClassDefFoundError_,
1027   };
1028   for (GcRoot<mirror::Throwable>* exception : exceptions) {
1029     StackHandleScope<1> hs(self);
1030     Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass());
1031     class_linker_->EnsureInitialized(self, klass, true, true);
1032     self->AssertNoPendingException();
1033   }
1034 }
1035 
Start()1036 bool Runtime::Start() {
1037   VLOG(startup) << "Runtime::Start entering";
1038 
1039   CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
1040 
1041   // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
1042   // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
1043 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
1044   if (kIsDebugBuild) {
1045     if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
1046       PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY";
1047     }
1048   }
1049 #endif
1050 
1051   // Restore main thread state to kNative as expected by native code.
1052   Thread* self = Thread::Current();
1053 
1054   started_ = true;
1055 
1056   // Before running any clinit, set up the native methods provided by the runtime itself.
1057   RegisterRuntimeNativeMethods(self->GetJniEnv());
1058 
1059   class_linker_->RunEarlyRootClinits(self);
1060   InitializeIntrinsics();
1061 
1062   self->TransitionFromRunnableToSuspended(ThreadState::kNative);
1063 
1064   // InitNativeMethods needs to be after started_ so that the classes
1065   // it touches will have methods linked to the oat file if necessary.
1066   {
1067     ScopedTrace trace2("InitNativeMethods");
1068     InitNativeMethods();
1069   }
1070 
1071   // InitializeCorePlatformApiPrivateFields() needs to be called after well known class
1072   // initializtion in InitNativeMethods().
1073   art::hiddenapi::InitializeCorePlatformApiPrivateFields();
1074 
1075   // Initialize well known thread group values that may be accessed threads while attaching.
1076   InitThreadGroups(self);
1077 
1078   Thread::FinishStartup();
1079 
1080   // Create the JIT either if we have to use JIT compilation or save profiling info. This is
1081   // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
1082   // ThreadGroup to exist.
1083   //
1084   // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
1085   // recoding profiles. Maybe we should consider changing the name to be more clear it's
1086   // not only about compiling. b/28295073.
1087   if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
1088     CreateJit();
1089 #ifdef ADDRESS_SANITIZER
1090     // (b/238730394): In older implementations of sanitizer + glibc there is a race between
1091     // pthread_create and dlopen that could cause a deadlock. pthread_create interceptor in ASAN
1092     // uses dl_pthread_iterator with a callback that could request a dl_load_lock via call to
1093     // __tls_get_addr [1]. dl_pthread_iterate would already hold dl_load_lock so this could cause a
1094     // deadlock. __tls_get_addr needs a dl_load_lock only when there is a dlopen happening in
1095     // parallel. As a workaround we wait for the pthread_create (i.e JIT thread pool creation) to
1096     // finish before going to the next phase. Creating a system class loader could need a dlopen so
1097     // we wait here till threads are initialized.
1098     // [1] https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/sanitizer_common/sanitizer_linux_libcdep.cpp#L408
1099     // See this for more context: https://reviews.llvm.org/D98926
1100     // TODO(b/238730394): Revisit this workaround once we migrate to musl libc.
1101     if (jit_ != nullptr) {
1102       jit_->GetThreadPool()->WaitForWorkersToBeCreated();
1103     }
1104 #endif
1105   }
1106 
1107   // Send the start phase event. We have to wait till here as this is when the main thread peer
1108   // has just been generated, important root clinits have been run and JNI is completely functional.
1109   {
1110     ScopedObjectAccess soa(self);
1111     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
1112   }
1113 
1114   system_class_loader_ = CreateSystemClassLoader(this);
1115 
1116   if (!is_zygote_) {
1117     if (is_native_bridge_loaded_) {
1118       PreInitializeNativeBridge(".");
1119     }
1120     NativeBridgeAction action = force_native_bridge_
1121         ? NativeBridgeAction::kInitialize
1122         : NativeBridgeAction::kUnload;
1123     InitNonZygoteOrPostFork(self->GetJniEnv(),
1124                             /* is_system_server= */ false,
1125                             /* is_child_zygote= */ false,
1126                             action,
1127                             GetInstructionSetString(kRuntimeISA));
1128   }
1129 
1130   {
1131     ScopedObjectAccess soa(self);
1132     StartDaemonThreads();
1133     self->GetJniEnv()->AssertLocalsEmpty();
1134 
1135     // Send the initialized phase event. Send it after starting the Daemon threads so that agents
1136     // cannot delay the daemon threads from starting forever.
1137     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
1138     self->GetJniEnv()->AssertLocalsEmpty();
1139   }
1140 
1141   VLOG(startup) << "Runtime::Start exiting";
1142   finished_starting_ = true;
1143 
1144   if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
1145     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForMethodTracingStart);
1146     int flags = 0;
1147     if (trace_config_->clock_source == TraceClockSource::kDual) {
1148       flags = Trace::TraceFlag::kTraceClockSourceWallClock |
1149               Trace::TraceFlag::kTraceClockSourceThreadCpu;
1150     } else if (trace_config_->clock_source == TraceClockSource::kWall) {
1151       flags = Trace::TraceFlag::kTraceClockSourceWallClock;
1152     } else if (TraceClockSource::kThreadCpu == trace_config_->clock_source) {
1153       flags = Trace::TraceFlag::kTraceClockSourceThreadCpu;
1154     } else {
1155       LOG(ERROR) << "Unexpected clock source";
1156     }
1157     Trace::Start(trace_config_->trace_file.c_str(),
1158                  static_cast<int>(trace_config_->trace_file_size),
1159                  flags,
1160                  trace_config_->trace_output_mode,
1161                  trace_config_->trace_mode,
1162                  0);
1163   }
1164 
1165   // In case we have a profile path passed as a command line argument,
1166   // register the current class path for profiling now. Note that we cannot do
1167   // this before we create the JIT and having it here is the most convenient way.
1168   // This is used when testing profiles with dalvikvm command as there is no
1169   // framework to register the dex files for profiling.
1170   if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
1171       !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
1172     std::vector<std::string> dex_filenames;
1173     Split(class_path_string_, ':', &dex_filenames);
1174 
1175     // We pass "" as the package name because at this point we don't know it. It could be the
1176     // Zygote or it could be a dalvikvm cmd line execution. The package name will be re-set during
1177     // post-fork or during RegisterAppInfo.
1178     //
1179     // Also, it's ok to pass "" to the ref profile filename. It indicates we don't have
1180     // a reference profile.
1181     RegisterAppInfo(
1182         /*package_name=*/ "",
1183         dex_filenames,
1184         jit_options_->GetProfileSaverOptions().GetProfilePath(),
1185         /*ref_profile_filename=*/ "",
1186         kVMRuntimePrimaryApk);
1187   }
1188 
1189   return true;
1190 }
1191 
EndThreadBirth()1192 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
1193   DCHECK_GT(threads_being_born_, 0U);
1194   threads_being_born_--;
1195   if (shutting_down_started_ && threads_being_born_ == 0) {
1196     shutdown_cond_->Broadcast(Thread::Current());
1197   }
1198 }
1199 
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,bool is_child_zygote,NativeBridgeAction action,const char * isa,bool profile_system_server)1200 void Runtime::InitNonZygoteOrPostFork(
1201     JNIEnv* env,
1202     bool is_system_server,
1203     // This is true when we are initializing a child-zygote. It requires
1204     // native bridge initialization to be able to run guest native code in
1205     // doPreload().
1206     bool is_child_zygote,
1207     NativeBridgeAction action,
1208     const char* isa,
1209     bool profile_system_server) {
1210   if (is_native_bridge_loaded_) {
1211     switch (action) {
1212       case NativeBridgeAction::kUnload:
1213         UnloadNativeBridge();
1214         is_native_bridge_loaded_ = false;
1215         break;
1216       case NativeBridgeAction::kInitialize:
1217         InitializeNativeBridge(env, isa);
1218         break;
1219     }
1220   }
1221 
1222   if (is_child_zygote) {
1223     // If creating a child-zygote we only initialize native bridge. The rest of
1224     // runtime post-fork logic would spin up threads for Binder and JDWP.
1225     // Instead, the Java side of the child process will call a static main in a
1226     // class specified by the parent.
1227     return;
1228   }
1229 
1230   DCHECK(!IsZygote());
1231 
1232   if (is_system_server) {
1233     // Register the system server code paths.
1234     // TODO: Ideally this should be done by the VMRuntime#RegisterAppInfo. However, right now
1235     // the method is only called when we set up the profile. It should be called all the time
1236     // (simillar to the apps). Once that's done this manual registration can be removed.
1237     const char* system_server_classpath = getenv("SYSTEMSERVERCLASSPATH");
1238     if (system_server_classpath == nullptr || (strlen(system_server_classpath) == 0)) {
1239       LOG(WARNING) << "System server class path not set";
1240     } else {
1241       std::vector<std::string> jars = android::base::Split(system_server_classpath, ":");
1242       app_info_.RegisterAppInfo("android",
1243                                 jars,
1244                                 /*profile_output_filename=*/ "",
1245                                 /*ref_profile_filename=*/ "",
1246                                 AppInfo::CodeType::kPrimaryApk);
1247     }
1248 
1249     // Set the system server package name to "android".
1250     // This is used to tell the difference between samples provided by system server
1251     // and samples generated by other apps when processing boot image profiles.
1252     SetProcessPackageName("android");
1253     if (profile_system_server) {
1254       jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
1255       VLOG(profiler) << "Enabling system server profiles";
1256     }
1257   }
1258 
1259   // Create the thread pool for loading app images.
1260   // Avoid creating the runtime thread pool for system server since it will not be used and would
1261   // waste memory.
1262   if (!is_system_server &&
1263       android::base::GetBoolProperty("dalvik.vm.parallel-image-loading", false)) {
1264     ScopedTrace timing("CreateThreadPool");
1265     constexpr size_t kStackSize = 64 * KB;
1266     constexpr size_t kMaxRuntimeWorkers = 4u;
1267     const size_t num_workers =
1268         std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers);
1269     MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
1270     CHECK(thread_pool_ == nullptr);
1271     thread_pool_.reset(
1272         ThreadPool::Create("Runtime", num_workers, /*create_peers=*/false, kStackSize));
1273     thread_pool_->StartWorkers(Thread::Current());
1274   }
1275 
1276   // Reset the gc performance data and metrics at zygote fork so that the events from
1277   // before fork aren't attributed to an app.
1278   heap_->ResetGcPerformanceInfo();
1279   GetMetrics()->Reset();
1280 
1281   if (AreMetricsInitialized()) {
1282     // Now that we know if we are an app or system server, reload the metrics reporter config
1283     // in case there are any difference.
1284     metrics::ReportingConfig metrics_config =
1285         metrics::ReportingConfig::FromFlags(is_system_server);
1286 
1287     metrics_reporter_->ReloadConfig(metrics_config);
1288 
1289     metrics::SessionData session_data{metrics::SessionData::CreateDefault()};
1290     // Start the session id from 1 to avoid clashes with the default value.
1291     // (better for debugability)
1292     session_data.session_id = GetRandomNumber<int64_t>(1, std::numeric_limits<int64_t>::max());
1293     // TODO: set session_data.compilation_reason and session_data.compiler_filter
1294     metrics_reporter_->MaybeStartBackgroundThread(session_data);
1295     // Also notify about any updates to the app info.
1296     metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
1297   }
1298 
1299   StartSignalCatcher();
1300 
1301   ScopedObjectAccess soa(Thread::Current());
1302   if (IsPerfettoHprofEnabled() &&
1303       (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1304        Runtime::Current()->IsSystemServer())) {
1305     std::string err;
1306     ScopedTrace tr("perfetto_hprof init.");
1307     ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1308     if (!EnsurePerfettoPlugin(&err)) {
1309       LOG(WARNING) << "Failed to load perfetto_hprof: " << err;
1310     }
1311   }
1312   if (IsPerfettoJavaHeapStackProfEnabled() &&
1313       (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1314        Runtime::Current()->IsSystemServer())) {
1315     // Marker used for dev tracing similar to above markers.
1316     ScopedTrace tr("perfetto_javaheapprof init.");
1317   }
1318   if (Runtime::Current()->IsSystemServer()) {
1319     std::string err;
1320     ScopedTrace tr("odrefresh and device stats logging");
1321     ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1322     // Report stats if available. This should be moved into ART Services when they are ready.
1323     if (!odrefresh::UploadStatsIfAvailable(&err)) {
1324       LOG(WARNING) << "Failed to upload odrefresh metrics: " << err;
1325     }
1326     metrics::SetupCallbackForDeviceStatus();
1327     metrics::ReportDeviceMetrics();
1328   }
1329 
1330   if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) {
1331     if (IsJavaDebuggable()) {
1332       SetJniIdType(JniIdType::kIndices);
1333     } else {
1334       SetJniIdType(JniIdType::kPointer);
1335     }
1336   }
1337   ATraceIntegerValue(
1338       "profilebootclasspath",
1339       static_cast<int>(jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()));
1340   // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
1341   // this will pause the runtime (in the internal debugger implementation), so we probably want
1342   // this to come last.
1343   GetRuntimeCallbacks()->StartDebugger();
1344 }
1345 
StartSignalCatcher()1346 void Runtime::StartSignalCatcher() {
1347   if (!is_zygote_) {
1348     signal_catcher_ = new SignalCatcher();
1349   }
1350 }
1351 
IsShuttingDown(Thread * self)1352 bool Runtime::IsShuttingDown(Thread* self) {
1353   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1354   return IsShuttingDownLocked();
1355 }
1356 
StartDaemonThreads()1357 void Runtime::StartDaemonThreads() {
1358   ScopedTrace trace(__FUNCTION__);
1359   VLOG(startup) << "Runtime::StartDaemonThreads entering";
1360 
1361   Thread* self = Thread::Current();
1362 
1363   DCHECK_EQ(self->GetState(), ThreadState::kRunnable);
1364 
1365   WellKnownClasses::java_lang_Daemons_start->InvokeStatic<'V'>(self);
1366   if (UNLIKELY(self->IsExceptionPending())) {
1367     LOG(FATAL) << "Error starting java.lang.Daemons: " << self->GetException()->Dump();
1368   }
1369 
1370   VLOG(startup) << "Runtime::StartDaemonThreads exiting";
1371 }
1372 
OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,ArrayRef<const std::string> dex_locations,ArrayRef<File> dex_files,std::vector<std::unique_ptr<const DexFile>> * out_dex_files)1373 static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,
1374                                ArrayRef<const std::string> dex_locations,
1375                                ArrayRef<File> dex_files,
1376                                std::vector<std::unique_ptr<const DexFile>>* out_dex_files) {
1377   DCHECK(out_dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1378   size_t failure_count = 0;
1379   for (size_t i = 0; i < dex_filenames.size(); i++) {
1380     const char* dex_filename = dex_filenames[i].c_str();
1381     const char* dex_location = dex_locations[i].c_str();
1382     File noFile;
1383     File* file = i < dex_files.size() ? &dex_files[i] : &noFile;
1384     static constexpr bool kVerifyChecksum = true;
1385     std::string error_msg;
1386     if (!OS::FileExists(dex_filename) && file->IsValid()) {
1387       LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1388       continue;
1389     }
1390     bool verify = Runtime::Current()->IsVerificationEnabled();
1391     ArtDexFileLoader dex_file_loader(dex_filename, file, dex_location);
1392     if (!dex_file_loader.Open(verify, kVerifyChecksum, &error_msg, out_dex_files)) {
1393       LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "' / fd " << file->Fd()
1394                    << ": " << error_msg;
1395       ++failure_count;
1396     }
1397     if (file->IsValid()) {
1398       bool close_ok = file->Close();
1399       DCHECK(close_ok) << dex_filename;
1400     }
1401   }
1402   return failure_count;
1403 }
1404 
SetSentinel(ObjPtr<mirror::Object> sentinel)1405 void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) {
1406   CHECK(sentinel_.Read() == nullptr);
1407   CHECK(sentinel != nullptr);
1408   CHECK(!heap_->IsMovableObject(sentinel));
1409   sentinel_ = GcRoot<mirror::Object>(sentinel);
1410 }
1411 
GetSentinel()1412 GcRoot<mirror::Object> Runtime::GetSentinel() {
1413   return sentinel_;
1414 }
1415 
CreatePreAllocatedException(Thread * self,Runtime * runtime,GcRoot<mirror::Throwable> * exception,const char * exception_class_descriptor,const char * msg)1416 static inline void CreatePreAllocatedException(Thread* self,
1417                                                Runtime* runtime,
1418                                                GcRoot<mirror::Throwable>* exception,
1419                                                const char* exception_class_descriptor,
1420                                                const char* msg)
1421     REQUIRES_SHARED(Locks::mutator_lock_) {
1422   DCHECK_EQ(self, Thread::Current());
1423   ClassLinker* class_linker = runtime->GetClassLinker();
1424   // Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>().
1425   ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor);
1426   CHECK(klass != nullptr);
1427   gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
1428   ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast(
1429       klass->Alloc(self, allocator_type));
1430   CHECK(exception_object != nullptr);
1431   *exception = GcRoot<mirror::Throwable>(exception_object);
1432   // Initialize the "detailMessage" field.
1433   ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg);
1434   CHECK(message != nullptr);
1435   ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker);
1436   ArtField* detailMessageField =
1437       throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;");
1438   CHECK(detailMessageField != nullptr);
1439   detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message);
1440 }
1441 
GetApexVersions(ArrayRef<const std::string> boot_class_path_locations)1442 std::string Runtime::GetApexVersions(ArrayRef<const std::string> boot_class_path_locations) {
1443   std::vector<std::string_view> bcp_apexes;
1444   for (std::string_view jar : boot_class_path_locations) {
1445     std::string_view apex = ApexNameFromLocation(jar);
1446     if (!apex.empty()) {
1447       bcp_apexes.push_back(apex);
1448     }
1449   }
1450   static const char* kApexFileName = "/apex/apex-info-list.xml";
1451   // Start with empty markers.
1452   std::string empty_apex_versions(bcp_apexes.size(), '/');
1453   // When running on host or chroot, we just use empty markers.
1454   if (!kIsTargetBuild || !OS::FileExists(kApexFileName)) {
1455     return empty_apex_versions;
1456   }
1457 #ifdef ART_TARGET_ANDROID
1458   if (access(kApexFileName, R_OK) != 0) {
1459     PLOG(WARNING) << "Failed to read " << kApexFileName;
1460     return empty_apex_versions;
1461   }
1462   auto info_list = apex::readApexInfoList(kApexFileName);
1463   if (!info_list.has_value()) {
1464     LOG(WARNING) << "Failed to parse " << kApexFileName;
1465     return empty_apex_versions;
1466   }
1467 
1468   std::string result;
1469   std::map<std::string_view, const apex::ApexInfo*> apex_infos;
1470   for (const apex::ApexInfo& info : info_list->getApexInfo()) {
1471     if (info.getIsActive()) {
1472       apex_infos.emplace(info.getModuleName(), &info);
1473     }
1474   }
1475   for (const std::string_view& str : bcp_apexes) {
1476     auto info = apex_infos.find(str);
1477     if (info == apex_infos.end() || info->second->getIsFactory()) {
1478       result += '/';
1479     } else {
1480       // In case lastUpdateMillis field is populated in apex-info-list.xml, we
1481       // prefer to use it as version scheme. If the field is missing we
1482       // fallback to the version code of the APEX.
1483       uint64_t version = info->second->hasLastUpdateMillis()
1484           ? info->second->getLastUpdateMillis()
1485           : info->second->getVersionCode();
1486       android::base::StringAppendF(&result, "/%" PRIu64, version);
1487     }
1488   }
1489   return result;
1490 #else
1491   return empty_apex_versions;  // Not an Android build.
1492 #endif
1493 }
1494 
InitializeApexVersions()1495 void Runtime::InitializeApexVersions() {
1496   apex_versions_ =
1497       GetApexVersions(ArrayRef<const std::string>(Runtime::Current()->GetBootClassPathLocations()));
1498 }
1499 
ReloadAllFlags(const std::string & caller)1500 void Runtime::ReloadAllFlags(const std::string& caller) {
1501   FlagBase::ReloadAllFlags(caller);
1502 }
1503 
FileFdsToFileObjects(std::vector<int> && fds)1504 static std::vector<File> FileFdsToFileObjects(std::vector<int>&& fds) {
1505   std::vector<File> files;
1506   files.reserve(fds.size());
1507   for (int fd : fds) {
1508     files.push_back(File(fd, /*check_usage=*/false));
1509   }
1510   return files;
1511 }
1512 
GetThreadSuspendTimeout(const RuntimeArgumentMap * runtime_options)1513 inline static uint64_t GetThreadSuspendTimeout(const RuntimeArgumentMap* runtime_options) {
1514   auto suspend_timeout_opt = runtime_options->GetOptional(RuntimeArgumentMap::ThreadSuspendTimeout);
1515   return suspend_timeout_opt.has_value() ?
1516              suspend_timeout_opt.value().GetNanoseconds() :
1517              ThreadList::kDefaultThreadSuspendTimeout *
1518                  android::base::GetIntProperty("ro.hw_timeout_multiplier", 1);
1519 }
1520 
Init(RuntimeArgumentMap && runtime_options_in)1521 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1522   // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1523   // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1524   env_snapshot_.TakeSnapshot();
1525 
1526 #ifdef ART_PAGE_SIZE_AGNOSTIC
1527   gPageSize.AllowAccess();
1528 #endif
1529 
1530   using Opt = RuntimeArgumentMap;
1531   Opt runtime_options(std::move(runtime_options_in));
1532   ScopedTrace trace(__FUNCTION__);
1533   CHECK_EQ(static_cast<size_t>(sysconf(_SC_PAGE_SIZE)), gPageSize);
1534 
1535   // Reload all the flags value (from system properties and device configs).
1536   ReloadAllFlags(__FUNCTION__);
1537 
1538   deny_art_apex_data_files_ = runtime_options.Exists(Opt::DenyArtApexDataFiles);
1539   if (deny_art_apex_data_files_) {
1540     // We will run slower without those files if the system has taken an ART APEX update.
1541     LOG(WARNING) << "ART APEX data files are untrusted.";
1542   }
1543 
1544   // Early override for logging output.
1545   if (runtime_options.Exists(Opt::UseStderrLogger)) {
1546     android::base::SetLogger(android::base::StderrLogger);
1547   }
1548 
1549   MemMap::Init();
1550 
1551   verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal);
1552   force_java_zygote_fork_loop_ = runtime_options.GetOrDefault(Opt::ForceJavaZygoteForkLoop);
1553   perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof);
1554   perfetto_javaheapprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoJavaHeapStackProf);
1555 
1556   // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1557   // If we cannot reserve it, log a warning.
1558   // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1559   //       is out-of-the-way enough that it should not collide with boot image mapping.
1560   // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1561   //       leading to logspam.
1562   {
1563     const uintptr_t sentinel_addr =
1564         RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), gPageSize);
1565     protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page",
1566                                                  reinterpret_cast<uint8_t*>(sentinel_addr),
1567                                                  gPageSize,
1568                                                  PROT_NONE,
1569                                                  /*low_4gb=*/ true,
1570                                                  /*reuse=*/ false,
1571                                                  /*reservation=*/ nullptr,
1572                                                  /*error_msg=*/ nullptr);
1573     if (!protected_fault_page_.IsValid()) {
1574       LOG(WARNING) << "Could not reserve sentinel fault page";
1575     } else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != sentinel_addr) {
1576       LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1577       protected_fault_page_.Reset();
1578     }
1579   }
1580 
1581   VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1582 
1583   QuasiAtomic::Startup();
1584 
1585   oat_file_manager_ = new OatFileManager();
1586 
1587   jni_id_manager_.reset(new jni::JniIdManager());
1588 
1589   Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1590   Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1591                 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1592 
1593   image_locations_ = runtime_options.ReleaseOrDefault(Opt::Image);
1594 
1595   SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet));
1596   boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1597   boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations);
1598   DCHECK(boot_class_path_locations_.empty() ||
1599          boot_class_path_locations_.size() == boot_class_path_.size());
1600   if (boot_class_path_.empty()) {
1601     LOG(ERROR) << "Boot classpath is empty";
1602     return false;
1603   }
1604 
1605   boot_class_path_files_ =
1606       FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathFds));
1607   if (!boot_class_path_files_.empty() && boot_class_path_files_.size() != boot_class_path_.size()) {
1608     LOG(ERROR) << "Number of FDs specified in -Xbootclasspathfds must match the number of JARs in "
1609                << "-Xbootclasspath.";
1610     return false;
1611   }
1612 
1613   boot_class_path_image_files_ =
1614       FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathImageFds));
1615   boot_class_path_vdex_files_ =
1616       FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathVdexFds));
1617   boot_class_path_oat_files_ =
1618       FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathOatFds));
1619   CHECK(boot_class_path_image_files_.empty() ||
1620         boot_class_path_image_files_.size() == boot_class_path_.size());
1621   CHECK(boot_class_path_vdex_files_.empty() ||
1622         boot_class_path_vdex_files_.size() == boot_class_path_.size());
1623   CHECK(boot_class_path_oat_files_.empty() ||
1624         boot_class_path_oat_files_.size() == boot_class_path_.size());
1625 
1626   class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1627   properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1628 
1629   compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1630   must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1631   is_zygote_ = runtime_options.Exists(Opt::Zygote);
1632   is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote);
1633   is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1634   is_eagerly_release_explicit_gc_disabled_ =
1635       runtime_options.Exists(Opt::DisableEagerlyReleaseExplicitGC);
1636   image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1637   dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1638   allow_in_memory_compilation_ = runtime_options.Exists(Opt::AllowInMemoryCompilation);
1639 
1640   if (is_zygote_ || runtime_options.Exists(Opt::OnlyUseTrustedOatFiles)) {
1641     oat_file_manager_->SetOnlyUseTrustedOatFiles();
1642   }
1643 
1644   vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1645   exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1646   abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1647 
1648   default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1649 
1650   compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1651   compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1652   for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
1653     if (option == "--debuggable") {
1654       SetRuntimeDebugState(RuntimeDebugState::kJavaDebuggableAtInit);
1655       break;
1656     }
1657   }
1658   image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1659 
1660   finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs);
1661   max_spins_before_thin_lock_inflation_ =
1662       runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1663 
1664   monitor_list_ = new MonitorList;
1665   monitor_pool_ = MonitorPool::Create();
1666   thread_list_ = new ThreadList(GetThreadSuspendTimeout(&runtime_options));
1667   intern_table_ = new InternTable;
1668 
1669   monitor_timeout_enable_ = runtime_options.GetOrDefault(Opt::MonitorTimeoutEnable);
1670   int monitor_timeout_ms = runtime_options.GetOrDefault(Opt::MonitorTimeout);
1671   if (monitor_timeout_ms < Monitor::kMonitorTimeoutMinMs) {
1672     LOG(WARNING) << "Monitor timeout too short: Increasing";
1673     monitor_timeout_ms = Monitor::kMonitorTimeoutMinMs;
1674   }
1675   if (monitor_timeout_ms >= Monitor::kMonitorTimeoutMaxMs) {
1676     LOG(WARNING) << "Monitor timeout too long: Decreasing";
1677     monitor_timeout_ms = Monitor::kMonitorTimeoutMaxMs - 1;
1678   }
1679   monitor_timeout_ns_ = MsToNs(monitor_timeout_ms);
1680 
1681   verify_ = runtime_options.GetOrDefault(Opt::Verify);
1682 
1683   target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
1684 
1685   // Set hidden API enforcement policy. The checks are disabled by default and
1686   // we only enable them if:
1687   // (a) runtime was started with a command line flag that enables the checks, or
1688   // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
1689   hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy);
1690   DCHECK_IMPLIES(is_zygote_, hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled);
1691 
1692   // Set core platform API enforcement policy. The checks are disabled by default and
1693   // can be enabled with a command line flag. AndroidRuntime will pass the flag if
1694   // a system property is set.
1695   core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy);
1696   if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) {
1697     LOG(INFO) << "Core platform API reporting enabled, enforcing="
1698         << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false");
1699   }
1700 
1701   // Dex2Oat's Runtime does not need the signal chain or the fault handler
1702   // and it passes the `NoSigChain` option to `Runtime` to indicate this.
1703   no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1704   force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1705 
1706   Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1707 
1708   fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1709 
1710   if (runtime_options.GetOrDefault(Opt::Interpret)) {
1711     GetInstrumentation()->ForceInterpretOnly();
1712   }
1713 
1714   zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1715   experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1716   is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1717   madvise_willneed_total_dex_size_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedVdexFileSize);
1718   madvise_willneed_odex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedOdexFileSize);
1719   madvise_willneed_art_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedArtFileSize);
1720 
1721   jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds);
1722   automatically_set_jni_ids_indirection_ =
1723       runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds);
1724 
1725   plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1726   agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1727   // TODO Add back in -agentlib
1728   // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1729   //   agents_.push_back(lib);
1730   // }
1731 
1732   float foreground_heap_growth_multiplier;
1733   if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1734     // If low memory mode, use 1.0 as the multiplier by default.
1735     foreground_heap_growth_multiplier = 1.0f;
1736   } else {
1737     // Extra added to the default heap growth multiplier for concurrent GC
1738     // compaction algorithms. This is done for historical reasons.
1739     // TODO: remove when we revisit heap configurations.
1740     foreground_heap_growth_multiplier =
1741         runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) + 1.0f;
1742   }
1743   XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1744 
1745   // Generational CC collection is currently only compatible with Baker read barriers.
1746   bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc;
1747 
1748   // Cache the apex versions.
1749   InitializeApexVersions();
1750 
1751   BackgroundGcOption background_gc =
1752       gUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground) :
1753                         (gUseUserfaultfd ? BackgroundGcOption(gc::kCollectorTypeCMCBackground) :
1754                                            runtime_options.GetOrDefault(Opt::BackgroundGc));
1755 
1756   heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1757                        runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1758                        runtime_options.GetOrDefault(Opt::HeapMinFree),
1759                        runtime_options.GetOrDefault(Opt::HeapMaxFree),
1760                        runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1761                        foreground_heap_growth_multiplier,
1762                        runtime_options.GetOrDefault(Opt::StopForNativeAllocs),
1763                        runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1764                        runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1765                        GetBootClassPath(),
1766                        GetBootClassPathLocations(),
1767                        GetBootClassPathFiles(),
1768                        GetBootClassPathImageFiles(),
1769                        GetBootClassPathVdexFiles(),
1770                        GetBootClassPathOatFiles(),
1771                        image_locations_,
1772                        instruction_set_,
1773                        // Override the collector type to CC if the read barrier config.
1774                        gUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1775                        background_gc,
1776                        runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1777                        runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1778                        runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1779                        runtime_options.GetOrDefault(Opt::ConcGCThreads),
1780                        runtime_options.Exists(Opt::LowMemoryMode),
1781                        runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1782                        runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1783                        runtime_options.Exists(Opt::IgnoreMaxFootprint),
1784                        runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs),
1785                        runtime_options.GetOrDefault(Opt::UseTLAB),
1786                        xgc_option.verify_pre_gc_heap_,
1787                        xgc_option.verify_pre_sweeping_heap_,
1788                        xgc_option.verify_post_gc_heap_,
1789                        xgc_option.verify_pre_gc_rosalloc_,
1790                        xgc_option.verify_pre_sweeping_rosalloc_,
1791                        xgc_option.verify_post_gc_rosalloc_,
1792                        xgc_option.gcstress_,
1793                        xgc_option.measure_,
1794                        runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1795                        use_generational_cc,
1796                        runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs),
1797                        runtime_options.Exists(Opt::DumpRegionInfoBeforeGC),
1798                        runtime_options.Exists(Opt::DumpRegionInfoAfterGC));
1799 
1800   dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1801 
1802   bool has_explicit_jdwp_options = runtime_options.Get(Opt::JdwpOptions) != nullptr;
1803   jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
1804   jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider),
1805                                             IsJavaDebuggable());
1806   switch (jdwp_provider_) {
1807     case JdwpProvider::kNone: {
1808       VLOG(jdwp) << "Disabling all JDWP support.";
1809       if (!jdwp_options_.empty()) {
1810         bool has_transport = jdwp_options_.find("transport") != std::string::npos;
1811         std::string adb_connection_args =
1812             std::string("  -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
1813         if (has_explicit_jdwp_options) {
1814           LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
1815                       << "jdwp with one of:" << std::endl
1816                       << "  -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
1817                       << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
1818                       << (has_transport ? "" : adb_connection_args);
1819         }
1820       }
1821       break;
1822     }
1823     case JdwpProvider::kAdbConnection: {
1824       constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
1825                                                         : "libadbconnection.so";
1826       plugins_.push_back(Plugin::Create(plugin_name));
1827       break;
1828     }
1829     case JdwpProvider::kUnset: {
1830       LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!";
1831     }
1832   }
1833   callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1834 
1835   jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1836   if (IsAotCompiler()) {
1837     // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1838     // this case.
1839     // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1840     // null and we don't create the jit.
1841     jit_options_->SetUseJitCompilation(false);
1842     jit_options_->SetSaveProfilingInfo(false);
1843   }
1844 
1845   // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1846   // can't be trimmed as easily.
1847   const bool use_malloc = IsAotCompiler();
1848   if (use_malloc) {
1849     arena_pool_.reset(new MallocArenaPool());
1850     jit_arena_pool_.reset(new MallocArenaPool());
1851   } else {
1852     arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false));
1853     jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata"));
1854   }
1855 
1856   // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
1857   // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
1858   // when we have 64 bit ArtMethod pointers.
1859   const bool low_4gb = IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA);
1860   if (gUseUserfaultfd) {
1861     linear_alloc_arena_pool_.reset(new GcVisitedArenaPool(low_4gb, IsZygote()));
1862   } else if (low_4gb) {
1863     linear_alloc_arena_pool_.reset(new MemMapArenaPool(low_4gb));
1864   }
1865   linear_alloc_.reset(CreateLinearAlloc());
1866   startup_linear_alloc_.store(CreateLinearAlloc(), std::memory_order_relaxed);
1867 
1868   small_lrt_allocator_ = new jni::SmallLrtAllocator();
1869 
1870   BlockSignals();
1871   InitPlatformSignalHandlers();
1872 
1873   // Change the implicit checks flags based on runtime architecture.
1874   switch (kRuntimeQuickCodeISA) {
1875     case InstructionSet::kArm64:
1876       implicit_suspend_checks_ = true;
1877       FALLTHROUGH_INTENDED;
1878     case InstructionSet::kArm:
1879     case InstructionSet::kThumb2:
1880     case InstructionSet::kRiscv64:
1881     case InstructionSet::kX86:
1882     case InstructionSet::kX86_64:
1883       implicit_null_checks_ = true;
1884       // Historical note: Installing stack protection was not playing well with Valgrind.
1885       implicit_so_checks_ = true;
1886       break;
1887     default:
1888       // Keep the defaults.
1889       break;
1890   }
1891 
1892   fault_manager.Init(!no_sig_chain_);
1893   if (!no_sig_chain_) {
1894     if (HandlesSignalsInCompiledCode()) {
1895       // These need to be in a specific order.  The null point check handler must be
1896       // after the suspend check and stack overflow check handlers.
1897       //
1898       // Note: the instances attach themselves to the fault manager and are handled by it. The
1899       //       manager will delete the instance on Shutdown().
1900       if (implicit_suspend_checks_) {
1901         new SuspensionHandler(&fault_manager);
1902       }
1903 
1904       if (implicit_so_checks_) {
1905         new StackOverflowHandler(&fault_manager);
1906       }
1907 
1908       if (implicit_null_checks_) {
1909         new NullPointerHandler(&fault_manager);
1910       }
1911 
1912       if (kEnableJavaStackTraceHandler) {
1913         new JavaStackTraceHandler(&fault_manager);
1914       }
1915 
1916       if (interpreter::CanRuntimeUseNterp()) {
1917         // Nterp code can use signal handling just like the compiled managed code.
1918         OatQuickMethodHeader* nterp_header = OatQuickMethodHeader::NterpMethodHeader;
1919         fault_manager.AddGeneratedCodeRange(nterp_header->GetCode(), nterp_header->GetCodeSize());
1920       }
1921     }
1922   }
1923 
1924   verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold);
1925 
1926   std::string error_msg;
1927   java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1928   if (java_vm_.get() == nullptr) {
1929     LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1930     return false;
1931   }
1932 
1933   // Add the JniEnv handler.
1934   // TODO Refactor this stuff.
1935   java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1936 
1937   Thread::Startup();
1938 
1939   // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1940   // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1941   // thread, we do not get a java peer.
1942   Thread* self = Thread::Attach("main", false, nullptr, false, /* should_run_callbacks= */ true);
1943   CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1944   CHECK(self != nullptr);
1945 
1946   self->SetIsRuntimeThread(IsAotCompiler());
1947 
1948   // Set us to runnable so tools using a runtime can allocate and GC by default
1949   self->TransitionFromSuspendedToRunnable();
1950 
1951   // Now we're attached, we can take the heap locks and validate the heap.
1952   GetHeap()->EnableObjectValidation();
1953 
1954   CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1955 
1956   if (UNLIKELY(IsAotCompiler())) {
1957     class_linker_ = compiler_callbacks_->CreateAotClassLinker(intern_table_);
1958   } else {
1959     class_linker_ = new ClassLinker(
1960         intern_table_,
1961         runtime_options.GetOrDefault(Opt::FastClassNotFoundException));
1962   }
1963   if (GetHeap()->HasBootImageSpace()) {
1964     bool result = class_linker_->InitFromBootImage(&error_msg);
1965     if (!result) {
1966       LOG(ERROR) << "Could not initialize from image: " << error_msg;
1967       return false;
1968     }
1969     if (kIsDebugBuild) {
1970       for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1971         image_space->VerifyImageAllocations();
1972       }
1973     }
1974     {
1975       ScopedTrace trace2("AddImageStringsToTable");
1976       for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) {
1977         GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor());
1978       }
1979     }
1980 
1981     const size_t total_components = gc::space::ImageSpace::GetNumberOfComponents(
1982         ArrayRef<gc::space::ImageSpace* const>(heap_->GetBootImageSpaces()));
1983     if (total_components != GetBootClassPath().size()) {
1984       // The boot image did not contain all boot class path components. Load the rest.
1985       CHECK_LT(total_components, GetBootClassPath().size());
1986       size_t start = total_components;
1987       DCHECK_LT(start, GetBootClassPath().size());
1988       std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path;
1989       if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1990         extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1991       } else {
1992         ArrayRef<File> bcp_files = start < GetBootClassPathFiles().size() ?
1993                                        ArrayRef<File>(GetBootClassPathFiles()).SubArray(start) :
1994                                        ArrayRef<File>();
1995         OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start),
1996                          ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start),
1997                          bcp_files,
1998                          &extra_boot_class_path);
1999       }
2000       class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path));
2001     }
2002     if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) {
2003       // Deoptimize the boot image if debuggable  as the code may have been compiled non-debuggable.
2004       // Also deoptimize if we are profiling the boot class path.
2005       ScopedThreadSuspension sts(self, ThreadState::kNative);
2006       ScopedSuspendAll ssa(__FUNCTION__);
2007       DeoptimizeBootImage();
2008     }
2009   } else {
2010     std::vector<std::unique_ptr<const DexFile>> boot_class_path;
2011     if (runtime_options.Exists(Opt::BootClassPathDexList)) {
2012       boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
2013     } else {
2014       OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()),
2015                        ArrayRef<const std::string>(GetBootClassPathLocations()),
2016                        ArrayRef<File>(GetBootClassPathFiles()),
2017                        &boot_class_path);
2018     }
2019     if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
2020       LOG(ERROR) << "Could not initialize without image: " << error_msg;
2021       return false;
2022     }
2023 
2024     // TODO: Should we move the following to InitWithoutImage?
2025     SetInstructionSet(instruction_set_);
2026     for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
2027       CalleeSaveType type = CalleeSaveType(i);
2028       if (!HasCalleeSaveMethod(type)) {
2029         SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
2030       }
2031     }
2032   }
2033 
2034   // Now that the boot image space is set, cache the boot classpath checksums,
2035   // to be used when validating oat files.
2036   ArrayRef<gc::space::ImageSpace* const> image_spaces(GetHeap()->GetBootImageSpaces());
2037   ArrayRef<const DexFile* const> bcp_dex_files(GetClassLinker()->GetBootClassPath());
2038   boot_class_path_checksums_ = gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces,
2039                                                                                 bcp_dex_files);
2040 
2041   CHECK(class_linker_ != nullptr);
2042 
2043   if (runtime_options.Exists(Opt::MethodTrace)) {
2044     trace_config_.reset(new TraceConfig());
2045     trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
2046     trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
2047     trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
2048     trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
2049                                            TraceOutputMode::kStreaming :
2050                                            TraceOutputMode::kFile;
2051     trace_config_->clock_source = runtime_options.GetOrDefault(Opt::MethodTraceClock);
2052   }
2053 
2054   if (GetHeap()->HasBootImageSpace()) {
2055     const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader();
2056     ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
2057         ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
2058             image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
2059     pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>(
2060         boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable());
2061     DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass()
2062                ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
2063     pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>(
2064         boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable());
2065     DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass()
2066                ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
2067     pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>(
2068         boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable());
2069     DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass()
2070                ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
2071     pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(
2072         boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable());
2073     DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass()
2074                ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;"));
2075   } else {
2076     // Pre-allocate an OutOfMemoryError for the case when we fail to
2077     // allocate the exception to be thrown.
2078     CreatePreAllocatedException(self,
2079                                 this,
2080                                 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
2081                                 "Ljava/lang/OutOfMemoryError;",
2082                                 "OutOfMemoryError thrown while trying to throw an exception; "
2083                                     "no stack trace available");
2084     // Pre-allocate an OutOfMemoryError for the double-OOME case.
2085     CreatePreAllocatedException(self,
2086                                 this,
2087                                 &pre_allocated_OutOfMemoryError_when_throwing_oome_,
2088                                 "Ljava/lang/OutOfMemoryError;",
2089                                 "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
2090                                     "no stack trace available");
2091     // Pre-allocate an OutOfMemoryError for the case when we fail to
2092     // allocate while handling a stack overflow.
2093     CreatePreAllocatedException(self,
2094                                 this,
2095                                 &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,
2096                                 "Ljava/lang/OutOfMemoryError;",
2097                                 "OutOfMemoryError thrown while trying to handle a stack overflow; "
2098                                     "no stack trace available");
2099 
2100     // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
2101     // ahead of checking the application's class loader.
2102     CreatePreAllocatedException(self,
2103                                 this,
2104                                 &pre_allocated_NoClassDefFoundError_,
2105                                 "Ljava/lang/NoClassDefFoundError;",
2106                                 "Class not found using the boot class loader; "
2107                                     "no stack trace available");
2108   }
2109 
2110   // Class-roots are setup, we can now finish initializing the JniIdManager.
2111   GetJniIdManager()->Init(self);
2112 
2113   // Initialize metrics only for the Zygote process or
2114   // if explicitly enabled via command line argument.
2115   if (IsZygote() || gFlags.MetricsForceEnable.GetValue()) {
2116     LOG(INFO) << "Initializing ART runtime metrics";
2117     InitMetrics();
2118   }
2119 
2120   // Runtime initialization is largely done now.
2121   // We load plugins first since that can modify the runtime state slightly.
2122   // Load all plugins
2123   {
2124     // The init method of plugins expect the state of the thread to be non runnable.
2125     ScopedThreadSuspension sts(self, ThreadState::kNative);
2126     for (auto& plugin : plugins_) {
2127       std::string err;
2128       if (!plugin.Load(&err)) {
2129         LOG(FATAL) << plugin << " failed to load: " << err;
2130       }
2131     }
2132   }
2133 
2134   // Look for a native bridge.
2135   //
2136   // The intended flow here is, in the case of a running system:
2137   //
2138   // Runtime::Init() (zygote):
2139   //   LoadNativeBridge -> dlopen from cmd line parameter.
2140   //  |
2141   //  V
2142   // Runtime::Start() (zygote):
2143   //   No-op wrt native bridge.
2144   //  |
2145   //  | start app
2146   //  V
2147   // DidForkFromZygote(action)
2148   //   action = kUnload -> dlclose native bridge.
2149   //   action = kInitialize -> initialize library
2150   //
2151   //
2152   // The intended flow here is, in the case of a simple dalvikvm call:
2153   //
2154   // Runtime::Init():
2155   //   LoadNativeBridge -> dlopen from cmd line parameter.
2156   //  |
2157   //  V
2158   // Runtime::Start():
2159   //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
2160   //   No-op wrt native bridge.
2161   {
2162     std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
2163     is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
2164   }
2165 
2166   // Startup agents
2167   // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
2168   for (auto& agent_spec : agent_specs_) {
2169     // TODO Check err
2170     int res = 0;
2171     std::string err = "";
2172     ti::LoadError error;
2173     std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
2174 
2175     if (agent != nullptr) {
2176       agents_.push_back(std::move(agent));
2177       continue;
2178     }
2179 
2180     switch (error) {
2181       case ti::LoadError::kInitializationError:
2182         LOG(FATAL) << "Unable to initialize agent!";
2183         UNREACHABLE();
2184 
2185       case ti::LoadError::kLoadingError:
2186         LOG(ERROR) << "Unable to load an agent: " << err;
2187         continue;
2188 
2189       case ti::LoadError::kNoError:
2190         break;
2191     }
2192     LOG(FATAL) << "Unreachable";
2193     UNREACHABLE();
2194   }
2195   {
2196     ScopedObjectAccess soa(self);
2197     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
2198   }
2199 
2200   if (IsZygote() && IsPerfettoHprofEnabled()) {
2201     constexpr const char* plugin_name = kIsDebugBuild ?
2202         "libperfetto_hprofd.so" : "libperfetto_hprof.so";
2203     // Load eagerly in Zygote to improve app startup times. This will make
2204     // subsequent dlopens for the library no-ops.
2205     dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL);
2206   }
2207 
2208   VLOG(startup) << "Runtime::Init exiting";
2209 
2210   return true;
2211 }
2212 
InitMetrics()2213 void Runtime::InitMetrics() {
2214   metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags();
2215   metrics_reporter_ = metrics::MetricsReporter::Create(metrics_config, this);
2216 }
2217 
RequestMetricsReport(bool synchronous)2218 void Runtime::RequestMetricsReport(bool synchronous) {
2219   if (AreMetricsInitialized()) {
2220     metrics_reporter_->RequestMetricsReport(synchronous);
2221   }
2222 }
2223 
EnsurePluginLoaded(const char * plugin_name,std::string * error_msg)2224 bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) {
2225   // Is the plugin already loaded?
2226   for (const Plugin& p : plugins_) {
2227     if (p.GetLibrary() == plugin_name) {
2228       return true;
2229     }
2230   }
2231   Plugin new_plugin = Plugin::Create(plugin_name);
2232 
2233   if (!new_plugin.Load(error_msg)) {
2234     return false;
2235   }
2236   plugins_.push_back(std::move(new_plugin));
2237   return true;
2238 }
2239 
EnsurePerfettoPlugin(std::string * error_msg)2240 bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) {
2241   constexpr const char* plugin_name = kIsDebugBuild ?
2242     "libperfetto_hprofd.so" : "libperfetto_hprof.so";
2243   return EnsurePluginLoaded(plugin_name, error_msg);
2244 }
2245 
EnsureJvmtiPlugin(Runtime * runtime,std::string * error_msg)2246 static bool EnsureJvmtiPlugin(Runtime* runtime,
2247                               std::string* error_msg) {
2248   // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
2249   DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
2250       << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
2251   // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
2252   // specifically allowed.
2253   if (!Dbg::IsJdwpAllowed()) {
2254     *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
2255     return false;
2256   }
2257 
2258   constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
2259   return runtime->EnsurePluginLoaded(plugin_name, error_msg);
2260 }
2261 
2262 // Attach a new agent and add it to the list of runtime agents
2263 //
2264 // TODO: once we decide on the threading model for agents,
2265 //   revisit this and make sure we're doing this on the right thread
2266 //   (and we synchronize access to any shared data structures like "agents_")
2267 //
AttachAgent(JNIEnv * env,const std::string & agent_arg,jobject class_loader)2268 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
2269   std::string error_msg;
2270   if (!EnsureJvmtiPlugin(this, &error_msg)) {
2271     LOG(WARNING) << "Could not load plugin: " << error_msg;
2272     ScopedObjectAccess soa(Thread::Current());
2273     ThrowIOException("%s", error_msg.c_str());
2274     return;
2275   }
2276 
2277   ti::AgentSpec agent_spec(agent_arg);
2278 
2279   int res = 0;
2280   ti::LoadError error;
2281   std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
2282 
2283   if (agent != nullptr) {
2284     agents_.push_back(std::move(agent));
2285   } else {
2286     LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
2287     ScopedObjectAccess soa(Thread::Current());
2288     ThrowIOException("%s", error_msg.c_str());
2289   }
2290 }
2291 
InitNativeMethods()2292 void Runtime::InitNativeMethods() {
2293   VLOG(startup) << "Runtime::InitNativeMethods entering";
2294   Thread* self = Thread::Current();
2295   JNIEnv* env = self->GetJniEnv();
2296 
2297   // Must be in the kNative state for calling native methods (JNI_OnLoad code).
2298   CHECK_EQ(self->GetState(), ThreadState::kNative);
2299 
2300   // Then set up libjavacore / libopenjdk / libicu_jni ,which are just
2301   // a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can
2302   // just use System.loadLibrary, but libcore can't because it's the library
2303   // that implements System.loadLibrary!
2304   //
2305   // By setting calling class to java.lang.Object, the caller location for these
2306   // JNI libs is core-oj.jar in the ART APEX, and hence they are loaded from the
2307   // com_android_art linker namespace.
2308   jclass java_lang_Object;
2309   {
2310     // Use global JNI reference to keep the local references empty. If we allocated a
2311     // local reference here, the `PushLocalFrame(128)` that these internal libraries do
2312     // in their `JNI_OnLoad()` would reserve a lot of unnecessary space due to rounding.
2313     ScopedObjectAccess soa(self);
2314     java_lang_Object = reinterpret_cast<jclass>(
2315         GetJavaVM()->AddGlobalRef(self, GetClassRoot<mirror::Object>(GetClassLinker())));
2316   }
2317 
2318   // libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from
2319   // libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405
2320   {
2321     std::string error_msg;
2322     if (!java_vm_->LoadNativeLibrary(
2323           env, "libicu_jni.so", nullptr, java_lang_Object, &error_msg)) {
2324       LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg;
2325     }
2326   }
2327   {
2328     std::string error_msg;
2329     if (!java_vm_->LoadNativeLibrary(
2330           env, "libjavacore.so", nullptr, java_lang_Object, &error_msg)) {
2331       LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
2332     }
2333   }
2334   {
2335     constexpr const char* kOpenJdkLibrary = kIsDebugBuild
2336                                                 ? "libopenjdkd.so"
2337                                                 : "libopenjdk.so";
2338     std::string error_msg;
2339     if (!java_vm_->LoadNativeLibrary(
2340           env, kOpenJdkLibrary, nullptr, java_lang_Object, &error_msg)) {
2341       LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
2342     }
2343   }
2344   env->DeleteGlobalRef(java_lang_Object);
2345 
2346   // Initialize well known classes that may invoke runtime native methods.
2347   WellKnownClasses::LateInit(env);
2348 
2349   VLOG(startup) << "Runtime::InitNativeMethods exiting";
2350 }
2351 
ReclaimArenaPoolMemory()2352 void Runtime::ReclaimArenaPoolMemory() {
2353   arena_pool_->LockReclaimMemory();
2354 }
2355 
InitThreadGroups(Thread * self)2356 void Runtime::InitThreadGroups(Thread* self) {
2357   ScopedObjectAccess soa(self);
2358   ArtField* main_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup;
2359   ArtField* system_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup;
2360   // Note: This is running before `ClassLinker::RunRootClinits()`, so we cannot rely on
2361   // `ThreadGroup` and `Thread` being initialized.
2362   // TODO: Clean up initialization order after all well-known methods are converted to `ArtMethod*`
2363   // (and therefore the `WellKnownClasses::Init()` shall not initialize any classes).
2364   StackHandleScope<2u> hs(self);
2365   Handle<mirror::Class> thread_group_class =
2366       hs.NewHandle(main_thread_group_field->GetDeclaringClass());
2367   bool initialized = GetClassLinker()->EnsureInitialized(
2368       self, thread_group_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true);
2369   CHECK(initialized);
2370   Handle<mirror::Class> thread_class = hs.NewHandle(WellKnownClasses::java_lang_Thread.Get());
2371   initialized = GetClassLinker()->EnsureInitialized(
2372       self, thread_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true);
2373   CHECK(initialized);
2374   main_thread_group_ =
2375       soa.Vm()->AddGlobalRef(self, main_thread_group_field->GetObject(thread_group_class.Get()));
2376   CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
2377   system_thread_group_ =
2378       soa.Vm()->AddGlobalRef(self, system_thread_group_field->GetObject(thread_group_class.Get()));
2379   CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
2380 }
2381 
GetMainThreadGroup() const2382 jobject Runtime::GetMainThreadGroup() const {
2383   CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
2384   return main_thread_group_;
2385 }
2386 
GetSystemThreadGroup() const2387 jobject Runtime::GetSystemThreadGroup() const {
2388   CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
2389   return system_thread_group_;
2390 }
2391 
GetSystemClassLoader() const2392 jobject Runtime::GetSystemClassLoader() const {
2393   CHECK_IMPLIES(system_class_loader_ == nullptr, IsAotCompiler());
2394   return system_class_loader_;
2395 }
2396 
RegisterRuntimeNativeMethods(JNIEnv * env)2397 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
2398   register_dalvik_system_DexFile(env);
2399   register_dalvik_system_BaseDexClassLoader(env);
2400   register_dalvik_system_VMDebug(env);
2401   real_register_dalvik_system_VMRuntime(env);
2402   register_dalvik_system_VMStack(env);
2403   register_dalvik_system_ZygoteHooks(env);
2404   register_java_lang_Class(env);
2405   register_java_lang_Object(env);
2406   register_java_lang_invoke_MethodHandle(env);
2407   register_java_lang_invoke_MethodHandleImpl(env);
2408   register_java_lang_ref_FinalizerReference(env);
2409   register_java_lang_reflect_Array(env);
2410   register_java_lang_reflect_Constructor(env);
2411   register_java_lang_reflect_Executable(env);
2412   register_java_lang_reflect_Field(env);
2413   register_java_lang_reflect_Method(env);
2414   register_java_lang_reflect_Parameter(env);
2415   register_java_lang_reflect_Proxy(env);
2416   register_java_lang_ref_Reference(env);
2417   register_java_lang_StackStreamFactory(env);
2418   register_java_lang_String(env);
2419   register_java_lang_StringFactory(env);
2420   register_java_lang_System(env);
2421   register_java_lang_Thread(env);
2422   register_java_lang_Throwable(env);
2423   register_java_lang_VMClassLoader(env);
2424   register_java_util_concurrent_atomic_AtomicLong(env);
2425   register_jdk_internal_misc_Unsafe(env);
2426   register_libcore_io_Memory(env);
2427   register_libcore_util_CharsetUtils(env);
2428   register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
2429   register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
2430   register_sun_misc_Unsafe(env);
2431 }
2432 
operator <<(std::ostream & os,const DeoptimizationKind & kind)2433 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
2434   os << GetDeoptimizationKindName(kind);
2435   return os;
2436 }
2437 
DumpDeoptimizations(std::ostream & os)2438 void Runtime::DumpDeoptimizations(std::ostream& os) {
2439   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
2440     if (deoptimization_counts_[i] != 0) {
2441       os << "Number of "
2442          << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
2443          << " deoptimizations: "
2444          << deoptimization_counts_[i]
2445          << "\n";
2446     }
2447   }
2448 }
2449 
SiqQuitNanoTime() const2450 std::optional<uint64_t> Runtime::SiqQuitNanoTime() const {
2451   return signal_catcher_ != nullptr ? signal_catcher_->SiqQuitNanoTime() : std::nullopt;
2452 }
2453 
DumpForSigQuit(std::ostream & os)2454 void Runtime::DumpForSigQuit(std::ostream& os) {
2455   // Print backtraces first since they are important do diagnose ANRs,
2456   // and ANRs can often be trimmed to limit upload size.
2457   thread_list_->DumpForSigQuit(os);
2458   GetClassLinker()->DumpForSigQuit(os);
2459   GetInternTable()->DumpForSigQuit(os);
2460   GetJavaVM()->DumpForSigQuit(os);
2461   GetHeap()->DumpForSigQuit(os);
2462   oat_file_manager_->DumpForSigQuit(os);
2463   if (GetJit() != nullptr) {
2464     GetJit()->DumpForSigQuit(os);
2465   } else {
2466     os << "Running non JIT\n";
2467   }
2468   DumpDeoptimizations(os);
2469   TrackedAllocators::Dump(os);
2470   GetMetrics()->DumpForSigQuit(os);
2471   os << "\n";
2472 
2473   BaseMutex::DumpAll(os);
2474 
2475   // Inform anyone else who is interested in SigQuit.
2476   {
2477     ScopedObjectAccess soa(Thread::Current());
2478     callbacks_->SigQuit();
2479   }
2480 }
2481 
DumpLockHolders(std::ostream & os)2482 void Runtime::DumpLockHolders(std::ostream& os) {
2483   pid_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
2484   pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
2485   pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
2486   pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
2487   if ((mutator_lock_owner | thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
2488     os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
2489        << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
2490        << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
2491        << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
2492   }
2493 }
2494 
SetStatsEnabled(bool new_state)2495 void Runtime::SetStatsEnabled(bool new_state) {
2496   Thread* self = Thread::Current();
2497   MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
2498   if (new_state == true) {
2499     GetStats()->Clear(~0);
2500     // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2501     self->GetStats()->Clear(~0);
2502     if (stats_enabled_ != new_state) {
2503       GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
2504     }
2505   } else if (stats_enabled_ != new_state) {
2506     GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
2507   }
2508   stats_enabled_ = new_state;
2509 }
2510 
ResetStats(int kinds)2511 void Runtime::ResetStats(int kinds) {
2512   GetStats()->Clear(kinds & 0xffff);
2513   // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2514   Thread::Current()->GetStats()->Clear(kinds >> 16);
2515 }
2516 
GetStat(int kind)2517 uint64_t Runtime::GetStat(int kind) {
2518   RuntimeStats* stats;
2519   if (kind < (1<<16)) {
2520     stats = GetStats();
2521   } else {
2522     stats = Thread::Current()->GetStats();
2523     kind >>= 16;
2524   }
2525   switch (kind) {
2526   case KIND_ALLOCATED_OBJECTS:
2527     return stats->allocated_objects;
2528   case KIND_ALLOCATED_BYTES:
2529     return stats->allocated_bytes;
2530   case KIND_FREED_OBJECTS:
2531     return stats->freed_objects;
2532   case KIND_FREED_BYTES:
2533     return stats->freed_bytes;
2534   case KIND_GC_INVOCATIONS:
2535     return stats->gc_for_alloc_count;
2536   case KIND_CLASS_INIT_COUNT:
2537     return stats->class_init_count;
2538   case KIND_CLASS_INIT_TIME:
2539     return stats->class_init_time_ns;
2540   case KIND_EXT_ALLOCATED_OBJECTS:
2541   case KIND_EXT_ALLOCATED_BYTES:
2542   case KIND_EXT_FREED_OBJECTS:
2543   case KIND_EXT_FREED_BYTES:
2544     return 0;  // backward compatibility
2545   default:
2546     LOG(FATAL) << "Unknown statistic " << kind;
2547     UNREACHABLE();
2548   }
2549 }
2550 
BlockSignals()2551 void Runtime::BlockSignals() {
2552   SignalSet signals;
2553   signals.Add(SIGPIPE);
2554   // SIGQUIT is used to dump the runtime's state (including stack traces).
2555   signals.Add(SIGQUIT);
2556   // SIGUSR1 is used to initiate a GC.
2557   signals.Add(SIGUSR1);
2558   signals.Block();
2559 }
2560 
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer,bool should_run_callbacks)2561 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
2562                                   bool create_peer, bool should_run_callbacks) {
2563   ScopedTrace trace(__FUNCTION__);
2564   Thread* self = Thread::Attach(thread_name,
2565                                 as_daemon,
2566                                 thread_group,
2567                                 create_peer,
2568                                 should_run_callbacks);
2569   // Run ThreadGroup.add to notify the group that this thread is now started.
2570   if (self != nullptr && create_peer && !IsAotCompiler()) {
2571     ScopedObjectAccess soa(self);
2572     self->NotifyThreadGroup(soa, thread_group);
2573   }
2574   return self != nullptr;
2575 }
2576 
DetachCurrentThread(bool should_run_callbacks)2577 void Runtime::DetachCurrentThread(bool should_run_callbacks) {
2578   ScopedTrace trace(__FUNCTION__);
2579   Thread* self = Thread::Current();
2580   if (self == nullptr) {
2581     LOG(FATAL) << "attempting to detach thread that is not attached";
2582   }
2583   if (self->HasManagedStack()) {
2584     LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
2585   }
2586   thread_list_->Unregister(self, should_run_callbacks);
2587 }
2588 
GetPreAllocatedOutOfMemoryErrorWhenThrowingException()2589 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() {
2590   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read();
2591   if (oome == nullptr) {
2592     LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception";
2593   }
2594   return oome;
2595 }
2596 
GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()2597 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() {
2598   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read();
2599   if (oome == nullptr) {
2600     LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME";
2601   }
2602   return oome;
2603 }
2604 
GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()2605 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() {
2606   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read();
2607   if (oome == nullptr) {
2608     LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow";
2609   }
2610   return oome;
2611 }
2612 
GetPreAllocatedNoClassDefFoundError()2613 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
2614   mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
2615   if (ncdfe == nullptr) {
2616     LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
2617   }
2618   return ncdfe;
2619 }
2620 
VisitConstantRoots(RootVisitor * visitor)2621 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
2622   // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
2623   // null.
2624   BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
2625   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2626   if (HasResolutionMethod()) {
2627     resolution_method_->VisitRoots(buffered_visitor, pointer_size);
2628   }
2629   if (HasImtConflictMethod()) {
2630     imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
2631   }
2632   if (imt_unimplemented_method_ != nullptr) {
2633     imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
2634   }
2635   for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
2636     auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
2637     if (m != nullptr) {
2638       m->VisitRoots(buffered_visitor, pointer_size);
2639     }
2640   }
2641 }
2642 
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2643 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2644   // Userfaultfd compaction updates intern-tables and class-tables page-by-page
2645   // via LinearAlloc. So don't visit them here.
2646   if (GetHeap()->IsPerformingUffdCompaction()) {
2647     class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/false);
2648   } else {
2649     intern_table_->VisitRoots(visitor, flags);
2650     class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/true);
2651   }
2652   jni_id_manager_->VisitRoots(visitor);
2653   heap_->VisitAllocationRecords(visitor);
2654   if (jit_ != nullptr) {
2655     jit_->VisitRoots(visitor);
2656   }
2657   if ((flags & kVisitRootFlagNewRoots) == 0) {
2658     // Guaranteed to have no new roots in the constant roots.
2659     VisitConstantRoots(visitor);
2660   }
2661 }
2662 
VisitNonThreadRoots(RootVisitor * visitor)2663 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
2664   java_vm_->VisitRoots(visitor);
2665   sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2666   pre_allocated_OutOfMemoryError_when_throwing_exception_
2667       .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2668   pre_allocated_OutOfMemoryError_when_throwing_oome_
2669       .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2670   pre_allocated_OutOfMemoryError_when_handling_stack_overflow_
2671       .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2672   pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2673   VisitImageRoots(visitor);
2674   class_linker_->VisitTransactionRoots(visitor);
2675 }
2676 
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2677 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2678   VisitThreadRoots(visitor, flags);
2679   VisitNonThreadRoots(visitor);
2680 }
2681 
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)2682 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
2683   thread_list_->VisitRoots(visitor, flags);
2684 }
2685 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2686 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2687   VisitNonConcurrentRoots(visitor, flags);
2688   VisitConcurrentRoots(visitor, flags);
2689 }
2690 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)2691 void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) {
2692   thread_list_->VisitReflectiveTargets(visitor);
2693   heap_->VisitReflectiveTargets(visitor);
2694   jni_id_manager_->VisitReflectiveTargets(visitor);
2695   callbacks_->VisitReflectiveTargets(visitor);
2696 }
2697 
VisitImageRoots(RootVisitor * visitor)2698 void Runtime::VisitImageRoots(RootVisitor* visitor) {
2699   // We only confirm that image roots are unchanged.
2700   if (kIsDebugBuild) {
2701     for (auto* space : GetHeap()->GetContinuousSpaces()) {
2702       if (space->IsImageSpace()) {
2703         auto* image_space = space->AsImageSpace();
2704         const auto& image_header = image_space->GetImageHeader();
2705         for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
2706           mirror::Object* obj =
2707               image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr();
2708           if (obj != nullptr) {
2709             mirror::Object* after_obj = obj;
2710             visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
2711             CHECK_EQ(after_obj, obj);
2712           }
2713         }
2714       }
2715     }
2716   }
2717 }
2718 
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)2719 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc)
2720     REQUIRES_SHARED(Locks::mutator_lock_) {
2721   const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
2722   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
2723   const size_t method_size = ArtMethod::Size(image_pointer_size);
2724   LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
2725       Thread::Current(),
2726       linear_alloc,
2727       1);
2728   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
2729   CHECK(method != nullptr);
2730   method->SetDexMethodIndex(dex::kDexNoIndex);
2731   CHECK(method->IsRuntimeMethod());
2732   return method;
2733 }
2734 
CreateImtConflictMethod(LinearAlloc * linear_alloc)2735 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
2736   ClassLinker* const class_linker = GetClassLinker();
2737   ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
2738   // When compiling, the code pointer will get set later when the image is loaded.
2739   const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2740   if (IsAotCompiler()) {
2741     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2742   } else {
2743     method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
2744   }
2745   // Create empty conflict table.
2746   method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc),
2747                               pointer_size);
2748   return method;
2749 }
2750 
SetImtConflictMethod(ArtMethod * method)2751 void Runtime::SetImtConflictMethod(ArtMethod* method) {
2752   CHECK(method != nullptr);
2753   CHECK(method->IsRuntimeMethod());
2754   imt_conflict_method_ = method;
2755 }
2756 
CreateResolutionMethod()2757 ArtMethod* Runtime::CreateResolutionMethod() {
2758   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2759   // When compiling, the code pointer will get set later when the image is loaded.
2760   if (IsAotCompiler()) {
2761     PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2762     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2763     method->SetEntryPointFromJniPtrSize(nullptr, pointer_size);
2764   } else {
2765     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2766     method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub());
2767   }
2768   return method;
2769 }
2770 
CreateCalleeSaveMethod()2771 ArtMethod* Runtime::CreateCalleeSaveMethod() {
2772   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2773   PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2774   method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2775   DCHECK_NE(instruction_set_, InstructionSet::kNone);
2776   DCHECK(method->IsRuntimeMethod());
2777   return method;
2778 }
2779 
DisallowNewSystemWeaks()2780 void Runtime::DisallowNewSystemWeaks() {
2781   CHECK(!gUseReadBarrier);
2782   monitor_list_->DisallowNewMonitors();
2783   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
2784   java_vm_->DisallowNewWeakGlobals();
2785   heap_->DisallowNewAllocationRecords();
2786   if (GetJit() != nullptr) {
2787     GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
2788   }
2789 
2790   // All other generic system-weak holders.
2791   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2792     holder->Disallow();
2793   }
2794 }
2795 
AllowNewSystemWeaks()2796 void Runtime::AllowNewSystemWeaks() {
2797   CHECK(!gUseReadBarrier);
2798   monitor_list_->AllowNewMonitors();
2799   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
2800   java_vm_->AllowNewWeakGlobals();
2801   heap_->AllowNewAllocationRecords();
2802   if (GetJit() != nullptr) {
2803     GetJit()->GetCodeCache()->AllowInlineCacheAccess();
2804   }
2805 
2806   // All other generic system-weak holders.
2807   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2808     holder->Allow();
2809   }
2810 }
2811 
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)2812 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
2813   // This is used for the read barrier case that uses the thread-local
2814   // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
2815   // (see ThreadList::RunCheckpoint).
2816   monitor_list_->BroadcastForNewMonitors();
2817   intern_table_->BroadcastForNewInterns();
2818   java_vm_->BroadcastForNewWeakGlobals();
2819   heap_->BroadcastForNewAllocationRecords();
2820   if (GetJit() != nullptr) {
2821     GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2822   }
2823 
2824   // All other generic system-weak holders.
2825   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2826     holder->Broadcast(broadcast_for_checkpoint);
2827   }
2828 }
2829 
SetInstructionSet(InstructionSet instruction_set)2830 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2831   instruction_set_ = instruction_set;
2832   switch (instruction_set) {
2833     case InstructionSet::kThumb2:
2834       // kThumb2 is the same as kArm, use the canonical value.
2835       instruction_set_ = InstructionSet::kArm;
2836       break;
2837     case InstructionSet::kArm:
2838     case InstructionSet::kArm64:
2839     case InstructionSet::kRiscv64:
2840     case InstructionSet::kX86:
2841     case InstructionSet::kX86_64:
2842       break;
2843     default:
2844       UNIMPLEMENTED(FATAL) << instruction_set_;
2845       UNREACHABLE();
2846   }
2847 }
2848 
ClearInstructionSet()2849 void Runtime::ClearInstructionSet() {
2850   instruction_set_ = InstructionSet::kNone;
2851 }
2852 
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2853 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2854   DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2855   CHECK(method != nullptr);
2856   callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2857 }
2858 
ClearCalleeSaveMethods()2859 void Runtime::ClearCalleeSaveMethods() {
2860   for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2861     callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2862   }
2863 }
2864 
RegisterAppInfo(const std::string & package_name,const std::vector<std::string> & code_paths,const std::string & profile_output_filename,const std::string & ref_profile_filename,int32_t code_type)2865 void Runtime::RegisterAppInfo(const std::string& package_name,
2866                               const std::vector<std::string>& code_paths,
2867                               const std::string& profile_output_filename,
2868                               const std::string& ref_profile_filename,
2869                               int32_t code_type) {
2870   app_info_.RegisterAppInfo(
2871       package_name,
2872       code_paths,
2873       profile_output_filename,
2874       ref_profile_filename,
2875       AppInfo::FromVMRuntimeConstants(code_type));
2876 
2877   if (AreMetricsInitialized()) {
2878     metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
2879   }
2880 
2881   if (jit_.get() == nullptr) {
2882     // We are not JITing. Nothing to do.
2883     return;
2884   }
2885 
2886   VLOG(profiler) << "Register app with " << profile_output_filename
2887       << " " << android::base::Join(code_paths, ':');
2888   VLOG(profiler) << "Reference profile is: " << ref_profile_filename;
2889 
2890   if (profile_output_filename.empty()) {
2891     LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2892     return;
2893   }
2894   if (code_paths.empty()) {
2895     LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2896     return;
2897   }
2898 
2899   // Framework calls this method for all split APKs. Ignore the calls for the ones with no dex code
2900   // so that we don't unnecessarily create profiles for them or write bootclasspath profiling info
2901   // to those profiles.
2902   bool has_code = false;
2903   for (const std::string& path : code_paths) {
2904     std::string error_msg;
2905     std::optional<uint32_t> checksum;
2906     std::vector<std::string> dex_locations;
2907     DexFileLoader loader(path);
2908     if (!loader.GetMultiDexChecksum(&checksum, &error_msg)) {
2909       LOG(WARNING) << error_msg;
2910       continue;
2911     }
2912     if (checksum.has_value()) {
2913       has_code = true;
2914       break;
2915     }
2916   }
2917   if (!has_code) {
2918     VLOG(profiler) << ART_FORMAT(
2919         "JIT profile information will not be recorded: no dex code in '{}'.",
2920         android::base::Join(code_paths, ','));
2921     return;
2922   }
2923 
2924   jit_->StartProfileSaver(profile_output_filename,
2925                           code_paths,
2926                           ref_profile_filename,
2927                           AppInfo::FromVMRuntimeConstants(code_type));
2928 }
2929 
SetFaultMessage(const std::string & message)2930 void Runtime::SetFaultMessage(const std::string& message) {
2931   std::string* new_msg = new std::string(message);
2932   std::string* cur_msg = fault_message_.exchange(new_msg);
2933   delete cur_msg;
2934 }
2935 
GetFaultMessage()2936 std::string Runtime::GetFaultMessage() {
2937   // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete
2938   // the string in parallel.
2939   std::string* cur_msg = fault_message_.exchange(nullptr);
2940 
2941   // Make a copy of the string.
2942   std::string ret = cur_msg == nullptr ? "" : *cur_msg;
2943 
2944   // Put the message back if it hasn't been updated.
2945   std::string* null_str = nullptr;
2946   if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) {
2947     // Already replaced.
2948     delete cur_msg;
2949   }
2950 
2951   return ret;
2952 }
2953 
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2954 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2955     const {
2956   if (GetInstrumentation()->InterpretOnly()) {
2957     argv->push_back("--compiler-filter=verify");
2958   }
2959 
2960   // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2961   // architecture support, dex2oat may be compiled as a different instruction-set than that
2962   // currently being executed.
2963   std::string instruction_set("--instruction-set=");
2964   // The dex2oat instruction set should match the runtime's target ISA.
2965   instruction_set += GetInstructionSetString(kRuntimeQuickCodeISA);
2966   argv->push_back(instruction_set);
2967 
2968   if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
2969     argv->push_back("--instruction-set-features=runtime");
2970   } else {
2971     std::unique_ptr<const InstructionSetFeatures> features(
2972         InstructionSetFeatures::FromCppDefines());
2973     std::string feature_string("--instruction-set-features=");
2974     feature_string += features->GetFeatureString();
2975     argv->push_back(feature_string);
2976   }
2977 }
2978 
CreateJit()2979 void Runtime::CreateJit() {
2980   DCHECK(jit_code_cache_ == nullptr);
2981   DCHECK(jit_ == nullptr);
2982   if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2983     DCHECK(!jit_options_->UseJitCompilation());
2984   }
2985 
2986   if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) {
2987     return;
2988   }
2989 
2990   if (IsSafeMode()) {
2991     LOG(INFO) << "Not creating JIT because of SafeMode.";
2992     return;
2993   }
2994 
2995   std::string error_msg;
2996   bool profiling_only = !jit_options_->UseJitCompilation();
2997   jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only,
2998                                                   /*rwx_memory_allowed=*/ true,
2999                                                   IsZygote(),
3000                                                   &error_msg));
3001   if (jit_code_cache_.get() == nullptr) {
3002     LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg;
3003     return;
3004   }
3005 
3006   jit_ = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get());
3007   jit_->CreateThreadPool();
3008 }
3009 
CanRelocate() const3010 bool Runtime::CanRelocate() const {
3011   return !IsAotCompiler();
3012 }
3013 
IsCompilingBootImage() const3014 bool Runtime::IsCompilingBootImage() const {
3015   return IsCompiler() && compiler_callbacks_->IsBootImage();
3016 }
3017 
SetResolutionMethod(ArtMethod * method)3018 void Runtime::SetResolutionMethod(ArtMethod* method) {
3019   CHECK(method != nullptr);
3020   CHECK(method->IsRuntimeMethod()) << method;
3021   resolution_method_ = method;
3022 }
3023 
SetImtUnimplementedMethod(ArtMethod * method)3024 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
3025   CHECK(method != nullptr);
3026   CHECK(method->IsRuntimeMethod());
3027   imt_unimplemented_method_ = method;
3028 }
3029 
FixupConflictTables()3030 void Runtime::FixupConflictTables() {
3031   // We can only do this after the class linker is created.
3032   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
3033   if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
3034     imt_unimplemented_method_->SetImtConflictTable(
3035         ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
3036         pointer_size);
3037   }
3038   if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
3039     imt_conflict_method_->SetImtConflictTable(
3040           ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
3041           pointer_size);
3042   }
3043 }
3044 
DisableVerifier()3045 void Runtime::DisableVerifier() {
3046   verify_ = verifier::VerifyMode::kNone;
3047 }
3048 
IsVerificationEnabled() const3049 bool Runtime::IsVerificationEnabled() const {
3050   return verify_ == verifier::VerifyMode::kEnable ||
3051       verify_ == verifier::VerifyMode::kSoftFail;
3052 }
3053 
IsVerificationSoftFail() const3054 bool Runtime::IsVerificationSoftFail() const {
3055   return verify_ == verifier::VerifyMode::kSoftFail;
3056 }
3057 
IsAsyncDeoptimizeable(ArtMethod * method,uintptr_t code) const3058 bool Runtime::IsAsyncDeoptimizeable(ArtMethod* method, uintptr_t code) const {
3059   if (OatQuickMethodHeader::NterpMethodHeader != nullptr) {
3060     if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) {
3061       return true;
3062     }
3063   }
3064 
3065   // We only support async deopt (ie the compiled code is not explicitly asking for
3066   // deopt, but something else like the debugger) in debuggable JIT code.
3067   // We could look at the oat file where `code` is being defined,
3068   // and check whether it's been compiled debuggable, but we decided to
3069   // only rely on the JIT for debuggable apps.
3070   // The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private
3071   // region as well.
3072   if (GetJit() != nullptr &&
3073       GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code))) {
3074     // If the code is JITed code then check if it was compiled as debuggable.
3075     const OatQuickMethodHeader* header = method->GetOatQuickMethodHeader(code);
3076     return CodeInfo::IsDebuggable(header->GetOptimizedCodeInfoPtr());
3077   }
3078 
3079   return false;
3080 }
3081 
3082 
CreateLinearAlloc()3083 LinearAlloc* Runtime::CreateLinearAlloc() {
3084   ArenaPool* pool = linear_alloc_arena_pool_.get();
3085   return pool != nullptr
3086       ? new LinearAlloc(pool, gUseUserfaultfd)
3087       : new LinearAlloc(arena_pool_.get(), /*track_allocs=*/ false);
3088 }
3089 
3090 class Runtime::SetupLinearAllocForZygoteFork : public AllocatorVisitor {
3091  public:
SetupLinearAllocForZygoteFork(Thread * self)3092   explicit SetupLinearAllocForZygoteFork(Thread* self) : self_(self) {}
3093 
Visit(LinearAlloc * alloc)3094   bool Visit(LinearAlloc* alloc) override {
3095     alloc->SetupForPostZygoteFork(self_);
3096     return true;
3097   }
3098 
3099  private:
3100   Thread* self_;
3101 };
3102 
SetupLinearAllocForPostZygoteFork(Thread * self)3103 void Runtime::SetupLinearAllocForPostZygoteFork(Thread* self) {
3104   if (gUseUserfaultfd) {
3105     // Setup all the linear-allocs out there for post-zygote fork. This will
3106     // basically force the arena allocator to ask for a new arena for the next
3107     // allocation. All arenas allocated from now on will be in the userfaultfd
3108     // visited space.
3109     if (GetLinearAlloc() != nullptr) {
3110       GetLinearAlloc()->SetupForPostZygoteFork(self);
3111     }
3112     if (GetStartupLinearAlloc() != nullptr) {
3113       GetStartupLinearAlloc()->SetupForPostZygoteFork(self);
3114     }
3115     {
3116       Locks::mutator_lock_->AssertNotHeld(self);
3117       ReaderMutexLock mu2(self, *Locks::mutator_lock_);
3118       ReaderMutexLock mu3(self, *Locks::classlinker_classes_lock_);
3119       SetupLinearAllocForZygoteFork visitor(self);
3120       GetClassLinker()->VisitAllocators(&visitor);
3121     }
3122     static_cast<GcVisitedArenaPool*>(GetLinearAllocArenaPool())->SetupPostZygoteMode();
3123   }
3124 }
3125 
GetHashTableMinLoadFactor() const3126 double Runtime::GetHashTableMinLoadFactor() const {
3127   return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
3128 }
3129 
GetHashTableMaxLoadFactor() const3130 double Runtime::GetHashTableMaxLoadFactor() const {
3131   return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
3132 }
3133 
UpdateProcessState(ProcessState process_state)3134 void Runtime::UpdateProcessState(ProcessState process_state) {
3135   ProcessState old_process_state = process_state_;
3136   process_state_ = process_state;
3137   GetHeap()->UpdateProcessState(old_process_state, process_state);
3138 }
3139 
RegisterSensitiveThread() const3140 void Runtime::RegisterSensitiveThread() const {
3141   Thread::SetJitSensitiveThread();
3142 }
3143 
3144 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const3145 bool Runtime::UseJitCompilation() const {
3146   return (jit_ != nullptr) && jit_->UseJitCompilation();
3147 }
3148 
TakeSnapshot()3149 void Runtime::EnvSnapshot::TakeSnapshot() {
3150   char** env = GetEnviron();
3151   for (size_t i = 0; env[i] != nullptr; ++i) {
3152     name_value_pairs_.emplace_back(new std::string(env[i]));
3153   }
3154   // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
3155   // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
3156   c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
3157   for (size_t i = 0; env[i] != nullptr; ++i) {
3158     c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
3159   }
3160   c_env_vector_[name_value_pairs_.size()] = nullptr;
3161 }
3162 
GetSnapshot() const3163 char** Runtime::EnvSnapshot::GetSnapshot() const {
3164   return c_env_vector_.get();
3165 }
3166 
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3167 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3168   gc::ScopedGCCriticalSection gcs(Thread::Current(),
3169                                   gc::kGcCauseAddRemoveSystemWeakHolder,
3170                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
3171   // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
3172   //       a critical section.
3173   system_weak_holders_.push_back(holder);
3174 }
3175 
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3176 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3177   gc::ScopedGCCriticalSection gcs(Thread::Current(),
3178                                   gc::kGcCauseAddRemoveSystemWeakHolder,
3179                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
3180   auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
3181   if (it != system_weak_holders_.end()) {
3182     system_weak_holders_.erase(it);
3183   }
3184 }
3185 
GetRuntimeCallbacks()3186 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
3187   return callbacks_.get();
3188 }
3189 
3190 // Used to update boot image to not use AOT code. This is used when transitioning the runtime to
3191 // java debuggable. This visitor re-initializes the entry points without using AOT code. This also
3192 // disables shared hotness counters so the necessary methods can be JITed more efficiently.
3193 class DeoptimizeBootImageClassVisitor : public ClassVisitor {
3194  public:
DeoptimizeBootImageClassVisitor(instrumentation::Instrumentation * instrumentation)3195   explicit DeoptimizeBootImageClassVisitor(instrumentation::Instrumentation* instrumentation)
3196       : instrumentation_(instrumentation) {}
3197 
operator ()(ObjPtr<mirror::Class> klass)3198   bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) {
3199     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current()));
3200     auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
3201     for (auto& m : klass->GetMethods(pointer_size)) {
3202       const void* code = m.GetEntryPointFromQuickCompiledCode();
3203       if (!m.IsInvokable()) {
3204         continue;
3205       }
3206       // For java debuggable runtimes we also deoptimize native methods. For other cases (boot
3207       // image profiling) we don't need to deoptimize native methods. If this changes also
3208       // update Instrumentation::CanUseAotCode.
3209       bool deoptimize_native_methods = Runtime::Current()->IsJavaDebuggable();
3210       if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
3211           (!m.IsNative() || deoptimize_native_methods) &&
3212           !m.IsProxyMethod()) {
3213         instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
3214       }
3215 
3216       if (Runtime::Current()->GetJit() != nullptr &&
3217           Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) &&
3218           (!m.IsNative() || deoptimize_native_methods)) {
3219         DCHECK(!m.IsProxyMethod());
3220         instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
3221       }
3222 
3223       if (m.IsPreCompiled()) {
3224         // Precompilation is incompatible with debuggable, so clear the flag
3225         // and update the entrypoint in case it has been compiled.
3226         m.ClearPreCompiled();
3227         instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
3228       }
3229 
3230       // Clear MemorySharedAccessFlags so the boot class methods can be JITed better.
3231       m.ClearMemorySharedMethod();
3232     }
3233     return true;
3234   }
3235 
3236  private:
3237   instrumentation::Instrumentation* const instrumentation_;
3238 };
3239 
SetRuntimeDebugState(RuntimeDebugState state)3240 void Runtime::SetRuntimeDebugState(RuntimeDebugState state) {
3241   if (state != RuntimeDebugState::kJavaDebuggableAtInit) {
3242     // We never change the state if we started as a debuggable runtime.
3243     DCHECK(runtime_debug_state_ != RuntimeDebugState::kJavaDebuggableAtInit);
3244   }
3245   runtime_debug_state_ = state;
3246 }
3247 
DeoptimizeBootImage()3248 void Runtime::DeoptimizeBootImage() {
3249   // If we've already started and we are setting this runtime to debuggable,
3250   // we patch entry points of methods in boot image to interpreter bridge, as
3251   // boot image code may be AOT compiled as not debuggable.
3252   DeoptimizeBootImageClassVisitor visitor(GetInstrumentation());
3253   GetClassLinker()->VisitClasses(&visitor);
3254   jit::Jit* jit = GetJit();
3255   if (jit != nullptr) {
3256     // Code previously compiled may not be compiled debuggable.
3257     jit->GetCodeCache()->TransitionToDebuggable();
3258   }
3259 }
3260 
ScopedThreadPoolUsage()3261 Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage()
3262     : thread_pool_(Runtime::Current()->AcquireThreadPool()) {}
3263 
~ScopedThreadPoolUsage()3264 Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() {
3265   Runtime::Current()->ReleaseThreadPool();
3266 }
3267 
DeleteThreadPool()3268 bool Runtime::DeleteThreadPool() {
3269   // Make sure workers are started to prevent thread shutdown errors.
3270   WaitForThreadPoolWorkersToStart();
3271   std::unique_ptr<ThreadPool> thread_pool;
3272   {
3273     MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3274     if (thread_pool_ref_count_ == 0) {
3275       thread_pool = std::move(thread_pool_);
3276     }
3277   }
3278   return thread_pool != nullptr;
3279 }
3280 
AcquireThreadPool()3281 ThreadPool* Runtime::AcquireThreadPool() {
3282   MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3283   ++thread_pool_ref_count_;
3284   return thread_pool_.get();
3285 }
3286 
ReleaseThreadPool()3287 void Runtime::ReleaseThreadPool() {
3288   MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3289   CHECK_GT(thread_pool_ref_count_, 0u);
3290   --thread_pool_ref_count_;
3291 }
3292 
WaitForThreadPoolWorkersToStart()3293 void Runtime::WaitForThreadPoolWorkersToStart() {
3294   // Need to make sure workers are created before deleting the pool.
3295   ScopedThreadPoolUsage stpu;
3296   if (stpu.GetThreadPool() != nullptr) {
3297     stpu.GetThreadPool()->WaitForWorkersToBeCreated();
3298   }
3299 }
3300 
ResetStartupCompleted()3301 void Runtime::ResetStartupCompleted() {
3302   startup_completed_.store(false, std::memory_order_seq_cst);
3303 }
3304 
NotifyStartupCompleted()3305 bool Runtime::NotifyStartupCompleted() {
3306   DCHECK(!IsZygote());
3307   bool expected = false;
3308   if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) {
3309     // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to
3310     // once externally. For this reason there are no asserts.
3311     return false;
3312   }
3313 
3314   VLOG(startup) << app_info_;
3315 
3316   ProfileSaver::NotifyStartupCompleted();
3317 
3318   if (AreMetricsInitialized()) {
3319     metrics_reporter_->NotifyStartupCompleted();
3320   }
3321   return true;
3322 }
3323 
NotifyDexFileLoaded()3324 void Runtime::NotifyDexFileLoaded() {
3325   if (AreMetricsInitialized()) {
3326     metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
3327   }
3328 }
3329 
GetStartupCompleted() const3330 bool Runtime::GetStartupCompleted() const {
3331   return startup_completed_.load(std::memory_order_seq_cst);
3332 }
3333 
SetSignalHookDebuggable(bool value)3334 void Runtime::SetSignalHookDebuggable(bool value) {
3335   SkipAddSignalHandler(value);
3336 }
3337 
SetJniIdType(JniIdType t)3338 void Runtime::SetJniIdType(JniIdType t) {
3339   CHECK(CanSetJniIdType()) << "Not allowed to change id type!";
3340   if (t == GetJniIdType()) {
3341     return;
3342   }
3343   jni_ids_indirection_ = t;
3344   JNIEnvExt::ResetFunctionTable();
3345   WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv());
3346 }
3347 
IsSystemServerProfiled() const3348 bool Runtime::IsSystemServerProfiled() const {
3349   return IsSystemServer() && jit_options_->GetSaveProfilingInfo();
3350 }
3351 
GetOatFilesExecutable() const3352 bool Runtime::GetOatFilesExecutable() const {
3353   return !IsAotCompiler() && !IsSystemServerProfiled();
3354 }
3355 
MadviseFileForRange(size_t madvise_size_limit_bytes,size_t map_size_bytes,const uint8_t * map_begin,const uint8_t * map_end,const std::string & file_name)3356 void Runtime::MadviseFileForRange(size_t madvise_size_limit_bytes,
3357                                   size_t map_size_bytes,
3358                                   const uint8_t* map_begin,
3359                                   const uint8_t* map_end,
3360                                   const std::string& file_name) {
3361   map_begin = AlignDown(map_begin, gPageSize);
3362   map_size_bytes = RoundUp(map_size_bytes, gPageSize);
3363 #ifdef ART_TARGET_ANDROID
3364   // Short-circuit the madvise optimization for background processes. This
3365   // avoids IO and memory contention with foreground processes, particularly
3366   // those involving app startup.
3367   // Note: We can only safely short-circuit the madvise on T+, as it requires
3368   // the framework to always immediately notify ART of process states.
3369   static const int kApiLevel = android_get_device_api_level();
3370   const bool accurate_process_state_at_startup = kApiLevel >= __ANDROID_API_T__;
3371   if (accurate_process_state_at_startup) {
3372     const Runtime* runtime = Runtime::Current();
3373     if (runtime != nullptr && !runtime->InJankPerceptibleProcessState()) {
3374       return;
3375     }
3376   }
3377 #endif  // ART_TARGET_ANDROID
3378 
3379   // Ideal blockTransferSize for madvising files (128KiB)
3380   static constexpr size_t kIdealIoTransferSizeBytes = 128*1024;
3381 
3382   size_t target_size_bytes = std::min<size_t>(map_size_bytes, madvise_size_limit_bytes);
3383 
3384   if (target_size_bytes > 0) {
3385     ScopedTrace madvising_trace("madvising "
3386                                 + file_name
3387                                 + " size="
3388                                 + std::to_string(target_size_bytes));
3389 
3390     // Based on requested size (target_size_bytes)
3391     const uint8_t* target_pos = map_begin + target_size_bytes;
3392 
3393     // Clamp endOfFile if its past map_end
3394     if (target_pos > map_end) {
3395       target_pos = map_end;
3396     }
3397 
3398     // Madvise the whole file up to target_pos in chunks of
3399     // kIdealIoTransferSizeBytes (to MADV_WILLNEED)
3400     // Note:
3401     // madvise(MADV_WILLNEED) will prefetch max(fd readahead size, optimal
3402     // block size for device) per call, hence the need for chunks. (128KB is a
3403     // good default.)
3404     for (const uint8_t* madvise_start = map_begin;
3405          madvise_start < target_pos;
3406          madvise_start += kIdealIoTransferSizeBytes) {
3407       void* madvise_addr = const_cast<void*>(reinterpret_cast<const void*>(madvise_start));
3408       size_t madvise_length = std::min(kIdealIoTransferSizeBytes,
3409                                        static_cast<size_t>(target_pos - madvise_start));
3410       int status = madvise(madvise_addr, madvise_length, MADV_WILLNEED);
3411       // In case of error we stop madvising rest of the file
3412       if (status < 0) {
3413         LOG(ERROR) << "Failed to madvise file " << file_name
3414                    << " for size:" << map_size_bytes
3415                    << ": " << strerror(errno);
3416         break;
3417       }
3418     }
3419   }
3420 }
3421 
3422 // Return whether a boot image has a profile. This means we'll need to pre-JIT
3423 // methods in that profile for performance.
HasImageWithProfile() const3424 bool Runtime::HasImageWithProfile() const {
3425   for (gc::space::ImageSpace* space : GetHeap()->GetBootImageSpaces()) {
3426     if (!space->GetProfileFiles().empty()) {
3427       return true;
3428     }
3429   }
3430   return false;
3431 }
3432 
AppendToBootClassPath(const std::string & filename,const std::string & location)3433 void Runtime::AppendToBootClassPath(const std::string& filename, const std::string& location) {
3434   DCHECK(!DexFileLoader::IsMultiDexLocation(filename));
3435   boot_class_path_.push_back(filename);
3436   if (!boot_class_path_locations_.empty()) {
3437     DCHECK(!DexFileLoader::IsMultiDexLocation(location));
3438     boot_class_path_locations_.push_back(location);
3439   }
3440 }
3441 
AppendToBootClassPath(const std::string & filename,const std::string & location,const std::vector<std::unique_ptr<const art::DexFile>> & dex_files)3442 void Runtime::AppendToBootClassPath(
3443     const std::string& filename,
3444     const std::string& location,
3445     const std::vector<std::unique_ptr<const art::DexFile>>& dex_files) {
3446   AppendToBootClassPath(filename, location);
3447   ScopedObjectAccess soa(Thread::Current());
3448   for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) {
3449     // The first element must not be at a multi-dex location, while other elements must be.
3450     DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
3451               dex_file.get() == dex_files.begin()->get());
3452     GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file.get());
3453   }
3454 }
3455 
AppendToBootClassPath(const std::string & filename,const std::string & location,const std::vector<const art::DexFile * > & dex_files)3456 void Runtime::AppendToBootClassPath(const std::string& filename,
3457                                     const std::string& location,
3458                                     const std::vector<const art::DexFile*>& dex_files) {
3459   AppendToBootClassPath(filename, location);
3460   ScopedObjectAccess soa(Thread::Current());
3461   for (const art::DexFile* dex_file : dex_files) {
3462     // The first element must not be at a multi-dex location, while other elements must be.
3463     DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
3464               dex_file == *dex_files.begin());
3465     GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file);
3466   }
3467 }
3468 
AppendToBootClassPath(const std::string & filename,const std::string & location,const std::vector<std::pair<const art::DexFile *,ObjPtr<mirror::DexCache>>> & dex_files_and_cache)3469 void Runtime::AppendToBootClassPath(
3470     const std::string& filename,
3471     const std::string& location,
3472     const std::vector<std::pair<const art::DexFile*, ObjPtr<mirror::DexCache>>>&
3473         dex_files_and_cache) {
3474   AppendToBootClassPath(filename, location);
3475   ScopedObjectAccess soa(Thread::Current());
3476   for (const auto& [dex_file, dex_cache] : dex_files_and_cache) {
3477     // The first element must not be at a multi-dex location, while other elements must be.
3478     DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
3479               dex_file == dex_files_and_cache.begin()->first);
3480     GetClassLinker()->AppendToBootClassPath(dex_file, dex_cache);
3481   }
3482 }
3483 
AddExtraBootDexFiles(const std::string & filename,const std::string & location,std::vector<std::unique_ptr<const art::DexFile>> && dex_files)3484 void Runtime::AddExtraBootDexFiles(const std::string& filename,
3485                                    const std::string& location,
3486                                    std::vector<std::unique_ptr<const art::DexFile>>&& dex_files) {
3487   AppendToBootClassPath(filename, location);
3488   ScopedObjectAccess soa(Thread::Current());
3489   if (kIsDebugBuild) {
3490     for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) {
3491       // The first element must not be at a multi-dex location, while other elements must be.
3492       DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
3493                 dex_file.get() == dex_files.begin()->get());
3494     }
3495   }
3496   GetClassLinker()->AddExtraBootDexFiles(Thread::Current(), std::move(dex_files));
3497 }
3498 
DCheckNoTransactionCheckAllowed()3499 void Runtime::DCheckNoTransactionCheckAllowed() {
3500   if (kIsDebugBuild) {
3501     Thread* self = Thread::Current();
3502     if (self != nullptr) {
3503       self->AssertNoTransactionCheckAllowed();
3504     }
3505   }
3506 }
3507 
AllowPageSizeAccess()3508 NO_INLINE void Runtime::AllowPageSizeAccess() {
3509 #ifdef ART_PAGE_SIZE_AGNOSTIC
3510   gPageSize.AllowAccess();
3511 #endif
3512 }
3513 
3514 }  // namespace art
3515